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Abstract. Ring signature was proposed to keep signer’s anonymity when
it signs messages on behalf of a “ring” of possible signers. In this paper,
we propose a novel notion of ring signature which is called attribute-
based ring signature. In this kind of signature, it allows the signer to
sign message with its attributes from attribute center. All users that
possess of these attributes form a ring. The identity of signer is kept
anonymous in this ring. Furthermore, anyone out of this ring could not
forge the signature on behalf of the ring.
Two constructions of attribute-based ring signature are also presented in
this paper. The first scheme is proved to be secure in the random oracle
model, with large universal attributes. We also present another scheme in
order to avoid the random oracle model. It does not rely on non-standard
hardness assumption or random oracle model. Both schemes in this paper
are based on standard computational Diffie-Hellman assumption.

Keywords: Ring Signature, Attribute-Based, Anonymity, Computational Diffie-
Hellman Assumption

1 Introduction

Ring signatures [17] allow user to sign messages on behalf of a “ring” of legitimate
signers, without revealing the signer’s identity. Different from group signature
(for examples, [2,8]), in ring signature, the group formation is spontaneous and
there is no group manager to revoke the identity of the signer. Therefore under
the assumption that each user is previously associated with a public key, a user
can form a group by simply collecting the public keys of all the “ring” members
including his own. These diversion members can be totally unaware of being
included into the group. Ring signature schemes could be used for whistle blowing
and anonymous membership authentication [17] to keep the anonymity of the
signer and can be publicly verifiable.

In order to simplify the key management procedures of the certificate-based
public key infrastructures, Shamir [21] introduced the concept of identity-based
cryptosystem in 1984. Identity-based cryptosystem is a public key cryptosystem
where the public key can be an arbitrary string such as an email address. A
private key generator uses a master secret key to issue private keys to identities
that request them.
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As a related notion to identity-based cryptosystem, fuzzy identity-based en-
cryption (IBE) [18] was proposed by Sahai and Waters at Eurocrypt 2005. In
fuzzy IBE, the identity of user is viewed as a set of descriptive attributes. Be-
fore decryption, they get their attributes from the authorities. In this system,
the user with secret key for identity ω is able to decrypt a ciphertext encrypted
with identity ω′ if and only if ω and ω′ are within a certain distance of each
other as judged by some metric. Fuzzy IBE has many important applications.
For example, fuzzy IBE can be applied to enable encryption using biometric
inputs as identities because the error-tolerance property of an fuzzy IBE scheme
allows for the use of biometric identities. Another important application of fuzzy
IBE is attribute-based encryption. In this application, an entity could encrypt
a document to all users that have a certain set of attributes. For example, de-
fine the distance to be two by overlapping. A message is encrypted with respect
to attributes “University A”, “Faculty”, and “Computer Science Department”.
Then, only users having two attributes of these three attributes can decrypt and
get the message. In more detail, there are three kinds of users are allowed to de-
crypt, i.e., if they are faculty in university A or computer science department,
or member of computer science department in university A.

1.1 Our Contributions

In this paper, we introduce the notion of attribute-based ring signatures. Attribute-
based ring signatures are designated for the following situation: An entity gets
its certificate for attributes ω from an attribute center. Then, this entity signs
message by using subset of its attributes ω′ ⊆ ω to prove that the message is
signed by user with attributes ω′. Let all users with this attributes subset ω′ be
a ring. It requires that anyone can not tell who generates the signature in this
ring, even if many ring signatures are available. Furthermore, anyone could not
forge the signature for this ring if it is not in this ring.

Consider the following application: Bob has attributes {“University A”, “Fac-
ulty”, “Computer Science Department”, “Driver Licence”}. And, Bob wishes to
complain or give some suggestions to an administrator in the university A, in
such a way that Bob remains anonymous, yet the administrator is convinced that
such complaints or suggestions are indeed from some faculty in the university A.
In order to do this, Bob could sign the complaints or suggestions with attributes
“University A” and “Faculty”, by using the attribute-based ring signature. The
administrator can verify the validity of the signature and be convinced it is
indeed from some faculty in the university A, without knowing its identity.

In all of the previous kinds of ring signatures, the signer and verifier know
which people are included in this ring. In our proposed ring signatures, the
signer could only decide the attributes for the signature. It need not know who
are involved in this ring.

Then, two constructions of attribute-based ring signatures are proposed. The
first scheme is proved to be secure in the random oracle model, with large uni-
versal attributes. Then, we present another construction that is provably secure,
without random oracles.
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1.2 Related Work

After the notion of fuzzy IBE [18] was proposed, many improvements and exten-
sion were proposed. Baek et al. [1] showed how to shorten the public parameters,
but the scheme could only be proved to be secure in the random oracle model.

Later, there are many extensions for the notion of fuzzy IBE. Chase [7] pro-
posed a multi-authority attribute-based encryption scheme. In this protocol,
each authority controls some of the attributes. To add some restriction on the
private key, Goyal et al. [13] proposed a key-policy attribute-based encryption.
In this system, each private key is associated with an access structure that spec-
ifies which type of ciphertexts the key can decrypt. Instead of determining the
decrypting policy in private key, in [4], they proposed the notion of ciphertext-
policy attribute-based encryption. It allows the encryptor to specify an associ-
ated access structure such that only users, with attributes satisfying this access
structure, can decrypt the ciphertext.

