
Algebraic Cryptanalysis of Curry and Flurry
using Correlated Messages

Jean-Charles Faugère and Ludovic Perret

SALSA Project
INRIA, Centre Paris-Rocquencourt

UPMC, Univ Paris 06, LIP6
CNRS, UMR 7606, LIP6

104, avenue du Président Kennedy
75016 Paris, France

jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

Abstract. In [10], Buchmann, Pyshkin and Weinmann have described
two families of Feistel and SPN block ciphers called Flurry and Curry
respectively. These two families of ciphers are fully parametrizable and
have a sound design strategy against basic statistical attacks; i.e. linear
and differential attacks. The encryption process can be easily described
by a set of algebraic equations. These ciphers are then targets of choices
for algebraic attacks. In particular, the key recovery problem has been
reduced to changing the order of a Gröbner basis [10, 11]. This attack – al-
though being more efficient than linear and differential attacks – remains
quite limited. The purpose of this paper is to overcome this limitation
by using a small number of suitably chosen pairs of message/ciphertext
for improving algebraic attacks. It turns out that this approach permits
to go one step further in the (algebraic) cryptanalysis of Flurry and
Curry. To explain the behavior of our attack, we have established an
interesting connection between algebraic attacks and high order differ-
ential cryptanalysis [21]. From extensive experiments, we estimate that
our approach, that we can call “algebraic-high order differential” crypt-
analysis, is polynomial when the Sbox is a power function. As a proof of
concept, we have been able to break Flurrys – up to 8 rounds – in few
hours.

1 Introduction

The basic principle of an algebraic cryptanalysis [13] is to model a cryptographic
primitive by a set of algebraic equations. The system is constructed in such a way
as to have a correspondence between the solutions of this system, and a secret
information of the primitive. For block ciphers, the goal is usually to recover
the secret key. It has to be noted that this line of research is somehow inspired
by C.E. Shannon who stated that : “Breaking a good cipher should require as
much work as solving a system of simultaneous equations in a large number
of unknowns of a complex type.” (Communication Theory of Secrecy Systems,
1949).

A cryptosystem can always be modeled by an algebraic set of equations. In
practice, the same cryptographic primitive can even be described by several
algebraic systems. Unfortunately, not all of these models yield “good” systems
(from a system-solving point of view). One of the most crucial aspects here is
to derive the best systems. In the context of block ciphers, the algebraic system
is generated from the knowledge of one pair message/ciphertext. In this paper,
we investigate the natural possibility [24, 5] of using a small number of suitably
chosen pairs of message/ciphertext for improving algebraic attacks.
Once a model is chosen, the problem is to solve the algebraic system (or to
evaluate the difficulty of solving such a system). Gröbner bases [8, 9] yield so far
the most suitable algorithmic solution for solving algebraic systems of equations.
To date, F5 is the most efficient method for computing Gröbner bases [19].
The practical efficiency of algebraic attacks against modern block ciphers are
quite difficult to predict; and remains so far quite limited. For this reason, Cid,
Murphy, and Robshaw [14] described small scale variants of AES. The goal was
to understand the behavior of algebraic attacks. In the same vain, Buchmann,
Pyshkin and Weinmann [10] described two families of Feistel (Flurry) and SPN
(Curry) block ciphers which are fully parametrizable and provide good resis-
tance against linear and differential attacks. These ciphers are targets of choices
for experimenting algebraic attacks. The authors of [10] proved that the key-
recovery problem can be reduced to the problem of changing the order of a
Gröbner basis. This permits to obtain a precise complexity for their approach;
which is quite rare in algebraic cryptanalysis. In this paper, we focus our atten-
tion to these two families of ciphers.

1.1 Organization of the Paper. Main Results.

After this introduction, the paper is organized as follows. In Section 2, we intro-
duce the families of Feistel and SPN block ciphers Flurry and Curry respec-
tively [10, 11]. We briefly recall some security characteristics of the ciphers.
The basic problem of algebraic attacks is to find the zeros of a set of non-linear
system of equations. In Section 3, we introduce the necessary mathematical tools
(ideals, varieties and Gröbner bases), as well as the algorithmic tools (FGLM,
and1 F4/F5), allowing to address the problem of system solving. The reader al-
ready familiar with these objects can skip this part. However, we would like to
emphasize that the material contained in this section is essential for understand-
ing the practical behavior of the attacks presented in Section 4.
In this last section (Section 4), we will present results that we have obtained when
mounting two refined algebraic attack strategies. First, we show that the use of
a sparse version of FGLM permits to obtain a practical gain w.r.t. to the attack
presented by Buchmann, Pyshkin and Weinmann in [10]. However, this attack
remains limited since its theoretical complexity is exponential in the number
of rounds and the size of the plaintext space. To overcome this limitation, we

1 The description of F4/F5 is postponed in the Appendix.

have investigates the possibility of using a small amount of suitably chosen pairs
(message, ciphertext) to improve the efficiency of algebraic attacks. Precisely,
we propose to use correlated messages. It appears that this approach permits to
go one step further in the (algebraic) cryptanalysis of Flurry and Curry. To
explain the behavior of our attack, we have established an interesting connection
between algebraic attacks and high order differential cryptanalysis [21]. From
our experiments, we estimate that if Sbox function if defined by a polynomial
function f , then this last approach is polynomial in the degree of f . For instance,
we have been able to break a Flurry up to 9 rounds in few hours. We also present
experimental results for the inverse SBox.

