
Generating genus two hyperelliptic curves over

large characteristic finite fields

Takakazu Satoh⋆

Department of Mathematics,
Tokyo Institute of Technology, Tokyo, 152-8551, Japan

satohaar@mathpc-satoh.math.titech.ac.jp

Abstract. In hyperelliptic curve cryptography, finding a suitable hy-
perelliptic curve is an important fundamental problem. One of necessary
conditions is that the order of its Jacobian is a product of a large prime
number and a small number. In the paper, we give a probabilistic poly-
nomial time algorithm to test whether the Jacobian of the given hyperel-
liptic curve of the form Y 2 = X5 +uX3 +vX satisfies the condition and,
if so, gives the largest prime factor. Our algorithm enables us to generate
random curves of the form until the order of its Jacobian is almost prime
in the above sense. A key idea is to obtain candidates of its zeta function
over the base field from its zeta function over the extension field where
the Jacobian splits.

Key words: hyperelliptic curve, point counting

1 Introduction

In (hyper)elliptic curve cryptography, point counting algorithms are very im-
portant to exclude the weak curves. For elliptic curves over finite fields, the SEA
algorithm (see Schoof[33] and Elkies[8]) runs in polynomial time (with respect to
input size). In case that the characteristic of the coefficient field is small, there are
even faster algorithms based on the p-adic method (see e.g. Vercauteren[37] for a
comprehensive survey). The p-adic method gives quite efficient point counting al-
gorithms for higher dimensional objects, e.g. Kedlaya[18], Lercier and Lubicz[23],
Lauder[19]. However, so far, there is no known efficient practical algorithm for
hyperelliptic curves of genus two in case that the characteristic of the coefficient
field is large.

In theory, Pila[29] generalized the Schoof algorithm to a point counting al-
gorithm for Abelian varieties over finite fields. Nevertheless, a practical imple-
mentation is not done even for the Jacobian of hyperelliptic curves of genus two.
Current implementations for crypto size curves more or less contain the BSGS
process, hence the running time grows exponentially. For crypto size implemen-
tations, see Matsuo, Chao and Tsujii[24], Gaudry and Schost[14].

⋆ The work was supported by the Grant-in-Aid for the Scientific Research (B)
18340005.

On the other hand, Furukawa, Kawazoe and Takahashi[11] gives an explicit
formula for the order of Jacobians of curves of type Y 2 = X5 + aX where
a ∈ F×

p . However, there are, at most, only 8 isomorphism classes over Fp among
these curves for each prime p. Their method relies on the binomial expansion of
X5 + aX. The idea was generalized to hyperelliptic curves over prime fields of
the form Y 2 = X5 + a (ibid.) and Y 2 = X2k+1 + aX in Haneda, Kawazoe and
Takahashi[15]. Recently, Anuradha[2] obtained similar formulae for non-prime
fields. But their method seems to be applicable only to binomials in X.

In this paper, we consider an intermediate case: our curve is in a certain
special form but not as special as was considered in the above papers and time
complexity to test one curve is of probabilistic polynomial time. More specifi-
cally, we give an algorithm to test whether the order of the Jacobian of a given
hyperelliptic curve of genus two in the form Y 2 = X5 + uX3 + vX has a large
prime factor. If so, the algorithm output the prime factor. Moreover, under a
certain circumstance (see Remark 6), our algorithm determines the group order
itself.

The order of the Jacobian of hyperelliptic curves Y 2 = X(X2n + uXn + v)
over a prime field are already studied by Leprévost and Morain[21]. In case of
n = 2, they gave some explicit formulae for the order of the Jacobian in terms of
certain modular functions, whose evaluations are computationally feasible only
for special combinations of u and v.

Our method is totally different from the preceding point counting works.
Let p ≥ 5 be a prime and let q be a power of p. Let C/Fq : Y 2 = X5 +
uX3+vX be an arbitrary (in view of cryptographic application, randomly) given
hyperelliptic curve. We do not require q = p, which implies that our algorithm
can be applicable hyperelliptic curves over so-called optimal extension fields. We
now observe a key idea of our method. Put r = q4. We denote the Jacobian
variety of C by J , which is an Abelian variety of dimension two defined over Fq.
Now J is isogenous over Fr to a product of an elliptic curve defined over Fr.
Hence the (one dimensional part of) zeta function of J as an Abelian variety
over Fr is a square of the zeta function of the elliptic curve, which is computed
by the SEA algorithm. On the other hand, we have some relation between the
zeta function of J over Fr and over Fq. This gives (at most 26) possible orders
of J(Fq). For each candidate, we first check that the order is not weak for
cryptographic use, that is, the order is a product of a small positive integer
and a large prime. If the curve is weak, we stop here. (Note that, if the curve
passes the test, its Jacobian is simple over Fq.) Then, we take random points
of J(Fq) to see whether the prime actually divides #J(Fq). Our algorithm runs
in probabilistic polynomial time in log q. In order to find a hyperelliptic curve
suitable for cryptography, we repeat the process with randomly given u and v
until we obtain a curve with desired properties.

In the case of characteristics two, Hess, Seroussi and Smart[16] proposed an
algorithm to construct a verifiably random hyperelliptic curve in a certain family
which is suitable for a hyperelliptic cryptosystem. The efficiency of their algo-
rithm in case of large characteristics is not clear. As to products of elliptic curves,

2

Scholten[32] constructs a hyperelliptic curve of genus two for odd prime fields
whose Jacobian is isogenous to the Weil restriction of elliptic curves. Both of the
works start with elliptic curves while our algorithm starts with the hyperelliptic
curve Y 2 = X5 + uX3 + vX where u and v are given.

