
The Enigmatique Toolkit

by Christopher Billings

Copyright © 2008 by Christopher Billings
All rights reserved

Keywords: poly-alphabetic multi-algorithmic symmetric substitution cipher

Abstract: This paper describes a new method of creating systems of poly-
alphabetic, symmetric ciphers with a large set of algorithms. The method uses
two translation tables containing the code-text character set, one for encryption
and the other for decryption. After each character is encrypted or decrypted,
these tables are permuted through a series of pseudo random, pairwise swaps.
The implementation of alternative swap formulas leads to systems with large sets
of encryption/decryption algorithms. Systems that contain more than a googol
(1E100) algorithms have been easily implemented. An algorithm set can be
easily sub-setted, producing hierarchical systems where a program may contain
a single algorithm or a portion of the full set. The strength of these systems has
not been determined. However strength can be inferred through the use of a
substantial number of numeric keys , pseudo random number generators,
algorithm switching, and other features.

Page 1 of 17

Introduction:

The term 'Enigmatique' designates a general method of generating computer
programs that contain a vast number of encryption/decryption algorithms. In
technical language, Enigmatique is a general method for creating multi-
algorithmic, poly-alphabetic subsitution ciphers. Here multi- means millions,
billions, trillions, ... and poly means 256 factorial.

Enigmatique can be configured to use alphabets of any size. An alphabet with
256 characters is the most useful since it can easily encrypt any computer file.

Modern cryptography has left the classic substitution ciphers far behind. One
reason is that these ciphers use only a small number of alphabets (permutations
of the characters). The German Enigma machine suffered from the defect that it
could only employ only a tiny fraction of the 26! permutations of 26 letters.

Enigmatique was inspired by classical substitution ciphers of the pre-computer
era. But Enigmatique features a strong avalanche effect. It employs an internal
state that performs a random walk through the N! permutations of an N-valued
codetext character set. And with 2R algorithms (for an R-bit algorithm number),
Enigmatique uses techniques that require the power and accuracy of modern
digital computers.

The ability to create systems with vast numbers of encryption algorithms -- by
the millions, billions, trillions, ... -- offers special capabilities previously unknown
in cryptography. As a simple example, a program for a server could contain four
billions algorithms. Then each user can be provided with an optimized computer
program with only one single algorithm. Each of these user-level programs is
unique and incompatible with the others. Communications between users is
established through the server-level program that handles any and all of the
user-level algorithms.

Enigmatique provides a new twist on security. Conventionally, it is assumed that
all users have the same encryption algorithm. If an attacker steals one program,
he can identify the exact algorithm used by everyone. Thus security depends
upon keeping the keys secret. In Enigmatique this type of attack is impossible,
unless the master program is stolen. None of the user programs provides
information sufficient to attack the communications of any other user.
Organizations may concentrate their security on the guarding of the master
program. The security of user-level programs, while important, are less acute

Page 2 of 17

with Enigmatique.

This does not overthrow the Kerkhoff Principle. But it raises a new obstacle for
an attacker.

The heart of an Enigmatique system requires a series of special formulas that
are diverse, convoluted, without apparent pattern, and easily written. These
special formulas are used for both encryption and decryption, guaranteeing that
whatever is encrypted can be decrypted in the same amount of time.

Someday, somewhere, a graduate student will write a program that generates a
series of these special formulas random. This will be a milestone in the history of
cryptography -- a system with billions of randomly generated encryption
algorithms.

This will bring to mind the story that Donald Knuth tells of his mis-guided attempt
to devise a “Super Random” number generator only to find that the output
degenerated, sometimes producing a constant series. Donald Knuth
emphatically abjures, “random numbers should not be generated with a method
chosen at random.” 1 It goes without saying that nothing in cryptography can be
trusted without careful testing.

Enigmatique makes all this possible!

Basic Concept:

Enigmatique is founded on a simple concept as illustrated in this diagram:

c = ET[p]	p = DT[c]
__________________	__________________
Shuffle (p)	

The box on the upper left represents the first step in the encryption process. ET
1 Knuth, Donald; “The art of Computer Programming vol. 2; Seminumerical Algorithms” p6.

Page 3 of 17

represents the encryption table. In the general case, the array ET contains a
permutation of the numbers 0 ... n-1 (for an n-valued code text character set).
Array DT contains the inverse permutation. The encryption routine converts
each plain text character (p) to an index of this array. Then it takes the value in
the indexed position and converts it to the code text character (c).

