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Abstract. Let A be an abelian variety defined over a non-prime finite
field F, that has embedding degree k with respect to a subgroup of prime
order r. In this paper we give explicit conditions on ¢, k, and r that imply
that the minimal embedding field of A with respect to r is Fx. When
these conditions hold, the embedding degree k is a good measure of the
security level of a pairing-based cryptosystem that uses A.

We apply our theorem to supersingular elliptic curves and to supersin-
gular genus 2 curves, in each case computing a maximum p-value for
which the minimal embedding field must be FF . Our results are in most
cases stronger (i.e., give larger allowable p-values) than previously known
results for supersingular varieties, and our theorem holds for general
abelian varieties, not only supersingular ones.

1 Introduction

Suppose we wish to implement a pairing-based cryptosystem using the Weil or
Tate pairing on an abelian variety A defined over a finite field F, of ¢ elements.
For our implementation to be both efficient and secure, we need (1) the group
A(F,) to contain a subgroup of large prime order r, and (2) the group of rth
roots of unity u,. C F, to be contained in an extension field F,x that is both
large enough for the discrete logarithm problem in F*, to be computationally
infeasible and small enough for the pairing to be computed efficiently. The degree
k of this extension is known as the embedding degree of A (with respect to r).
The embedding degree of A is commonly used as a measure of the security
level of our pairing-based cryptosystem. However, Hitt [7] observed that when
the field size ¢ is not prime, the rth roots of unity may be contained in a proper
subfield F' C Fgx. It follows that the security level is determined not by k but
rather by the rational number k' < k for which the smallest such field F' has
cardinality qk/. Thus when given an abelian variety A/F, with embedding degree
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k and ¢ not prime, to determine the security level of cryptosystems using A one
must check whether the smallest I’ C F» containing p,, — known as the minimal
embedding field of A (with respect to ) — is in fact Fg.

The purpose of this paper is to answer the following question: given an abelian
variety A/F, that has embedding degree k with respect to r, how can we guar-
antee that the minimal embedding field of A with respect to r is Fgx?

Rubin and Silverberg [13, 14] have given an answer to this question in the case
where A is supersingular by demonstrating a lower bound on r that guarantees
that the minimal embedding field is Fgx. Their bound depends on ¢q and on the
dimension g of the supersingular abelian variety, but does not depend on k.

The main result of this paper is to give explicit conditions on ¢, r, and k
that guarantee that the minimal embedding field of an abelian variety A/F, —
supersingular or not — that has embedding degree k with respect to r is in
fact Fx. The conditions lead to a lower bound on r that depends on ¢ and &,
but not on the dimension g. When A is a supersingular elliptic curve or abelian
surface, our bound improves on the result of Rubin and Silverberg in most of the
cases relevant to cryptography. Our result thus guarantees more abelian varieties
are suitable for use in pairing-based cryptography than any previous result had
done.

Our main theorem appears in Section 2. In Section 3 we apply our main
theorem to the case of supersingular elliptic curves, which are known to have
embedding degree k € {1,2,3,4,6}. We conclude that when k is even and either
the group order r is sufficiently large or the extension degree m is prime, then
the minimal embedding field is F . In particular, we deduce that Hitt’s obser-
vation has no effect in cryptographic contexts for supersingular elliptic curves in
characteristic 2 or 3. When k is odd and r is sufficiently large then the minimal
embedding field is either Fgr or F r/2, depending on the sign of the trace of
Frobenius.

Section 4 gives analogous results for some supersingular abelian varieties of
dimension g > 2. Finally, in Section 5 we present some open problems related
to this work.

2 A framework for analyzing the minimal embedding
field

In this section we set up the framework for our analysis of the minimal embedding
field of abelian varieties. After giving formal definitions, we discuss the results
of Hitt [7] and Rubin and Silverberg [13], and then state our main theorem.
We first recall some standard terminology and notation. If K is a field then K
denotes an algebraic closure of K. If g is a prime power then IF; denotes a field of ¢
elements. An abelian variety is a smooth, projective, geometrically integral group
variety. If A is an abelian variety defined over a field K, we denote by A(K) the
group of K-rational points of A. An elliptic curve is a one-dimensional abelian
variety. An elliptic curve E over a field K of characteristic p is supersingular

if E(K) has no p-torsion points. A general abelian variety is supersingular if it



is isogenous (over K) to a product of supersingular elliptic curves. An abelian
variety A defined over K is simple if it is not isogenous over K to a product of
lower-dimensional abelian varieties.