Recently Sutherland[35] proposed an algorithm based on a generic group
model to produce Abelian varieties from random hyperelliptic curves. When
applied to curves of genus two, its running time is quite practical but its heuristic
time complexity is of sub-exponential. Although these two algorithms[16], [35]
take random input data, it is highly non-trivial to observe distribution of output
of the algorithm. In case of our algorithm, it is obvious that our algorithm
generates each curve of type Y 2 = X5 + uX3 + vX, suitable to cryptography
with equal probability if we generate random u and v uniformly.

In case that p ≡ 3 mod 4, the Jacobian has complex multiplications by
√
−1

for all u and v (as long as the curve is actually a hyperelliptic curve). This
fact can be used to make scalar multiplication faster by the Gallant, Lambert
and Vanstone algorithm[12]. We can also take advantage of real multiplications
with efficient evaluations (if any) due to Takashima[36]. However we also note
that such an efficient endomorphism also speeds up solving discrete log problems
Duurasma, Gaudry and Morain[7].

After the work was completed except for the crypto size numerical experi-
ments, the author learned that Gaudry and Schost[13] completely describes the
hyperelliptic curves whose Jacobian is isomorphic to a product of two elliptic
curves by an isogeny with kernel Z/2Z⊕Z/2Z. Our idea is probably applicable
to such curves given by in terms of the Rosenhain form or the invariants (Ω,Υ)
in the notation of [13]. The j-invariants of two elliptic curves will be different
but no essential change to our idea is required. However, the author have not
derived explicit formulae for these parameters, yet. Recently, Paulhus[28] gave
explicit descriptions of splitting of Jacobian into elliptic curves for some curves
of genus greater than two. Although use of such curve is a rather questionable,
mathematically, it would be interesting to see how often such curves are product
of a small number and a prime.

The rest of the paper is organized as follows. In Section 2, we review some
facts on arithmetic properties of the Jacobian varieties. In Section 3, we give an
explicit formula of the elliptic curve whose product is isogenous to the Jacobian
of a given hyperelliptic curve of the above form. In Section 4, we show how to
retrieve possible orders of the Jacobian via the decomposition obtained in the
preceding section. In Section 5, we state our algorithm and observe its computa-
tional complexity. In Section 6, we give an illustrative small numerical example.
In Section 7, we report a result of numerical experiments with cryptographic size
parameters.

Throughout the paper, we let p be a prime greater than or equal to 5 and q
a power of p. We put r = q4.

Acknowledgments. The major part of the work is performed during the au-
thor visited Prof. Steven Galbraith at Royal Holloway University. The author
would like to thank their hospitality during his stay. He also would like to thank

3

Steven Galbraith, Frederik Vercauteren, Florian Hess, Tanja Lange, and Kat-
suyuki Takashima for their comments on earlier versions of the manuscript.

2 Some properties of the Jacobian varieties

We summarize arithmetic properties of the Jacobian varieties used in the
later sections. See the surveys Milne[26], [27] for more descriptions.

Let A/Fq be an Abelian variety of dimension d. The (one dimensional part
of the) zeta function ZA(T,Fq) is a characteristic polynomial of the q-th power
Frobenius map on Vl(A) = Tl(A) ⊗Zl

Ql where l is a prime different from p
and Tl(A) is the l-adic Tate module. It known that ZA(T,Fq) ∈ Z[T] with
deg ZA(T,Fq) = 2d and that it is independent of choice of l. It holds that

#A(Fq) = ZA(1,Fq). (1)

Let
∏2d

i=1(T − zi,q) be the factorization of ZA(T,Fq) in C[T]. Permuting indices
if necessary, we may assume that

z1,qz2,q = q, . . . , z2d−1,qz2d,q = q. (2)

Let n ∈ N and put s = qn. Since the s-th power map is the n-times iteration of
the q-th power map, we see

{z1,s, z2,s, . . . , z2d,s} = {zn
1,q, z

n
2,q, . . . , z

n
2d,q} (3)

including multiplicity. It holds that |zi,s| =
√

s.
In case that A is isogenous to A1 × A2 over Fq, we have Vl(A) ∼= Vl(A1) ⊕

Vl(A2) as Gal(Fq/Fq)-modules. Hence

ZA(T,Fq) = ZA1
(T,Fq)ZA2

(T,Fq). (4)

Let E/Fq be an elliptic curve, which is an Abelian variety of dimension 1
over Fq. The above items translate to the well known formula

ZE(T,Fq) = T 2 − tT + q

with |t| ≤ 2
√

q where t = q + 1 − #E(Fq).
Let C/Fq be a hyperelliptic curve of genus two and let J be its Jacobian

variety, which is an Abelian variety of dimension two defined over Fq. Let z1,q,
. . ., z4,q be the roots of ZJ(T,Fq) arranged as (2). We see

ZJ(T,Fq) = T 4 − aqT
3 + bqT

2 − qaqT + q2 (5)

where

aq =

4
∑

i=1

zi,q, bq =

3
∑

i=1

4
∑

j=i+1

zi,qzj,q.

We note |aq| ≤ 4
√

q and |bq| ≤ 6q. We will also use the Hasse-Weil bound

(
√

q − 1)4 ≤ #JC(Fq) ≤ (1 +
√

q)4. (6)

4

3 Decomposition of the Jacobian

In this section, we give an explicit formula of an elliptic curve whose product
is isogenous to the Jacobian of the hyperelliptic curves of our object. Such an
decomposition has been more or less known, e.g. Leprévost and Morain[21],
Cassel and Flynn[5, Chap. 14], and Frey and Kani[9]. Here we derive a formula
which is ready to implement our method efficiently.