Likewise, the upper right box represents the first step in the decryption process.
The code text character (c) converts to an index of the decryption table (DT).
Then the value in the that position is converted to the plain text character (p).

The above rather technical discussion applies to the general case where the
code text character set is a subset of the full character set. However, very often
the code text character set is the full 256-character set. Then the numerical
value of a character coincides with its value as an index.

It is the Shuffle function that gives Enigmatique its special character. Without the
Shuffle, the encryption degenerates to a simple substitution cipher, or to a very
inefficient copy program. The Shuffle function initiates a pseudo-random
permutation of ET by means of a series of pair-wise swaps. At the same time,
corresponding swaps are performed on DT to keep it synchronized with ET. At
all times the two tables must contain inverse permutations of each other.

Note: The discussion below assumes that the implementor uses a 32-version of
the C/C++ language.

The Shuffle function contains several sequences of the form:

i += pseudo-random-calculation-1;
j += pseudo-random-calculation-2;
Swap(i,j);

Since both i and j may have any 32-bit value, the Swap function must apply a
modulus to these values in order to reference ET and DT. The Swap function
interchanges the selected entries of ET and corresponding entries of DT.

The first swap in Shuffle is slightly different. It reads:

i += p;
j += pseudo-random-calculation;
Swap(p,j);

Page 4 of 17

This code creates a strong avalanche effect. Here p is the plain text character
which is used as the argument to Shuffle(p). This ensures that doubled letters,
as in 'bookkeeper' are encrypted to different code text characters. This also
ensures that sequences of a single character (that may occur in office
documents) are not easily identifiable.

It is recommended that i and j are modified only by addition, subtraction, or by
XOR. On byproduct of this feature is that the initial values of I and j become
special keys. This also strengthens the avalanche effect.

A wide variety of formulas can be used in the pseudo-random calculations. For
example:

i += K(E(i+5))^R(D(j));
j ^= Z(D(7-j)*397+E(i));
Swap (i,j);
These formulas uses several functions. The original Enigmatique system uses
these:

K(m) - returns an entry from a table of keys. Since m may be any 32-bit value,
the function must apply a modulus to obtain a valid index to the table of keys.
Any number of keys may be used.

E(m) - returns an entry from the encryption table.

D(m) - returns an entry from the decryption table.

R(m) - returns a value from the pseudo random number generator. The
argument is used to apply a rotation and an optional complement to the result. In
addition, the implementation may also use m to select a seed from an array of
seeds. The PRNG used by the author is a simple congruential generator with a
32-bit seed, but which returns a 16-bit result. As a design decision, a future
implementation may replace this PRNG with a different one.

Z(m) - hashes the argument, using the same congruential formula as the
PRNG.

RL(m) - combines the results of two calls to the PRNG into a 32-bit result. The
argument is used to apply independent rotations and complements to each half
of the result.

Page 5 of 17

X(m) - is an unspecified function to be defined in a future implementation. The
employment of such functions is a design decision.

In addition, these formulas use constants and the variables i and j. The
operators plus, minus, complement, and XOR may be used freely.
Multiplication, division, and other operators may be used provided precautions
are taken against the loss of randomness.

The basic requirement is that the shuffle routine produce exactly the same
results for decryption that it does on encryption. This requirement is easily met.
Shuffle functions constructed as described above are guaranteed to work
properly. Everything encrypted can be decrypted. Furthermore, encryption and
decryption take the same amount of time.

Multi-algorithmic systems

Up to this point we have not discussed the most significant innovation of
Enigmatique, the method of creating multi-algorithmic systems. This is done by
exploiting one of the special features of the C/C++ language, conditional
expressions. The syntax for a conditional expression is:

(conditional-exp ? expression-t : expression-f)

When a conditional expression is executed, the conditional expression is
evaluated. If the result is true, i.e. non-zero, expression-t is evaluated and its
value is returned Otherwise, expression-f is evaluated and its value is returned.

