
Slid Pairs in Salsa20 and Trivium

Deike Priemuth-Schmid and Alex Biryukov

FSTC, University of Luxembourg
6, rue Richard Coudenhove-Kalergi,

L-1359 Luxembourg
(deike.priemuth-schmid, alex.biryukov)@uni.lu

Abstract. The stream ciphers Salsa20 and Trivium are two of the fi-
nalists of the eSTREAM project which are in the final portfolio of new
promising stream ciphers. In this paper we show that initialization and
key-stream generation of these ciphers is slidable, i.e. one can find distinct
(Key, IV) pairs that produce identical (or closely related) key-streams.
There are 2256 and more then 239 such pairs in Salsa20 and Trivium
respectively. We write out and solve the non-linear equations which de-
scribe such related (Key, IV) pairs. This allows us to sample the space of
such related pairs efficiently as well as detect such pairs in large portions
of key-stream very efficiently. We show that Salsa20 does not have 256-bit
security if one considers general birthday and related key distinguishing
and key-recovery attacks.

Key words: Salsa20, Trivium, eSTREAM, stream ciphers, cryptanalysis

1 Introduction

In 2005 Bernstein [2] submitted the stream cipher Salsa20 to the eSTREAM-
project [5]. Original Salsa20 has 20 rounds, later 8 and 12 rounds versions
Salsa20/8 and Salsa20/12 were also proposed. The cipher Salsa20 uses
the hash function Salsa20 in a counter mode. It has 512-bit state which is
initialized by copying into it 128 or 256-bit key, 64-bit nonce and counter
and 128-bit constant.

Previous attacks on Salsa used differential cryptanalysis exploiting
a truncated differential over three or four rounds. The first attack was
presented by Crowley [4] which could break the 5 round version of Salsa20
within claimed 3165 trials. Later a four round differential was exploited
by Fischer et al. [6] to break 6 rounds in 2177 trials and by Tsnunoo et
al. [11] to break 7 rounds in about 2190 trials. The currently best attack
by Aumasson et al. [1] covers 8 round version of Salsa20 with estimated
complexity of 2251.

In 2005 De Cannière and Preneel [3] submitted the stream cipher Triv-
ium to the eSTREAM-project [5]. Trivium has an internal state of 288

bits and uses an 80-bit key and an 80-bit initial value (IV). The inter-
esting part of Trivium is the nonlinear update function of degree 2. In
[10] Raddum presented and attacked simplified versions of Trivium called
Bivium but the attack on Trivium had a complexity higher than the
exhaustive key search. Bivium was completely broken by Maximov and
Biryukov [8] and an attack on Trivium with complexity about 2100 was
presented which showed that key-size of Trivium can not be increased
just by loading longer keys into the state. In [9] McDonald et al. at-
tacked Bivium using SatSolvers. Another approach that gained attention
recently is to reduce the key setup of Trivium as done by Turan and
Kara [12] and Vielhaber [13]. So far no attack faster than exhaustive key
search was shown for Trivium.

In this paper we start with our investigation of Salsa20 followed by a
description of the attacks. We show that the following observation holds:
suppose that you are given two black boxes, one with Salsa20 and one
with a random mapping. The attacker is allowed to chose a relation F for
a pair of inputs, after which a secret initial input x is chosen and a pair
(x,F(x)) is encrypted either by Salsa20 or by a random mapping. We
stress that only the relation F is known to the attacker. The goal of the
attacker is given a pair of ciphertexts to tell whether they were encrypted
by Salsa20 or by a random mapping. To make the life of the attacker
more difficult the pair may be hidden in a large collection of other cipher-
texts. It is clear that for a truly random mapping no useful relation F
would exist and moreover there is no way of checking a large list except
for checking all the pairs or doing a birthday attack. On the other hand
Salsa20 can be easily distinguished from random in both scenarios if F
is a carefully selected function related to the round-structure of Salsa20.
Moreover since in Salsa20 the initial state is initialized with the secret
key, known nonce, counter and constant it is not only a distinguishing
but also a complete key-recovery attack. Our attacks are independent of
the number of rounds in Salsa and thus work for all the 3 versions of
Salsa. We also show a general birthday attack on 256-bit key Salsa20
with complexity 2192 which can be further sped up twice using sliding
observations.

In the second part of this paper we describe our results about Trivium
which show a large related key-class (239 out of 280 keys) which produce
identical key-streams up to a shift. We solve the resulting non-linear slid-
ing equations using Magma and present several examples of such slid
key-IV pairs. The interesting observation is that for shift of 111 clocks

24-key-bits do not appear in these equations and thus for a fixed IV there
is a 224 freedom of choice for the key that may have a sliding property.

2 Slid Pairs in Salsa20

2.1 Brief Description of Salsa20

The Salsa20 encryption function uses the Salsa20 hash function in a coun-
ter mode. The internal state of Salsa20 is a 4× 4 - matrix of 32-bit words.
A vector (y0, y1, y2, y3) of four words is transformed into (z0, z1, z2, z3) by
calculating1

z1 = y1 ⊕ ((y0 + y3) ≪ 7),
z2 = y2 ⊕ ((z1 + y0) ≪ 9),
z3 = y3 ⊕ ((z2 + z1) ≪ 13),
z0 = y0 ⊕ ((z3 + z2) ≪ 18).