2 The Flurry and Curry Block Ciphers

In this part, we describe the main concern of this paper, namely Curry and
Flurry [10, 11]. We will also briefly recall the algebraic description of such ci-
phers, and highlight some security arguments of these block ciphers. In the fol-
lowing K = F2(θ) is a finite field and k = 2n, n ∈ {8, 16, 32, 64}, is the size of
K; r ∈ N is the number of rounds; D ∈ Mm×m(K) is a matrix describing the
linear diffusion mapping of the round function. The matrix D is also used in
the key scheduling. Such matrices have been chosen to have an optimal diffusion
strategy. We refer to [10] for the exact description of the matrices chosen. f is a
non-linear function describing the Sbox. Here, we will consider :
– the power function f(x) = fp(x) : x ∈ K 7→ xp ∈ K, with p ∈ {3, 5, 7},
– or the inverse function f(x) = finv(x) : x ∈ K 7→ xk−2 ∈ K.

2.1 The Feistel Case : Flurry

First we describe the r round Feistel cipher: Flurry(n, t, r, f,D) where t ∈ N is
the size of a message block. We will also use the notation m = t

2 for the half-size
of a block. We will denote by L = (`1, . . . , `m) ∈ Km

(
resp. R = (r1, . . . , rm) ∈

Km
)

the left (resp. right) part of the current state, and by K = (k1, . . . , km) ∈
Km a key. The round function T : Km ×Km ×Km → Km ×Km is :

T (L,R,K) =
(
R,
(
f(r1 + k1), . . . , f(rm + km)

)
·D
)
.

Let (K0,K1) ∈ Km×Km be the initial key. The subkey used at round i, 2 ≤ i ≤
r + 1 is :

Ki = Ki−1 ·D +Ki−2 + vi,

where vi =
(
(θ + 1)i, (θ + 1)i+1, . . . , (θ + 1)i+m−1

)
∈ Km. A message m =

(L0, R0) ∈ Km ×Km is encrypted into a ciphertext c = (Lr, Rr) ∈ Km ×Km by
iterating the round function T as follows :

(Li, Ri) = T (Li−1, Ri−1,Ki−1), for all i, 1 ≤ i ≤ r − 1,
c = (Lr, Rr) = T (Lr−1, Rr−1,Kr−1) + (Kr,Kr+1).

It is not difficult to describe the encryption process by a set of algebraic equa-
tions. To do so, we have to introduce new variables :
– {xi,j}1≤j≤t

1≤i≤(r−1) corresponding to the internal states of the cipher,

– and {ki,j}1≤j≤m
1≤i≤r+1 corresponding to the initial/expanded key.

We will denote byRFlurry the polynomial ring K
[
{xi,j}1≤j≤t

1≤i≤(r−1), {ki,j}1≤j≤m
1≤i≤r+1

]
.

For a pair plaintext/ciphertext (m, c) ∈ Kt ×Kt, we will denote by :

PFlurry(m, c) ⊂ RFlurry,

the set of all algebraic equations describing Flurry’s encryption process.

2.2 The SPN Case : Curry

The family of SPN ciphers Curry(n,m, r, f,D) is parameterized by m ∈ N is
the plaintext space dimension; the ciphertext and secret key spaces are Km×m.
The round function T : Km×m ×Km×m → Km×m of Curry is given by :

T (S,K) = G(S,K) ·D,

with G : X = {xi,j} ∈ Km×m → G(X) = {f(xi,j)} ∈ Km×m being the parallel
application of the SBox f to the components of a matrix X.

A plaintext m = S0 ∈ Km×m is encrypted into a ciphertext c ∈ Km×m by
iterating the round function T exactly r times followed by a last key addition :

S` = T (S`−1,K`−1), for all `, 1 ≤ ` ≤ r − 1,
c = Sr = T (Sr−1,Kr−1) +Kr.

The master key K0 ∈ Km×m is used at the first round; subsequent round
keys Ki, i ≥ 1 are computed using the formula : Ki = Ki−1 · D + Mi,Mi =
{θi+(j−1)m+k}1≤j,k≤m ∈ Km×m being a round constant.

As for Flurry, the encryption process of Curry can be described symboli-
cally; introduce new variables : {x`

i,j}
1≤`≤(r−1)
1≤i,j≤m corresponding to the internal

states of the cipher, and {k`
i,j}

1≤i,j≤m
1≤`≤r corresponding to the initial/expanded

key. Using an obvious notation, we will denote by RCurry the polynomial ring

K
[
{x`

i,j}
1≤`≤(r−1)
1≤i,j≤m , {k`

i,j}
1≤i,j≤m
1≤`≤r

]
, and PCurry(m, c) ⊂ RCurry, the set of alge-

braic equations describing Curry.