Definition 2.1. Let A be an abelian variety defined over F,, where ¢ = p™
for some prime p and integer m. Let r # p be a prime dividing #A(F,). The
embedding degree of A with respect to r is the smallest integer k such that r
divides ¢* — 1.

Definition 2.2. Let A, g, and r be as above. The minimal embedding field of A
with respect to 1 is the smallest extension of I, containing the rth roots of unity
pr C IFp.

If A/F, has embedding degree k with respect to r, then F x is the smallest
extension of Iy, containing the rth roots of unity. In particular, the r-Weil pairing
([15, SIIL.8] and [11, §16]) and the r-Tate pairing [2] take values in a subgroup
and a quotient group of IFZ,“ respectively. The key observation made by Hitt [7]
is that these pairings actually take values in the minimal embedding field and
that this field may be a proper subfield of IF .. Specifically, her main lemma is
as follows:

Lemma 2.3 ([7, Lemma 1]). Let ¢ = p™ for some prime p and positive integer
m, let v # p be a prime, and let k be the smallest integer such that r divides
q* — 1. Then

B ord,(p)

~ ged(ord,(p),m)’

where ord,(p) is the order of p in (Z/rZ)*.

A result of this lemma is that the minimal embedding field of an abelian
variety A/F, is F ./, where k' = ord,(p)/m € Q, and not F«. Since the security
of a pairing-based cryptosystem using A is determined by k’, Hitt’s result im-
plies that such a cryptosystem could be significantly less secure than previously
believed. Indeed, Hitt gives examples of abelian varieties where k/k" = m, which
is the largest possible ratio for these parameters [7, §4]. It is important to note
that when the abelian variety is defined over a prime field (i.e., when m = 1)
Hitt’s lemma has no effect, as the minimal embedding field is always IFgx.

A natural question following from Hitt’s observation is in what cases the
embedding degree k is an accurate indicator of security. More precisely, we have:

Question 2.4. Let A be an abelian variety over F, that has embedding degree
k with respect to r. Is the minimal embedding field of A with respect to r equal
to Fx?

q

Our goal is to give explicit conditions on ¢, r, and k such that the answer to
Question 2.4 is yes.

In the case where A/F, is supersingular and elementary (i.e., isogenous over
F, to a power of a simple abelian variety), Rubin and Silverberg have given
conditions on ¢, r, and k that imply an affirmative answer to Question 2.4.



Their theorem is phrased in terms of the “cryptographic exponent” c4, which is
defined only for supersingular varieties. When A has embedding degree k with
respect to a prime r and r t 2k, the cryptographic exponent is the smallest half-
integer ¢4 such that r divides ¢4 — 1. Thus c4 is equal to either k or k/2; the
latter can only occur when ¢ is a square and k is odd [14, Definition 4.1 and
Theorem 6.1].

Theorem 2.5 ([13, Theorem 7] and [14, Theorem 6.3]). Suppose A is an
elementary supersingular abelian variety of dimension g over Fy, ¢ =p™, r#p
is a prime diwisor of #A(F,), and s is the multiplicative order of p mod r. Let
F4(z) € Z[x] be the characteristic polynomial of Frobenius for A, and let f be the
unique integer such that Fa(x)'/7 is irreducible in Z[z]. If q is a square, assume
r > (14 p)™9/2F | If q is not a square, assume r > (1 + \/ﬁ)zmg/gf and r > T.
Then p* = 44, so Fyeaq is the smallest extension of F,, whose multiplicative
group has a subgroup of order r.

We now turn our attention to proving our own bounds, which will apply to
all abelian varieties, not just supersingular ones, and will improve on the bounds
in Theorem 2.5 in many cases.

Our theorem depends crucially on some results about cyclotomic polynomi-
als. For k € N, the kth cyclotomic polynomial @y, € Z[x] is the minimal polyno-
mial of a primitive kth root of unity in Q. The following lemma demonstrates
the relevance of these polynomials to our problem.

Lemma 2.6. Let ¢ = p™ be a prime power, and A/F, be an abelian variety.
Let r # p be a prime dividing #A(Fy), and let k, s be integers not divisible by r.
Then

1. A has embedding degree k with respect to r if and only if v | Px(q).
2. The minimal embedding field of A with respect to r is Fps if and only if
7| @s5(p).

