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Abstract:  This paper describes a new method of creating systems of poly-
alphabetic, symmetric ciphers with a large set of algorithms.  The method uses 
two translation tables containing the code-text character set, one for encryption 
and the other for decryption. After each character is encrypted or decrypted, 
these tables are permuted through a series of pseudo random, pairwise swaps. 
The implementation of alternative swap formulas leads to systems with large sets 
of encryption/decryption  algorithms. Systems that contain more than a googol 
(1E100) algorithms have been easily implemented.  An algorithm set can be 
easily sub-setted, producing hierarchical systems where a program may contain 
a single algorithm or a portion of the full set.  The strength of these systems has 
not been determined. However strength can be inferred through the use of a 
substantial number of numeric keys , pseudo random number generators, 
algorithm switching, and other features.
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Introduction:

The term 'Enigmatique' designates a general method of generating computer 
programs that contain a vast number of encryption/decryption algorithms.   In 
technical language, Enigmatique is a general method for creating multi-
algorithmic, poly-alphabetic subsitution ciphers.  Here multi- means millions, 
billions, trillions, ...  and poly means 256 factorial.

Enigmatique can be configured to use alphabets of any size.  An alphabet with 
256 characters is the most useful since it can easily encrypt any computer file.

Modern cryptography has left the classic substitution ciphers far behind.  One 
reason is that these ciphers use only a small number of alphabets (permutations 
of the characters).  The German Enigma machine suffered from the defect that it 
could only employ only a tiny fraction of the 26! permutations of 26 letters.  

Enigmatique was inspired by classical substitution ciphers of the pre-computer 
era.  But Enigmatique features a strong avalanche effect. It employs an internal 
state that performs a random walk through the N! permutations of an N-valued 
codetext character set. And with 2R algorithms (for an R-bit algorithm number), 
Enigmatique uses techniques that require the power and accuracy of modern 
digital computers.

The ability to create systems with vast numbers of encryption algorithms --  by 
the millions, billions, trillions, ... -- offers special capabilities previously unknown 
in cryptography.  As a simple example, a program for a server could contain four 
billions algorithms.   Then each user can be provided with an optimized computer 
program with only one single algorithm.   Each of these user-level programs is 
unique and incompatible with the others.  Communications between users  is 
established through the server-level program that handles any and all of the 
user-level algorithms.  

Enigmatique provides a new twist on security.  Conventionally, it is assumed that 
all users have the same encryption algorithm.  If an attacker steals one program, 
he can identify the exact algorithm used by everyone.  Thus security depends 
upon keeping the keys secret.  In Enigmatique this type of attack is impossible, 
unless the master program is stolen.  None of the user programs provides 
information sufficient to attack the communications of any other user. 
Organizations may concentrate their security on the guarding of the master 
program. The security of user-level programs, while important, are less acute 
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with Enigmatique.

This does not overthrow the Kerkhoff Principle.  But it raises a new obstacle for 
an attacker.

The heart of an Enigmatique system requires a series of special formulas that 
are diverse, convoluted, without apparent pattern, and easily written.  These 
special formulas are used for both encryption and decryption, guaranteeing that 
whatever is encrypted can be decrypted in the same amount of time.

Someday, somewhere, a graduate student will write a program that generates a 
series of these special formulas random.  This will be a milestone in the history of 
cryptography --  a system with billions of randomly generated encryption 
algorithms.

This will bring to mind the story that Donald Knuth tells of his mis-guided attempt 
to devise a “Super Random” number generator only to find that the output 
degenerated, sometimes producing a constant series.  Donald Knuth 
emphatically abjures, “random numbers should not be generated with a method 
chosen at random.” 1   It goes without saying that nothing in cryptography can be 
trusted without careful testing.

Enigmatique makes all this possible!