Enigmatique uses conditional expressions in the following way:

 Example A:

i += (alg&b1 ? special-formula-t1 : special-formula-f1);
j += (alg&b2 ? special-formula-t2 : special-formula-f2);
Swap (i, j);
Here alg is some portion of the algorithm number. b1 and b2 are used to test a

Page 6 of 17

particular bit in the algorithm number. They have the values 1, 2, 4, 8,
Suppose that the result of the first test is true and the second is false. Then the
above three statements reduces, in effect, to:

Example B:

i += special-formula-t1;
j += special-formula-f2;
Swap (i, j);
Suppose that the two tests of the algorithm number yielded the opposite results.
Then the above reduces to:

Example C:

i += special-formula-f1;
j += special-formula-t2;
Swap (i, j);

When the program sets the algorithm number to a specific value, that selects the
code for either B or C or two other examples that are not shown here. The value
of the algorithm number determine which formulas are executed and which are
bypassed, thus selecting different encryption algorithms.

A basic Enigmatique system uses two special formulas for each bit of the
algorithm number. One formula is executed when the algorithm bit is zero, the
other when the algorithm bit is one. A basic system that uses a 32-bit algorithm
number thus has sixty four special formulas. When the algorithm number is set
to a specific value, one half of the formulas are activated, the other half
bypassed. Each setting of the algorithm number thus selects one of more than
four billion encryption algorithms. Each additional bit in the algorithm number
doubles the number of encryption algorithms. Thus with a 64-bit algorithm
number, a system can have more than 17 billion billion encryption algorithms,
and a 96-bit system has 70 billion billion billion algorithms, etc., etc., etc.

As stated above, a basic Enigmatique system uses two special formulas per
algorithm bit. However, other alternatives may be employed. For example, an
implementation may use four bits to select one of sixteen formulas (as shown in
an example below.) Then additional formulas are required.

Page 7 of 17

Coding Example:

Consider this example based on a working program:

#define ALT(a,b,f,g) (a&b ? f : g)
enum bits {B0=1, B1=2, B2=4, B3=8, B4=16, B5=32, B6=64, B7=128};
static unsigned long SAVED_J_VALUE = 0;
void Shuffle (unsigned long plain)
{

unsigned long i = SAVED_I_VALUE + plain;
unsigned long j = SAVED_J_VALUE ;

j += ALT(A0,B0,ALT(A0, B1, 17*R(i+12)^K(29*j),
 R(DT(i*11))-K(j+5)),
 ALT(A0, B1, R(E(i+19)*K(i*77+5)),
 R(i)^K(D(j))));

Swap(plain,j);
i += ALT(A0,B2,R(i)^K(1),23*R(i+ 3)^K(71*i));
j ^= ALT(A0,B3,Z(E(i+97)),R(D(i*23))) ;
Swap(i,j);
i -= ALT(A0,B4,R(i)^K(2),29*R(i+25)^K(34*i));
j += ALT(A0,B5,R(D(i+71)),R(E(i*97))) ;
Swap(i,j);
i += ALT(A0,B6,R(i)^K(3),47*R(i+31)^K(51*i));
j ^= ALT(A0,B7,R(E(i+59)),R(D(i*101))) ;
Swap (i, j);
i += ALT(A0>>8,B0,41*(j+3),(D(j*19) * K(4)) ^ R(i));
j -= ALT(A0>>8,B1,E(j+171)*K(j),D(i+20));
Swap (i, j);
j += ALT(A0>>8,B2,(D(i + j)*K(5)) - 77, R(E(E(j-5)))) ;
i ^= ~ALT(A0>>8,B3,D(j),13*E(i+5)) ;
Swap(i,j);
i += ALT(A0>>8,B4,K(i+8),R(j)) ;
j += ALT(A0>>8,B5,E(j+17)*K(i),D(i+20));
Swap (i, j);
j += ALT(A0>>8,B6,E(i-7),D(D(j+99)));
i *= ALT(A0>>8,B7,K(E(i+29)),R(D(i+j))) ;
Swap (i,j);

Page 8 of 17

i += ALT(A0>>16,B0,K(i+8),R(j)) ^
ALT(A0>>16,B1,E(j+17)*K(i),D(i+20));

j += ALT(A0>>16,B2,E(i-7),D(D(j+99))) *
ALT(A0>>16,B3, R(E(i+20)),Z(R(5+i))) ;

Swap (i,j);
i += ALT(A0>>16,B4,K(i+8),R(j));
j ^= ALT(A0>>16,B5,E(j+17)*K(i),D(i+20));
Swap (i, j);
j += ALT(A0>>16,B6,E(i-7),D(D(j+99)));
i ^= ALT(A0>>16,B7,E(i)*17,R(5)) ;
Swap (i, j);