Let C : Y 2 = X5 + uX3 + vX be a hyperelliptic curve where u ∈ Fq and
v ∈ F×

q . We denote the Jacobian variety of C by J . There are α, β ∈ F×
r such

that
X5 + uX3 + vX = X(X2 − α2)(X2 − β2).

We choose and fix s ∈ F×
q8 satisfying s2 = αβ. In fact, s ∈ F×

r since s4 = α2β2 =

v ∈ F×
q . It is straightforward to verify

X2 + (α + β)X + αβ = A(X + s)2 + B(X − s)2

X2 − (α + β)X + αβ = B(X + s)2 + A(X − s)2

where

A =
1

2

(

1 +
α + β

2s

)

,

B =
1

2

(

1 − α + β

2s

)

.

Then

X4 + uX2 + v = (X2 − α2)(X2 − β2) = (X + α)(X + β)(X − α)(X − β)

= AB

(

(X + s)4 +

(

B

A
+

A

B

)

(X + s)2(X − s)2 + (X − s)4
)

,

X =
1

4s

(

(X + s)2 − (X − s)2
)

.

Define E1/Fr and E2/Fr by

E1 : Y 2 = δ(X − 1)(X2 − γX + 1)

E2 : Y 2 = −δ(X − 1)(X2 − γX + 1)

where

δ =
AB

4s
= − (α − β)2

64s3
, (7)

γ = −
(

B

A
+

A

B

)

= 2(α2 + 6αβ + β2)/(α − β)2. (8)

Then, we have two covering maps ϕi : C → Ei defined over Fr by

ϕ1(x, y) =

(

(

x + s

x − s

)2

,
y

(x − s)3

)

,

ϕ2(x, y) =

(

(

x − s

x + s

)2

,
y

(x + s)3

)

.

5

They induce maps ϕ∗
i : Div(Ei) → Div(C) and ϕi∗ : Div(C) → Div(Ei).

They again induce maps (which are also denoted by) ϕ∗
i : Pic0(Ei) (∼= E) →

Pic0(C) (∼= J) and ϕi∗ : J → Ei. We note ϕi∗ ◦ ϕ∗
i is the multiplication by 2

map on Ei. Therefore J is isogenous to E1 × E2.
Since 2|[Fr : Fp] and p ≥ 5, both E1 and E2 are isomorphic to the following

elliptic curve in the short Weierstrass from:

E : Y 2 = X3 − (γ − 2)(γ + 1)

3
δ2X − (γ − 2)2(2γ + 5)

27
δ3. (9)

Eventually, J is isogenous to E × E over Fr. Using (4), we conclude

ZJ(T,Fr) = ZE(T,Fr)
2. (10)

Remark 1. Observe that in fact γ ∈ Fq2 . By (8), we see that γ ∈ Fq if and only
if either u = 0 or u 6= 0 and αβ ∈ F×

q (i.e. v is a square element in Fq). Thus,
we do not need to run the SEA algorithm to E/Fr. Define E′/Fq(γ) by

E′ : Y 2 = X3 − (γ − 2)(γ + 1)

3
X − (γ − 2)2(2γ + 5)

27
. (11)

Let σ be the trace of the #Fq(γ)-th power Frobenius endomorphism on E′. We
obtain σ by running the SEA algorithm to E′/Fq(γ). Note that the size of the
coefficient field is smaller than the size of Fr by a factor of 1/2 or 1/4. Let τ ′ be
the trace of the r-th power Frobenius endomorphism on E′. Then

τ ′ =

(σ2 − 2q)2 − 2q2 (γ ∈ Fq),

σ2 − 2q2 (γ 6∈ Fq).

Now E is isomorphic to E′ over Fr2 . Let τ be the trace of the r-th power
Frobenius endomorphism on E. Unless j(E) = 0 or j(E) = 1728, we have

τ =

τ ′ (δ(r−1)/2 = 1),

−τ ′ (δ(r−1)/2 = −1).

(And it is easy to compute τ in case of j(E) = 0 or j(E) = 1728, see e.g.
Schoof[34, Sect. 4].) This device does not affect growth rate of the computational
complexity of our algorithm. However practical performance improvement by
this is significant, since the most of computational time is spent for the SEA
algorithm.

Remark 2. Note that, in fact, E1 and E2 are defined over Fq(s). Changing the
sign of α if necessary in case of q ≡ 3 mod 4, we see s ∈ Fq when v is a fourth
power element of F×

q . In this case J already splits over Fq. Note that in case
of q ≡ 3 mod 4, any square element in F×

q is a fourth power element. Indeed,

let ω be a generator of F×
q where q = 4k + 3. Then, ω4n+2 = ω4(n−k) since

ω4k+2 = ωq−1 = 1.

6

4 Computing possible order of the Jacobian

In this section, we consider how to obtain ZJ(T,Fq) from ZJ(T,Fr). Actually,
this is quite elementary.

Let z1,q, . . ., z4,q be the roots of ZJ(T,Fq) arranged as (2). Put sn =
∑4

i=1 zn
i,q

with a convention s0 = 4. Then

s1 = aq,

s2 = a2
q − 2bq,

s3 = a3
q − 3aqbq + 3qaq

and
si = aqsi−1 − bqsi−2 + qaqsi−3 − q2si−4

for i ≥ 4. In particular, we obtain

s4 = a4
q − 4(bq − q)a2

q + 2b2
q − 4q2,

s8 = a8
q − 8(bq − q)a6

q + (20b2
q − 32qbq + 4q2)a4

q

+(−16b3
q + 24qb2

q + 16q2bq − 16q3)a2
q + 2b4

q − 8q2b2
q + 4q4.