There are several attempts to construct attribute-based signatures. The no-
tion of fuzzy identity-based signature was proposed in [24]. In their definition of
fuzzy identity-based signature, it allows a user with identity ω to issue a signa-
ture, that is to say, the user can sign a message with some of its attributes. The
verifier can check if the signature is signed by the user with these attributes.
And, a similar notion to fuzzy identity-based signature, called attribute-based
signature, was also proposed in [12], to achieve almost the same goal. However,
these kind of signature does not consider the anonymity for signer. As the re-
lation between attribute-based cryptosystem and identity-based cryptosystem,
such kind of signature scheme could be trivial to construct by using the method
given by Galindo et al [11]. Another work on attribute-based signature is [16]. In
this work, they tried to get a signature with signer privacy, however, the security
is very weak because it can only be proved in non-standard hardness assumption
and generic group model.

Recently, Khader [14] proposed another notion which was called attribute-
based group signature. It allows a verifier to request a signature from a member
of a group who possesses certain attributes and, the signature should prove
ownership of certain properties.

Since after ring signature scheme was first formalized by Rivest, Shamir and
Tauman [17], many practical ring signature schemes and its variants have been
proposed, such as threshold ring signature [6], identity-based ring signature [10],
and proxy ring signature [15]. Most subsequent papers holds in the random ora-
cle model. Xu et al. [23] described a ring signature secure in the standard model
without rigorous proof. Later, Chow et al. [9] proved the security of this ring
signature scheme in the standard model, but based on a new strong assump-
tion. Bender et al. [3] presented a stronger model and ring signatures that are
secure in this standard model assuming trapdoor permutations exist. And, the
first efficient ring signature scheme secure without random oracles and based on
standard assumptions, was proposed by Shacham and Waters in [19]. In their
ring signature scheme, setup assumption was required.
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2 Preliminaries

In this paper, we use the bilinear pairings on elliptic curves. We now give a
brief review on the property of pairings and some candidate hard problems from
pairings that will be used later.

Let G1 and G2 be cyclic groups of prime order p with the multiplicative
group action. And, g is a generator of G1. Let e : G1 ×G1 → G2 be a map with
the following properties:

1. Bilinearity: e(ga
1 , gb

2) = e(g1, g2)ab for all g1, g2 ∈ G1, and a, b ∈R Zp;
2. Non-degeneracy: There exists g1, g2 ∈ G1 such that e(g1, g2) 6= 1, in other

words, the map does not send all pairs in G1 ×G1 to the identity in G2;
3. Computability: There is an efficient algorithm to compute e(g1, g2) for all

g1, g2 ∈ G1.

Definition 1. (CDH Problem) The Computational Diffie-Hellman problem
is that, given g, gx, gy ∈ G1 for unknown x, y ∈ Z∗

p, to compute gxy.

We say that the (t, ε)-CDH assumption holds in G1 if no t-time algorithm
has the non-negligible probability ε in solving the CDH problem.

3 Attribute-Based Ring Signature Scheme

In this section, we show the definition and security model of attribute-based ring
signature. Then, we propose a construction. In attribute-based ring signature,
one can get private key for attributes from the attributes center.

3.1 Syntax

The attribute-based ring signature scheme consists of four algorithms, namely,
Setup, Extract, Sign, and Verify, which are defined as follows.

– Setup. The setup algorithm, on input 1λ, where λ is the security parameter,
outputs public parameters params and sk as master secret key for attribute
center.

– Extract. The private key extraction algorithm, on input attributes ω, the
master key sk, outputs a private key skω.

– Sign. The signing algorithm, to obtain a signature on a message m with
respect to attributes ω′ ⊆ ω, takes as input secret key skω for attributes ω,
outputs signature σ.

– Verify. The verification algorithm, given an alleged signature σ for m with
respect to attributes ω′, and the public parameters params, checks if it is a
valid signature. If it is valid, outputs 1. Otherwise, outputs 0.
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3.2 Security Requirements

There are two security requirements for attribute-based ring signatures: unforge-
ability and anonymity. The definition for unforgeability requires any user can not
generate a signature for some attributes ω∗ if it has not private key for ω such
that ω∗ ⊆ ω. The following definition for unforgeability also implies the security
against collusion attacks, in which a group of users could combine their secret
keys and sign message with attributes they could not do individually.

3.2.1 Unfrogeability

For unforgeability, we require that it is existentially unforgeable against selec-
tive attribute ring and chosen message attacks (EUF-sA-CMA). This kind of
definition is similar to the fixed-ring attacks as in many ring signature schemes
[9,10,15].

There are two oracles provided to the adversary:

1. Private Key Extraction Oracle: Given attributes set ω, output corresponding
secret key skω.

2. Signing Oracle: Given message m and attributes set ω, output signature σ.

If the security is proved in the random oracle model, another oracle should
also be provided to the adversary additionally:
(3) Random Oracle: Given m, output a random value r.

As we explained above, the attribute ring is fixed for some predefined max-
imum number, for example, d. Its formal definition is based on the following
EUF-sA-CMA game involving a challenger C and an adversary F .