Basic Concept:

Enigmatique is founded on a simple concept as illustrated in this diagram:

 _____________________________________
|                  |                  |
|     c =  ET[p]   | p = DT[c]    |
|__________________|__________________|
|                                     |
|             Shuffle (p)             |
|_____________________________________|

The box on the upper left represents the first step in the encryption process. ET 
1 Knuth, Donald; “The art of Computer Programming vol. 2; Seminumerical Algorithms” p6.
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represents the encryption table. In the general case, the array ET contains a 
permutation of the numbers  0 ...  n-1 (for an n-valued code text character set). 
Array DT contains the inverse permutation.   The encryption routine converts 
each plain text character (p) to an index of this array.  Then it takes the value in 
the indexed position and converts it to the code text character (c).  

Likewise, the upper right box represents the first step in the decryption process. 
The code text character (c) converts to an index of the decryption table (DT). 
Then the value in the that position is converted to the plain text character (p).

The above rather technical discussion applies to the general case where the 
code text character set is a subset of the full character set.  However, very often 
the code text character set is the full 256-character set.  Then the numerical 
value of a character coincides with its value as an index.

It is the Shuffle function that gives Enigmatique its special character. Without the 
Shuffle, the encryption degenerates to a simple substitution cipher, or to a very 
inefficient copy program.  The Shuffle function initiates a pseudo-random 
permutation of ET by means of a series of pair-wise swaps.  At the same time, 
corresponding swaps are performed on DT to keep it synchronized with ET.  At 
all times the two tables must contain inverse permutations of each other. 

Note:  The discussion below assumes that the implementor uses a 32-version of 
the C/C++ language.

The Shuffle function contains several sequences of the form:

i +=  pseudo-random-calculation-1;
j +=  pseudo-random-calculation-2;
Swap(i,j);

Since both i and j may have any 32-bit value, the Swap function must apply a 
modulus to these values in order to reference ET and DT.  The Swap function 
interchanges the selected entries of ET and corresponding entries of DT.

The first swap in Shuffle is slightly different. It reads:

i += p;
j +=  pseudo-random-calculation;
Swap(p,j);
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This code creates a strong avalanche effect. Here p is the plain text character 
which is used as the argument to Shuffle(p).  This ensures that doubled letters, 
as in 'bookkeeper' are encrypted to different code text characters.  This also 
ensures that sequences of a single character (that may occur in office 
documents) are not easily identifiable.

It is recommended that i and j are modified only by addition, subtraction, or by 
XOR.  On byproduct of this feature is that the initial values of I and j become 
special keys.  This also strengthens the avalanche effect.

A wide variety of formulas can be used in the pseudo-random calculations.  For 
example:

i += K(E(i+5))^R(D(j));
j ^=  Z(D(7-j)*397+E(i));
Swap (i,j);
These formulas uses several functions.  The original Enigmatique system uses 
these:

K(m)  -  returns an entry from a table of keys.  Since m may be any 32-bit value, 
the function must apply a modulus to obtain a valid index to the table of keys. 
Any number of keys may be used.

E(m)  -  returns an entry from the encryption table.

D(m)  -  returns an entry from the decryption table.

R(m)  -  returns a value from the pseudo random number generator.  The 
argument is used to apply a rotation and an optional complement to the result.  In 
addition, the implementation may also use m to select a seed from an array of 
seeds.  The PRNG used by the author is a simple congruential generator with a 
32-bit seed, but which returns a 16-bit result.  As a design decision, a future 
implementation may replace this PRNG with a different one.  

Z(m)  -  hashes the argument, using the same congruential formula as the 
PRNG.

RL(m)  -  combines the results of two calls to the PRNG into a 32-bit result.  The 
argument is used to apply independent rotations and complements to each half 
of the result.
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X(m)  -  is an unspecified function to be defined in a future implementation.  The 
employment of such  functions is a design decision.

In addition, these formulas use constants and the  variables i and j.  The 
operators  plus, minus, complement,  and XOR may be used freely. 
Multiplication, division, and other operators may be used provided precautions 
are taken against the loss of randomness.   