Recall that r = q4. Hence ar = s4 and

br = (s2
4 − s8)/2 = 2q2a4

q + (−4qb2
q + 8q2bq − 8q3)a2

q + b4
q − 4q2b2

q + 6q4.

Recall that J is isogenous to E × E over Fr where E is defined by (11). Let t
be the trace of r-th Frobenius map on E. Then, ZE(T,Fr) = T 2 − tT + r. Thus
(10) gives

T 4 − arT
3 + brT

2 − · · · = T 4 − 2tT 3 + (2r + t2)T 2 + · · · ,

that is

0 = a4
q − 4(bq − q)a2

q + 2b2
q − 4q2 − 2t, (12)

0 = 2q2a4
q + (−4qb2

q + 8q2bq − 8q3)a2
q + b4

q − 4q2b2
q + 6q4 − (2q4 + t2).

Eliminating bq by computing a resultant of the above two polynomials, we obtain

a16
q − 32qa14

q + (368q2 − 8t)a12
q + (−1920q3 + 64tq)a10

q

+(4672q4 + 64tq2 − 112t2)a8
q + (−5120q5 − 1024tq3 + 768t2q)a6

q

+(2048q6 + 1024tq4 − 512t2q2 − 256t3)a4
q = 0. (13)

This yields at most 13 possible values for aq. Note that aq is an integer satisfying
|aq| ≤ 4

√
q. In order to find integer solutions of aq, we choose any prime l

satisfying l > 8
√

q and factorize the above formula in Fl. We only need linear
factors. For each Fl-root, we check whether it is a genuine root in characteristics
zero and its absolute value does not exceed 4

√
q. For each possible aq, we easily

obtain at most two possible values of bq satisfying the above equations. Thus,
we have obtained at most 26 candidates for #J(Fq).

7

Remark 3. In oder to solve (13), one might think of the following way: first we
choose a some prime λ (≈ 100, say). Then we factorize (13) over Fλ, and lift
the solutions to Z/λnZ where λn > 8

√
q. By this method, one might think that

search for a large prime l is unnecessary. A problem is that there is no simple
way to ensure different solutions of (13) have different reductions modulo λ, so
that all roots in Z are correctly recovered from modulo λn solutions. Even after
factoring out the trivial root aq = 0 whose multiplicity is four, (13) might have
multiple roots and hence its discriminant might be zero. One might think that
first perform square-free decomposition and search for a small prime which does
not divide the discriminant of square free part of (13). Still the bit complexity of
a square-free decomposition of a univariate polynomial over Z can be very large
due to gcd computations and its upper bound is not clear. On the other hand,
as we will see in the next section, we can rigorously bound a bit complexity of
our algorithm. This is the reason why we use a prime l > 8

√
q.

5 The algorithm and its complexity

In this section, we analyze a time computational complexity of our algorithm.
First, we state our method in a pseudo-code. Then, we show our algorithm
terminates in probabilistic polynomial time in log q. We denote the identity
element of J by 0 in the following.

In addition to the coefficients of hyperelliptic curve C, we give two more data
”cofactor bound” M and a set of ”test points” D, which is any subset of J(Fq)
satisfying #D > M .

In order that the discrete logarithm problem on J(Fq) is not vulnerable to
the Pohlig-Hellman attack[30], #J(Fq) must be a large prime (at least 160 bit in
practice). We request that the largest prime factor is greater than #J(Fq)/M ,
which ensures that the factor is greater than (

√
q − 1)4/M . In the following

algorithm, M must be less than (
√

q − 1)2. In practice, M < 28 (at most) in
view of efficiency of group operation. So, building up D is easy for such small
M .

Algorithm 1.

Input: Coefficients u, v ∈ Fq in C : Y 2 = X5 + uX3 + vX,
a cofactor bound M ∈ N satisfying M < (

√
q − 1)2,

a subset D of J(Fq) satisfying #D > M .
Output: The largest prime factor of #J(Fq) if it is greater than #J(Fq)/M .
Otherwise, False.
Procedure:

1: Let α0, β0 be the solution of x2 + ux + v = 0.
2: Find α and β satisfying α2 = α0, β2 = β0.
3: Compute δ and γ by (7) and (8), respectively.
4: Compute #E(Fr) by the SEA algorithm and put t = 1 + r − #E(Fr).
5: Find a prime l satisfying 8

√
q < l ≤ q.

6: Find solutions of (13) modulo l.
7: for each solution τ do:

8

8: Lift τ ∈ Fl to aq ∈ Z so that |aq| ≤ 4
√

q.
9: if aq is even then

10: for each integer solution bq of (12) satisfying |bq| ≤ 6q do:
11: L = 1 − aq + bq − qaq + q2 /* cf. (1), (5) */
12: if (

√
q − 1)4 ≤ L ≤ (

√
q + 1)4 then /* cf. (6) */

13: Find the largest divisor d of L less than M .
14: L′ = L/d
15: if (L′ is prime) then
16: Find a point P ∈ D such that dP 6= 0.
17: if LP = 0, then output L′ and stop.
18: endif
19: endif /* L satisfies the Hasse-Weil bound */
20: endfor /* bq */
21: endif
22: endfor /* τ */
23: Output False and stop.