[Game EUF-sA-CMA]

Initial . F outputs its challenge attributes set |ω∗| ≤ d for some predefined
number d.
Setup(d). C chooses a sufficiently large security parameter 1λ and runs Setup.
C retains secret key sk and sends params generated from Setup to F .
Phase 1. F can perform a polynomially bounded number of queries m,ω, and
(m′, ω′) with |ω′| ≤ d to random oracle, private key extraction oracle and sign-
ing oracle, respectively. The restriction of the private key extraction query on ω
should satisfy ω∗ * ω.
Forgery . F outputs a signature σ∗ on messages m∗ with respect to attributes
set ω∗.

We say that the adversary wins the game if σ∗ is a valid signature on message
m∗ with respect to ω∗, and (m∗, ω∗) has not been queried to the signing oracle.

The advantage Adveuf
ARS,F (1λ) of F is defined as the probability that it wins

the game.

Definition 2 (Unforgeability). A forger F (t, qK , qS, qH , ε)-breaks a signa-
ture scheme if A runs in time at most t, and makes at most qK private key ex-
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traction queries, qS signature queries and qH hash queries, while Adveuf
ARS,F (1λ)

is at least ε.
A signature scheme is (t, qK , qS , qH , ε)-existentially unforgeable under an adap-

tive chosen message attack if there exists no forger that can (t, qK , qS , qH , ε)-break
it.

3.2.2 Anonymity

For anonymity, we require that the signer is anonymous among the users with
the same attributes for signature, even for the attribute center. The adversary
asks for some signature with respect to some attributes belong to two attribute
identities. Because two attribute identities could generate the signature with the
same attribute subset, the adversary has to guess which one signs the message,
even with the secret key for both identities. Its formal definition is based on the
following game between a challenger C and an adversary F .

[Game Anonymity]

Setup(d). The challenger C chooses a sufficiently large security parameter 1λ

and runs Setup to get master key sk and public parameter params. C sends sk
and params to F . With the secret key sk, F can generate private key and sig-
nature itself.
Challenge Phase . F outputs a message m∗, two attribute identities ω∗1 , ω∗2 ,
and challenged attribute ω∗ for signature query, where ω∗ = ω∗1 ∩ ω∗2 and,
ω∗ ⊆ ω∗ such that | ω∗ |≤ d. Assume F has queried private key extractions
to two attributes set ω∗1 and ω∗2 . The secret keys for ω∗1 and ω∗2 are skω∗1

and
skω∗2

, respectively. C chooses a bit b ∈ {0, 1}, computes the challenge signature
σ∗ = Sign(m∗, ω∗, skω∗b

) and provide σ∗ to F .
Guess. Algorithm F tries to guess the signature is generated from signer with
ω∗1 or ω∗2 . Finally, it outputs a bit b′ for b, and wins if b′ = b.

We define Advanony
ARS,F (1λ) to be the advantage over 1/2 of F in the above

game.

Definition 3 (Anonymity). An attribute-based ring signature scheme satisfies
the anonymity requirement if there exists no forger F can win the above game
with non-negligible advantage Advanony

ARS,F (1λ).

In this game, the master key of attribute center is also given to the adversary.
This means that signer’s anonymity holds even for the attribute center.

At first glance, it seems trivial to construct such a protocol just by prepar-
ing one secret key for each signing attributes set ω′ (Only preparing one secret
key for each attribute i ∈ Zp, instead of signing attributes set ω′, will not pro-
vide security against collusion attacks, in which a group of users could combine
their secret keys and break the security requirement of unforgeability defined in
Section 3.2.). However, if the number of universal attributes set U is k, we can
calculate that the number of all signing attributes is at least

(
k
d

)
. As a result, the

attribute center has to publish at least
(
k
d

)
public keys. Obviously, it can not be
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realized in polynomial time for the following case when the universal attributes
are chosen from Zp. However, in our construction, it only requires to publish 4
group elements. The number

(
k
d

)
will be huge even for small k and d, for exam-

ple, when the attributes number is k = 50 and d = 10, it will be approximately
1010, instead of k in our second construction.

3.3 Our Attribute-Based Ring Signature Construction

In our construction, the signer could generate a signature with some of its at-
tributes. A predefined number d will be given before setup algorithm. And, in
our system, the user can sign a document with the number of attributes from 1
to d.

Before giving the construction, some preliminaries on Lagrange interpolation
are given here. Recall that, given d points q(1), · · · , q(d) on a d− 1 degree poly-
nomial, we can use Lagrange interpolation to compute q(i) for any i ∈ Zp. Let
S be a d-element set. We define the Lagrange coefficient ∆j,S(i) of q(j) in the
computation of q(i) as:

∆j,S(i) =
∏

k∈S,k 6=j

i− k

j − k

Let G1, G2 be cyclic groups of prime order p, and e : G1 × G1 → G2 be a
pairing defined in Section 2.

Setup(d). First, define the universal attributes U as Zp. Furthermore, a d − 1
default attributes set from Zp is also given as Ω = {Ω1, Ω2, · · · , Ωd−1}. Then,
select a random generator g ∈ G1, a random x ∈ Z∗

p, and set g1 = gx. Next, pick
random element g2 ∈ G1, compute Z = e(g1, g2). Two hash functions are also
chosen such that H1,H2: {0, 1}∗ → G1. The public parameters are params =
(g, g1, g2, Z,H1,H2), and the master key is x.