2.3 Security Considerations

We emphasize that Curry and Flurry have a sound design strategy against
linear [23] and differential [7] attacks. In particular, the Sboxes have been chosen
to provide a good resistance against such attacks even for a small number of
rounds [10, 11]. For a differential attack, one important parameter [16] is :

Definition 1. Let f : Km 7→ K be a mapping. We shall call δ-uniformity of f :

δ = max(a,b)∈K∗×K #
{
x ∈ K : f(x+ a) + f(x) = b}.

We shall then say that f is differentially δ-uniform.

This criterion permits to “measure” the resistance of a Sbox against differential
cryptanalysis.
We recall that K ≈ F2n = F2(θ). Let (a, b) ∈ K × K, we denote by 〈a, b〉 =∑n−1

i=0 aibi, with a =
∑n−1

i=0 aiθ
i, and b =

∑n−1
i=0 biθ

i. For the resistance against
linear cryptanalysis [23] :

Definition 2. The non-linearity of a function f : Km 7→ K is :

NL(f) = min(a,b)∈K×K∗ #
{
x ∈ K : 〈x, a〉 = 〈f(x), b〉}.

The Sboxes selected in Curry and Flurry have the following properties [10, 11].

function mapping δ-uniformity NL(f)

f−1 x 7→ x−1 4 2n−1−2
n
2

f3 x 7→ x3 2 ≥ 2n−1−2
n
2 +1

f5 x 7→ x5 4 ≥ 2n−1−2
n
2 +1

f7 x 7→ x7 ≥ 6 ≥ 2n−1−3 · 2
n
2

In [11], Buchmann, Pyshkin and Weinmann derive then upper bounds on the maximum
differential and linear characteristic probability for Curry and Flurry. In turns out
that such ciphers are immune against differential/linear attacks when the number of
rounds is ≥ 4 (when the number of key bits is ≥ 128).

3 Gröbner Basics

In order to mount an algebraic key-recovery attack against the ciphers described pre-
viously, we have to address the problem of solving an algebraic system of equations. To
date, Gröbner bases [8, 9] are the most efficient algorithmic solution for this problem.
The description of F4/F5 [18, 19] is postponed in the Appendix.

3.1 Definition – Property

We start by defining two mathematical objects naturally associated with Gröbner
bases [8, 9] : ideals and varieties [15]. We shall call ideal generated by p1, . . . , ps ∈
K[x1, . . . , xn] the set I = 〈p1, . . . , ps〉 =

˘Ps
k=1 pkuk : u1, . . . , uk ∈ K[x1, . . . , xn]

¯
. We

will denote by VK(I) =
˘
z ∈ Kn : pi(z) = 0, for all i, 1 ≤ i ≤ s

¯
, the variety associated

to I, i.e. the common zeros over K of p1, . . . , ps.

Gröbner bases offer an explicit method for describing varieties. Informally, a Gröbner
basis of an ideal I is a generating set of I with “good” algorithmic properties. These
bases are defined with respect to monomial ordering. For instance, the lexicographical
(Lex) and degree reverse lexicographical (DRL) orderings which are widely used in
practice are defined as follows :

Definition 1 Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn. Then:
– xα1

1 · · ·xαn
n ≺Lex x

β1
1 · · ·xβn

n if the left-most nonzero entry of α− β is positive.
– xα1

1 · · ·xαn
n ≺DRL xβ1

1 · · ·xβn
n if

Pn
i=1 αi >

Pn
i=1 βi, or

Pn
i=1 αi =

Pn
i=1 βi and the

right-most nonzero entry of α− β is negative.

Once a (total) monomial ordering is fixed, we define :

Definition 2 We shall denote by M(n) the set of all monomials in n variables. We
shall call total degree of a monomial xα1

1 · · ·xαn
n the sum

Pn
i=1 αi. The leading mono-

mial of p ∈ K[x1, . . . , xn] is the largest monomial (w.r.t. some monomial ordering ≺)
among the monomials of p. This leading monomial will be denoted by LM(p,≺). The
degree of p, denoted deg(p), is the total degree of LM(p,≺). Finally, the maximal total
degree of p is the largest total degree among the monomials occurring in p.

We are now in a position to define more precisely Gröbner bases.

Definition 3 A set of polynomials G ⊂ K[x1, . . . , xn] is a Gröbner basis – w.r.t. a
monomial ordering ≺ – of an ideal I in K[x1, . . . , xn] if, for all p ∈ I, there exists
g ∈ G such that LM(g,≺) divides LM(p,≺).

Gröbner bases computed for a lexicographical ordering (Lex-Gröbner bases) permit to
efficiently compute varieties. A Lex-Gröbner basis of a zero-dimensional system (i.e.
with a finite number of zeroes over the algebraic closure) is always as follows :

{f1(x1) = 0, f2(x1, x2) = 0, . . . , fk2(x1, x2) = 0, fk2+1(x1, x2, x3) = 0, . . .}

To compute the variety, we simply have to successively eliminate variables by com-
puting zeroes of univariate polynomials and back-substituting the results. For a more
thorough introduction to the topics of this part, we refer the reader to [1, 15].