Remark 4. Actually, in the SEA algorithm in Step 4, we obtain t before we
obtain #E(Fq).

Remark 5. Instead of giving a set D by listing all points, we can specify D by
some conditions and we generate elements of D during execution of the above
procedure. In the implementation used in the next section, the author used

D = {[P] + [Q] − 2[∞] : P, Q ∈ C(Fq) − {∞}, PX 6= QX}

where ∞ is the point at infinity of C (not J) and the subscript X stands for the
X-coordinate. Then, #D ≈ O(q2). It is easy to generate a uniformly random
point of D in probabilistic polynomial time.

Remark 6. In case that d ≤
√

q

8 − 1
2 (which always holds when M ≤

√
q

8 − 1
2),

the value of L at Step 17 gives #J(Fq). The reason is as follows. Observe that

(

x

8
− 1

2

)

((x + 1)4 − (x − 1)4) < (x − 1)4

for x ∈ R. Thus

L′ ≥ (
√

q − 1)4

d
≥ (

√
q − 1)4

√
q

8 − 1
2

> (
√

q + 1)4 − (
√

q − 1)4.

Hence, there is only one multiple of L′ in the Hasse-Weil bound (6), which must
be #J(Fq).

Remark 7. As we will see (14) below, there exist at least Ω(q/ log q) primes l
satisfying 8

√
q < l < q. Thus, average number of primality tests to find l in

Step 5 is O(log q). In an actual implementation, we may search for a prime

9

by testing odd number greater than 8
√

q one by one. Primality tests can be
performed by a deterministic polynomial time algorithm by Agrawal, Kayal and
Saxena[1]. If we admit the generalized Riemann hypothesis, we can use simple,
much faster deterministic algorithm due to Lehmann[20] together with Bach’s
bound[3]. Since our main interest is in hyperelliptic cryptography, we do not go
into complexity arguments on primality tests further.

Theorem 1. Let M < (
√

q − 1)2 be fixed. Then Algorithm 1 terminates in
probabilistic polynomial time in log q (with respect to the bit operations). In case
that #J(Fq) is divisible by a prime greater than (

√
q − 1)4/M , Algorithm 1

returns the largest prime factor of #J(Fq).

Proof. Note that t, q, aq and bq are integers. Hence aq must be even by (12).
This explains Step 9. If we reach Step 16, we have, as an Abelian group,

J(Fq) ∼= G ⊕ (Z/L′Z)

where G is an Abelian group of order d. Since gcd(d, L′) = 1, there are at most
d points Q ∈ J(Fq) satisfying dQ = 0. Since #D > M , we can find P at Step
16 by testing at most M elements in D. Note #J(Fq) ≥ (

√
q − 1)4. Therefore,

L′ ≥ #J(Fq)

M
≥ #J(Fq)

(
√

q − 1)2
≥
√

#J(Fq).

Since L′ is a prime, it must be the largest prime factor of #J(Fq), which com-
pletes the proof of correctness of the algorithm.

Now we consider computational complexity. Note that a bit size of any vari-
ables appearing in Algorithm 1 is bounded by c log q where c is a constant de-
pending only on M and the primality test algorithm used in Step 5. Thus we
have only to show that, instead of the number of bit operations, the number of
arithmetic operations performed in Algorithm 1 is bounded by a polynomial in
log q. For a positive real number x, put θ(x) =

∑

l≤x θ(x) as usual where l runs
over primes less than x. By Chebyshev’s theorem[6], there exist constants C1

and C2 such that

Kx − C1

√
x log x < θ(x) <

6

5
Kx

for all x > C2 where K = log 21/231/351/5

301/30
(= 0.921...). Let ν(q) be the number of

primes l satisfying 8
√

q < l ≤ q. Then

ν(q) log q ≥
∑

8
√

q<l≤q

log l = θ(q) − θ(8
√

q)

and thus
ν(q) ≥ K

q

log q
− C3

√
q for q > C4 (14)

with some C3, C4 > 0. Therefore, if we test random odd numbers between 8
√

q
and q to find l, an average number of primality tests in Step 5 is less than

10

log q
2K

(

1 + 2C3 log q
K

√
q

)

for all q > C4. In Steps 1, 2 and 6, we need to factorize

univariate polynomials over Fr or Fl. However, the degree of polynomials to be
factored is either 2 or 13. Hence the Cantor-Zassenhaus factorization[4] factor-
izes them in probabilistic polynomial time. The SEA algorithm (even Schoof’s
algorithm alone) runs in polynomial time. Summing up, we obtain our asser-
tions. ⊓⊔
Remark 8. We need further tests for suitability to hyperelliptic curve cryptosys-
tem. These includes (but not limited to) the following conditions. The minimal
embedding degree (in the sense of Hitt[17]) should not be too small to avoid
multiplicative DLP reduction by Frey and Rück[10]. If M is close to (

√
q − 1)2

by some reason, the largest prime must not be p to avoid additive DLP reduction
by Rück[31].

6 A numerical example

We give an illustrative example of our algorithm. We set M = 16. Let q =
p = 509 and consider C : Y 2 = X5 + 3X3 + 7X. Then, Fr = Fp(θ) where
θ4 + 2 = 0. For simplicity, we write an element µ3θ

3 + µ2θ
2 + µ1θ + µ0 of Fr as

[µ3 µ2 µ1 µ0]. Then we have α = [193 0 90 0], β = [67 0 396 0], s = [0 0 427 0],
δ = [29 0 488 0] and γ = [0 56 0 17]. Hence the short Weierstrass form of E is

Y 2 = X3 + [0 370 0 73]X + [293 0 464 0].