Proof. The first statement appears as [3, Proposition 2.4]; we observe that the
same proof applies to the second statement. a

Lemma 2.6 allows us to rephrase Question 2.4 as follows: given that r divides
@i (p™), does r divide Py, (p)? To answer the question in this form we will use
the following properties of cyclotomic polynomials, which appear in or can be
easily derived from the discussion of [9, §VI.3].

Fact 2.7. Let ¢, (x) denote the kth cyclotomic polynomial. Then

1.2k —1= [Tyk Pal).

2. The degree of &y (x) is p(k) :=#{e€Z:1<e <k and ged(e, k) =1}.
3. If £ is a prime not dividing k, then @y (z%) = @pp(x) Py ().

4. Tf ¢ is a prime dividing k, then @y (z%) = ®p(x).

We will also use the following lemma, an alternative proof of which can be
found in [14, Lemma 5.2].



Lemma 2.8. If k and m are coprime, then

By (™) = [ | Pralx). (2.1)
d

Proof. We first compare the degrees of the polynomials on each side of (2.1).
Clearly the left hand side has degree my(k). Now for any coprime numbers x
and y we have p(zy) = ¢(z)p(y). Since (k, m) = 1 by assumption it is also true
that (k,d) = 1 for all d | m. It follows that the degree of the right hand side of
(2.1) is (k) 3 gy, (d), which by Fact 2.7 (1) and (2) is equal to mep (k).

We next compare the roots of the two polynomials. Suppose ( is a root of
&.q(x) for some d | m. Since ¢ is a primitive kdth root of unity, (¢ is a primitive
kth root of unity. Write m = de. Since ged(k,e) = 1, it follows that ((4)¢ = (™
is also a primitive kth root of unity, so ¢ is also a root of @y (x™).

Since the two polynomials in (2.1) are both monic and have the same degree,
and furthermore all roots of the right hand side are also roots of the left hand
side, we conclude that the two polynomials are equal. a

We are now prepared to give our main theorem, which we state as a fact
about cyclotomic polynomials only, without reference to abelian varieties.

Theorem 2.9. Let k be a positive integer, p™ a prime power, and r a prime.
Write m = «f, where every prime dividing « also divides k and ged(k, 5) =
1. (This factorization is unique.) Denote by e the smallest prime factor of 3.
Suppose r | Pr(p™) and that one of the following holds:

1. m=c«a (and 8 =1);

2. 3 is prime and r > Ppo(p);

3. r>pkm/e;: or

4. 4| m or2|k andr > prm/2e +1.

Then r | Pm(p).

Proof. We first note that Fact 2.7 (4) implies
By (p™) = Pra(p”). (2.2)

Since ka and (3 are coprime, Lemma 2.8 implies that @ (p™) has @, (p) as a
factor. Our strategy in each case is to show that the remaining factors of @5 (p™)
are all smaller than r. Since r is prime, it then follows that if r divides @4 (p™)
then r divides @, (p).

We now consider each case separately:

1. Since m = « it follows immediately that @ (p™) = Prm (p)-
2. Since (8 is a prime not dividing k«, equation (2.2) and Fact 2.7 (3) imply
that
D(p™) = Phap(P)Pra(P) = Phm(P)Pra(p)-

Since 1 > Ppq(p), it follows that 7 | Ppy, (p).



3. By equation (2.2) and Lemma 2.8 we have

B.(p") = [ [ Praa®) = [ Prmsa®)- (2.3)

d|g dig

By assumption we have r > p*/¢ for all d | # except for d = 1, and by Fact
2.7 (1) we have p*™/ > Dimya(p)- It follows that r | @ (p).

4. Given the factorization of @, (p™) as in (2.3), the same analysis as in Case
3 shows that r > @y, q(p) for all d |  with d > 2e. Since e is the smallest
prime dividing 3, if d | 8 and 1 < d < 2e then d is prime, so it suffices to
show that r > @y, q(p) for all primes d dividing 8. Let d be such a prime.
The assumption 4 | m or 2 | k then implies that km/d is even. In this case
we have zFm/d —1 = (ghm/2d 4 1) (z#™/24 — 1), and by Fact 2.7 (1) $p,p, a(2)
must divide the first factor. Since d > e, if r > p*™/2¢ +1 then r > Prmya(p)-

O

Using Lemma 2.6 to interpret Theorem 2.9 in the context of abelian varieties,
we obtain the following corollary:

Corollary 2.10. Let A be an abelian variety over Fq, where ¢ = p™ with p
prime. Let v # p be a prime dividing #A(F,), and suppose A has embedding
degree k with respect to r. Assume that r{km. If q, k, and r satisfy any of the
conditions (1)—(4) of Theorem 2.9, then the minimal embedding field of A with
respect to T 18 Fprm.