This nonlinear operation is called quarterround and it is the basic
part of the columnround where it is applied to columns (y0, y4, y8, y12),
(y5, y9, y13, y1), (y10, y14, y2, y6) and (y15, y3, y7, y11) as well as of the row-
round which transforms rows (y0, y1, y2, y3), (y4, y5, y6, y7), (y8, y9, y10, y11)
and (y12, y13, y14, y15). A so called doubleround consists of a column-
round followed by a rowround. The doubleround function of Salsa20 is
repeated 10 times. If Y denotes the matrix a key-stream block is defined
by

Z = Y + doubleround10(Y) .

In this feedforward the symbol “+” denotes the addition modulo 232.
One columnround as well as one rowround has 4 quarterrounds which

means 48 word operations in total. Salsa20 consists of 10 doublerounds
which gives altogether 960 word operations. The feedforward at the end
of Salsa20 has 16 word operations which concludes 976 word operations
in total for one encryption.

The cipher takes as input a 256-bit key (k0, . . . , k7), a 64-bit nonce
(n0, n1) and a 64-bit counter (c0, c1). A 128-bit key version of Salsa20
copies the 128-bit key twice. In this paper we mainly concentrate on the
256-bit key version. The remaining four words are set to fixed publicly
known constants, denoted with σ0, σ1, σ2 and σ3.

1 Here the symbol “+” denotes the addition modulo 232, the other two symbols work
at the level of the bits with “⊕” as XOR-addition and “≪” as a shift of bits.

2.2 Slid Pairs

The structure of a doubleround can be rewritten as columnround then a
matrix transposition another columnround followed by a second transpo-
sition. Now the 10 doublerounds can be transferred into 20 columnrounds
each followed by a transposition.

We define F to be a function which consists of a columnround followed
by a transposition. If we have 2 triples (key1, nonce1, counter1) and (key2,
nonce2, counter2) so that

F [1st starting state (key1, nonce1, counter1)]
= 2nd starting state (key2, nonce2, counter2)

then this property holds for each point during the round computation of
Salsa20 especially for the end of the round computation. Pay attention
that the feedforward at the end of Salsa20 destroys this property. We call
such a pair of a 1st and 2nd starting state a slid pair. The relation of a
slid pair is shown in Fig. 1.

In a starting state four words are constants and 12 words can be chosen
freely which leads to a total amount of 2384 possible starting states. If we
want that a starting state after applying function F results in a 2nd

starting state we obtain four wordwise equations. This means we can
choose eight words of the 1st starting state freely whereas the other four
words are determined by the equations as well as the words for the 2nd

starting state. This leads to a total amount of 2256 possible slid pairs.

For the 128-bit key version no such slid pair exists due to the addi-
tional constrains of four fewer words freedom in the 1st starting state and
four more wordwise equations in the 2nd starting state.

S F Z
X

19×F

Z ′X ′
F19×FS′

Fig. 1. relation of a slid pair

With function F we get two equations S′ = F(S) and X ′ = F(X). The
words for these matrices we denote as

S =

σ0 k0 k1 k2

k3 σ1 n0 n1

c0 c1 σ2 k4

k5 k6 k7 σ3

 X =

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 Z =

z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

S′ =

σ0 k′0 k′1 k′2
k′3 σ1 n′0 n′1
c′0 c′1 σ2 k′4
k′5 k′6 k′7 σ3

 X ′ =

x′0 x′1 x′2 x′3
x′4 x′5 x′6 x′7
x′8 x′9 x′10 x′11

x′12 x′13 x′14 x′15

 Z ′ =

z′0 z′1 z′2 z′3
z′4 z′5 z′6 z′7
z′8 z′9 z′10 z′11

z′12 z′13 z′14 z′15

 .

The set up of the system of equations for a whole Salsa20 computation
is too complicated but the equations for the computation of F are very
clear. For a complete description of the equations see the appendix A.1.
Both systems of equations coming from the relation F are related in that
way that, if one knows part of nonce and / or counter one can decide which
system to use to solve the equations. Due to the eight words freedom we
have in a 1st or 2nd starting state there are some relations in the 12 non-
fixed words. For the 2nd starting state these relations are very clear as
they deal only with words

0 = k′2 + k′1, 0 = k′3 + n′1, 0 = c′1 + c′0 and 0 = k′7 + k′6 , (1)

whereas for the 1st starting state these relations depend on the bits and
thus are more complicated. Sliding by the function F is applicable to
any version of Salsa20/r where r is even. For r odd there would be no
transposition at the end of the round computation, equations are a bit
different, though still solvable.

2.3 Sliding State Recovery Attack on the Davies-Meyer Mode

In this subsection we consider a general state-recovery slide attack on a
Davies-Meyer construction. We demonstrate it on an example of Davies-
Meyer feedforward used with the iterative permutation from Salsa20. The
feedforward breaks the sliding property and makes slide attack more com-
plicated to mount. We consider the following scenario:

1. The oracle chooses a secret 512-bit state S (here we assume that there
is no restriction of 128-bit diagonal constants and the full 512 bits can
be chosen at random).