3.2 The FGLM algorithm

Unfortunately, computing a Lex-Gröbner basis is much slower than computing a Gröbner
basis w.r.t. any other monomial ordering. On the other hand, it is well known that
computing degree reverse lexicographical Gröbner bases (DRL-Gröbner bases) is much
faster. Algorithms changing the monomial ordering of a Gröbner basis permit to tackle
this problem efficiently. In particular, the FLGM algorithm [17] permits – in the zero-
dimensional case – to efficiently change the monomial ordering of a Gröbner basis. The
complexity of this algorithm is polynomial in the number of solutions of the ideal.

Theorem 1. Let I be a zero-dimensional ideal and G≺old be a ≺old-Gröbner basis of I
(w.r.t. to a monomial ordering ≺old). FGLM [17] permits to compute a ≺old-Gröbner
basis G≺new of I knowing G≺old in O(n · Dω), with ω, 2 < ω ≤ 3 being the linear
algebra constant, and D the dimension of the K-vector space K[x1, . . . , xn]/I (which is
equivalent to the number of zeroes counted with their multiplicities).

We are not going to describe FGLM. However, we would like to mention that the per-
formances of the version described in [17] can be improved using sparse linear algebra
techniques. The most important operation of FGLM is to test linear dependencies of a
set of D particular elements in the vector space K[x1, . . . , xn]/I. Obviously, this can be
done by performing a Gaussian elimination on a matrix M of size D×D. If this matrix
is sparse, we can use the Wiedemann’s algorithm [25], whose complexity is O(D ·D′),
where D′ is the number of non-trivial lines of the matrix M .

4 Improved Algebraic Attacks against Curry and Flurry

This section is divided into two parts. First, we show that the Buchmann, Pyshkin and
Weinmann (BPW) attack against Curry and Flurry [10] can be improved using a
“fast version” of FGLM. The goal is to illustrate the gain that we can obtain using
sparse algebra techniques. This will permit to have a tight complexity estimates of the
BPW attack, and then a good basis for comparing with the behavior of the new attack
that we will present in the second part of this section.

4.1 Practical Improvements of the Buchmann, Pyshkin and
Weinmann Attack

We start by recalling the (surprising) result of to Buchmann, Pyshkin and Wein-
mann [10]. They proved that for a well chosen order ≺∗ the polynomials of PFlurry

and PCurry already form a Gröbner basis. It has to be noted that a similar result for
AES-128 [12]. The key-recovery problem is then reduced to changing the order of a
Gröbner basis. More precisely, solving PFlurry (resp. PCurry) is equivalent to compute
a Lex-Gröbner basis knowing a ≺∗–Gröbner basis. This can be done by using FGLM,
and a precise complexity estimate can be given.

Lemma 1. Let IFlurry (resp. ICurry) be the ideal generated by the polynomials of
PFlurry (resp. PCurry). It holds that :

dimK (RFlurry/IFlurry) = deg(f)m·r, for Flurry(n,m, r, f,D)

dimK (RCurry/IFlurry) = deg(f)m
2·r, for Curry(n,m, r, f,D).

These results are not valid for the inverse function [10].

We recall that the complexity of FGLM is polynomial in the dimension of the quotient.
As explained in 3.2, we can use sparse linear algebra techniques to decrease the expo-
nent and obviously improving the efficiency of FGLM. To illustrate this fact, we will
present experimental results. In the table below, we have quoted :
– The practical results obtained in [10] using FGLM. The authors have used the version
available in Magma (version 2.11-8).
– the dimension dimK

`
R/I

´
of the quotient.

– The timings that we have obtained with our sparse version of FGLM.

[10] This paper

Flurry(n,m, r, f,D) dimK
`
R/I

´
F4+FGLM (Magma) “fast” FGLM (Fgb)

Flurry(64, 1, 4, f3, I1) 34 < 0.1 s. < 0.1 s.
Flurry(64, 1, 4, f5, I1) 54 2.3 s. < 0.1 s.
Flurry(64, 1, 4, f7, I1) 74 82.62 s. 19.4 s.
Flurry(64, 1, 6, f3, I1) 36 145.08 s. 2.1 s.

Interpretation of the Results. We observe that there is a non-negligible practical
gain when using a sparse version of FGLM. Anyway, this approach becomes quickly im-
practical due to huge dimension ofRFlurry/IFlurry (resp.RCurry/ICurry). This is mainly
due to the fact that the field equations are not included in PFlurry (resp. PCurry). There-
fore, the variety associated with these systems will mostly contain spurious solutions
(solutions over the algebraic closure of K). However, this is to our knowledge the best
(algebraic) attacks proposed so far against Flurry and Curry. We will now present
an alternative approach for attacking these ciphers.