We note that the case where m is prime, which is usually recommended for
cryptographic applications in order to prevent Weil descent attacks (e.g., [6, 5]),
falls into case (2) of Theorem 2.9. If p is small (p = 2 and p = 3 are common
choices) and k < m with m prime, then the bound on r given by the theorem is
very weak; i.e., A will have minimal embedding field [F,xm with respect to any r
that is even remotely close to cryptographic size.

Remark 2.11. If k is odd and m is even then @y (2™) = &y, (x™/2)Pop (/?).
Since ¢(k) = (2k) for odd k, these two factors have the same degree and
we cannot use the above techniques to show that r divides @, (p) and does
not divide @y, /2(p). Applying Theorem 2.9 recursively to each factor allows us
to determine conditions on ¢, k, and r guaranteeing that r divides one of the
two expressions @, (p) and Py, /2(p), but additional information is needed to
determine which one. In the context of pairing-friendly curves, this situation
rarely occurs as even embedding degrees are preferred as are prime values for
m. However, see Propositions 3.6 and 3.8 below for some specific cases where it
does occur.

3 Supersingular elliptic curves over non-prime fields

In this section we focus on supersingular elliptic curves, which are the most well
known pairing-friendly abelian varieties defined over non-prime fields. If E is



an elliptic curve defined over the finite field F,, then the number of F,-rational
points is given by #E(F,) = ¢+ 1 — ¢, where ¢ is the trace of the g-power
Frobenius endomorphism. A theorem of Hasse (the “Hasse-Weil bound”) says
that [t| < 2,/g [15, Theorem V.1.1]. An elliptic curve E is supersingular if and
only if ged(¢,¢) > 1 [15, Ex. 5.10].

Menezes, Okamoto and Vanstone [10] gave a complete classification of super-
singular elliptic curves over finite fields F,, with ¢ = p™. They showed that five
possible embedding degrees k can occur, corresponding to five possible absolute
values of the trace of Frobenius t¢:

(Bl t [ #BF) | p,m |
1] +2/q|qF2/q+1 any p, m even
2 0 q+1 any p, any m
3| £/9 | ¢Fqa+1 | p=2mod 3, m even
41 +2¢ | gFV2q+1 p=2,m odd
6| +v/3q¢ | gFV3q+1 p =3, m odd

When comparing the sizes of r and ¢ as in Theorem 2.5, it is useful to
introduce a parameter p, which roughly approximates the ratio of the bit size of
the entire group A(F,) to the bit size of .

Definition 3.1. Let A be a g-dimensional abelian variety over Fy, and suppose

r divides #A(F,). The p-value of A (with respect to r), denoted p(A), is gl(ljoggrq.

Since the speed of computations on A(F,) is determined by #A(F,) =~ ¢
but security is determined by the size of r, for fast implementations one usually
wishes to choose an A with r as close to #A(FF,) as possible; that is, with p-value
as close to 1 as possible.

We first consider the families of supersingular elliptic curves with embedding
degrees 4 and 6, in characteristic 2 and 3 respectively. These families are often
proposed for use in pairing-based cryptography as their embedding degrees are
the maximum possible for supersingular elliptic curves, it is easy to generate
curves of near-prime order, and there has been some research into optimizing
curve arithmetic in small characteristic (e.g., [12]). We conclude in both cases
that if either m is prime or r is sufficiently large (though not necessarily close
to ¢), then the minimal embedding field is Fyx. In cryptographic contexts at
least one of these conditions always holds, so we deduce that Hitt’s observation
(Lemma 2.3) has no effect in practice.

Proposition 3.2 (k =4). Let ¢ = 2™ with m odd, and let E be a supersingular
elliptic curve over Fy that has embedding degree 4 with respect to a prime r { 2m.
If either

—p<dfi- 2
P=3 logzr’or

— m is prime and r > 5,

then E has minimal embedding field F 4.