2. The oracle computes F(S) = S′.

3. The oracle computes Salsa20(S), Salsa20(S′) and gives them to the
attacker.

4. The goal of the attacker is to recover the secret state S.

Due to the weak diffusion of F the attacker can write separate systems
of equations for each column of S. With the four guesses of 264 steps
each the attacker can completely recover the 512-bit secret state S. The
attacker will have to solve equations of the type:

z′1 = [s4 ⊕ ((s0 + s12) ≪ 7)] + [(z4 − s4)⊕ ((z0 − s0 + z12 − s12) ≪ 7)] .

For a detailed description see Appendix A.2. This shows that Salsa20
without the diagonal constants is easily distinguishable from a random
function, for which a similar task would require about 2511 steps.

The addition of the diagonal constants reduces the flexibility of the
oracle in a choice of the initial states to 2256 but the attack works even
better:

1. The oracle chooses a starting state S′ with the key k′, nonce n′ and
counter c′ satisfying equations (1). The attacker does not know this
state.

2. The oracle applies F−1(S′) to compute the related key k, nonce n and
counter c.

3. The oracle computes Salsa20(S), Salsa20(S′) and gives them to the
attacker.

4. The goal of the attacker is to recover the secret state S.

The knowledge of the diagonal makes the previous attack even faster
and allows the full 384-bit (256-bit entropy) state recovery with com-
plexity of 4 · 232. If the attacker chooses the nonce and the counter n′, c′

(160-bits of entropy) then the complexity drops to 2 · 232.
Furthermore if nonce and counter n, c are known (128-bits of entropy

left). The state can be recovered immediately (with or without knowing
counter c′ and nonce n′) as is shown in the following section.

Table 1 shows the time complexities for the described attacks, memory
complexity is negligible.

2.4 Related Key Key-Recovery Attack on Salsa20

Let us assume that we know two ciphertexts and the corresponding nonces
and counters. We do not know both keys but we know that both starting
states differ by function F which gives the relation shown in Fig. 2 and

Table 1. Time complexities for state-recovery attacks

known words of the starting states sliding on Salsa20 random oracle

nothing 266 2511

only diagonal 234 2255

diagonal, nonce and counter n′, c′ 233 2159

diagonal, nonce and counter n, c O(1) 2127

diagonal, nonce and counter n, c and n′, c′ O(1) 263

that the 2nd starting state conforms to the initial state format of Salsa20
(i.e. has proper 128-bit constant on the diagonal). In this subsection we
show that this information is sufficient to completely recover the two
related 256-bit secret keys of Salsa20 with O(1) complexity.

→→ trans-

position

column

round

σ3 σ3σ3 k′4k7 k′7n′1 k′6k6k5 k′2 k′5

k′7 k′4k4 σ2σ2 σ2c′1c1 n′0c0 c′0k′1

n1 n′1k′6c′1n0 n′0σ1 σ1 σ1k′0 k′3k3

k′5k2 k′2k1 k′1c′0k′3k0 k′0σ0 σ0 σ0

Fig. 2. relation of the 1st and 2nd starting state

With the knowledge of both nonces and counters (indicated as grey
squares in Fig. 2) we are able to recover four words of the first unknown
key and two words of the second unknown key (marked by bold letters)
by solving the equations2

k′
3 = −n′1 k0 = k′3 ⊕ ((n′1 + n′0) ≪ 13)

k6 = n′1 ⊕ ((n′0 + σ1) ≪ 9) k′
4 = −c′0 + ((c′1 ⊕ n0) ≫ 13)

k1 = c′0 ⊕ ((k′4 + σ2) ≪ 9) k7 = k′4 ⊕ ((σ2 + n0) ≪ 7) .

At this point we still have not used the similar equations from the bot-
tom of the round computation. If part of the nonce / counter is unknown
these equations can be used to check our guesses.

2 The complete System of equations is shown in appendix A.1 here we only give the
rearranged equations.

Then two similar systems of equations are left to get the other 10 key
words. For the first one we solve the equation

z′2 = [(z8−c0)⊕((z′1−k′
0+z0−σ0) ≪ 9)]+[c0⊕((k′

0+σ0) ≪ 9)] , (2)

whereas some words of the ciphertexts are used and only k′0 is unknown.
With the solution of k′0 we get four more words

k′
1 = c0 ⊕ ((k′0 + σ0) ≪ 9) k′

2 = −k′1
k5 = k′2 ⊕ ((k′1 + k′0) ≪ 13) k3 = k′0 ⊕ ((σ0 + k5) ≪ 7) .

For the second system we solve a similar equation to get k′5

z′13 = [(z7−n1)⊕((z′12−k′
5+z15−σ3) ≪ 9)]+[n1⊕((k′

5+σ3) ≪ 9)] . (3)

With the solution of k′5 we get the last four words

k′
6 = n1 ⊕ ((k′5 + σ3) ≪ 9) k′

7 = −k′6
k4 = k′7 ⊕ ((k′6 + k′5) ≪ 13) k2 = k′5 ⊕ ((σ3 + k4) ≪ 7) .

Equation (2) (similarly (3)) can be solved just by checking all 232 possi-
bilities for k′0 (respectively k′5 for (3)), however it can be done much more
efficiently with less then 28 steps by guessing k′0 (or k′5) gradually and
checking the bitwise equations. We solved 16 equations, but used 26 of
the 64 equations in the appendix A.1 to get these 16 equations. The com-
plexity to get all the 16 key words is approximately 56 word operations
which is much faster than a single Salsa20 encryption (976 word oper-
ations). For both keys we compute Salsa20 and compare the calculated
ciphertexts to the given ones. If they match we have found the right keys.