The basic requirement is that the shuffle routine produce exactly the same 
results for decryption that it does on encryption.  This requirement is easily met. 
Shuffle functions constructed as described above are guaranteed to work 
properly.  Everything encrypted can be decrypted.  Furthermore, encryption and 
decryption take the same amount of time.

Multi-algorithmic systems

Up to this point we have not discussed the most significant innovation of 
Enigmatique, the method of creating multi-algorithmic systems.  This is done by 
exploiting one of the special features of the C/C++ language, conditional 
expressions. The syntax for a conditional expression is:

( conditional-exp ? expression-t : expression-f )

When a conditional expression is executed, the conditional expression is 
evaluated.  If the result is true, i.e. non-zero, expression-t is evaluated and its 
value is returned  Otherwise, expression-f is evaluated and its value is returned.

Enigmatique uses conditional expressions in the following way:

 Example A:

i += (alg&b1 ? special-formula-t1 : special-formula-f1);
j += (alg&b2 ? special-formula-t2 : special-formula-f2);
Swap (i, j);
Here alg is some portion of the algorithm number.  b1 and b2 are used to test a 
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particular bit in the algorithm number.  They have the values 1, 2, 4, 8, ... . 
Suppose that the result of the first test is true and the second is false.  Then the 
above three statements reduces, in effect, to:

Example B:

i += special-formula-t1;
j += special-formula-f2;
Swap (i, j);
Suppose that the two tests of the algorithm number yielded the opposite results. 
Then the above reduces to:

Example C:

i += special-formula-f1;
j += special-formula-t2;
Swap (i, j);

When  the program sets the algorithm number to a specific value, that selects the 
code for either B or C or two other examples that are not shown here.  The value 
of the algorithm number determine which formulas are executed and which are 
bypassed, thus selecting different encryption algorithms.

A basic Enigmatique system uses two special formulas for each bit of the 
algorithm number.   One formula is executed when the algorithm bit is zero, the 
other when the algorithm bit is one.  A basic system that uses a 32-bit algorithm 
number thus has sixty four special formulas.  When the algorithm number is set 
to a specific value, one half of the formulas are activated, the other half 
bypassed.  Each setting of the algorithm number thus selects one of more than 
four billion encryption algorithms.  Each additional bit in the algorithm number 
doubles the number of encryption  algorithms.  Thus with a 64-bit algorithm 
number, a system can have more than 17 billion billion encryption algorithms, 
and a 96-bit system has 70 billion billion billion algorithms, etc., etc., etc.

As stated above, a basic Enigmatique system uses two special formulas per 
algorithm bit.  However, other alternatives may be employed.  For example, an 
implementation may use four bits to select one of sixteen formulas (as shown in 
an example below.) Then additional formulas are required.
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Coding Example:

Consider this example based on a working program:

#define ALT(a,b,f,g)  (a&b ? f : g)
enum bits {B0=1, B1=2, B2=4, B3=8, B4=16, B5=32, B6=64, B7=128};
static unsigned long SAVED_J_VALUE = 0;
void Shuffle (unsigned long plain)
{

unsigned long i = SAVED_I_VALUE + plain;
unsigned long j = SAVED_J_VALUE ;

j += ALT(A0,B0,ALT(A0, B1, 17*R(i+12)^K(29*j), 
                                 R(DT(i*11))-K(j+5) ),
                     ALT(A0, B1, R(E(i+19)*K(i*77+5)), 
                                 R(i)^K(D(j)) ));