Proof. If we write m = a0 as in Theorem 2.9, then the smallest prime dividing
8 must be at least 3. Thus if 7 > ¢*/3 + 1 then condition (4) of Theorem 2.9 is
satisfied. If m is prime and r > 5 then condition (2) of Theorem 2.9 is satisfied.
In both cases, by Corollary 2.10 E has minimal embedding field Fg4. An easy
calculation shows that if p < 2(1 — =) then r > ¢*/® + 1. O

log, 7

Proposition 3.3 (k =6). Let ¢ = 3™ with m odd, and let E be a supersingular
elliptic curve over Fy that has embedding degree 6 with respect to a prime r { 6m.
If either

P=3 log, 7 o

— m is prime and r > 7,

then E has minimal embedding field F .
Proof. The proof is entirely analogous to that of Proposition 3.2. O

Remark 3.4. In both of the above cases the cryptographic exponent cy4 , de-
fined by Rubin and Silverberg is equal to k. Rubin and Silverberg’s result (The-
orem 2.5) thus implies that when k = 4, the conclusion of Proposition 3.2 holds

3log2 ~ _ i —

whenever p < Tor(11v3) 1.18, arlld that when k = 6, the conclusion of Propo
.- 3log 3 - .

sition 3.3 holds whenever p < Toa(11v3) 1.64. Thus in both cases our result

is stronger (i.e., requires a weaker upper bound on p) for sufficiently large r. In
particular, since p &~ 3/2 is recommended for k = 4 curves to achieve a secu-
rity level equivalent to an 80-bit symmetric-key system [3, Table 1.1], our result
shows that supersingular £ = 4 curves are appropriate for this security level for
any extension degree m.

For some implementations one may wish to use supersingular elliptic curves
with very small embedding degrees. We thus continue our analysis by investi-
gating the cases 1 < k < 3. The case k = 2 is the most straightforward.

Proposition 3.5 (k = 2). Let ¢ = p™, and let E be a supersingular elliptic
curve over F, that has embedding degree 2 with respect to a prime r { 2m. If
either

1
p<3<1 ),or
logy

— m is prime and r > p+ 1,

then E has minimal embedding field F .
Proof. The proof is entirely analogous to that of Proposition 3.2. a

Rubin and Silverberg’s result (Theorem 2.5) says that the conclusion of
Proposition 3.5 holds whenever p < 2 —¢€ when m is even and whenever p < 3—¢
when m is odd, with ¢ — 0 as p — oco. Thus our result is stronger when m is
even.



The cases k = 1 and k = 3 are more subtle, as it is impossible to avoid the
possibility that the minimal embedding field is F, /2 even when r is very large.
However, if we know the sign of the trace we can apply Theorem 2.9 to determine
when the minimal embedding field is Fpx or F /2.

Proposition 3.6 (k =1). Let ¢ = p™ with m even, and let E be a supersingular
elliptic curve over F, that has embedding degree 1 with respect to a prime r { m.
If E has trace —2p™/? and p < 6(1— @), then E has minimal embedding field

Fy. If E has trace 2p™/2 and p < 4, then E has minimal embedding field Foi/z.

Proof. Let m’ = m/2. Suppose E has trace —2p™ . Then #E(F,) = (p™ + 1),
so r divides Qg(pm,). We now apply Theorem 2.9 with k = 2 and m = m/.
If we write m’ = af as in the theorem, then the smallest prime dividing the
B of Theorem 2.9 must be at least 3. Thus if r > p™/3 +1 = ¢*/6 + 1 then
condition (4) of the theorem is satisfied, so by Corollary 2.10 E has minimal

embedding field szmf = F,. An easy calculation shows that if p < 6(1 — 10g12 T)
then r > ¢'/¢ 4 1.

Now suppose E has trace 2p™ . Then #E([F,) = (pm, —1)%, so r divides
@1 (p™"). We now apply Theorem 2.9 with k = 1 and m = m/. If r > p™'/2 = ¢1/4
(or equivalently, if p < 4) then condition (3) of the theorem is satisfied, so by
Corollary 2.10 E has minimal embedding field ../ = F1/-. a

When k = 1, Rubin and Silverberg’s cryptographic exponent c4 is equal to
1 when E has negative trace and 1/2 when E has positive trace; in both cases
the integer f of Theorem 2.5 is equal to 2. Thus Theorem 2.5 says that the
conclusion of Proposition 3.6 holds whenever p < 4 — €, with ¢ — 0 as p — oo.
Our result is stronger for the first case as well as for small p.