2.5 A Generalized Related Key Attack on Salsa20

Suppose we are given a (possibly large) list of ciphertexts with the cor-
responding nonces and counters and we are told that in this list the slid
pair is hidden. The question is, can we find slid pairs in a large list of
ciphertexts efficiently? As we saw in the previous section, given such slid
ciphertext pair it is easy to compute both keys. The task is made more
difficult by the feedforward of Salsa20, which destroys the sliding relation-
ship. Nevertheless in this section we show that given a list of ciphertexts
of size O(2l) it is possible to detect a slid pair with memory and time
complexity of just O(2l)3. The naive approach which would require to
3 Sorting is done via Bucket sort so we save the logarithmic factor l in complexity.

check for each possible pair the equations from function F will have com-
plexity O(22l) which is too expensive. Our idea is to reduce the amount
of potential pairs by sorting them by eight precomputed words, so that
only elements where these eight words match have the possibility to yield
a slid pair. After decreasing the number of possible pairs in that way we
can check the remaining pairs using additional constraints coming from
the sliding equations.

For the sorting we use Bucket sort because each word has only 232

possibilities. The number of words we sort by is equal to the number of
runs of Bucket sort.

We have a set M of ciphertexts with corresponding nonces and coun-
ters. Each ciphertext can be either a 1st starting state or a 2nd starting
state to regard this the set is stored twice first under M1 to check for
possible 1st starting states and second under M2 to check for possible 2nd

starting states.

Step 1: Sort the first list
For each element in set M1 undo the feedforward for the four words on
the diagonal and x9 = z9− c1. Then sort M1 by the specified eight words
x0, x5, x10, x15, x9 and c1, z1, z13.

Step 2: Sort the second list4

Select only elements of M2 that satisfy equation 0 = c′0+c′1 since only such
an entry can be a 2nd starting state. For each element undo the feedfor-
ward for the four words on the diagonal and x′6, . . . , x

′
9 because nonces and

counters are known. Then compute for each element the words marked
in bold in the equations

x0 = x′0 ⊕ ((z′2 + z′3) ≪ 18) k′
3 = −n′1

x5 = x′5 ⊕ ((z′4 + n′1 + x′7) ≪ 18) x10 = x′10 ⊕ ((x′9 + x′8) ≪ 18)
x15 = x′15 ⊕ ((z′13 + z′14) ≪ 18) x1 = (z′4 + n′1)⊕ ((x′7 + x′6) ≪ 13)
x9 = x′6 ⊕ ((x5 + x1) ≪ 7) k0 = k′3 ⊕ ((n′1 + n′0) ≪ 13)
c1 = n′0 ⊕ ((σ1 + k0) ≪ 7) z1 = x1 + k0

k6 = n′1 ⊕ ((n′0 + σ1) ≪ 9) z13 = (k6 + x′7)⊕ ((x′6 + x5) ≪ 9) .

4 If the number of rounds of Salsa is odd then such simple sorting would not be
possible, since Salsa equations are easier to solve in reverse direction. In our approach
we know 2 words at the input and 3 words at the output of the columnround which
is easier to solve than the opposite (3 words at the input vs. 2 at the output).
Nevertheless the system is still solvable.

During this computation we calculate three key words k0, k6 and k′3. Sort
the set M2 by the calculated eight words x0, x5, x10, x15, x9 and c1, z1, z13

for the potential 1st starting states.

Step 3: Check each possible pair
Cross check all the possible pairs that match in the eight words and thus
satisfy the 256-bit filtering. For the conforming pairs we can continue the
check, using the following equations. If a test condition is wrong this pair
can not be a slid pair. For each pair undo for the ciphertext of the 1st

starting state the feedforward for the word x6 = z6 − n0. Then compute
the bold variables and check the conditions for the three equations

1. comp. k′
4 = −c′0 + ((n0 ⊕ c′1) ≫ 13) x′

11 = −x′8 + ((x6 ⊕ x′9) ≫ 13)
check z′11 = x′11 + k′4
2. comp. k1 = c′0 ⊕ ((k′4 + σ2) ≪ 9) x2 = x′8 ⊕ ((x′11 + x10) ≪ 9)
check z2 = x2 + k1

3. comp. k7 = k′4 ⊕ ((σ2 + n0) ≪ 7) x14 = x′11 ⊕ ((x10 + x6) ≪ 7)
check z14 = x14 + k7 .

During this computation we calculate the three key words k1, k7 and k′5.
For the rest of the pairs we have two more similar systems of equations

to check. For the first one we solve (2) and if there is no solution for k′0
this pair can not be a slid pair. Otherwise we use the k′0 to compute four
more key words while we check two more conditions

1. comp. k′
1 = c0 ⊕ ((k′0 + σ0) ≪ 9) k′

2 = −k′1
k5 = k′2 ⊕ ((k′1 + k′0) ≪ 13) x′

1 = z′1 − k′0
x12 = (z′3 − k′2)⊕ ((z′2 − k′1 + x′1) ≪ 13)

check z12 = x12 + k5

2. comp. k3 = k′0 ⊕ ((σ0 + k5) ≪ 7) x4 = x′1 ⊕ ((x0 + x12) ≪ 7)
check z4 = x4 + k3 .