// just for fun
#define QUAD(alg,ba,bb,e,f,g,h) \

 ALT(alg, ba, ALT(alg,bb,e,f), ALT(alg,bb,g,h))

i += QUAD(A0>>24,B0,B1, E(j+17)*K(i),D(i+20),R(E(i

+20)),Z(R(5+i)));
j += QUAD(A0>>24,B2,B3, E(i-7),D(D(j+99)),R(E(i+20)),Z(R(5+i)));
Swap (i,j);

i -= QUAD(A0>>24,B4,B5, K(i+8),R(j),E(j+17)*K(i),D(i+20));
j ^= QUAD(A0>>24,B6,B7, E(i-7),D(D(j+99)),E(i)*17,R(5));
Swap (i,j);

SAVED_J_VALUE = j;
SAVED_I_VALUE = i;

}

Ladies and gentlemen, you have just seen four billion encryption algorithms. And
there are endless variations on this theme.

Single-algorithm encryption programs

The master source code for an Enigmatique system may be used to create a
series of low level programs, each containing a single, unique encryption
algorithm. This exploits the fact that many compilers, for many different

Page 9 of 17

languages, can produce optimized code. Consider the folowing expression:

i += (alg & 4 ? f : g);
Suppose that alg is a variable. Then the compiler generates code for the entire
expression. Both formulas f and g will appear in the compiled code. This
appears in the master encryption program.

On the other hand suppose that alg is a constant, say 6. Then the program will
always execute f, but never g. The compiler will recognize that formula g is dead
code and ignore it. The compiler will also recognize that the conditional
expression is also dead code and ignore it. The compiler will generate code for
the following:

i += f;
All trace of the algorithm number and the formula g is eliminated from the
compiled program.

To take advantage of this capability, a special header file specifies the algorithm
for each user of the system. Let's call this header file UserData.h. And suppose
the algorithm number is stored in an array defined by:

 unsigned long AlgorithmNumber [3];
To generate the master program, the header file UserData.h contains:

#define A0 AlgorithmNumber [0]
#define A1 AlgorithmNumber [1]
#define A2 AlgorithmNumber [2]
(Refer to the large example above which uses A0 as the algorithm number.)

Here the algorithm number is completely variable. That means that the compiler
will generate the master program with a set of 70 billion billion billion algorithms.
To generate a program with a single algorithm, the symbols A0, A1, and A2 must
be defined as constants with specific values. For example:

#define A0 531691946ul
#define A1 740517342ul
#define A2 32759624ul

Page 10 of 17

Now the compiler will recognize that half of the special formulas are dead code,
and eliminate them from the compiled program. The result is a program
optimized for a single algorithm. If an attacker steals such a program, he will be
able to analyze that one algorithm. But he will not be able to reconstruct any
other algorithm.

In addition, intermediate level programs can be created. For example:

#define A0 AlgorithmNumber [0]
#define A1 740517342ul
#define A2 32759624ul

creates a program with four billion algorithms and

#define A0 531691946ul
#define A1 AlgorithmNumber [1]
#define A2 AlgorithmNumber [2]

creates one with 17 billion billion algorithms. And there are many variations on
this theme.

Sixteen-fold Swap

This is a example of an initial swap where four bits in the algorithm number are
used to select one of sixteen special formulas:

#define ALT(alg,Bn,exp1,exp2) \
 ((alg) & (Bn) ? (exp1) : (exp2))
#define QUAD(alg,b1,b2,f1,f2,f3,f4)\
 ALT(alg,b1,ALT(alg,b2,f1,f2),ALT(alg,b2,f3,f4))

j ^= QUAD(A0,B1,B3, QUAD(A0,B0,B2,FA,FB,FC,FD),
QUAD(A0,B2,B0,FE,FF,FG,FH),
QUAD(A0,B2,B0,FI,FJ,FK,FL),
QUAD(A0,B0,B2,FM,FN,FO,FP));

Swap(plain,j);

Page 11 of 17

Design Decisions

Enigmatique offers the implementor a vast array of design decisions. How may
algorithms are to be implemented? How many swaps will be used. How many
special formulas are needed? What will they look like? Which pseudo random
number generator should be used? Should multiple PRNG's be used? Or a
single PRNG with multiple seeds?