Extract. To generate the private key for an attributes set ω, the following steps
are taken:

– First, a d− 1 degree polynomial q is randomly chosen such that q(0) = x;
– Generate a new attributes set ω̂ = ω ∪Ω. For each i ∈ ω̂, choose ri ∈R Zp;
– Then, compute di0 = g

q(i)
2 · (H1(i))ri and di1=gri ;

– Finally, output the private key Di = (di0, di1) for each i ∈ ω̂. 1

Sign. Suppose one has a private key for attributes set ω. To sign a message m
for attributes ω′={i1, · · · , ik} ⊆ ω, where 1 ≤ k ≤ d, it proceeds as follows:

– First, select a d − k default attributes subset Ω′ = {ik+1, ik+2, · · · , id} ⊆
Ω. Then, choose r′1, · · · , r′d, s1, · · · , sd ∈ Zp and a d − 1 degree polynomial
function q′(x) such that q′(0) = 0;

1 It means that for each user, the default attributes set Ω is included in his/her
private key. The default attributes set is used to make the number of attributes used
in signing algorithm flexible from 1 to d.
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– For 1 ≤ v ≤ d, compute σv1=(div0H1(iv)r′vg
q′(iv)
2 H2(m)sv , σv2 = div1g

r′v ,
and σv3 = gsv ;

– Finally, output the signature σ={(σv1,σv2,σv3)}1≤v≤d.

Verify. To verify the signature σ={(σv1,σv2,σv3)}1≤v≤d on message m for at-
tributes ω′=(i1, · · ·, ik) with default attributes Ω′, it checks the following equa-
tion:

d∏
v=1

(
e(g, σv1)

e(H1(iv), σv2)e(H2(m), σv3)
)∆iv,S(0) = Z

If it holds, then output 1. Otherwise, output 0.

3.4 Correctness

The correctness of verification is justified by the following equations:
For 1 ≤ v ≤ d, we have

e(σv1,g)
e(H1(iv),σv2)e(H2(m),σv3)

= e(g
q(iv)+q′(iv)
2 ·H1(iv)(riv

+r′v)H2(m)sv ,g)

e(H1(iv),griv
+r′v )e(H2(m),gsv )

= e(g
q(iv)+q′(iv)
2 ,g)·e(H1(iv)(riv

+r′v),g)e(H2(m)sv ,g)

e(H1(iv),g(riv
+r′v))e(H2(m),gsv )

=e(g2, g)q(iv)+q′(iv)

So, we have

[e(g2, g)qi1+q′(i1)]∆i1,S(0) · · · [e(g2, g)qid
+q′(id)]∆id,S(0)

=e(g2, g)q(0)+q′(0)

=e(g2, g1)
=Z

3.5 Security Results

Theorem 1. Our attribute-based ring signature scheme satisfies unconditional
anonymity.

Proof. First, the attribute center runs Setup to get the public parameters params
and the master key x. It gives the adversary params and x. After these inter-
actions, the adversary outputs two attributes ω∗1 and ω∗2 , where ω∗ = ω∗1 ∩ ω∗2 .
Notice that the private key for each user should include the d−1 default attribute
set Ω. Let ω̂∗b = ω∗b ∪ Ω for b ∈ {1, 2}. Assume the challenger or adversary has
generated the secret keys as sk

ω̂∗1
= (d1

i0, d
1
i1)i∈ω̂∗1

and sk
ω̂∗2

= (d2
i0, d

2
i1)i∈ω̂∗2

for

ω∗1 and ω∗2 , respectively. Let dθ
i0 = g

qθ(i)
2 H1(i)rθ

i , dθ
i1 = grθ

i for each i ∈ ω̂∗θ , where
θ ∈ {1, 2}, rθ

i ∈ Zp, and qθ is d− 1 degree polynomial function with qθ(0) = x.
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Then, the adversary outputs a message m∗ and a k-element subset ω∗ =
{i1, · · · , ik} ⊆ ω∗, where | ω∗ |≤ d. It asks the challenger to generate a signa-
ture on message m∗ with respect to ω∗ from either skω∗1

or skω∗2
. The challenger

chooses a random bit b ∈ {1, 2}, a (d−k)-element subset Ω′ = {ik+1, ik+2, · · · , id} ⊆
Ω, and outputs a signature σ∗ = (db

i0H1(i)r′i g
q′(i)
2 H2(m∗)si , db

i1g
r′i , gsi)i∈ω∗∪Ω′)

by running algorithm Sign with the secret key sk
ω̂∗b

= (db
i0, d

b
i1)i∈ω̂∗b

, where
r′i, si ∈ Zp and q′ is a d− 1 degree polynomial function with q′(0) = 0.

Then, we will show that this signature could be generated from either by
sk

ω̂∗1
or sk

ω̂∗2
. If b = 1, then we will show it also could be generated from sk

ω̂∗2
as follows:

Because
σ∗ = (d1

i0H1(i)r′i g
q′(i)
2 H2(m∗)si , d1

i1g
r′i , gsi)i∈ω∗∪Ω′ , we have

σ∗=(d2
i0

d1
i0

d2
i0

H1(i)r′i g
q′(i)
2 H2(m∗)si , d2

i1
d1

i1
d2

i1
gr′i , gsi)i∈ω∗∪Ω′ .

We have, d1
i0

d2
i0

= g
q1(i)
2 H1(i)

r1
i

g
q2(i)
2 H1(i)

r2
i
=g

q1(i)−q2(i)
2 H1(i)r1

i−r2
i .