For the second system we similarly solve (3) and again if there is no
solution for k′5 this pair can not be a slid pair. Otherwise we use the k′5
to compute the rest of the key words while we check two more conditions

1. comp. k′
6 = n1 ⊕ ((k′5 + σ3) ≪ 9) k′

7 = −k′6
k4 = k′7 ⊕ ((k′6 + k′5) ≪ 13) x′

12 = z′12 − k′5
x11 = (z′14 − k′7)⊕ ((z′13 − k′6 + x′12) ≪ 13)

check z11 = x11 + k4

2. comp. k2 = k′5 ⊕ ((σ3 + k4) ≪ 7) x3 = x′12 ⊕ ((x15 + x11) ≪ 7)
check z3 = x3 + k2 .

For the checking of the potential slid pairs we have 9 extra test con-
ditions. We would expect only 7 conditions but due to the different arith-
metic operations the dependencies of the equations are not clear. In total
we have at least filtering power of 32×7 bits. Thus we expect that only the
correct slid pairs survive this check. The remaining pairs are the correct
slid pairs for which we completely know both keys.

Complexity. Assume we are given a list of 2l ciphertexts with corre-
sponding nonces and counters. Instead of storing the list twice we use
two kinds of pointers, one kind for the potential 1st starting states and
the other one for the potential 2nd starting states. For the pointers we
need l/32 × 2l words of memory. A summary for the complexity of dif-
ferent lists is given in Table 2. The larger the list of the random states in
which our target is hidden – the larger would be the complexity of the
attack. However the time complexity of the attack grows only linearly
with the size of the list. The memory is given in words and the time in
Salsa encryptions.

Table 2. Complexities for different list seizes

list size memory time

2128 28× 2128 2122

2192 32× 2192 2186

2256 36× 2256 2250

2.6 Time-Memory Tradeoff Attacks on Salsa

Salsa20 has 2384 possible starting states. We notice that the square root
of 2384 is less than the keyspace size for keys longer than 192-bits. Thus
a trivial birthday attack on 256-bit key Salsa20 would proceed as follows:

During the preprocessing stage generate a list of 2192 randomly chosen
starting states and run for each of them Salsa20 to get a sample of cipher-
texts. Afterwards we sort this list by the ciphertexts. During the on-line
stage we capture 2192 ciphertexts for which we want to find the keys.
We do not have to store these ciphertexts and can check each of them
immediately for a match with the sorted array of precomputed cipher-
texts. If we have a match we retrieve the corresponding key from our
table. Of course due to very high memory complexity this attack can be
only viewed as a certificational weakness.

If we can choose the nonce or the counter there exist only 2320 differ-
ent starting states reducing the attack to precomputation and memory
complexity of 2160 and if we can choose both – the state space drops to
2256 and the attack complexity drops to 2128. Similar reasoning for 128-bit
key Salsa20 would yield attack with 264 complexity. Thus it is crucial for
the security of Salsa20 that nonces are chosen at random for each new
key and the counter is not stuck at some fixed value (like 0, for example).

The complexities are summarized in Table 3 where R stands for a
complete run of Salsa20 and M for a matrix of Salsa (16 words).

Table 3. Complexities for the Birthday attack

attack precomputation memory time captured ciphert.

chosen nonce and counter R× 2128 2M × 2128 2128 2128

chosen nonce or counter R× 2160 2M × 2160 2160 2160

general R× 2192 2M × 2192 2192 2192

using sliding property R× 2192 2.5M × 2192 2192 2191

Improved Birthday Using the Sliding Property. We can use the
sliding property to increase the efficiency of the birthday attack twice
(which can be translated into reduction of memory, time or increase of
success probability of the birthday attack). During the preprocessing stage
we generate a sample of 2nd starting states by using (1) and choose the
remaining eight words at random. We compute the corresponding cipher-
texts for these states as well as the eight specified words for the corre-
sponding 1st starting states mentioned in section 2.5. We use two kinds of
pointers to sort this generated list by the ciphertexts for the 2nd starting
states and by the eight words for the corresponding 1st starting state. We
capture ciphertext from the key-stream where we also know the nonce
and the counter and check if it is matching a 2nd starting state from our
list (direct birthday) or is a correct 1st starting state for one of the states
from our collection (indirect birthday). In both cases we learn the key for
this ciphertext.

3 Slid Pairs for Trivium

3.1 Brief Description of Trivium

The designers introduced the stream cipher Trivium with a state size of
288 bits. This internal state can be split into three registers. The first
register which we call A has length 93, the second one called B has length
84 and the last register named C has 111 bits. Trivium uses an 80-bit key,
an 80-bit initial value and a nonlinear update function of degree 2.

Update and Key-Stream Production. The internal state is denoted
in the following way

A: (s1, s2, . . . , s93) B: (s94, s95, . . . , s177) C: (s178, s279, . . . , s288) .