An elliptic curve point counting algorithm gives t = 126286. We take l = 191.
Then, (13) in this example is

a16
q − 16288a14

q + 94331520a12
q − 249080786944a10

q + 313906268606464a8
q

−185746793889398784a6
q + 41664329022490804224a4

q = 0.

Reducing modulo l, we obtain

0 = aq
16 + 138aq

14 + 58aq
12 + 46aq

10 + 63aq
8 + 94aq

6 + 136aq
4

= (aq
2 + 56aq + 170)(aq

2 + 135aq + 170)(aq
2 + 150)2(aq + 28)2(aq + 163)2aq

4

where aq is the reduction of aq modulo l. Hence aq = −28, 0, 28. In case of
aq = −28, Eq. (12) is b2

q − 784bq + 460992 = 0. Thus bq = 1176, 392. The
former values gives L = 274538 = 11 · 24958 and 24958 is apparently not prime.
Similarly, the case bq = 392 gives L = 273754 = 13 · 21058. In case of aq = 0,
Eq. (12) does not have an integer solution. Finally, we consider the case aq = 28.
The equation (and hence the solution) for bq is the same as that for aq = −28.
Now bq = 1176 gives L = 245978 = 2 · 122989 and 122989 = 29 · 4241 is not
prime. But in the case of bq = 392, we obtain L = 245194 = 2 · 122597 and
122597 is prime. Take P = (X2 + 286X + 46, 347X + 164) ∈ J(Fp) written in
the Mumford representation. Then, 2P = (X2 +365X +23, 226X +240) 6= 0 but
LP = 0. Thus, 122597 is the largest prime divisor of #J(Fp). In this example,

we also conclude #J(Fp) = 245194 because d = 2 ≤
√

509
8 − 1

2 = 2.32...

11

7 Cryptographic size implementation

In this section, we report implementation results for cryptographic size parame-
ters. The results show that our algorithm certainly produces hyperelliptic curves
for cryptographic use with an acceptable computational complexity. In reality,
almost all computation time is consumed in an elliptic curve point counting (Step
4 in Algorithm 1). We begin with remarks on an elliptic curve point counting.

First, deployment of Remark 1 is very important. Assume that we use the
Karatsuba algorithm for multiplications. Then Remark 1 reduces running time
by a factor of 22+2 log

2
3 ≈ 36.2 in theory. More importantly, a number of modular

polynomials necessary for the SEA algorithm is approximately halved.

Next the action of the Frobenius map can be computed more efficiently than
a straightforward method. Let p be a prime and let n be an integer greater than
1. In this paragraph, we put q = pn. Assume that we use a variant of the baby-
step giant-step algorithm due to Maurer and Müller[25] to find an eigenvalue
of the Frobenius endomorphism. Then a bottleneck of Elkies’ point counting
algorithm for elliptic curves defined over Fq is a computing action of the q-th
power map and

(

q−1
2

)

-th power map in Fq[t]/〈b(t)〉 for some b(t) ∈ Fq[t]. To
reduce their computational time, we use an algorithm due to von zur Gathen
and Shoup[39] with a modification to take the action of p-th power map on
Fq into consideration. See Vercauteren[38, Sect. 3.2] in the case p = 2. Even
in the case of n = 2 (which is the case we need), the modification saves much
time. The overall performance improvement of elliptic curve point counting with
this technique highly depends on an implementation and field parameters. In
author’s implementation (which uses the Elkies primes only) for p ≈ 287 and
n = 2, the improvement was approximately in range 20 ∼ 40% depending on
elliptic curves.

Now we back to our algorithm. In what follows, q is the cardinality of the
coefficient field of hyperelliptic curves to be generated. Assume that we need the
Jacobian variety whose bit size of the group order is N . Then, log q ∼= N/2. Note
we apply the SEA algorithm to elliptic curves over Fq2 . Thus we can paraphrase
that time to test one random hyperelliptic curve of the form Y 2 = X5+uX3+vX
is comparable to time to test one random elliptic curve if their group sizes are the
same. Of course, this is only rough comparison. For example, in the elliptic curve
case, we can employ early abort strategy (see Lercier[22, Sect. 4.1]), whereas we
need to complete the SEA algorithm in our Algorithm 1.

Since our curves Y 2 = X5+uX3+vX are in rather special form, they may be
less likely suitable for cryptographic use. The author has no idea for theoretical
results on this point. To observe the circumstance, the following numerical ex-
periments are performed. Take a 87 bit number A = 0x5072696d654e756d626572
in hexadecimal (the ASCII code for the string ”PrimeNumber”). For the largest
five primes p less than A satisfying p ≡ 1 mod 4 and p ≡ 3 mod 4, that is, for
each prime A− 413, A− 449, A− 609, A− 677 and A− 957 (they are 1 mod 4)
and A − 23, A − 35, A − 39, A − 179, A − 267 (they are 3 mod 4), Algorithm 1
is executed for 200 randomly generated (u, v) ∈ Fq × (F×

q −F4
q) (cf. Remark 2).