Using Several Pairs of Plaintext/Ciphertext. The key recovery systems PFlurry

and PCurry are constructed from only one pair plaintext/ciphertext (Section 2). In this
part, we investigate the possibility of using few pairs of plaintext/ciphertext. Namely,
we select N > 1 messages m1, . . . ,mN , request the corresponding ciphertexts c1, . . . , cN
and try to solve a new key recovery system :

PNFlurry =

N[
i=1

PFlurry(mi, ci).

The set of equations PNCurry is defined similarly.
Note that for each pair (mi, ci), we have to introduce new variables corresponding to
the internal states of the cipher. On the other hand, the variables corresponding to
the key will remain the same for each pair (mi, ci). Again, we emphasize that the field
equations are not included in the systems.

Remark that the result described previously (Sec. 4.1) for Flurry/Curry systems only
holds when N = 1. As soon as N > 1, we have to follow a more classical approach to
solve PNFlurry (resp. PNCurry), i.e. the zero-dim strategy (Sec. 3.2).

Using N random messages. When we select randomly N messages m1, . . . ,mN ,
this approach will not lead to any improvement w.r.t. to the use of a single couple
plaintext/ciphertext. Even worse, we have observed that the new systems are harder
to solve in practice. To illustrate this, we have quoted few results that we have obtained
for Flurry(8, 2, 2, D2, finv) with different values of N . We also have included the time
T necessary for solving the systems.

N 1 2 3

T 0.43 sec 25.8 sec 16 min 42 sec
Nbsol 184 1 1

This is likely due to the fact that we have increased the number of equations/variables
(corresponding to intermediate states), but the maximum degree reached during the
Gröbner basis computation remains stable. Note anyway, that as soon as N > 1, the
variety associated to PNFlurry (resp. PNCurry) contains – most of the time – only one
point corresponding to the secret key; thus only one direct Gröbner basis computation
is needed. Hence the complexity of our attack is linear in the size of K.

Using correlated messages. Algebraic-high order differential crypt-
analysis. For taking advantage of multiple pairs, we have considered set of correlated
messages. To explain the intuition behind our approach we have to introduce new def-
initions. The derivative (or finite difference) of a mapping f : Kn 7→ Km at r ∈ Kn is
defined by:

∆rf(x) = f(x+ r)− f(x).

Remark that if the components of f are of (total) degree d, then the components of
∆rf(x) will be of total degree ≤ d. To further decrease this degree, we can consider
the ith derivative of f at the points r1, . . . , ri which is [21] as follows :

∆(i)
r1,...,ri

f(x) = ∆ri

“
∆(i−1)
r1,...,ri−1f(x)

”
.

Now, let L[r1, . . . , ri] be the set of all binary linear combinations of the ris. It is well
known that :

∆(i)
r1,...,ri

f(x) =
X

δ∈L[r1,...,ri]

f(x+ δ).

By the way, ∆
(i)
r1,...,rif(x) is equal [21] to zero if the ri’s are not linearly independent.

We can now explain how we have generated the messages.

First, we will describe our approach on a small example, i.e. N = 2. We randomly
select a message m0, a difference r1, and construct the key recovery system :

PN = P(m0, c) ∪ P(m0 + r1, c
′), with PN ∈

n
PNFlurry,PNCurry

o
.

Now, let T (Xi,Ki) = TKi(Xi) be the round function2 of Flurry or Curry (Ki is the
subkey used at round i). For the first round, we have :

X1
(0) − TK1(m0) = 0 ∈ P2, (1)

X1
(1) − TK1(m0 + r1) = 0 ∈ P2. (2)

The notation X1
(0) (resp. X1

(1)) standing for the intermediate variables corresponding
to m0 (resp. m1 = m0 + r1), a boldfaced letter will refer to a vector.
From (1) and (2), we deduce that the equations X1

(1)−X1
(0) = ∆r1TK1(m0) are in the

ideal generated by P2. Thus, by simply taking two pairs, we have created new equations
relating the intermediates variables X1

(1),X1
(0), and the variables corresponding to

K1. The new equations are of degree strictly smaller than the initial equations of P2.

This can be viewed as an “algebraic-differential” style cryptanalysis. The idea of mixing
differential and algebraic cryptanalysis has been proposed by Albrecht and Cid [2, 3].
They proposed to explicitly include new linear equations relating intermediates vari-
ables using the knowledge of a differential characteristic. This attack has been mounted
against the cipher PRESENT [2, 3]. However, in our case, the equations derived from
derivatives are automatically generated during the Gröbner basis computation.

We can iterate the process. Let r1, . . . , rN be a set of N ≥ 2 linearly dependent vectors,
and m0 be a random message. We consider the system :

PN =
[

r∈L[r1,...,rN]

P(m0 + r, cr).

2 For Flurry Xi ∈ Kt, and for Curry Xi ∈ Km×m.

We will denote by Xi
(j) the intermediates variables used at the ith round and cor-

responding to the jth message3. For the first round, we have that for all k, 1 ≤ k ≤
#L[r1, . . . , rN] :

X1
(k) −X1

(0) = ∆rTK1(m0) ∈ PN , with r ∈ L[r1, . . . , rN].