Remark 3.7. Proposition 3.6 demonstrates the somewhat surprising fact that
the minimal embedding field of an elliptic curve E can be smaller than the field
of definition of F. In fact such a curve is easy to construct. Let p > 3 be prime,
and let E/F), be a supersingular elliptic curve over F,. Let E’/F 2 be a quadratic
twist of E over F,2; that is, a curve equipped with an isomorphism E’ — E given
by (x,y) — (uz,u?/?y) for some non-square® u € F7,. Then #E' (Fp2) = (p—1)2,
and the minimal embedding field of E’ with respect to any r | p — 1 is F,,.

Finally, we consider the case of embedding degree k = 3. As with k = 1, the
minimal embedding field can be determined from the sign of the trace.

Proposition 3.8 (k= 3). Let ¢ = p™ with m even, and let E be a supersingular
elliptic curve over Fy that has embedding degree 3 with respect to a prime r { 3m.
If E has trace p™/? and p < %(1 — =), then E has minimal embedding field

logy 7
Fys. If E has trace —p™/? and p < 4/3, then E has minimal embedding field
Fos/2.
q

3 If §(E) = 0 then « must also be a cube; if j(F) = 1728 then v must be a square but
not a fourth power.



Proof. The proof is entirely analogous to that of Proposition 3.6. O

When k = 3, Rubin and Silverberg’s cryptographic exponent c4 is equal to
3 when F has positive trace and 3/2 when E has negative trace. Thus Theorem
2.5 says that the conclusion of Proposition 3.8 holds whenever p < 2 — €, with
€ — 0 as p — 0o. Our result is stronger for the first case.

4 Higher-dimensional supersingular abelian varieties

In this section we briefly sketch the application of our main result to supersin-
gular abelian varieties of dimension g > 2 defined over non-prime fields. Such
varieties have been proposed for use in pairing-based cryptography as they have
the potential to be more efficient than supersingular elliptic curves.

We first consider simple supersingular abelian varieties of dimension g =
2. Such varieties, known as abelian surfaces, can be described as Jacobians of
genus 2 curves. Cardona and Nart [1] give a detailed description of the possible
group orders and embedding degrees for simple supersingular abelian surfaces,
analogous to the Menezes-Okamoto-Vanstone classification for elliptic curves.

Table 1 lists each isogeny class of simple supersingular abelian surfaces over
F, (with ¢ = p™) and its embedding degree k, as calculated by Cardona and
Nart. The isogeny classes are described by a pair of integers (s,t), which cor-
respond to the coefficients of the characteristic polynomial of Frobenius z* +
sz3 + ta? + sqx + ¢%. An asterisk next to the embedding degree indicates that
the minimal embedding field is F /2, not F.

When the extension degree m is prime, as is most often the case in cryptog-
raphy, Corollary 2.10 tells us that if r > @, (p) then the minimal embedding field
of a supersingular abelian surface with respect to 7 is IF,x. For the cases of small
characteristic most often proposed for cryptography, we have the following:

Proposition 4.1. Let A be a simple supersingular abelian surface over Fg,
where ¢ = p™, p € {2,3,5}, and m is prime. Suppose A has embedding de-
gree k with respect to a prime r > m. If r > 781 then the minimal embedding
field of A with respect to 1 is Fyx.

For more general situations, Table 1 gives two parameters for each isogeny
class that are related to the minimal embedding field. A value of « in the column
“Cor. 2.10 max p” indicates that whenever r t km is prime and p < «, Corollary
2.10 implies that an abelian variety in the isogeny class has minimal embedding
field F,x with respect to r (or F «/2 in the asterisked cases). When the value is
a — € one can take e = o/ log, r.

A value of 3 in the column “RS max p” indicates that whenever r is prime
and p < 3, Rubin and Silverberg’s result (Theorem 2.5) implies that an abelian
variety in the isogeny class has minimal embedding field F,+ with respect to r
(or Fe/2 in the asterisked cases). When p is not fixed, the values 3 are limits as
p — o0.
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Table 1. Maximal p-values guaranteeing a simple supersingular abelian surface over
Fyq (¢ = p™) with embedding degree & has minimal embedding field Fyx (F /2 in the
cases marked with a *).