Swap(plain,j);
i += ALT(A0,B2,R(i)^K(1),23*R(i+ 3)^K(71*i)); 
j ^= ALT(A0,B3,Z(E(i+97)),R(D(i*23)))  ;  
Swap(i,j);
i -= ALT(A0,B4,R(i)^K(2),29*R(i+25)^K(34*i)); 
j += ALT(A0,B5,R(D(i+71)),R(E(i*97)))  ; 
Swap(i,j);
i += ALT(A0,B6,R(i)^K(3),47*R(i+31)^K(51*i)); 
j ^= ALT(A0,B7,R(E(i+59)),R(D(i*101)))  ;         
Swap (i, j);
i +=  ALT(A0>>8,B0,41*(j+3),(D(j*19) * K(4)) ^ R(i) );
j -=  ALT(A0>>8,B1,E(j+171)*K(j),D(i+20));
Swap (i, j);
j +=  ALT(A0>>8,B2,(D(i + j)*K(5)) - 77, R(E(E(j-5)))) ;
i ^= ~ALT(A0>>8,B3,D(j),13*E(i+5)) ;
Swap(i,j);
i +=  ALT(A0>>8,B4,K(i+8),R(j)) ;
j +=  ALT(A0>>8,B5,E(j+17)*K(i),D(i+20));
Swap (i, j);
j +=  ALT(A0>>8,B6,E(i-7),D(D(j+99)));
i *=  ALT(A0>>8,B7,K(E(i+29)),R(D(i+j)))  ;
Swap (i,j);
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i +=  ALT(A0>>16,B0,K(i+8),R(j)) ^ 
ALT(A0>>16,B1,E(j+17)*K(i),D(i+20));

j +=  ALT(A0>>16,B2,E(i-7),D(D(j+99))) *
ALT(A0>>16,B3, R(E(i+20)),Z(R(5+i)))  ;

Swap (i,j);
i +=  ALT(A0>>16,B4,K(i+8),R(j));
j ^=  ALT(A0>>16,B5,E(j+17)*K(i),D(i+20));
Swap (i, j);
j +=  ALT(A0>>16,B6,E(i-7),D(D(j+99)));
i ^=  ALT(A0>>16,B7,E(i)*17,R(5))  ;
Swap (i, j);

//  just for fun
#define QUAD(alg,ba,bb,e,f,g,h) \

      ALT(alg, ba, ALT(alg,bb,e,f), ALT(alg,bb,g,h))

 
i +=  QUAD(A0>>24,B0,B1, E(j+17)*K(i),D(i+20),R(E(i

+20)),Z(R(5+i)));
j +=  QUAD(A0>>24,B2,B3, E(i-7),D(D(j+99)),R(E(i+20)),Z(R(5+i)));
Swap (i,j);

i -=  QUAD(A0>>24,B4,B5, K(i+8),R(j),E(j+17)*K(i),D(i+20));
j ^=  QUAD(A0>>24,B6,B7, E(i-7),D(D(j+99)),E(i)*17,R(5));
Swap (i,j);

SAVED_J_VALUE = j;
SAVED_I_VALUE = i;

}

Ladies and gentlemen, you have just seen four billion encryption algorithms.  And 
there are endless variations on this theme.

Single-algorithm encryption programs

The master source code for an Enigmatique system may be used to create a 
series of low level programs, each containing a single, unique encryption 
algorithm.  This exploits the fact that many compilers, for many different 
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languages, can produce optimized code.  Consider the folowing expression:

i += ( alg & 4 ?  f : g);
Suppose that alg is a variable.  Then the compiler generates code for the entire 
expression.  Both formulas f and g will appear in the compiled code.  This 
appears in the master encryption program.

On the other hand suppose that alg is a constant, say 6.   Then the program will 
always execute f, but never g.  The compiler will recognize that formula g is dead 
code  and ignore it.  The compiler will  also recognize that the conditional 
expression is also dead code and ignore it.  The compiler will generate code for 
the following:

i += f;
All trace of the algorithm number and the formula g is eliminated from the 
compiled program.  