As previously, we have created new equations of lower degree corresponding to deriva-
tives. But, we will also create equations corresponding to the high order derivatives.
For instance, let r1, r2 ∈ L[r1, . . . , rN]. We have :

X1
(0) − TK1(m0) = 0 ∈ PN , X1

(1) − TK1(m0 + r1) = 0 ∈ PN ,

X1
(2) − TK1(m0 + r2) = 0 ∈ PN , X1

(3) − TK1(m0 + r1 + r2) = 0 ∈ PN .

Therefore X1
(3) −

P2
k=0 X1

(k) = ∆r1,r2TK1(m0) ∈ PN . Moreover, r1 and r2 are not
linearly independent, thus ∆r1,r2TK1(m0) is equal to zero. Thus, the ideal generated
by PN will now include linear relations between the intermediates variables X1

(j).
Then, such new linear equations will induce derivatives and high order derivatives in
the subsequent rounds of the cipher. In our case, we know that X1

(3) =
P2
k=0 X1

(k).
If we consider the second round, we have :

X2
(0) = TK2(X1

(0)) ∈ PN , and X2
(3) = TK2(X1

(0) + X1
(1) + X1

(2)) ∈ PN .

The equations X2
(3) −X2

(0) = ∆X1
(1)+X1

(2)TK2(X1
(0)) is in the ideal generated by

PN . This approach can be iterated for generating differentials of highest orders, and
so new equations between the intermediates variables. Therefore, we have established
here an interesting connection between algebraic attacks and high order differential
cryptanalysis [21]; that we can call “algebraic-high order differential” cryptanalysis.

Experimental results. To summarize, our attack works as follows. Let N > 1 be
an integer. We fix : m0 = (0, . . . , 0), and r1 = (1, . . . , 0). We constructe differences ri,
for all i, 2 ≤ i ≤ N , using the relation ri+1 = θ · ri. After that, we have to solve the
system :

PN =
[

r∈L[r1,...,rN]

P(m0 + r, cr).

As explained previously, the ideal generated PN includes many new equations corre-
sponding to all the derivatives of order less than bln(N)c. We expect that these new
equations will allow the ease the Gröbner basis computation. We will see that this is
indeed the case in practice. In next table, we have quoted the results we have obtained
on Flurry and Curry with different values of N . Note that most of the parameters
have been chosen for having a secret key of 128-bit. We have included :

T : total time of our attack.
Nbop : number of basic operations.
Mem : Maximum memory usage.
Dmax : the maximal reached during the Gröbner basis computation.
TBPW : estimated complexity of the attack of [10].

3 We supose w.l.o.g. an explicit order on the elements of L[r1, . . . , rN].

Flurry(n,m, r, f,D) TBPW N Dmax T Nbop Mem

Flurry(16, 2, 4, f3, D2) ≈ 238 3 3 0.0 s. 210 691 Mb.
Flurry(32, 2, 4, f5, D2) ≈ 258 3 5 0.0 s. 215.5 691 Mb.
Flurry(32, 2, 4, f7, D2) ≈ 270 3 7 0.04 s. 218.1 691 Mb.

Flurry(16, 2, 5, f3, D2) ≈ 247 5 3 0.01 s. 215 1.2 Gb.
Flurry(16, 2, 5, f5, D2) ≈ 270 9 5 0.15 s. 222.2 1.9 Gb.

Flurry(16, 2, 6, f3, D2) ≈ 257 8 3 0.03 s. 220 2.1 Gb.
Flurry(16, 2, 6, f5, D2) ≈ 284 14 5 543.7 s. 234.8 4.0 Gb.

Flurry(16, 2, 7, f3, D2) ≈ 267 17 3 1.05 s. 225.8 4.9 Gb.
Flurry(32, 2, 7, f3, D2) ≈ 267 17 3 1.9 s. 225.8 4.9 Gb.

Flurry(16, 2, 8, f3, D2) ≈ 276 27 3 168.7 s. 233.5 8.7 Gb.

Flurry(16, 4, 4, f3, D2) ≈ 276 3 3 0.01 s. 213.5 2 Gb.
Flurry(16, 4, 4, f5, D2) ≈ 2126 3 5 0.03 s. 218.1 2.2 Gb.
Flurry(16, 4, 4, f7, D2) ≈ 2177 3 7 0.33 s. 221.7 2 Gb.
Flurry(16, 4, 6, f3, D2) ≈ 2114 14 3 3.4 s. 227.4 1.3 Gb.
Flurry(16, 4, 8, f3, D2) ≈ 2152 90 3 1952 s. 236.1 117 Gb.

≈ 2152 100 3 2058 s. 236.2 130 Gb.

Flurry(16, 8, 6, f3, D4) ≈ 2228 20 3 35.8 s. 226.1 47 Gb.

Curry(32, 2, 3, f3, D2) ≈ 257 2 10 0.01 s. 212.7 2.4 Gb.
≈ 257 17 6 0.01 s. 214.5 18.8 Gb.
≈ 257 20 3 0.01 s. 211.5 2.1 Gb.