How many numeric key words should be used? In the general method there is
no limit on the number of key words that can be used. It is up to each
implementation to impose a limit, say 100 words (3200 bits). The key space can
be made so large that brute force attacks are impossible. Also the number of
keys can be made variable. One encryption run may use, say, five 32-bit key
words, and another thirty. It is up to the implementor to write a k(m) function that
can handle the alternatives.

It was stated above that the k(m) functional must apply a modulus to its argument
in order to index an array of keys. If, say, four keys are used, then

KeyTable [m%4]
uses only two bits of m. To bring more bits into play the program may use a
double modulus, for example:

KeyTable [(m%(4*KeysInUse-1)) % KeysInUse]
Enigmatique allows the implementor to adjust the trade off between speed and
strength. Any Enigmatique system can be strengthened by making the formulas
more complex, or by adding swaps to the system. Conversely, a system can be
made faster by simplifying the formulas or reducing the number of swaps.

Many simple tweaks to a system will create a new encryption system which is not
compatible with the original.

Page 12 of 17

Applications

There are several ways to utilize an Enigmatique system. If Alice and Bob have
identical encryption programs with, say, four billion algorithms, they could utilize,
not one time pads, but one time algorithms.

Enigmatique lends itself to hierarchical systems. For example, Alice and Bob
may have programs where the two programs implement different algorithms. In
this case, Alice and Bob can not send encrypted messages back and forth
directly. They will send their messages to an email server which decrypts each
message and re-encrypts it for the other person. Suppose the master program
implements four billion algorithms. This system an theoretically support four
billion users, each having a single, unique algorithm. Alternatively, it could
support, say, four million users, each using a different set of 1024 algorithms, or
four thousand users, each having one million algorithms.

Furthermore this system can be organized into a hierarchy tree. Each bottom
user assigned one thousand algorithms, a department server with one million
algorithms, and a corporate server with the full set.

There are endless variations on this theme. If additional levels are needed, then
another word can be added to the algorithm number, providing up to 17 billion,
billion algorithms.

Security is enhanced when users have different (non-overlapping) algorithm sets.
Alice can not decrypt Bob's messages and vice versa. This is useful, even in a
business environment, when Alice and Bob may be both coworkers and bitter
rivals.

This system raises the bar for attackers. If Trudy should steal Bob's laptop, she
can read Bob's messages. That will do damage to the company. But the
damage will be limited. Even if she decodes Bob's encryption algorithm, she
cannot read the messages for Alice or Dave or Edward or any other user. The
reason is that Bob's encryption lacks code that is essential for the other
algorithms. If Trudy cannot guess or determine the formulas required by other
users, she cannot read their messages.

Page 13 of 17

Hierarchical Systems

There are many ways to set up a hierarchical Enigamtique system. Imagine an
inverted tree network. The root (top) of the tree containss the entire set of
encryption algorithms. Nodes on the branches, twigs, and leaves contain smaller
and smaller subsets. There are two basic rules in this scheme. First, if one
node is under another, then it contains a subset of the algorithms of the higher
node. Second, any other pair of nodes have no algorithms in common.

It is useful to assign multiple algorithms to every leaf (low-level user) in this tree.
Then algorithm switching can occur within a message. (See below). It is
convenient to assign the bits of the algorithm number in ten bit groups. Then
each level hierarchy can be assigned a number between 0 and 1024. A 32
algorithm number can be written, for example, as 0.999.414.503. This number
may stand for:

Group number: 999
User number: 414
User's algorithm: 503

The remaining two bits may used for a super-group, or may be reserved for
special purposes, for example:

0 Normal traffic, e.g. email
1 Archive of ordinary company documents
2 Archive of company trade secret documents
3 Archive of military classified documents.

This so far, will not be adequate for many organizations. Additional levels of
hierarchy can be easily provided for by adding one or two 32-words to the
algorithm number. Each 32-bit word of the algorithm number multiplies the
number of algorithms by 4.29 billion. Thus two words can provide 17 billion
billion algorithms, and three words 70 billion billion billion algorithms.

A basic scheme may allocate two formulas for each bit of the algorithm number.
An alternative, is to allocate the bits by twos and threes. This uses a new macro
called OCTET.

Page 14 of 17

i += QUAD(alg, bits, Four formulas);
j += OCTET(alg, bits, Eight formulas);
Swap (i,j);

Each swap uses five bits of the algorithm number. Under this scheme, each
word of the algorithm number generates seven swaps. (As opposed to sixteen
swaps in the basic scheme.) A critical factor is the number of swaps being
performed. This method encrypts twice as fast, but with a possible loss of
strength.