12

For each curve, if the order of its Jacobian is a product of an integer less than
210 and a prime, the value of the integer is listed in the second column.

p cofactor
A − 413 2, 4, 4, 10, 10, 16, 16, 20, 40 80, 130, 208, 400, 580
A − 449 2, 4, 4, 4, 26, 120, 394, 722, 740
A − 609 2, 20, 52, 116, 256, 484, 820
A − 677 4, 4, 8, 10, 20, 26, 34, 40, 82, 362, 400, 482, 740
A − 957 2, 4, 4, 16, 20, 20, 20, 72, 90, 100, 262, 720
A − 23 2, 2, 2, 14, 14, 16, 16, 34, 112, 184, 302
A − 35 2, 8, 14, 18, 34, 56, 72, 194, 392
A − 39 2, 2, 2, 8, 16, 62, 94, 98, 584, 656, 752, 784
A − 179 2, 8, 18, 18, 32, 128, 146, 386, 512
A − 267 2, 8, 8, 8, 14, 32, 34, 34, 50, 350, 446

Thus the orders of the Jacobians of those curves are divisible by primes greater
than 2162. The following values of u and v attained the best possible in the sense
that the order of the Jacobian of the curve is two times of a prime:

p u, v, order/2 (= prime)
A − 23 26278410876831238768152256, 86364989829465111812877054,

4729205283036596803451142572175714600434665322659127
A − 23 48005263478608513799676536, 41220251281438002920145925,

4729205283036596803451142580643662966701834068021159
A − 23 20282462437998363621453892, 6836694457598533392327545,

4729205283036596803451142581337328176502841705402207
A − 35 67648337171838833749692452, 56901612904748554441926559,

4729205283036596803451141380721691201885455554767791
A − 39 14846780454565145653845797, 21699720008937250121391434,

4729205283036596803451141023536273098194538766932527
A − 39 33146413473211029791343648, 8030718465375635617924126,

4729205283036596803451141003485671885741104209956991
A − 39 71798113541184209350130597, 3265596437264818243652042,

4729205283036596803451140981775351582462210871812743
A − 179 57049947468040934287481804, 79903956336370051333994749,

4729205283036596803451127379057522635612989733951431
A − 267 36056874937457171776037216, 25118608280476680778431722,

4729205283036596803451118692677289444771081686145071
A − 413 83008004756000748681115585, 56563321965691537707290563,

4729205283035613601049401303125512580675953218245917
A − 449 28607196238761965671229454, 25170972284073882698894414,

4729205283036732721230159064013212885177303300174073
A − 609 95130756913811082727444951, 60322547687988038644971694,

4729205283037716579981536630854867757005904536055113
A − 957 10340770761867668646270127, 33230037969144840368622007,

4729205283036083218847231566586093424184432683788437

13

So, the probability to obtain the best possible curves in the above experiment is
13

2000 = 0.0065. By the prime number theorem, a “density” of primes around A2/2
is approximately 1/ loge(A

2/2) ≈ 0.0084. In the case p = A−677, no best possible
curve was found in the above computation. But further computation finds that
the order of the Jacobian of the curve with u = 93589879629357849667104247
and v = 2243510914087562678935813 is a product of 2 and a prime

4729205283037531066627852907078079919137325850534317.

This suggests that we can find a curve of the form Y 2 = X5 + uX3 + vX for
cryptographic use for any p. However, one might want to generate a random
prime p and u ∈ Fp, v ∈ F×

p for each curve.
Another observation is that curves with cofactor 6 and 12 were not found,

where four curves with cofactor 18 were found. The author has no explanation
of such phenomena.

The order of Jacobians of the curves Y 2 = X5 + uX3 + vX seems less likely
to be a product of a small positive integer and a large prime than a random
integer. However, our experiments also suggests that our algorithm generates
hyperelliptic curves with acceptable computational time.

8 Conclusion

We presented an efficient algorithm to test whether a given hyperelliptic curve
Y 2 = X5 +uX3 +vX over Fq is suitable or not and if suitable, the largest prime
divisor of the number of Fq-rational points of the Jacobian of the curve. This
enables us to use a randomly generated hyperelliptic curve in the form which is
supposed to be suitable for hyperelliptic curve cryptography.

Although our family of curves is far more general than the curves given by
binomials, it is still in a very special form. The difficulty of discrete log problems
on the simple but not absolutely simple Jacobian is open.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math. 160 (2004)
781-793.

2. Anuradha, N.: Number of points on certain hyperelliptic curves defined over finite
fields. Finite Fields Appl. 14 (2008) 314-328.

3. Bach, E.: Explicit bounds for primality testing and related problems. Math. Comp.
55 (1990) 355-380.

4. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite
fields. Math. Comp. 36 (1981) 587-592.

5. Cassels, J.W.S., Flynn, E.V.: “Prolegomena to a middlebrow arithmetic of curves
of genus 2”. London Math. Soc. Lecture Note Series, 230. Cambridge: Cambridge
Univ. Press 1996.

6. Chebyshev, P.L.: Mémoire sur les nombres premiers. J. Math. Pures Appl. 17

(1852) 366-390 (Œuvres, I-5).

14

7. Duurasma, I., Gaudry, P., Morain, F.: Speeding up the discrete log computation
on curves with automorphisms. In Advances in cryptology - Asiacrypt’99, 1716,
103-121, Berlin, Heidelbert: Springer, 1999.

8. Elkies, N.D.: Elliptic and modular curves over finite fields and related computa-
tional issues. In Computational perspectives on number theory (Chicago, IL, 1995),
AMS/IP Stud. Adv. Math., 7, 21-76, Providence, RI: AMS, 1998.

9. Frey, G., Kani, E.: Curves of genus 2 covering elliptic curves and an arithmetical
application. In Arithmetic algebraic geometry (Texel, 1989), Progress in Math., 89,
153-176, ed. van der Geer, G., Oort, F., Steenbrink, J., Boston: Birkhäuser Boston,
1991.

10. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Math. Comp. 62 (1994) 865-874.

11. Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves
of type y2 = x5+ax over finite prime fields. In Selected areas in cryptography, 2003,
Lect. Notes in Comput. Sci., 3006, 26-41, Berlin, Heiderberg: Springer, 2004.

12. Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In Advances in cryptology - Proceedings of
CRYPTO 2001, Lect. Notes in Comput. Sci., 2139, 190-200, ed. Kilian, J., Berlin:
Springer, 2001.

13. Gaudry, P., Schost, É.: On the invariants of the quotients of the Jacobian of a
curve of genus 2. In Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, AAECC-14 (Melborune, 2001), Lect. Notes in Comput. Sci., 2227, 373-386,
Berlin, Heidelberg: Springer, 2001.

14. Gaudry, P., Schost, É.: Hyperelliptic point counting record: 254 bit Jacobian. (2008)
Post to NMBRTHRY list, 22 Jun 2008..

15. Haneda, M., Kawazoe, M., Takahashi, T.: Suitable curves for genus-4 HCC over
prime fields: point counting formulae for hyperelliptic curves of type y2 = x2k+1 +
ax. In Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, Lect. Notes in Comput. Sci., 3580, 539-550, 2005.

16. Hess, F., Seroussi, G., Smart, N.P.: Two Topics in Hyperelliptic Cryptography. In
Selected areas in cryptography, SAC, Lect. Notes in Comput. Sci., 2259, 181-189,
Berlin, Heiderberg: Springer, 2001.

17. Hitt, L.: On the minimal embedding field. In Pairing-based cryptography – Pairing
2007, Lect. Notes in Comput. Sci., 4575, 294-301, Berlin, Heidelberg: Springer,
2007.

18. Kedlaya, K.: Counting points on hyperelliptic curves using Monsky-Washnitzer co-
homology. J. Ramanujan Math. Soc. 16 (2001) 323-338.

19. Lauder, A.G.B.: Rigid cohomology and p-adic point counting. J. Théor. Nombres
Bordeaux 17 (2005) 169-180.

20. Lehmann, D.J.: On primality tests. SIAM J. Comput. 11 (1979) 374-375.
21. Leprévost, F., Morain, F.: Revêtements de courbes elliptiques à multiplication com-

plexe par des courbes hyperelliptiques et sommes de caractéres. J. Number Theory
64 (1997) 165-182.

22. Lercier, R.: Finding Good Random Elliptic Curves for Cryptosystems Defined over
F2n . In Advances in Cryptology - EUROCRYPT’97 (Konstanz), Lect. Notes in
Comput. Sci., 1233, 379-392, ed. Fumy, W., Berlin, Heidelberg: Springer, 1997.

23. Lercier, R., Lubicz, D.: A quasi quadratic time algorithm for hyperelliptic curve
point counting. Ramanujan J. 12 (2006) 399-423.

24. Matsuo, K., Chao, J., Tsujii, S.: An improved baby step giant step algorithm for
point counting of hyperelliptic curves over finit fields. In Algorithmic number theory

15

(Sydney, Australia, July 2002), Lect. Notes in Comput. Sci., 2369, 461-474, ed.
Fieker, C., Kohel, D., Berlin: Springer, 2002.

25. Maurer, M., Müller, V.: Finding the eigenvalue in Elkies’ algorithm. Experimental
Math. 10 (2001) 275-285.

26. Milne, J.S.: Abelian varieties. In Arithmetic Geometry, 103-150, ed. Cornell, G.,
Silverman, J.H., New York: Springer, 1986.

27. Milne, J.S.: Jacobian varieties. In Arithmetic Geometry, 167-212, ed. Cornell, G.,
Silverman, J.H., New York: Springer, 1986.

28. Paulhus, J.: Decomposing Jacobians of curves with extra automorphisms. Acta
Arith. 132 (2008) 231-244.

29. Pila, J.: Frobenius maps of Abelian varieties and finding roots of unity in finite
fields. Math. Comp. 55 (1990) 745-763.

30. Pohlig, S. C., Hellman, M. E.: An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. IEEE Trans. Info. Theory 24 (1978)
106-110.

31. Rück, H. G.: On the discrete logarithm in the divisor class group of curves. Math.
Comp. 68 (1999) 805-806.

32. Scholten, J.: Weil restriction of an elliptic curve over a quadratic extension.
preprint, available at http://homes.esat.kuleuven.be/˜jscholte/.

33. Schoof, R.: Elliptic curves over finite fields and the computation of square roots
mod p. Math. Comp. 44 (1985) 483-494.

34. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux 7 (1995) 219-254.

35. Sutherland, A.V.: A generic apporach to searching for Jacobians. Math. Comp.
(2008) (Electronically published, doi:10.1090/S0025-5718-08-02143-1).

36. Takashima, K.: A new type of fast endomorphisms on Jacobians of hyperelliptic
curves and their cryptographic application. IEICE Trans. Fundamentals E89-A

(2006) 124-133.
37. Vercauteren, F.: Advances in point counting. In Advances in elliptic curve cryptog-

raphy, London Math. Sco. Lecture Note Ser., 317, 103-132, ed. Blake, I.F., Seroussi,
G., Smart, N.P., Cambridge: Cambridge Univ. Press, 2005.

38. Vercautern, F.: The SEA algorithm in characteristic 2. (2000) preprint, available
at http://homes.esat.kuleuven.be/˜fvercaut/papers/SEA.pdf.

39. von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polyno-
mials. Computational complexity 2 (1992) 187-224.

16