To take advantage of this capability, a special header file specifies the algorithm 
for each user of the system.  Let's call this header file UserData.h.  And suppose 
the algorithm number is stored in an array defined by:

      unsigned long AlgorithmNumber [3];
To generate the master program, the header file UserData.h contains:

#define A0  AlgorithmNumber [0]
#define A1  AlgorithmNumber [1]
#define A2  AlgorithmNumber [2]
(Refer to the large example above which uses A0 as the algorithm number.)

Here the algorithm number is completely variable.  That means that the compiler 
will generate the master program with a set of 70 billion billion billion algorithms. 
To generate a program with a single algorithm, the symbols A0, A1, and A2 must 
be defined as constants with specific values. For example:

#define A0   531691946ul
#define A1   740517342ul
#define A2    32759624ul
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Now the compiler will recognize that half of the special formulas are dead code, 
and eliminate them from the compiled program.  The result is a program 
optimized for a single algorithm.  If an attacker steals such a program, he will be 
able to analyze that one algorithm.  But he will not be able to reconstruct any 
other algorithm.

In addition, intermediate level programs can be created.  For example:

#define A0  AlgorithmNumber [0]
#define A1   740517342ul
#define A2   32759624ul

creates a program with four billion algorithms and

#define A0   531691946ul
#define A1  AlgorithmNumber [1]
#define A2  AlgorithmNumber [2]

creates one with 17 billion billion algorithms.  And there are many variations on 
this theme.

Sixteen-fold Swap

This is a example of an initial swap where four bits in the algorithm number are 
used to select one of sixteen special formulas:

#define ALT(alg,Bn,exp1,exp2)  \
     ((alg) & (Bn) ? (exp1) : (exp2))
#define QUAD(alg,b1,b2,f1,f2,f3,f4)\
     ALT(alg,b1,ALT(alg,b2,f1,f2),ALT(alg,b2,f3,f4))

j ^= QUAD(A0,B1,B3, QUAD(A0,B0,B2,FA,FB,FC,FD),
QUAD(A0,B2,B0,FE,FF,FG,FH),
QUAD(A0,B2,B0,FI,FJ,FK,FL),
QUAD(A0,B0,B2,FM,FN,FO,FP));

Swap(plain,j);
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Design Decisions

Enigmatique offers the implementor a vast array of design decisions.  How may 
algorithms are to be implemented?  How many swaps will be used. How many 
special formulas are needed?  What will they look like?  Which pseudo random 
number generator should be used?  Should multiple PRNG's be used?  Or a 
single PRNG with multiple seeds?

How many numeric key words should be used?  In the general method there is 
no limit on the number of key words that can be used.  It is up to each 
implementation to impose a limit, say 100 words (3200 bits). The key space can 
be made so large that brute force attacks are impossible.  Also the number of 
keys can be made variable.  One encryption run may use, say, five 32-bit key 
words, and another thirty.  It is up to the implementor to write a k(m) function that 
can handle the alternatives.  

It was stated above that the k(m) functional must apply a modulus to its argument 
in order to index an array of keys.  If, say, four keys are used, then

KeyTable [m%4]
uses only two bits of m.  To bring more bits into play the program may use a 
double modulus, for example:

KeyTable [ (m%(4*KeysInUse-1)) % KeysInUse ]
Enigmatique allows the implementor to adjust the trade off between speed and 
strength.  Any Enigmatique system can be strengthened by making the formulas 
more complex, or by adding swaps to the system.  Conversely, a system can be 
made faster by simplifying the formulas or reducing the number of swaps.

Many simple tweaks to a system will create a new encryption system which is not 
compatible with the original.  
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Applications

There are several ways to utilize an Enigmatique system.  If Alice and Bob have 
identical encryption programs with, say, four billion algorithms, they could utilize, 
not one time pads, but one time algorithms.