The nonlinear update function uses 15 bits of the internal state to
compute three new bits each for one register and the key-stream bit zi

is calculated by adding only 6 of these 15 bits together. In the following
pseudo-code all computations are over GF(2).

t1 ←− s66 + s93

t2 ←− s162 + s177

t3 ←− s243 + s288

zi ←− t1 + t2 + t3

t1 ←− t1 + s91 · s92 + s171

t2 ←− t2 + s175 · s176 + s264

t3 ←− t3 + s286 · s287 + s69

A: (s1, s2, ..., s93) ←− (t3, s1, . . . , s92)
B: (s94, s95, . . . , s177) ←− (t1, s94, . . . , s176)
C: (s178, s279, . . . , s288) ←− (t2, s178, . . . , s287)

Key and IV Setup. In register A the key is loaded and in register B the
IV. All remaining positions in the three registers are set to zero except
for the last three bits in register C which are set to one

A: (s1, s2, ..., s93) ←− (K80, . . . , K1, 0, . . . , 0)
B: (s94, s95, . . . , s177) ←− (IV80, . . . , IV1, 0, . . . , 0)
C: (s178, s279, . . . , s288) ←− (0, . . . , 0, 1, 1, 1) .

In this paper we refer to this state with key, IV and 128 fixed positions
as starting state. After the registers are initialized in the described way
the cipher is clocked 4 × 288 times using the update function without
producing any key-stream bits. This will finish the key setup. Now each
following clock will produce a key-stream bit.

3.2 Slid Pairs

We start with the observation made by Jin Hong on the eSTREAM forum
[7], that it is possible to produce sliding states in Trivium. We searched
for pairs of key and IV which produce another starting state after a few
clocks. If we have a key and IV pair (K1, IV1) which produce another
starting state with a key and IV pair (K2, IV2), the created key-stream
by (K2, IV2) will be the same as the one created by (K1, IV1) except
for a shift of some bits. The number of shifted bits is the same as the
number of clocks which are needed to get from the first starting state to
the second one. We call such a pair of two key and IV pairs a slid pair and
denote this with [(K1, IV1), (K2, IV2), c] whereas c stands for the number
of clocks-shifts.

Due to the special structure of the third register with 108 zeros and
the last three ones the first possibility of a second starting state to occur
is after 111 clocks. Each following clock gives the chance for a second
starting state. Two examples for slid pairs are given in the appendix B.

3.3 Systems of Equations

We describe the second starting state as polynomial equations in the 80
key and 80 IV variables of the first key and IV. The 128 fixed positions
in a starting state yield a system of equations with 160 variables and
128 equations. We have more variables than equations which gives us
freedom in 32 variables. To solve these systems we used the F4 algorithm
implemented in the computer algebra system Magma. A solution of such
a system of equations gives us the first pair of key and IV of a slid pair.
To get the second key we use the system of equations which describes
the key in the second starting state and get the solution by replacing
the variables with the known values of the first key and IV pair. In the
same way we use the system of equations which describes the IV in the
second starting state to compute the second IV. One could also just clock
Trivium c times starting from (K1, IV1) to get (K2, IV2).

Some Facts about these Systems. The system of equations for the
first instance which appears after 111 clocks has only 136 variables be-
cause the last 24 bits of the key do not occur in this system. Furthermore
16 bits are given a priori due to the 13 zeros in register A and 3 ones in
register C. The degree of the monomials in the equations raised from 1
to 3. Magma was able to solve this system without guessing any further
variables. Due to the missing of the 24 key bits in the equations these

bits can be chosen arbitrarily. This leads us to 224 different keys for one
IV in the first key and IV pair of a slid pair.

Table 4 collects some facts for the systems we were able to solve with
Magma to get a Gröbner basis and the values for the key and IV for the
first starting state.

Table 4. Some facts for the systems of equations

clock-shift c 111 112 113 114 115

variables in equations 136 137 138 139 140
last key bits not in the equation 24 23 22 21 20
a priori given bits 16 15 14 13 13
guess bits to solve5 0 4 6 8 10
computing time magma (days) 2.5 2.5 10 32.5 64

The higher the clock-shift will be the more complicated the systems
of equations will get. For each clock-shift another system of equations
is needed but for every step of c most of the equations are the same or
related. Due to the length of register C which defines the occurrence of
a second starting state we have at least 111 clock-shifts. Thus we have
minimum 111× 232 ≈ 239 slid pairs, just within a shift of 221 bits of each
other. There are much more slid pairs for longer shifts, but the equations
would be much more complicated.

Nonexistence of Special Slid Pairs. We searched for slid pairs with
additional constraints. The first type applies when the keys in the two key
and IV pairs are the same for any clock-shift c: ([(K, IV1), (K, IV2)], c)
and the second type applies when both times the same IV is used for any
clock-shift c: ([(K1, IV), (K2, IV)], c). In both cases the fixed second key
or IV leads to 80 additional equations which account for the occurrence
of all 80 key or IV bits. Thus we have overdefined systems with 208
equations and 160 variables. For both types the systems are not likely to
be solvable for any reasonably small amount of shift. As a result of the
48 extra equations the chance for such system to have a solution is about
2−48. We computed that for the first 31 instances (clock-shifts 111 up to
142) these systems have no solution.