And, d1
i1

d2
i1

=H1(i)
r1

i

H1(i)
r2

i
.

Define a new d−1 polynomial function q(x) = q1(x)−q2(x). We have q(0) = 0.
Thus,
σ∗ = (d2

i0 g
q(i)
2 H1(i)r1

i−r2
i H1(i)r′i g

q′(i)
2 H2(m∗)si , d2

i1 H1(i)r1
i−r2

i gr′i , gsi)i∈ω∗∪Ω′

=(d2
i0 g

q(i)+q′(i)
2 H1(i)r1

i−r2
i +r′i H2(m∗)si , d2

i1 gr1
i−r2

i +r′i , gsi)i∈ω∗∪Ω′

Define another d − 1 polynomial function q
′′
(x) = q(x) + q′(x). We have

q
′′
(0) = 0 and q

′′
(i) = q(i) + q′(i). Let r

′′

i = r1
i − r2

i + r′i.
Then, σ∗ could be rewritten as

σ∗=(d2
i0g

q
′′

(i)
2 H1(i)r

′′
i H2(m∗)si , d2

i1g
r
′′
i , gsi)i∈ω∗∪Ω′ , which is a valid signa-

ture generated from sk
ω̂∗2

.
So, we have proved the signature could also be generated from the secret key

sk
ω̂∗2

for attributes ω∗2 .
By using similar proof as above, we can also get the following result: If a

signature is generated by the secret key sk
ω̂∗2

for attributes ω∗2 , then, it could
also be generated from secret key sk

ω̂∗1
for attributes ω∗1 .

From the proof, we have showed that the attribute-based ring signature
scheme satisfies unconditional anonymity. �

Theorem 2. Suppose the (t′, ε′)-CDH assumption holds in G1 and the adver-
sary makes at most qH1 , qH2 , qK and qS times queries to random oracle H1, H2,
private key extraction and signature queries, respectively. Then, the attribute-
based ring signature scheme is (t, qH1 , qH2 , qK , qS, ε)-EUF-sA-CMA, where
t′ < t + (qH1 + qH2 + 2qK + 3qSd)texp, texp is the maximum time for an expo-
nentiation in G1, and ε′ ≈ ε/(qH2

(
d−k
d−1

)
).

Proof. See Appendix A.
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4 The Attribute-Based Ring Signature Construction
Without Random Oracle

In our scheme, it is assumed there are ` attributes in universe, which are denoted
by the set U. Associate each element in U with a unique integer in Zp. Also, a
d − 1 default attributes set Ω = {Ω1, Ω2, · · · , Ωd−1} is also given. We will sign
messages of n bits, a separate parameter unrelated to p. The messages could be
bit strings of arbitrary length and n be the output of a collision-resistant hash
function H : {0, 1}∗ → {0, 1}n. Our construction works as follows:

Setup(`, d). First, define the universe, U of elements. For simplicity, let `=|U |
and we can take the first ` elements of Zp, to be the universe. Namely, the inte-
gers 1, · · ·, ` (mod p). And, let the d − 1 default attributes set Ω = {` + 1, ` +
2, · · · , ` + d − 1}. Then, select a random generator g ∈ G1, a random x ∈ Z∗

p,
and set g1 = gx. Next, pick random elements g2, u

′ ∈ G1, a random (` + d− 1)-
length vector H = (hi) and a random n-length vector U = (ui), whose elements
are chosen from G1. Let Z = e(g1, g2). The public parameters are params =
(g, g1, g2, Z,H,U), master key is x.

Extract. To generate private key for attributes set ω, the following steps are
taken:

– A d− 1 degree polynomial q is randomly chosen such that q(0) = x;
– Generate a new attributes set ω̂ = ω ∪ Ω. For each i ∈ ω̂, choose ri ∈R Zp.

Then, compute di0 = g
q(i)
2 · (g1hi)ri and di1=gri ;

– Finally, output the private key Di = {(di0, di1)} for each i ∈ ω̂.

Sign. Suppose one has a private key (Di)i∈ω̂=(di0, di1) for attributes set ω. To
generate a signature on message m = (µ1, · · · , µn) ∈ {0, 1}n with respect to
attributes ω′={i1, · · · , ik} ⊆ ω, where 1 ≤ k ≤ d, proceed as follows:

– First, choose a d − k default attributes subset Ω′ = {ik+1, ik+2, · · · , id} ⊆
Ω. Then, choose r′1, · · · , r′d, s1, · · · , sd ∈ Zp and a d − 1 degree polynomial
function q′(x) such that q′(0) = 0;

– For 1 ≤ v ≤ d, compute σv1=(div0g
q′(iv)
2 (g1hiv

)r′v (u′
∏n

j=1 u
µj

j )sv , σv2 =
div1g

r′v , and σv3 = gsv ;
– Finally, output the signature σ={(σv1,σv2,σv3)}1≤v≤d.

Verify. Take as input the signature σ={(σv1,σv2,σv3)}1≤v≤d on message m =
(µ1, · · · , µn) ∈ {0, 1}n for attributes ω′=(i1, · · ·, ik) with default attributes sub-
set Ω′. The signature is valid if the following equation holds:

d∏
v=1

(
e(g, σv1)

e(g1hiv
, σv2)e(u′

∏n
j=1 u

µj

j , σv3)
)∆iv,S(0) = Z

Correctness can be verified similarly with the attribute-based ring signature
scheme in Section 3.3.
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4.1 Security Results

Theorem 3. Our attribute-based ring signature scheme satisfies unconditional
anonymity.