Special Features

A number of special features can be incorporated in an Enigmatique system. For
example:

1. Text keys. A text key is used by both the encryptor and the decryptor.
Both ends encrypt the text key at the beginning of the message, then
throws the code-text away.

2. Algorithm switching by users that have multiple algorithms. A small
number is chosen, say n=35. After each character is encrypted or
decrypted, the value i mod n is calculated. If zero the algorithm number is
changed using the quantity j. Thus after each character is processed
there is one chance in n that the algorithm is changed.

3. Some of the formulas use a quantity k (small k). This quantity is set
originally to a small odd number. After each character is processed, k is
incremented by two. When it reaches a certain limit, it is set back to its
original value. This produces a sawtooth effect.

These techniques provide a 'toolkit' for those who implement Enigmatique
systems.

Page 15 of 17

Advances in the Art

Enigmatique advances the art and craft of cryptography in five important areas:

1. This is the first method that allow the creation of systems with vast
numbers of encryption algorithms. The number of algorithms that can be used is
unlimited.

2. Enigmatique exploits the n factorial permutations of an n-valued character
set. This is more than 8.578 times 10 to the 506th power. An Enigmatique
system can utilize only a tiny fraction of this number -- because the universe will
not last long enough.

3. The difference between encryption and decryption is trivial. Decryption
can be guaranteed to work properly and operate is the same time as encrption.

4. Enigmatique is based on simple principles that can be easily taught. A
competent programmer can create a powerful system in a few days.

5. The strength of Enigmatique systems is not fixed. Any Enigmatique
system can be strengthened with small changes to the program. I am confident
that if my encryption programs prove to be weak, that someone, using this
method, will create much stronger versions of Enigmatique.

The Challenge

The ultimate question for any system of cryptography is how strong is it? I am
not willing to make claims that I cannot prove. Some of the claims I have made
above may appear to be snake oil. Such a notion should be dispelled by a
careful examination of this document. And I can prove everything with working
code. The ultimate answer to any question is: Read my code!

Please note that the author has made not any claims about the strength of this
encryption, other than the mild statement (5) above. Basically, definitive
statements about it strength are premature. The history of cryptography is
littered with the wreckage of many broken systems, including some of the best
efforts of outstanding cryptographers. It is hoped that Enigmatique will not share
that fate.

Therefore Enigmatique is not offered as a secure system. Instead, it is ofered as
a challenge.

Page 16 of 17

Please note that Enigmatique is not a specific algorithm, but a general method.
There will be many different implementations of this type of system, some strong
some weak. The strength of an Enigmatique system will vary with the skill and
care exercised by the cryptographer.

The challenge for cryptographers is to identify features that contribute to the
strength of the system. How many swaps are needed for a strong system? what
types of special formulas strengthen or weaken the system? Are there weak
keys or problematic plain texts?

The challenge for cryptanalysts is to find ways of breaking these systems.
Exhaustive key search will not work since the keyspace can be made very large.
It is unlikely that any form of linear or differential cryptanalysis will work. The
arithmetic operations and permutations used in Enigmatique should disrupt any
linear or differential relationships.

A successful cryptanalysis of a good Enigmatique system may require a new
type of cryptanalysis, and that it will be a general type of attack that works
against any Enigmatique algorithm. It seems unbelievable that a trillion algorithm
system can be broken one algorithm at a time.

Perhaps the most interesting feature of Enigmatique is its conceptual simplicity.
To truly understand a block cipher takes a strong mathematical background and
a lot of perseverance. Enigmatique, on the other hand, can be used by ordinary
programmers to create 'difficult' ciphers.

Conclusion

The ability to create efficient systems with billions or trillions of encryption
algorithms is a new development in cryptography. Such systems present special
obstacles to those attempting to break cryptographic systems -- whether for good
or for evil. The simplicity of the Method Enigmatique means that ordinary
computer programmers can create powerful systems in a short amount of time.
Around the world there are thousands of people who have the background, the
skills, and the talent necessary to invent a system like Enigmatique without any
knowledge of the work that is described in this paper. All that is missing is a flash
of inspiration.

The Enigmatique Toolkit provides a set of techniques that can be used
selectively to build a special type of cryptographic systems. Source code is
available at www.enigmatiquecryptographia.com

Page 17 of 17

http://www.enigmatiquecryptographia.com/