4 We guessed these bits to get a solution from Magma in a reasonable amount of time.

4 Conclusion

In this paper we have described sliding properties of Salsa20 and Trivium
which lead to distinguishing, key recovery and related-key attacks on
these ciphers. We also show that Salsa20 does not offer 256-bit security
due to a simple birthday attack on its 384-bit state. Since the likelihood
of falling in our related key classes by chance is relatively low (2256 out of
2384 for Salsa20, 239 out of 280 for Trivium) these attacks do not threaten
most of the real-life usage of these ciphers. However designer of protocols
which would use these primitives should be definitely aware of these non-
randomness properties, which can be exploited in certain scenarios.

References

1. J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier and C. Rechberger. New Features
of Latin Dances: Analysis of Salsa, ChaCha and Rumba To appear in Proceedings
of Fast Software Encryption 2008 (FSE 2008) , LNCS, Lausanne, Switzerland,
February 10-13, 2008. Full version as IACR eprint, http://eprint.iacr.org/2007/472

2. D. J. Bernstein. Salsa20. eSTREAM, ECRYPT Stream Cipher Project, Report
2005/025, 2005. http://www.ecrypt.eu.org/stream/

3. C. De Cannière and B. Preneel. TRIVIUM - a stream cipher construction inspired
by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030, 2005. http://www.ecrypt.eu.org/stream/

4. P. Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. SASC
2006 - Stream Ciphers Revisited, 2006.

5. eSTREAM: The ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream/

6. S. Fischer, W. Meier, C. Berbain, J.-F. Biasse, M. J. B. Robshaw. Non-randomness
in eSTREAM Candidates Salsa20 and TSC-4. INDOCRYPT, volume 4329 of
LNCS, pages 2-16. Springer, 2006.

7. Jin Hong. Discussion Forum. certain pairs of key-IV pairs for Trivium, created
September 13, 2005 05:11PM.
http://www.ecrypt.eu.org/stream/phorum/read.php?1,152

8. A. Maximov and A. Biryukov. Two Trivial Attacks on Trivium. SASC 2007 - The
State of the Art of Stream Ciphers, 2007.

9. C. McDonald, C. Charnes and J. Pieprzyk. Attacking Bivium with
MiniSat. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/040, 2007.
http://www.ecrypt.eu.org/stream/

10. H. Raddum. Cryptanalytic Results on TRIVIUM. eSTREAM, ECRYPT stream
cipher project, Report 2006/039, 2006. http://www.ecrypt.eu.org/stream/

11. Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki and H. Nakashima. Differential Crypt-
analysis of Salsa20/8. SASC 2007 - The State of the Art of Stream Ciphers, 2007.

12. M. S. Turan and O. Kara. Linear Approximations for 2-round Trivium. SASC
2007 - The State of the Art of Stream Ciphers, 2007.

13. M. Vielhaber. Breaking ONE.Fivium by AIDA an Algebraic IV Differential Attack.
Cryptology ePrint Archive, Report 2007/413, 2007

A Salsa20

A.1 System of equations for a slid pair

Word equations given by the equations S′ = F (S) and X ′ = F (X).

1. k′0 = k3 ⊕ ((σ0 + k5) ≪ 7)
2. k′1 = c0 ⊕ ((k′0 + σ0) ≪ 9)
3. k′2 = k5 ⊕ ((k′1 + k′0) ≪ 13)
4. σ0 = σ0 ⊕ ((k′2 + k′1) ≪ 18)

5. n′0 = c1 ⊕ ((σ1 + k0) ≪ 7)
6. n′1 = k6 ⊕ ((n′0 + σ1) ≪ 9)
7. k′3 = k0 ⊕ ((n′1 + n′0) ≪ 13)
8. σ1 = σ1 ⊕ ((k′3 + n′1) ≪ 18)

9. k′4 = k7 ⊕ ((σ2 + n0) ≪ 7)
10. c′0 = k1 ⊕ ((k′4 + σ2) ≪ 9)
11. c′1 = n0 ⊕ ((c′0 + k′4) ≪ 13)
12. σ2 = σ2 ⊕ ((c′1 + c′0) ≪ 18)

13. k′5 = k2 ⊕ ((σ3 + k4) ≪ 7)
14. k′6 = n1 ⊕ ((k′5 + σ3) ≪ 9)
15. k′7 = k4 ⊕ ((k′6 + k′5) ≪ 13)
16. σ3 = σ3 ⊕ ((k′7 + k′6) ≪ 18)

17. x′1 = x4 ⊕ ((x0 + x12) ≪ 7)
18. x′2 = x8 ⊕ ((x′1 + x0) ≪ 9)
19. x′3 = x12 ⊕ ((x′2 + x′1) ≪ 13)
20. x′0 = x0 ⊕ ((x′3 + x′2) ≪ 18)

21. x′6 = x9 ⊕ ((x5 + x1) ≪ 7)
22. x′7 = x13 ⊕ ((x′6 + x5) ≪ 9)
23. x′4 = x1 ⊕ ((x′7 + x′6) ≪ 13)
24. x′5 = x5 ⊕ ((x′4 + x′7) ≪ 18)

25. x′11 = x14 ⊕ ((x10 + x6) ≪ 7)
26. x′8 = x2 ⊕ ((x′11 + x10) ≪ 9)
27. x′9 = x6 ⊕ ((x′8 + x′11) ≪ 13)
28. x′10 = x10 ⊕ ((x′9 + x′8) ≪ 18)

29. x′12 = x3 ⊕ ((x15 + x11) ≪ 7)
30. x′13 = x7 ⊕ ((x′12 + x15) ≪ 9)
31. x′14 = x11 ⊕ ((x′13 + x′12) ≪ 13)
32. x′15 = x15 ⊕ ((x′14 + x′13) ≪ 18)

Word equations given by the feedforward for the first key-stream words
and for the second key-stream words.