Proof. The proof is very similar to the proof of Theorem 1. So, we omit it here.
�

Theorem 4. Assume the adversary makes at most qK and qS times queries
to private key extraction and signature queries, respectively. The attribute-based
ring signature scheme is (t, qK , qS, ε)-EUF-sA-CMA, if the (t′, ε′)-CDH as-
sumption holds in G1, where t′ < t + (2qK + 3qSd)texp and texp is the maximum
time for an exponentiation in G1, ε′ = ε/(16qS(n + 1)

(
d−k
d−1

)
).

Proof. See Appendix B.

5 Conclusion

We proposed the new notion of attribute-based ring signature in this paper.
It allows the signer to sign message with some of its attributes while keeping
the signer’s anonymity in this attributes ring. Furthermore, anyone out of this
ring could not forge the signature on behalf of the ring. In our proposed ring
signatures, the signer could only decide the attributes for the signature, and the
users with these attributes are included in this ring. Different from the previous
ring signatures, the signer does not know which users are involved in this ring.

Two constructions were also proposed in this paper. The first one is proved
to be secure in the random oracle model, with large universal attributes. The
second construction is provably secure, without random oracles. And, both of
constructions are secure based on standard assumption under the selective at-
tribute ring security model.
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Appendix A: Proof of Theorem 2

Proof. Suppose an adversary F has an advantage ε in attacking the scheme, we
build an algorithm A that uses F to solve the CDH problem. Algorithm A is
given a random (g,X = gx, Y = gy) and asked to compute gxy.

Let the default attributes set be Ω = {Ω1, Ω2, · · · , Ωd−1} for some predefined
integer d.
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First, F outputs the challenge attribute identity ω∗ with the condition |ω∗| =
k ≤ d. Then, A selects randomly a subset Ω∗ ⊆ Ω with |Ω∗| = d− k.

Simulation of Setup A sets g1 = X and g2 = Y .

Simulation of Random Oracle Assume F makes at most qH1 times to H1-oracle
and qH2 times to H2-oracle, respectively. C maintains a list L1 and L2 to store
the answers of H1-oracle and H2-oracle. Meanwhile, it selects a random integer
δ ∈ [1, qH2 ] and a subset Ω∗ ⊆ Ω with |Ω∗| = d− k. If i is sent for query of H1,
A checks the list L1. And it works as follows:

– If an entry for the query is found in L1, the same answer will be returned to
F .

– Otherwise, it simulates as follows:
1. If i ∈ ω∗ ∪Ω∗, it chooses a random βi ∈ Zp and answers H1(i) = gβi .
2. If i 6∈ ω∗ ∪ Ω∗, it chooses random βi, γi ∈ Zp and answers H1(i) =

g−βi

1 gγi .

If mi is sent for query of H2, A checks the list L2. And it works as follows:

– If an entry for the query is found in L2, the same answer will be returned to
F .

– Otherwise, it simulates as follows:
1. If i 6= δ, it chooses random αi, βi ∈ Zp and answers H2(mi) = gαi

1 gβi .
2. If i = δ, it chooses random βi ∈ Zp and answers H2(mi) = gβi .

Simulation of Private Key Extraction Oracle Assume F makes at most qK

private key extraction queries. F can make requests for private keys on ω such
that ω∗ * ω. We show how A simulate a private key on ω on request. We first
define three sets Γ , Γ ′, S in the following manner: Γ=(ω ∩ ω∗) ∪ Ω∗, and Γ ′

such that Γ ⊆ Γ ′ ⊆ S and | Γ ′ |=d − 1. Let S = Γ ′ ∪ {0}. Next, simulate the
decryption key components Di as follows:

– For i ∈ Γ ′: Di = (gτi
2 H1(i)ri , gri), where τi, ri is randomly chosen from Zp.

The intuition behind these assignments is that we are implicitly choosing
a random d − 1 degree polynomial q(x) by choosing its value for the d − 1
points randomly such that q(i) = τi, in addition to having q(0) = x.

– For i 6∈ Γ ′, Di could also be simulated as

Di=(g
∆0,S(i)γi

βi
+Σj∈Γ ′∆j,S(i)q(j)

2 (g−βi

1 gγi)r
′
i , g

∆0,S(i)
βi

2 gr′i).
It is correct simulation key because just let ri = ∆0,S(i)

βi
y + r

′

i. As we know,
q(i) =

∑
j∈Γ ′ ∆j,S(i) (q(j)+∆0,S(i)q(0). Thus, we have,

g
q(i)
2 H1(i)ri=g

∆0,S(i)
βi

+Σj∈Γ ′∆j,S(i)q(j)

2 H1(i)r
′
i , and

gri = g
∆0,S(i)

βi
2 gr′i .
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Simulation of Signing Oracle F also makes requests for signature query on
message m for any attributes ω.

If ω∗ * ω, then, A can generate a simulated private key for ω as in the
private key simulation and get a signature for ω on message m normally.