Interpretation of the Results. We can observe that our approach is significantly
faster than BPW attack [10] and that the complexity depends only linearly in, n, the
size of the field K. The most important is to observe that – in all cases – we have been
able to find a number of pairs N∗ > 1 such that the maximal degree reached during the
Gröbner basis computation is equal to the degree d of the Sbox function. In practice,
we have found this N∗ by performing the following test incrementally on N ≥ 2:
we compute a DRL Gröbner basis of PNFlurry (resp. PNCurry). If the maximal degree
reached during this computation is greater than d then we stop the computation and set
N ← N + 1, otherwise N ← N∗. On this basis, we can extrapolate the (experimental)
complexity of our attack. Let bF (resp. bC) be the number of variables of the system
PN

∗
Flurry (resp. PN

∗
Curry). The complexity of our attack is :

O
“
b
deg(f)·ω
F

”
, for Flurry(n,m, r, f,D), and O

“
b
deg(f)·ω
C

”
, for Curry(n,m, r, f,D).

ω, 2 < ω ≤ 3 being the linear algebra constant. We have then a polynomial time
complexity for solving Flurry and Curry for power Sboxes.

These results are no longer valid for the inverse function. For this Sbox, we have
observed a different behavior. Namely :

N Dmax T Nbop Mem

Flurry(n,m, r, f,D)

Flurry(16, 2, 6, f−1, I1) 3 3 0.6 s. 225 1.8 Gb.
Flurry(16, 2, 7, f−1, I1) 3 4 0.4 s. 224 1 Gb.
Flurry(16, 2, 8, f−1, I1) 4 4 37.6 s. 231 1.4 Gb.
Flurry(16, 2, 9, f−1, I1) 10 4 37296 s. 241 6.4 Gb.
Flurry(16, 4, 5, f−1, I1) 2 4 0.5 s. 224.2 1.7 Gb.
Flurry(16, 4, 6, f−1, I1) 4 4 810.3 s. 236.0 4.6 Gb.
Flurry(16, 8, 5, f−1, I1) 3 4 3755.2 s. 237.5 5.4 Gb.

Once again, the use of correlated messages has permitted to go one step further
in the algebraic cryptanalysis of Flurry with inverse SBox. However, it is not clear
that there exists an optimal number of correlated messages N∗ such that the maximal
degree reached during the Gröbner basis computation is bounded by a constant. This
deserves further investigations.

5 Conclusion

We propose a new algebraic cryptanalysis of Curry and Flurry using Gröbner bases
techniques. We show that using correlated messages this technique can be effectively
used to attack theses families of block ciphers. For choosing choose the correlated
messages and to explain the behavior of this attack, we have established a connection
between algebraic attacks and high order differential cryptanalysis. While our results
have strong implications for the security of this kind of block ciphers when the power
Sboxes is a power function (we have been able to break Flurrys – up to 9 rounds in
less than 1 hour) it is more difficult to predict the complexity of the attack for the
inverse Sbox.

References

1. W.W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate
Studies in Mathematics, Vol. 3, AMS, 1994.

2. M. Albrecht, C. Cid. Algebraic Techniques in Differential Cryptanalysis. Available
at http://eprint.iacr.org/2007/137.

3. M. Albrecht, C. Cid. Algebraic Techniques in Differential Cryptanalysis. Proceed-
ings of the First International Conference on Symbolic Computation and Cryptog-
raphy, SCC 2008, Beijing, China, April 2008.

4. M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. Thèse de doctorat, Université de Paris VI, 2004.

5. B. Debraize. Méthodes de cryptanalyse pour les schémas de chiffrement symétrique.
Thèse de doctorat, Université de Versailles, 2008.

6. M. Bardet, J-C. Faugère, B. Salvy and B-Y. Yang. Asymptotic Behaviour of the
Degree of Regularity of Semi-Regular Polynomial Systems. In Proc. of MEGA 2005,
Eighth International Symposium on Effective Methods in Algebraic Geometry,
2005.

7. E. Biham, A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Ad-
vances in Cryptology - CRYPTO 1991, Lecture Notes in Computer Science, vol.
537, Springer–Verlag, pp. 2-21, 1991.

8. B. Buchberger, G.-E. Collins, and R. Loos. Computer Algebra Symbolic and Alge-
braic Computation. Springer-Verlag, second edition, 1982.

9. B. Buchberger. Gröbner Bases : an Algorithmic Method in Polynomial Ideal The-
ory. Recent trends in multidimensional systems theory. Reider ed. Bose, 1985.

10. J. Buchmann, A. Pyshkin, and R-P Weinmann Block Ciphers Sensitive to Gröbner
Basis Attacks. Topics in Cryptology – CT RSA’06, Lecture Notes in Computer
Science, vol. 3860, Springer–Verlag, pp. 313–331, 2006.

11. J. Buchmann, A. Pyshkin, and R-P Weinmann Block Ciphers Sensitive to Gröbner
Basis Attacks – Extended version. http://eprint.iacr.org/2005/200.