(s,t) |conditions on p and m | k | Cor. 2.10 max p | RS max p
(0,—2q) |m odd 1 6 6
(0,2q) |meven,p=1 (mod4) | 2 6—¢ 4
(24/4,3q) |m even, p=1 (mod 3) | 3* 8/3 4
(—24/9,3q)|m even, p=1 (mod 3) | 3 20/3 —¢ 4
(0,0) |modd, p#2 4 3—c¢ 3
(0,0) |meven, p#1 (mod 8) | 4 3—¢ 2
(0,q) |m odd 3 10/3 3
(0,—¢q) |modd,p#3 6 10/3 — € 3
(0,—q) |meven, p#1 (mod 12)| 6 10/3 — ¢ 2
(va,q9) |meven, p# 1 (mod 5) | 5* 8/5 2
(—v/4,q) |meven, p#1 (mod 5) | 5 12/5 —¢€ 2
(+£+/54,3q)|m odd, p =5 5 6/5 2.06
(£v2¢,q) |m odd, p = 2 12 5/3—¢ 1.18

We conclude our analysis by applying our main result to a particularly in-
teresting case of a supersingular abelian variety in dimension g = 4. Rubin and
Silverberg [13, §5.1] show that if ¢ = 3™ and E is a supersingular elliptic curve
over [F, with embedding degree 6, then there is a simple 4-dimensional abelian
variety A/F, with embedding degree k = 30. This A can be constructed as a
subvariety of the restriction of scalars Resﬂpq5 sr, E. The ratio k/g = 7.5 is the
largest known for a supersingular abelian variety, which makes the variety ap-
pealing for practical use as it allows for higher security levels using fewer bits
than a k£ = 6 elliptic curve or a k = 12 abelian surface.

Proposition 4.2. Let ¢ = 3™ with m odd, and let A be a simple supersingular
4-dimensional abelian variety over F, that has embedding degree 30 with respect
to a prime r130m. If either

_ <28 1 1
P=15 log, T

— m is prime and r > 8400,
then A has minimal embedding field F gzo.
Proof. The proof is entirely analogous to that of Proposition 3.2. a

We note that if A is an abelian variety as in Proposition 4.2, Rubin and
Silverberg’s result (Theorem 2.5) shows that the result holds whenever r >
(1+v/3)8/3 or p < 1.64. Thus our result (p S 1.87) is stronger.

5 Conclusion

Given an abelian variety A defined over a finite field F, such that A has em-
bedding degree k with respect to a subgroup of prime order r, we consider the

11



question of whether the minimal embedding field of A with respect to 7 is F .
A positive answer to this question implies that the embedding degree k is a good
measure of the security level of a pairing-based cryptosystem that uses A.

Our main results, Theorem 2.9 and Corollary 2.10, give explicit conditions
on the field size ¢, the embedding degree k, and the subgroup order r that
imply an affirmative answer to our question. We have applied our theorem to
supersingular elliptic curves (Section 3) and to supersingular genus 2 curves
(Section 4), in each case computing a maximum p-value for which the minimal
embedding field must be F x. Our results are in most cases stronger (i.e., give
larger allowable p-values) than the corresponding result of Rubin and Silverberg
(Theorem 2.5). Our result thus guarantees more abelian varieties are suitable
for use in pairing-based cryptography than any previous result had done.

Our theorem holds for general abelian varieties, not only supersingular ones.
However, at present there exists only a single explicit construction of non-
supersingular abelian varieties over non-prime fields with small embedding de-
gree. This construction, due to Hitt O’Connor et al. [8, Algorithm 3], produces
abelian surfaces over F,> with p-rank 1 (i.e., neither ordinary nor supersingu-
lar) and p ~ 16. These p-values are far too large both for practical use and for
Corollary 2.10 to provide a useful result.

It is thus an open problem to construct non-supersingular abelian varieties
— including elliptic curves — over non-prime fields with small embedding de-
gree and p < 16. Such a construction would not only expand our library of
pairing-friendly abelian varieties but could potentially lead to improvement in
the performance of pairing-based protocols, in the same way that elliptic curves
over non-prime fields can lead to performance improvements for standard ellip-
tic curve cryptography [4]. Once such varieties are constructed, our results can
be used to determine whether the embedding degree also describes the minimal
embedding field of these varieties.
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