Enigmatique lends itself to hierarchical systems.  For example, Alice and Bob 
may have programs where the two programs implement different algorithms. In 
this case, Alice and Bob can not send encrypted messages back and forth 
directly.  They will send their messages to an email server which decrypts each 
message and re-encrypts it for the other person.  Suppose the master program 
implements four billion algorithms.  This system an theoretically support four 
billion users, each having a single, unique algorithm.  Alternatively, it could 
support, say, four million users, each using a different set of 1024 algorithms, or 
four thousand users, each having one million algorithms. 

Furthermore this system can be organized into a hierarchy tree. Each bottom 
user assigned one thousand algorithms, a department server with one million 
algorithms, and a corporate server with the full set.  

There are endless variations on this theme. If additional levels are needed, then 
another word can be added to the algorithm number, providing up to 17 billion, 
billion algorithms.

Security is enhanced when users have different (non-overlapping) algorithm sets. 
Alice can not decrypt Bob's messages and vice versa.  This is useful, even in a 
business environment, when Alice and Bob may be both coworkers and bitter 
rivals.  

This system raises the bar for attackers.  If Trudy should steal Bob's laptop, she 
can read Bob's messages.  That will do damage to the company.  But the 
damage will be limited.  Even if she decodes Bob's encryption algorithm, she 
cannot read the messages for Alice or Dave or Edward or any other user.  The 
reason is that Bob's encryption lacks code that is essential for the other 
algorithms.  If Trudy cannot guess or determine the formulas required by other 
users, she cannot read their messages.  
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Hierarchical Systems

There are many ways to set up a hierarchical Enigamtique system.  Imagine an 
inverted tree network.  The root (top) of the tree containss the entire set of 
encryption algorithms.  Nodes on the branches, twigs, and leaves contain smaller 
and smaller subsets.   There are two basic rules in this scheme.  First, if one 
node is under another, then it contains a subset of the algorithms of the higher 
node. Second, any other pair of nodes have no algorithms in common.

It is useful to assign multiple algorithms to every leaf (low-level user) in this tree. 
Then algorithm switching can occur within a message.  (See below).  It is 
convenient to assign the bits of the algorithm number in ten bit groups.  Then 
each level hierarchy can be assigned a number between 0 and 1024.  A 32 
algorithm number can be written, for example, as 0.999.414.503.  This number 
may stand for:

Group number:   999
User number: 414
User's algorithm: 503

The remaining two bits may used for a super-group, or may be reserved for 
special purposes, for example:

0 Normal traffic, e.g. email
1 Archive of ordinary company documents
2 Archive of company trade secret documents
3 Archive of military classified documents.

This so far, will not be adequate for many organizations.  Additional levels of 
hierarchy can be easily provided for by adding one or two 32-words to the 
algorithm number.  Each 32-bit word of the algorithm number multiplies the 
number of algorithms by 4.29 billion.  Thus two words can provide 17 billion 
billion algorithms, and three words 70 billion billion billion algorithms.

A basic scheme may allocate two formulas for each bit of the algorithm number. 
An alternative, is to allocate the bits by twos and threes.  This uses a new macro 
called OCTET.
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i += QUAD(alg, bits,  Four formulas);
j += OCTET(alg, bits, Eight formulas);
Swap (i,j);

Each swap uses five bits of the algorithm number.   Under this scheme, each 
word of the algorithm number generates seven swaps.  (As opposed to sixteen 
swaps in the basic scheme.)  A critical factor is the number of swaps being 
performed.  This method encrypts twice as fast, but with a possible loss of 
strength.

Special Features

A number of special features can be incorporated in an Enigmatique system.  For 
example:

1. Text keys.  A text key is used by both the encryptor and the decryptor. 
Both ends encrypt the text key at the beginning of the message, then 
throws the code-text away.

2. Algorithm switching by users that have multiple algorithms.  A small 
number is chosen, say n=35.  After each character is encrypted or 
decrypted, the value  i mod n is calculated.  If zero the algorithm number is 
changed using the quantity j.  Thus after each character is processed 
there is one chance in n that the algorithm is changed.