12. J. Buchmann, A. Pyshkin, and R-P Weinmann A Zero-Dimensional Gröbner Basis
for AES-128. Topics in Cryptology - CT RSA’06, Lecture Notes in Computer
Science, vol. 4047, Springer–Verlag, pp. 78–88, 2006.

13. N. Courtois, and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. Advances in Cryptology – ASIACRYPT 2002, Lecture Notes
in Computer Science, vol. 2501, pp. 267–287, 2002.

14. C. Cid, S. Murphy, M.J. B. Robshaw. Small Scale Variants of the AES. Fast
Software Encryption (FSE 2005), Lecture Notes in Computer Science, vol. 3557,
Springer–Verlag, pp. 267–287, 2005.

15. D. A. Cox, J.B. Little and D. O’Shea. Ideals, Varieties, and algorithms: an Intro-
duction to Computational Algebraic Geometry and Commutative algebra. Under-
graduate Texts in Mathematics. Springer-Verlag. New York, 1992.

16. J. Daemen, V. Rijmen. The Design of Rijndael: The Wide Trail Strategy. Springer-
Verlag (2001).

17. J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of
Zero-Dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic
Computation, 16(4), pp. 329–344, 1993.

18. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Basis: F4. Jour-
nal of Pure and Applied Algebra, vol. 139, pp. 61–68, 1999.

19. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Basis without
Reduction to Zero: F5. Proceedings of ISSAC, pp. 75–83. ACM press, July 2002.

20. J.-C. Faugère, and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems using Gröbner bases. Advances in Cryptology - CRYPTO
2003, Lecture Notes in Computer Science, vol. 2729, Springer-Verlag, pp. 44–60,
2003.

21. X. Lai. Higher Order Derivatives and Differential Cryptanalysis. Communications
and Cryptography, Kluwer Academic Publishers, pp. 227–233, 1994.

22. F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambrige University
Press, Cambrige, 1916.

23. M. Matsui. Linear Cryptanalysis Method for DES Cipher. Advances in Cryptology
- Eurocrypt 1993, Lecture Notes in Computer Science, vol. 765, Springer–Verlag,
pp. 386–397, 1993.

24. H. Raddum and I. Semaev. New Technique for Solving Sparse Equa-
tion Systems. Cryptology ePrint Archive: Report 2006/475. Available at
http://eprint.iacr.org/2006/475.

25. D. H. Wiedemann. Solving sparse linear equations over finite fields IEEE Trans.
Information Theory IT-32 (1986), 54–62.

The F4/F5 Algorithms.

The historical method for computing Gröbner bases is Buchberger’s algorithm [8, 9].
Recently, more efficient algorithms have been proposed, namely the F4 and F5 al-
gorithms [18, 19]. These algorithms are based on the intensive use of linear algebra
techniques. Precisely, F4 can be viewed as the “gentle” meeting of Buchberger’s algo-
rithm and Macaulay ideas [22]. In short, the arbitrary choices – limiting the practical
efficiency of Buchberger’s algorithm – are replaced in F4 by computational strategies
related to classical linear algebra problems (mainly the computation of a row echelon
form).In [19], a new criterion (the so-called F5 criterion) for detecting useless computa-

tions has been proposed. It is worth pointing out that Buchberger’s algorithm spends
90% of its time to perform these useless computations. Under some regularity condi-
tions, it has been proved that all useless computations can be detected and avoided.

A new algorithm, called F5, has then been developed using this criterion and linear
algebra methods. Briefly, F5 (in its matrix form) constructs incrementally the following
matrices in degree d :

Ad =

m1 � m2 � m3 . . .
t1f1
t2f2
t3f3
. . .

2664
.
.
.
.

3775
where the indices of the columns are monomials sorted w.r.t. ≺ and the rows are
products of some polynomials fi by some monomials tj such that deg(tjfi) ≤ d. For a
regular system [19] (resp. semi-regular system [4, 6]) the matrices Ad are of full rank.
In a second step, row echelon forms of theses matrices are computed, i.e.

A′d =

m1 m2 m3 . . .
t1f1
t2f2
t3f3
. . .

2664
1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .

3775
For d sufficiently large, A′d contains a Gröbner basis. An important parameter for
evaluating the complexity of F5 is the maximal degree dreg occurring in the computation
and the size Ndreg of the matrix Adreg . The overall complexity is dominated by the cost
of computing the row echelon form of the last matrix Adreg . We have then a complexity
of :

Nω
dreg ≈ O(nω·dreg),

with ω, 2 ≤ ω ≤ 3 being the linear algebra constant. For a semi-regular system of α · n
quadratic equations (over F2) in n variables, dreg is asymptotically equivalent to :

dreg ∼n→∞
„
−α+

1

2
+

1

2

q
2α2 − 10α− 1 + 2(α+ 2)

p
α(α+ 2)

«
n.

More details on this complexity analysis, and further complexity results can be found
in [4, 6]. Note that the algebraic systems arising in cryptography can behave very
differently than a semi-regular system, leading then to a degree of regularity possibly
much lower. A good example illustrating this fact is the cryptanalysis of HFE [20].