33. z0 = x0 + σ0

34. z1 = x1 + k0

35. z2 = x2 + k1

36. z3 = x3 + k2

37. z4 = x4 + k3

38. z5 = x5 + σ1

39. z6 = x6 + n0

40. z7 = x7 + n1

41. z8 = x8 + c0

42. z9 = x9 + c1

43. z10 = x10 + σ2

44. z11 = x11 + k4

45. z12 = x12 + k5

46. z13 = x13 + k6

47. z14 = x14 + k7

48. z15 = x15 + σ3

49. z′0 = x′0 + σ0

50. z′1 = x′1 + k′0
51. z′2 = x′2 + k′1
52. z′3 = x′3 + k′2
53. z′4 = x′4 + k′3
54. z′5 = x′5 + σ1

55. z′6 = x′6 + n′0
56. z′7 = x′7 + n′1
57. z′8 = x′8 + c′0
58. z′9 = x′9 + c′1
59. z′10 = x′10 + σ2

60. z′11 = x′11 + k′4
61. z′12 = x′12 + k′5
62. z′13 = x′13 + k′6
63. z′14 = x′14 + k′7
64. z′15 = x′15 + σ3

A.2 System of equations for a column in general

The columnround in function F applies to each column of the matrix
a quarterround. All computations of a quarterround for one column are
independent from the computations of the other three columns. If one
takes together for one column the quarterround coming from S′ = F(S)
the corresponding quarterround from X ′ = F(X) and the feedforward
one gets a system with 16 equations shown below. We assume all 16
variables are unknown.

s′1 = s4 ⊕ ((s0 + s12) ≪ 7)
s′2 = s8 ⊕ ((s′1 + s0) ≪ 9)
s′3 = s12 ⊕ ((s′2 + s′1) ≪ 13)
s′0 = s0 ⊕ ((s′3 + s′2) ≪ 18)

x′1 = x4 ⊕ ((x0 + x12) ≪ 7)
x′2 = x8 ⊕ ((x′1 + x0) ≪ 9)
x′3 = x12 ⊕ ((x′2 + x′1) ≪ 13)
x′0 = x0 ⊕ ((x′3 + x′2) ≪ 18)

z0 = x0 + s0

z4 = x4 + s4

z8 = x8 + s8

z12 = x12 + s12

z′0 = x′0 + s′0
z′1 = x′1 + s′1
z′2 = x′2 + s′2
z′3 = x′3 + s′3

This system can be reduced to four equations. In the first equation
two variables must be guessed to solve it. In the remaining three equa-
tions always two variables are known either the guessed s-variable or the
calculated s′-variable. Thus they can be solved without guessing any more
variables.

z′1 = [(z4 − s4)⊕ ((z0 − s0 + z12 − s12) ≪ 7)] + [s4 ⊕ ((s0 + s12) ≪ 7)]
z′2 = [(z8 − s8)⊕ ((z′1 − s′1 + z0 − s0) ≪ 9)] + [s8 ⊕ ((s′1 + s0) ≪ 9)]
z′3 = [(z12 − s12)⊕ ((z′2 − s′2 + z′1 − s′1) ≪ 13)] + [s12 ⊕ ((s′2 + s′1) ≪ 13)]
z′0 = [(z0 − s0)⊕ ((z′3 − s′3 + z′2 − s′2) ≪ 18)] + [s0 ⊕ ((s′3 + s′2) ≪ 18)]

Therefore the system of equations for one column with complete un-
known variables can be solved by guessing only two variables.

B Trivium

Two examples for slid pairs written in hexadecimal numbers are given
below. The bits for keys and IVs are ordered from 1 to 80 but in the key
and IV setup they are used the other way around.

[(K1, IV1), (K2, IV2), 111]
K1 : 70011000001E00000000
IV1 : AF9D635BCEF9AE376CF7
key-stream1: 2E7338CB404272ABEE3F7BEC2F8D

55E27536D29AFFFF15DFDFD711AECC78D13D7B61 . . .
K2 : 780000001DA2000003C1
IV2 : 1DF35CF6D4FFF4E3A6C0
key-stream: 55E27536D29AFFFF15DFDFD711AECC78D13D7B61 . . .

[(K3, IV3), (K4, IV4), 112]
K3 : 02065B9C001730000000
IV3: 609FC141828705160A3C
key-stream: A48BCA9143685F03DE646F83AB52

88BC9542798983349A959503E63BBF29C4755DE6 . . .
K4 : B98000003E96E70005CE
IV4 : 2B7C1483BC476A62E4CB
key-stream: 88BC9542798983349A959503E63BBF29C4755DE6 . . .

1 The shift is c = 111 which means the first 111 bits are a prefix. When rewriting
these prefix from hexadecimal to binary numbers the leading zero must be omitted
because 111 is not a multiple of 4.