3. Some of the formulas use a quantity k (small k).  This quantity is set 
originally to a small odd number.  After each character is processed, k is 
incremented by two.  When it reaches a certain limit, it is set back to its 
original value.  This produces a sawtooth effect.

These techniques provide a 'toolkit' for those who implement Enigmatique 
systems.
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Advances in the Art

Enigmatique advances the art and craft of cryptography in five important areas:

1. This is the first method that allow the creation of systems with vast 
numbers of encryption algorithms.  The number of algorithms that can be used is 
unlimited.  

2. Enigmatique exploits the n factorial permutations of an n-valued character 
set.  This is more than 8.578 times 10 to the 506th power. An Enigmatique 
system can utilize only a tiny fraction of this number  --  because the universe will 
not last long enough.

3. The difference between encryption and decryption is trivial.  Decryption 
can be guaranteed to work properly and operate is the same time as encrption.

4. Enigmatique is based on simple principles that can be easily taught.  A 
competent programmer can create a powerful system in a few days.

5. The strength of  Enigmatique systems is not fixed.  Any Enigmatique 
system can be strengthened with small changes to the program.  I am confident 
that if my encryption programs prove to be weak, that someone, using this 
method, will create much stronger versions of Enigmatique.

The Challenge

The ultimate question for any system of cryptography is how strong is it?  I am 
not willing to make claims that I cannot prove.  Some of the claims I have made 
above may appear to be snake oil.  Such a notion should be dispelled by a 
careful examination of this document.  And I can prove everything with working 
code.  The ultimate answer to any question is: Read my code!   

Please note that the author has made not any claims about the strength of this 
encryption, other than the mild statement (5) above.  Basically, definitive 
statements about it strength are premature.  The history of cryptography is 
littered with the wreckage of many broken systems, including some of the best 
efforts of outstanding cryptographers.  It is hoped that Enigmatique will not share 
that fate.

Therefore Enigmatique is not offered as a secure system.  Instead, it is ofered as 
a challenge.
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Please note that Enigmatique is not a specific algorithm, but a general method. 
There will be many different implementations of this type of system, some strong 
some weak.  The strength of an Enigmatique system will vary with the skill and 
care exercised by the cryptographer.  

The challenge for cryptographers is  to identify features that contribute to the 
strength of the system.  How many swaps are needed for a strong system?  what 
types of special formulas strengthen or weaken the system?  Are there weak 
keys or problematic plain texts?

The challenge for cryptanalysts is to find ways of breaking these systems. 
Exhaustive key search will not work since the keyspace can be made very large. 
It is unlikely that any form of linear or differential cryptanalysis will work.  The 
arithmetic operations and permutations used in Enigmatique should disrupt any 
linear or differential relationships.  

A successful cryptanalysis of a good Enigmatique system may require a new 
type of cryptanalysis, and that it will be a general type of attack that works 
against any Enigmatique algorithm.  It seems unbelievable that a trillion algorithm 
system can be broken one algorithm at a time.

Perhaps the most interesting feature of Enigmatique is its conceptual simplicity. 
To truly understand a block cipher takes a strong mathematical background and 
a lot of perseverance.  Enigmatique, on the other hand, can be used by ordinary 
programmers to create 'difficult' ciphers.

Conclusion

The ability to create efficient systems with billions or trillions of encryption 
algorithms is a new development in cryptography.  Such systems present special 
obstacles to those attempting to break cryptographic systems -- whether for good 
or for evil.   The simplicity of the Method Enigmatique means that ordinary 
computer programmers can create powerful systems in a short amount of time. 
Around the world there are thousands of people who have the background, the 
skills, and the talent necessary to invent a system like Enigmatique without any 
knowledge of the work that is described in this paper. All that is missing is a flash 
of inspiration.  

The Enigmatique Toolkit provides a set of techniques that can be used 
selectively to build a special type of cryptographic systems.   Source code is 
available at www.enigmatiquecryptographia.com
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