If ω∗ ⊆ ω, A selects a random (d−|ω|)-element subset Ω′ from Ω. If H2(m) 6=
gβi , A can simulate the signature as follows:

Assume that ω∪Ω′ = {i1, i2, · · · , id}. First, it chooses d−1 values τik
∈ Zp and

lets q(ik) = τik
for 1 ≤ k ≤ d−1. For these points, (gq(ik)

2 (H1(ik))rik (H2(m))sk ,
grik , gsk) could be simulated by choosing sk ∈ Zp. The d-th point q(id) is also
determined because q(0) = x, which could be denoted by q(id) =

∑d−1
k=1 ∆ik,S(id)

(q(ik)+∆0,S(id)q(0). Thus, in order to simulate (gq(id)
2 (H1(id))rd (H2(m))sd , grd ,

gsd), choose s′d, rid
∈ Zp and let sd = −∆0,S(id)

αid
y + s′d. Then,

g
q(id)
2 (H1(id))rd (H2(m))sd

= g
∑d−1

k=1 ∆ik,S(id)(q(ik)

2 g

−∆0,S(id)βi
αid

2 g
s′dαi

1 gs′dβi H1(id)rid , and gsd = g

−∆0,S(id)
αid

2 .

Forgery Finally, the adversary outputs a forged signature σ∗ = {(σ∗v1,σ
∗
v2,σ

∗
v3)}1≤v≤d

on message m∗ for attributes ω∗ with default attributes Ω∗. If H2(m∗) 6= gβδ or
Ω∗ 6= Ω∗, A will abort. Otherwise, the following verification holds:

d∏
v=1

(
e(σ∗v1, g)

e(H1(iv), σ∗v2)e(H2(m∗), σ∗v3)
)∆iv,S(0) = Z

Because H1(i) = gβi for i ∈ ω∗ ∪Ω∗, and H2(m∗) = gβδ , we have∏d
v=1(

e(σ∗v1,g)
e(H1(iv),σ∗v2)e(H2(m∗),σ∗v3)

)∆iv,S(0)

=
∏d

v=1(
e(σ∗v1,g)

e(g,(σ∗v2)
γiv )e(g,(σ∗v3)

βδ )
)∆iv,S(0)

=
∏d

v=1(e(σ
∗
v1/[(σ∗v2)

γiv (σ∗v3)
βδ ], g))∆iv,S(0)

=
∏d

v=1 e((σ∗v1)/[(σ∗v2)
γiv (σ∗v3)

βδ ])∆iv,S(0)

=e(g1, g2)
=e(gxy, g).

Thus, A will compute

gxy =
d∏

v=1

(σ∗v1/[(σ∗v2)
γiv (σ∗v3)

βδ ])∆iv,S(0)

For the success of A, we require that forgery signature on message m∗ such
that H2(m∗) = gβδ and Ω∗ = Ω∗. For the correct guess of d− k elements subset
Ω∗ from a d − 1-element set Ω, the probability is 1/

(
d−k
d−1

)
. So, we can get

the probability of solving CDH problem as ε′ ≈ ε/(qH2

(
d−k
d−1

)
), if the adversary

successes with probability ε. �
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Appendix B: Proof of Theorem 4

Proof. Suppose an adversary F has an advantage ε in attacking the scheme, we
build an algorithm A that uses F to solve the CDH problem. Algorithm A is
given a random (g,X = gx, Y = gy) and asked to compute gxy.

First, define the universe, U of ` elements as {1, 2, · · ·, `}. And, let the d− 1
default attributes set Ω = {` + 1, ` + 2, · · ·, ` + d− 1} for simplicity.

F outputs the challenge attribute identity ω∗ satisfying |ω∗| = k ≤ d.

Simulation of Setup A sets g1 = X and g2 = Y . It selects randomly a sub-
set Ω∗ ⊆ Ω with |Ω∗| = d − k. For all i ∈ ω∗ ∪ Ω∗, it chooses random βi ∈ Zp

and sets hi = g−1
1 gβi . For all i 6∈ ω∗ ∪ Ω∗, it chooses random βi ∈ Zp and sets

hi = gβi . Then it sets an integer, t = 4qS , and chooses an integer, k′, uniformly
at random between 0 and n. It then chooses a random n-length vector, −→a = (ai),
where the elements of −→a are chosen uniformly at random between 0 and t− 1.
Additionally, the simulator chooses a random b′ ∈ Zp and an n-length vector,
−→
b = (bi), where the elements of −→b are chosen at random in Zp. These values are
all kept internal to the simulator. It then assigns u′ = gp−kt+a′

1 gb′ and ui = gai
1 gbi

for 1 ≤ i ≤ n. The system parameters params= (g, g1, H = (hi), u′, U = (ui)) are
sent to F . To make the notation easier to understand, the following two pairs
of functions are defined for a message m = {µ1, · · · , µn} ∈ {0, 1}n. We define
F (m) = (p− tk)+a′+

∑n
i=1 aµi

i . Next, we define J(m) = b′+
∑n

i=1 bµi

i . Finally,

we define a binary function K(m) as K(m) =
{

0, if a′ +
∑n

i=1 aµi

i ≡ 0 (mod t);
1, otherwise.

Simulation of Private Key Extraction Oracle Assume F makes at most qK

private key extraction queries. F makes requests for private keys where ω∗ * ω.
We first define three sets Γ , Γ ′, S in the following manner: Γ=(ω ∩ ω∗) ∪ Ω∗,
and Γ ′ such that Γ ⊆ Γ ′ ⊆ S and | Γ ′ |=d − 1. Let S = Γ ′ ∪ {0}. Next, we
define the private key components Di:

For i ∈ Γ ′: Choose si, ri ∈ Zp and let q(i) = si. Then output Di =
(gsi

2 (g1hi)ri , gri).
We have chosen a random d−1 degree polynomial q(x) by choosing its value

for the d−1 points randomly in addition to having q(0) = x.A is able to calculate
the simulated private key for i 6∈ Γ ′ as Di = (g

Σj∈Γ ′∆j,S(i)q(j)

2 g
βi∆0,S(i)
2 (g1hi)r′i ,

g
∆0,S(i)
2 gr′i) to F .

It is easy to verify this is a valid: i.e., it is required to show that Di =
(gq(i)

2 (g1hi)ri , gri)=(g
Σj∈Γ ′∆j,S(i)q(j)

2 g
βi∆0,S(i)
2 (g1hi)r′i , g

∆0,S(i)
2 gr′i). Using inter-

polation, for i 6∈ Γ ′, q(i)=Σj∈Γ ′∆j,S(i)q(j)+∆0,S(i)q(0) and q(x) was implicitly
defined by the random assignment of the other d− 1 variables and the variable
g1. Let ri = −∆0,S(i)y + r′i (In fact, A does not know the value of ri), then

g
q(i)
2 (g1hi)ri = g

Σj∈Γ ′∆j,S(i)q(j)

2 g
βi∆0,S(i)
2 (g1hi)r′i and gri=g

−∆0,S(i)
2 gr′i . There-

fore, the simulator is able to construct a private key for the identity ω. Further-
more, the distribution of the private key for ω is identical to that of the original
scheme.
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Simulation of Signing Oracle F also makes requests for signature query on
message m = (µ1, · · · , µn) ∈ {0, 1}n for any attributes ω.

If ω∗ * ω, then, A can generate a simulated private key for ω as in the
private key simulation and get a signature for ω on message m normally.

If ω∗ ⊆ ω and K(m) = 0, A will abort. Otherwise, A selects a random
(d− |ω|)-element subset Ω′ from Ω and can simulate the signature as follows:

Assume that ω ∪ Ω′ = {i1, i2, · · · , id}. Firstly, it chooses d − 1 values µik

and lets q(ik) = τik
for 1 ≤ k ≤ d − 1. For these points, (gq(ik)

2 (g1hik
)rik

(u′
∏n

j=1 u
µj

j )sk , grik , gsk) could be simulated by choosing rik
, sk ∈ Zp. The

d-th point q(id) is also determined because q(0) = x, which could be denoted
by q(id) =

∑d−1
k=1 ∆ik,S(id) q(ik)+∆0,S(id)q(0). So, in order to simulate (gq(id)

2

(g1hid
)rid (u′

∏n
j=1 u

µj

j )sd , grid , gsd), let sd = −∆0,S(id)
F (m) y + s′d. Then, (gq(id)

2

(g1hid
)rid (u′

∏n
j=1 u

µj

j )= (g1hid
)rid g

∑d−1
k=1 ∆ik,S(id)(q(ik)

2 g
−J(m)∆0,S(id)

F (m)
2 (gF (m)

1 gJ(m))s′d .

Meanwhile, gsd = g
−∆0,S(id)

F (m)
2 .

Forgery Finally, the adversary outputs a forged signature σ∗ = {(σ∗v1,σ
∗
v2,σ

∗
v3)}1≤v≤d

on message m∗ = (µ∗1, · · · , µ∗n) for ω∗ with default attribute subset Ω∗. If it is
valid, then

d∏
v=1

(
e(σ∗v1, g)

e(g1hiv
, σ∗v2)e(u′

∏n
j=1 u

µ∗j
j , σ∗v3)

)∆iv,S(0) = e(g1, g2)

If a′ +
∑n

i=1 a
µ∗i
i 6= kt or Ω∗ 6= Ω∗, the challenger will abort.

Otherwise, because K(m∗) = 0 and Ω∗ = Ω∗, we have∏d
v=1(

e(σ∗v1,g)

e(g,(σ∗v2)
βiv )e(g,(σ∗v3)

J(m∗))
)∆iv,S(0)

=
∏d

v=1(e(σ
∗
v1/[(σ∗v2)

βiv (σ∗v3)
J(m∗)], g))∆iv,S(0)

=
∏d

v=1 e((σ∗v1)/[(σ∗v2)
βiv (σ∗v3)

J(m∗)])∆iv,S(0)

=e(g1, g2)
=e(gxy, g).
So, A will compute

gxy =
d∏

v=1

(σ∗v1/[(σ∗v2)
βiv (σ∗v3)

J(m∗)])∆iv,S(0)

It remains to analyze the probability of A not aborting. For the simulation
to complete without aborting, we require that all signature queries on m will
have K(m) 6= kt, that forgery signature on message m∗ has K(m∗) = 0 mod p
and Ω∗ = Ω∗. In fact, the probability analysis is very similar to [22]. So, we can
get the probability of solving CDH problem as ε′ = ε/(16qS(n + 1)

(
d−k
d−1

)
) if the

adversary success with probability ε. �


