
Privacy-Enhancing First-Price Auctions Using
Rational Cryptography

Peter Bro Miltersen Jesper Buus Nielsen Nikos Triandopoulos

Department of Computer Science
University of Aarhus, Denmark

{bromille, buus, nikos} (at) cs . au . dk

Abstract

We consider enhancing a sealed-bid single-item auction with privacy concerns, our assump-
tion being that bidders primarily care about monetary payoff and secondarily worry about expos-
ing information about their type to other players and learning information about other players’
types. To treat privacy explicitly within the game theoretic context, we put forward a novel
hybrid utility model that considers both fiscal and privacy components in the players’ payoffs.

We show how to use rational cryptography to approximately implement a given ex interim
individually strictly rational equilibrium of such an auction (or any game with a winner) without
a trusted mediator through a cryptographic protocol that uses only point-to-point authenticated
channels between the players. By “ex interim individually strictly rational” we mean that, given
its type and before making its move, each player has a strictly positive expected utility, i.e., it
becomes the winner of the auction with positive probability. By “approximately implement”
we mean that, under cryptographic assumptions, running the protocol is a computational Nash
equilibrium with a payoff profile negligibly close to the original equilibrium.

In addition the protocol has the stronger property that no collusion, of any size, can obtain
more by deviating in the implementation than by deviating in the ideal mediated setting which
the mechanism was designed in. Also, despite the non-symmetric payoffs profile, the protocol
always correctly terminates.

1

Contents

1 Introduction 1
1.1 The problem: realizing privacy-enhanced auctions 1
1.2 Outline of our contribution . 2

2 Classical Auctions 4

3 Protocol Games 4
3.1 Communication and protocol execution . 5
3.2 The mediator and the Internet as communication devices 6
3.3 Information and monetary utilities . 7
3.4 Privacy-enhanced Nash equilibrium . 8

4 Mediation with Reject 9

5 Nash Implementation and Hybrid Proofs 10

6 Rational Auctions for Internet-Like Networks 11
6.1 Mediation with Unfair Abort . 12
6.2 Assigning value to signed contracts . 12
6.3 Mediation via a secure protocol . 13

A The mediator as communication device 17

B Proof of Lemma 1 17

C Proof of Theorem 1 18

D Proof of Theorem 2 19

E Proof of Theorem 3 21
E.1 Fleshing out . 21
E.2 Hybrid 0 . 22
E.3 Hybrid 1 . 23
E.4 Hybrid 2 . 25
E.5 Hybrid 3 . 26
E.6 Hybrid 4 . 27
E.7 Hybrid 5 . 28
E.8 Hybrid 6 . 30
E.9 Hybrid 7 . 31
E.10 Hybrid 8 . 32
E.11 Concluding . 35

2

1 Introduction

1.1 The problem: realizing privacy-enhanced auctions

Consider the following scenario: A seller S wants to sell an item to one of n bidders P1, P2, . . . , Pn
using a sealed bid auction, e.g., a first-price or a second-price (Vickrey) auction. To optimize their
expected payoff in these settings, the bidders Pi are to submit their true valuation of the item (e.g.,
in a Vickrey auction) or more generally a function of their true valuation (e.g., the Bayesian equilib-
rium strategy in a first-price auction) as their bid. However, in the scenario we suggest, matters are
complicated by the following issues: First, bidders are not happy revealing any information related
to their true valuation to the seller. Second, bidders would also be unhappy if other buyers gain in-
formation about their valuation. On the other hand, they would appreciate learning something about
the valuations of the other players if they get the chance.

Of course, such concerns can be handled by assuming the availability of a trusted mediator M
to whom bidders do not mind revealing their valuations. Such a trusted party can collect the bids,
determine the winner, and ensure that the seller and the winning bidder get in touch with one another.

The problem we address in this paper is what to do when a trusted mediator is not available. A
well known fact is that cryptography and in particular secure multiparty computation can sometimes
be used to replace a trusted mediator. In particular, we may consider the following scheme for
replacing M :

1. The seller commits by contract in advance to sell the item to the first bidder Pi that can present
a document digitally signed by all other buyers, stating that Pi is the buyer who should get the
item. The document should also specify at which price Pi is to get the item (in case S has a
reservation price, the contract can state that the document is only valid if this reservation price
is met).

2. The bidders perform a secure multiparty computation that simulates the mediator of the medi-
ated auction and produces such a signed document containing the correct winner-price pair.

Indeed, previous papers concerned with secure cryptographic implementations of auctions have
suggested schemes along these lines, e.g., [16, 18]. Also, at least in one instance such a scheme (for
a double auction, not a first-price or Vickrey auction) has been implemented in practice [2].

However, there are issues that make this not quite solve our problem. The introduced privacy
concerns of the bidders dictate the use of joint computations that eventually produce non-symmetric
outputs for the bidders, where specifically only the winner gets the winning contract while other
bidders learn nothing. In this setting, nothing enforces the winner to carry out the transaction with
S. This destroys the standard equilibrium analysis of a Vickrey auction which crucially depends on
the winner being forced to buy, to make it costly to bid higher than ones valuation. This suggests
using a first-price auction instead, but even then it is not obvious that rational parties will carry out
the protocol outlined above when they have privacy concerns. In general, we wish to extend classical
equilibrium analysis of auctions of game theory to cryptographic auction protocols and make an
argument that a rational party has no incentive to deviate from following the protocol as specified. A
concrete problem is protocol participation. In realizations of games with non-symmetric final payoffs
(like auctions), an agent has no incentive to continue and complete the protocol as soon as he realizes
that he cannot be the winner. In contrast, the traditional analysis of multiparty computation assumes
that at least some parties are “honest” and will carry out all steps of the protocol, no matter what
(Bradford et al. [3] study the problem of protocol-completion incentives that exist in an auction when
participants realize that they cannot win the auction, but in a model where privacy is not captured in

1

players’ rationality). Recent papers on rational cryptography have analyzed multiparty computation
as a game [1, 6, 8, 10, 11, 15, 17, 19] but, aiming at simultaneous information exchange and modeling
rationality through pure information loss/gain, these works cannot precisely model auctions with non-
symmetric outcomes/payoffs and a setting where utilites are a mix of monetary utilities and privacy
concerns.

Matters are complicated by the fact that even the mediated auction does leak some information
(e.g, the mere fact that a bidder did not win gives him information about the winning bid). Hence,
it is intuitively clear that if the privacy has high weight, existing equilibria in the classical case are
disturbed (e.g., truth telling is no longer even a Nash equilibrium for Vickrey auctions), and for a high
enough emphasis on privacy, not taking part in the auction (say, by submitting the bid 0, independent
of the valuation) becomes a strictly dominant strategy. Whatever analysis one obtains will have to be
consistent with this fact.

Perhaps the biggest challenge, finally, is to design a protocol as the above in a way that can be
realized using today’s Internet computing and communication machinery. While there are recent
results that allow removing mediators in very general classes of games [9, 12, 13], these works use
communication channels such as simultaneous broadcast (like most of existing works on rational
cryptography) or physical envelopes that are quite restrictive or even unobtainable when considering
a practical implementation over the Internet.

1.2 Outline of our contribution

In this paper, we suggest a rational cryptographic protocol for replacing a trusted mediator in a sealed-
bid single-item auction. The protocol uses only point-to-point authenticated channels between the
buyers and can therefore be implemented on the Internet. As described above, the assumption is
that the seller, in advance commits to selling the item to the bidder who presents a certain document
digitally signed by other bidders. That is, we assume that such a bit string has monetary value for
exactly one of the bidders. Furthermore, all bidders in advance commit to buying the item if the seller
presents a signed contract with the bidders name on it. Besides such monetary concerns, we have to
assign utilities to players so that the privacy concerns outlined in the previous section are adequately
modeled. But because of the monetary value of the signed document, we deviate from previous works
on secure auction implementation where privacy was treated at a second-phase technical level outside
of the scope of game and parties’ strategies, but also from previous works in rational cryptography
where utilities were solely concerned with gain or exposure of information. Instead, we propose
a hybrid utility model where agents are interested in both monetary gain from participating in the
auction as well as in maintaining the privacy of their type (e.g., valuation). Their actual utility is a
linear combination of a monetary utility and an information utility. For the information utility, rather
than postulating one particular utility measure, we set up axioms which encompass a wide variety of
privacy concerns. We note that a different hybrid utility model is studied by Halpern and Pass [7].

We consider a general class of single-item sealed-bid auctions in the standard Bayesian setup
of auction theory (see next section for formal definition) and without privacy concerns. We formally
define the corresponding mediated game with privacy concerns, as modeled using our hybrid utilities.
In general, as we indicated in an intuitive way in the previous subsection, if high weight is put on the
information part of the hybrid utilities, then the equilibria of the privacy-aware game may be very
different from the equilibria of the original game. However, in a variant of the first-price auction
with discrete valuations and bids, we observe that when the weight put on the information concern
is “much smaller” than the weight on the monetary concern (i.e., when agents are assumed to be
greedy then paranoid), then the original auction mechanism (with a small twist) is an equilibrium of
the mediated game.

2

To accurately model auctions with privacy concerns but without the participation of the seller
(or generally any privacy-enhanced mechanism with one winner and non-symmetric outcomes), we
introduce mediation with reject, a slightly relaxed idealized setting where the winner is merely given
the choice to reject the winning contract. This explicitly captures a crucial characteristic of any
Internet-based implementation of the auction mechanisms we study: at some specific point in the
computation, the winner (and only himself) will locally compute the winning contract (similar to
the revelation point of [10, 11]); nobody prevents him from turning off his machine. Therefore,
mediation with reject offers the proper abstraction for studying auction mechanisms. As we will see,
this reject option can drastically affect the existence of equilibria.

Our main result is the following. We can, under a mild assumption stated below, relate a given
equilibrium (suggested behavior) π of the mediated game (in the setting of mediation with reject) to
a corresponding suggested behavior π′ of our unmediated cryptographic protocol so that π′ has the
same payoff profile as π, up to a negligible amount, and for computationally bounded agents that
care “much less” about privacy than about money, following π′ is an ε-Nash equilibrium where ε is
negligible. Here, “negligible” is defined relative to the strength of the cryptography used.

The assumption we need is the following: The equilibrium π should have ex interim strictly pos-
itive expected utility for all players. That is, after a player learns his type but before he makes his
move, his expected conditional utility is strictly positive. As an example, our protocol enables a vari-
ant of the first-price auction and the corresponding Bayesian bidding equilibrium to be conducted by
computationally bounded, rational but not necessarily honest buyers over the Internet in a realistic
way, along the lines suggested in the previous section, without a trusted mediator and without partic-
ipation of the seller. Also, despite the non-symmetric payoffs profile, our protocol always correctly
terminates, under the assumption above.

We remark that while Kol and Naor [10] identify ε-Nash equilibrium as a minimum rationality
requirement for rational cryptography, a body of work [1, 6, 8, 15], and in particular Kol and Naor
[10, 11], suggests using stronger notions of solution concepts and equilibria that are not susceptible to
backwards inductions. While these stronger notions are indeed desirable, our protocol as stated does
not satisfy them. We take the standpoint that even ε-Nash is a meaningful property. Stronger notions
are appropriate when we think of the recommended (equilibrium) strategy as something an agent is
to consciously follow. On the other hand, if we think of the recommended strategy as software that
we as protocol designers recommend agents to use, establishing that using this software is ε-Nash is
evidence that agents will not bother hacking or replacing it.

Sketch of the protocol. The idea behind our protocol is intuitive and quite simple. Given individual
signing keys and corresponding (publicly known) verification keys for some signature scheme, and
also their private bids, the agents engage a randomized joint computation during which the winner
(highest bidder) obtains a digital contract that contains the winner-price pair (j, p), signed by all
agents. Conceptually, the protocol is divided in a fixed (and large) numberE of stages, called epochs.
Sequentially during each epoch e, each agent i receives a value Ve,i and thus has the opportunity to
obtain the winning contract, if he is the winner: the contract is released to the winner during one,
randomly chosen epoch e0 ∈ [E] (with probability 2−e in epoch e = 1, . . . , E − 1), whereas all
other received values (by party i 6= j at epoch e0 or by any party at all other epochs) are set to a
special nil value. That is, Ve,i is nil, except Ve0,j = sign(j, p). This exact randomized functionality is
implemented by first using secure multiparty computation, at the end of which each party k obtains
an additive share of each value Ve,i (or ⊥ if agents provide invalid inputs). From this point on, the
E epochs of the protocol are realized sequentially, by simply asking in a round-robin fashion each
agent to send its share of Ve,i to agent i, and repeat for all i = 1, . . . , n.

Crucially for the protocol’s stability, agent i is asked to refuse to send his shares in subsequent

3

value-reconstruction transmissions, as soon as he experiences denial to reconstruct his own value
Ve,i. This implies that with positive probability any agent deviating at epoch e < E destroys his
winning possibility in a later epoch, given that the winning-reconstruction epoch e0 is hidden in the
computation; this does not hold in epoch E, but e0 = E occurs only with negligible probability, so
the protocol is an ε-Nash for a negligible ε.

Organization of the paper. In Section 2 we provide a brief description of the classical auctions
model in the (pure) mediated setting. In Section 3 we introduce a definitional framework for proto-
col games implementing privacy-enhanced auctions, where we describe in details our circuit-based
communication and computational model, our hybrid utility model and our rationality model. In
Section 4 we present the mediated setting with reject and show the existence of privacy-enhanced
Nash equilibria for first-price auctions and their preservation in the mediated with reject setting. In
Section 5 we introduce privacy-enhanced Nash implementation, our core proof technique for design-
ing and showing privacy-enhanced Nash equilibria in a modular manner. Finally, in Section 6 we
present our concrete protocol for realizing auctions over the Internet. Complete technical proofs are
presented in the Appendix.

2 Classical Auctions

First, we recap the classical (i.e., privacy-oblivious) model of a sealed-bid single-item auctions as an
incomplete information, Bayesian, game. Such a game is played by parties (bidders) P1, P2, . . . , Pn
competing for an item to be sold. The game starts with each bidder Pi receiving a private type ti ∈ Ti
where Ti is the type space of the bidder. The Bayesian setup indicates that the vector (t1, t2, . . . , tn)
is drawn at random from a commonly known distribution on T = T1×T2 . . .×Tn. This distribution
is known as the common prior and will also be denoted by T . The valuation of bidder i for the item
to be sold is given by vi = vi(t1, t2, . . . , tn). In the simplest and most common case (the case of
private values), vi(t1, t2, . . . , tn) = ti. Based on his type, Bidder i strategically chooses and submits
a bid bi. That is, a strategy of party i is given by a map Bi mapping types to bids. Based on the
bids b = (b1, b2, . . . , bn) and possibly a random source, an allocation mechanism Mec now allocates
the item to a single bidder j (the winner) and computes a price p. We write (j, p) ← Mec(b). The
monetary utility of bidder j is rj = g(vj , p) for some function g, most commonly rj = vj − p (this
is the case for a risk neutral agent Pj as he gets the item at price p and values it vj), while the payoff
of other bidders are ri = 0 (as they do not get the item and do not have to pay anything). For a
first-price auction, j is the bidder with the highest bid (with ties broken at random), and p is the bid
of the winner. For the case of the Vickrey auction, j is the bidder with the highest bid, while p is
the highest bid if the bid of the winner is removed. A Bayes-Nash (for brevity, from now on just
Nash) equilibrium for the auction is a (possibly randomized) bidding strategy for each bidder that
maximizes his expected payoff, assuming other bidders follow their prescribed strategy.

3 Protocol Games

To enhance the classical auction with privacy concerns, we have to explicitly model privacy as part
of the utility function and consider appropriate notions of equilibria. For this we in turn have to
explicitly model the communication of the protocol, and the information collected by a party during
the protocol execution.

4

3.1 Communication and protocol execution

We start with a formal communication and protocol execution model. It is convenient to use a unified
model, which allows to capture both the mediated setting and the Internet-like setting using the same
formalism, which we will call a communication device. To be able to use cryptography, we also want
to model the fact that parties are computationally bounded to get the desired definitions; this we do
by simply restricting the strategy space to poly-time strategies. The model we present in this section
is not specific for auctions.

Communication devices. A protocol is of the form π = (π1, . . . , πn), where πi is a program
describing the strategy of party Pi. These programs communicate in rounds using a communication
device C. In each round, C takes an input mi ∈ {0, 1}d from each πi and outputs a value oi ∈
{0, 1}d to each πi. I.e., in each round, C is a function ({0, 1}d)n → ({0, 1}d)n, (m1, . . . ,mn) 7→
(o1, . . . , on). Which function is computed might depend on the inputs and outputs of previous rounds
and the randomness of C.

Parties and strategies. We let the strategy πi for each party Pi be an interactive circuit forR rounds.
The circuit consists of 1+R circuits π(0)

i , π
(1)
i , . . . , π

(R)
i . The circuit π(0)

i takes a+b bits as input and
outputs a + b bits, where a, b are integers specified by the circuit. In each round πi takes as input a
state s ∈ {0, 1}a, and a message m ∈ {0, 1}b (from the communication device C). The output of the
circuit is parsed as an updated state s′ ∈ {0, 1}a and a message m′ ∈ {0, 1}b (for the communication
device). In the first round, the state consists of a uniformly random bits and the message is the type
of Pi. In subsequent rounds, s is the updated state s′ from the previous round and m is the value sent
by C for that round.

Because we consider in subsequent settings protocols using cryptography, we actually do not
consider a single fixed circuit πi. Rather πi specifies a circuit πi(κ) for each value κ of the security
parameter.1 Each πi(κ) is allowed to have different state and message lengths a(κ), b(κ). Similarly
we let C specify a communication device C(κ) for each κ ∈ N. Also, for technical reasons we
adopt a non-uniform model, where the sequence of strategies πi(1), πi(2), . . . need not have a finite
description using e.g. a Turing machine.2 For a function τ : N→ N we use Πτ to denote the circuit
families πi where for all κ the size of πi(κ) is at most τ(κ). A strategy space Πτ is always defined in
context of some communication device C which for each κ expects (and produces) messages of some
fixed size d(κ) ∈ N. We require that Πτ only contains circuit families where b(κ) = d(κ) for all κ.

Executions. Let C be some communication device, let π = (π1, . . . , πn) be a protocol, where
πi ∈ Πτ , and let T be a distribution on types. An execution proceeds as in Fig. 1. We call o =
(o1, . . . , on) = (o(R)

1 , . . . , o
(R)
n) the outcome of the protocol. I.e., the outcome is the last round of

outputs from C. We call the output of the last circuit wi = (s(R+1)
i ,m

(R+1)
i) the local output of

party Pi, and call w = (w1, . . . , wn) the local outputs. We use (t, o, w) ← (π, C)(T) to denote the
distribution of (t, o, w) on a random execution, i.e., for uniformly random ρ, random t ← T and
uniform randomness of C.

1The value of κ determines the key lengths of the underlying cryptographic primitives, e.g., cryptosystems, signature
schemes.

2Insisting on πi having a uniform description might make it impossible to analyze the games for different values of κ
independently, or would at least require an explicit argument that this can be done: Changing the strategies πi(κ) for some
values of the security parameter κmight necessitate a change for other values to ensure that the sequence π1(1), π1(2), . . .
still has a uniform description. The utility of changing strategy for one specific game (i.e., for a fixed value of κ) might
therefore not be possible without considering the utility of changing strategy at other security levels, which seems un-
intuitive and might unnecessarily complicate analysis. Adopting a non-uniform model deals with such concerns in a
straight-forward manner.

5

1. Sample (t1, . . . , tn)← T , and sample uniformly random ρi ∈ {0, 1}a for i = 1, . . . , n.

2. For i = 1, . . . , n, run π(0)
i on (ρi, ti) to produce (s(1)i ,m

(1)
i). Then for r = 1, 2, . . . , R, do the

following: First run C on (m(r)
1 , . . . ,m

(r)
n) to produce (o(r)1 , . . . , o

(r)
n), and then, for i = 1, . . . , n,

run π(r)
i on (s(r)i , o

(r)
i) to produce (s(r+1)

i ,m
(r+1)
i).

Figure 1: An execution

Utilities. The utility of Pi is a real valued function ui. We assume that ui is a function of the
types, the outcomes and the local outputs. We use u to denote (u1, . . . , un). We sometimes use
ui(T, C, π) to denote the expected utility of Pi, i.e., ui(T, C, π) is the expected value of ui(t, o, w)
for (t, o, w)← (π, C)(T).

3.2 The mediator and the Internet as communication devices

It is easy to see that the mediator can be expressed as a communication device (see also Ap-
pendix A).

Internet-like communication. For analyzing protocols for Internet-like networks we need an ex-
plicit communication device Cint modeling communication on the Internet. Ideally we want Cint to
closely reflect how messages are delivered on the Internet and similar networks. Since our results are
very robust with respect to the exact specification of Cint we will, however, use a rather idealized
device.

We assume that the device can deliver secure messages directly between each pair of parties. This
can be achieved using standard Internet technology by e.g. establishing SSL connections between
each pair of parties. Using such a model we avoid the introduction of unnecessary complications,
like the exact structure of the network used to carry the messages. On the other hand, we do not
want the simplification of Cint to make the model unrealistic. One issue which we explicitly want to
avoid is using a communication device Cint which allows simultaneous message exchange. Hence
we adopt a minimally complicated Cint by simply assuming that in each round, one predefined party
receives messages from all other parties.

A communication device Cgen,Out
int works as follows:

1. In round 1, sample a key pair (pki, ski)← gen(1κ) for each Pi and output ((pk1, . . . , pkn), skj)
to Pj .

2. In rounds r = 2, . . . , R − 1 the input from each party Pi is parsed as a message mi ∈ {0, 1}k
for some fixed k. The output to Pr mod n is (m1, . . . ,mn). The output to all other parties is
silence.

3. In round r = R, compute (o1, . . . , on) = Out(msg), where msg are all messages sent in the
previous rounds, and output the outcome oi to Pi.

Figure 2: An Internet-Like Device Cgen,Out
int

Finally we assume the existence of a PKI. We model this in a simplistic manner by letting the
device distribute the keys. In the last round the device will define an output by the last round of
messages output to the parties. We assume that this is a function Out of the messages sent. The
details are given in Fig. 2.

6

3.3 Information and monetary utilities

Information utilities. We now turn our attention to the valuation of the information collected and
leaked during the execution of the protocol. For this we use the local outputs.

We let the local output wi capture the type information collected by Pi. I.e., if Pi wants to
take some type information with it from the execution, it outputs it as part of wi. We assume that
Pi valuates the type information collected using an information utility qi(t, w). Note that qi can
measure information collected by Pi as well as by other parties: maybe qi(t, w) = 1 if wi = t1 but
qi(t, w) = −1 if w1 = ti.

We allow qi to express arbitrary privacy concerns, except for two restrictions, described now.
To ensure that qi is consistent with the view of knowledge from cryptography, that knowledge is
the information which can be computed in poly-time, we require that qi is poly-time computable.
We also need that qi valuates the collection of knowledge non-negatively. Let (w1, . . . , wn) be any
distribution and let (w′1, . . . , w

′
n) be the distribution where w′i = ⊥ and w′−i = w−i. Then we require

that qi(t, (w′1, . . . , w
′
n)) ≤ qi(t, (w1, . . . , wn)) + ε, where ε is negligible. Here ⊥ is some fixed

symbol, playing the role of no information. In words: loosing the output wi, and all other things
being equal, cannot be valuated as significantly positive by Pi. We say that qi prefers collection of
knowledge.

Definition 1 We call qi an admissible privacy measure if it is poly-time and prefers collection of
knowledge.

Our protocols will work only for privacy measures which are sufficiently small compared to the
expected utility of playing the game. So it is convenient to have the following measure of the privacy
concerns’ size.

Definition 2 For an information utility qi(t, w) we call ‖qi‖ = (maxt,w qi(t, w))−(mint,w qi(t, w))
both the weight of the information utility and the weight of the privacy concern.

We will not be concerned about exactly how the qi measures privacy concerns, as we are going
to develop protocols that are ε-Nash for all admissible measures q = (q1, . . . , qn) with sufficiently
small weight compared to the expected monetary utility.

Monetary utilities. Complementing the information utility we have the notion of a monetary utility,
which is just a utility function ri(t, o) which depends only on the types and the outcomes. For
generality we allow ri to change with κ. We do, however, assume that the absolute value of ri
is bounded by a polynomial in κ. The intuitive reason for this assumption is that we need to use
cryptography, which withstands only poly-time attacks. In concrete terms, if you use a protocol
where it would cost $10000000 to buy enough computing power to break the cryptography, do not
use it to play a game where anyone can win $10000001. In this light, bounding the monetary utility
by a polynomial can be seen as a extremely crude way to deal with the price of computation in the
utility function.

We design mechanisms which work only if the expected monetary utility of the parties is large
compared to how they valuate information. We define a measure of this. For any ti occurring with
non-negligible probability as component i in (t1, . . . , tn) ← T , let (t, o, w) ← (π, C)(T)ti denote
the conditional distribution of (t, o, w) ← (π, C)(T) given that the i’th component of t is ti, and
let Ii denote the expected value of ui(t, o, w) for (t, o, w) ← (π, C)(T)ti . We call Ii the ex interim
expected utility of Pi for ti, which is just its expected utility after seeing type ti. For a given security
level κ we let γ(κ) be the minimum over all parties Pi and all ti (occurring with non-negligible
probability) of the ex interim expected utility of Pi given ti.

7

Definition 3 We call γ : N→ R, as defined above, the ex interim rationality of (π, C, T).

3.4 Privacy-enhanced Nash equilibrium

When we design a mechanism, we can control the monetary utility ri(t, o, w) = ri(t, o). For in-
stance, we simply enforce ri(t, o, w) = ti−p for the winner of a Vickrey auction. In principle parties
can have arbitrary utilities ui(t, o, w), even if running a protocol with the purpose of implementing
some mechanism. We will, however, only consider settings where the part of the utility which cannot
be explained as monetary utility from the designed mechanisms can be explained by an admissible
measure of privacy. I.e., we assume that qi(t, o, w) = ui(t, o, w)− ri(r, o) is an admissible measure
of privacy. In particular, qi(t, o, w) = qi(t, w) and

ui(t, o, w) = ri(t, o) + qi(t, w) .

For the later schemes involving cryptography, we follow Kol and Naor [10] who argued that
ε-Nash equilibrium for negligible ε is the appropriate minimum rationality requirement for “informa-
tion games”.

Definition 4 For a single protocol π (i.e., for a fixed κ), a strategy space Πτ , a distribution T on
types, and ε ∈ R, ε > 0, we call π an ε-Nash equilibrium (for C, T,Πτ) if it holds for all parties
Pi and all π∗i ∈ Πτ that ui((π∗i , π−i), C, T) − ui(π, C, T) ≤ ε. For a protocol π (specified for
all κ), strategy space Πτ , a distribution T on types, we call π a computational Nash equilibrium
(for C, T,Πτ) if for all polynomials τ there exists a negligible ε such that π(κ) is an ε(κ)-Nash
equilibrium (for C, T,Πτ(κ)) for all κ.

Our notion of computational Nash is technically slightly different from the original notion intro-
duced by Dodis et al. [4]. The notion is, however, similar enough that we fell that we can soundly
reuse the terminology of a computational Nash equilibrium. As already mentioned, implementa-
tions of monetary mechanisms can only be expected to work if the weight of the privacy concerns
is relatively small. We thus capture the size of the information utility as part of the definition of a
privacy-enhanced Nash equilibrium.

Definition 5 Fix a monetary utility r and a privacy weight α. We call a protocol a privacy-enhanced
Nash equilibrium (for r and α) if it is a computational Nash equilibrium for u = r + q for all
admissible privacy measures q with ‖q‖ ≤ α.

In words, a privacy-enhanced Nash equilibrium has the property that no matter how the parties
valuate information (as long as it has weight at most α), there is no deviation which will allow any
party to learn more valuable information, unless such a deviation would have it lose an equivalent
amount of monetary utility. This implies that there is no way a party Pj can efficiently extract knowl-
edge from its view of the protocol extra to that of its local output wj . If there was, it could do so and
output this extra knowledge, which would make some qi prefer this. Therefore the recommended
local outputs of a privacy-enhanced mechanism precisely specify what information each party can
collect; not as an explicit requirement, but because we use computational Nash equilibrium as solu-
tion concept.

We extend the above notion to cover also collusions of size t. In Definition 4 we consider C ⊂
{1, . . . , n} with |C| ≤ t and we consider deviations π∗C consisting of π∗i for i ∈ C. We call π
t-resilient if ui((π∗C , π−C), C, T) − ui(π, C, T) ≤ ε for all i ∈ C. I.e., for all collusion of size t
and all possible deviations, not even a single party in the collusion gets extra utility. This directly

8

defines notions of t-resilient computational Nash equilibrium and t-resilient privacy-enhanced Nash
equilibrium.

As a concrete example of a privacy-enhanced Nash equilibrium for an auction mechanism with
standard mediation, we consider a single-item, sealed-bid, first-price auction with three bidders and
independent private valuations, each distributed uniformly in {1, 3}. The bidding space is the natural
numbers, including 0. A general theory of equilibria of first-price auctions with integral valuations
and bids is the topic of a recent paper by Escamocher et al. [5]. For the special case at hand, it is
straightforward to check that the symmetric profile π = (B1, B2, B3), with B1 = B2 = B3 = B,
where B(1) = 0 and B(3) = 1, is a Nash equilibrium of the classical (privacy oblivious) auction.
The ex interim expected payoff for a bidder with valuation 1 is 1/12. The ex interim expected payoff
for a bidder with valuation 3 is 7/6. Since these numbers are strictly bigger than 0, it is easy to check
that for any privacy measure with sufficiently small weight, the equilibrium persists.

4 Mediation with Reject

Towards designing a protocol that implements an auction on an Internet-like network without the
participation of the seller and that is a privacy-enhanced Nash equilibrium, we first study reasonable,
privacy-enhanced Nash equilibria for a highly idealized setting that better fits the real-world setting.
The idealized setting that we consider is called mediation with reject, a slightly weakening of the
normal mediated setting.

The communication device CMec
REJ is parameterized by a number of rounds R and works as follows:

compute result: In round 1, take the input bi from each Pi, let b = (b1, . . . , bn), sample (j, p) ←
Mec(b), and let oj = (j, p) and oi = sorry for i 6= j.

offer contract: The contract is offered as follows:

1. Output oi to each Pi.

2. For each Pi with oi 6= sorry, if Pi does not input accept before round R, then set
oi ← sorry.

define outcome: In the last round, R, output oi to each Pi.

side-channel: In rounds r = 2, . . . , R− 1 the device, in addition, allows point-to-point communication
as in Cint.a

The recommend strategy πrejj for each Pj is to input bj ← Bj(tj), to input accept in round 2, and to
give the local output wj = (tj , oj).

aNot used by the mechanism, this point-to-point communication allows collusions to have side communication.

Figure 3: The Mediated Setting with Reject (CMec
REJ , π

rej
B) for mechanism Mec =

(B1, . . . , Bn,Mec, r)

Mediation with reject is defined only for mechanisms with one winner. A mechanism (B,Mec, r)
is said to have one winner if it holds for all possible outputs (o1, . . . , on) = Mec(b) that there exists
Pi such that oi 6= sorry and oj = sorry for Pj 6= Pi and that tj(t, o, w) = 0 when oj = sorry.
So, only one party has monetary utility from the mechanism. In the mediated setting with reject the
parties are first given the outcome of the mechanism as an offered outcome of the game. The winner
(the Pi with oi 6= sorry) then has the offer to change its outcome of the game to oi = sorry, in

9

which case it will receive monetary utility ri(t, o, w) = 0, consistent with the rule that rj(t, o, w) = 0
when oj = sorry. For such a mechanism we can assume that Mec simply outputs the index j of
the winner and some extra value p which we call the price. Details are given in Fig. 3.

Privacy-enhanced Nash equilibria for first-price auctions with standard mediation exist for certain
settings of the parameters, as exemplified above. By the next lemma (proof in Appendix B), they are
preserved in the setting with mediation with reject.

Lemma 1 If πmed is a (ε-)Nash equilibrium for (CmedMec, u, T), and α ≤ γ, then πrej is a (ε-)Nash
equilibrium for (CMec

REJ , u, T).

On the other hand, it is easy to check that the standard truth telling equilibrium of a second-price
(Vickrey) auction is in general not a privacy-enhanced Nash equilibrium in the setting of mediation
with reject. The fact that the winner is not forced to make the transaction makes bidding infinity
(or the highest possible bid) a dominant strategy. For non-trivial privacy concerns, this dominant
strategy is also a strictly better reply than truth telling to a strategy profile where the other bidders
bid truthfully. Thus, mediation with reject is a setting where we observe a separation between first-
price and second-price auctions with respect to the existence of reasonable privacy-enhanced Nash
equilibria, fully justifying the importance of this abstraction.

5 Nash Implementation and Hybrid Proofs

When working with protocol games using cryptography it is convenient to have a framework which
allows for modular proofs, where e.g. cryptographic primitives are introduced one by one. This is
testified by the widespread use of hybrid proofs in the cryptographic literature. We suggest a notion
of Nash-preserving implementation which gives exactly such a framework.

Consider an idealized communication device Cide, as e.g. CMec
REJ and a recommended protocol

πide for Cide. Consider then a more real-life communication device Cimp, like a communication
device modeling an Internet-like network, and consider a protocol πimp for that communication
device. We will consider (Cimp, πimp) an implementation of (Cmed, πmed) in the spirit of Nash if
the parties do not get more incentives to deviate when they interact in (Cimp, πimp) than when they
interact in (Cmed, πmed). Again, since we want to allow the use of cryptography, we allow for a
negligible small slack.

Definition 6 (privacy-enhanced Nash implementation) Fix a distribution T on types and a mon-
etary utility r = (r1, . . . , rn). Let (Cimp, πimp) and (Cide, πide) be two settings. We say
that (Cimp, πimp) is a t-resilient privacy-enhanced Nash implementation of (Cide, πide) if for all
u = r + q, where q = (q1, . . . , qn) are admissible measures of privacy with weight at most α, there
exists a negligible ε such that:

No less utility: For all Pl, ul(T, Cimp, πimp) ≥ ul(T, Cide, πide)− ε.

No more incentive to deviate: For all C ⊂ {1, . . . , n}, |C| ≤ t and all strategies πimpC

∗

for Cimp, there exists a strategy πideC
∗ for Cide such that ul(T, Cide, (πideC

∗
, πide−C)) ≥

ul(T, Cimp, (πimpC

∗
, πimp−C))− ε for all Pl ∈ C.

It is straightforward to verify the following theorem. For completeness the proof appears in
Appendix C.

Theorem 1 For fixed T and r, it holds for all settings (C, π), (D, γ) and (E , δ) that:

10

Privacy-enhanced Nash preservation: If (C, π) is a t-resilient privacy-enhanced Nash implemen-
tation of (D, γ) and γ is a t-resilient privacy-enhanced Nash equilibrium for D, then π is a
t-resilient privacy-enhanced Nash equilibrium for C with a utility profile negligibly close to
that of (C, γ), i.e., |ul(T, C, π) − ul(T,D, γ)| is negligible for all Pl and for all considered
u = r + q.

Transitivity: If (C, π) is a t-resilient privacy-enhanced Nash implementation of (D, γ) and (D, γ)
is a t-resilient privacy-enhanced Nash implementation of (E , δ), then (C, π) is a t-resilient
privacy-enhanced Nash implementation of (E , δ).

The above theorem suggests a design principle for designing privacy-enhanced mechanisms for
complicated setting, like Internet-like networks: First design a desirable privacy-enhanced Nash equi-
librium for a highly idealized setting, like the mediated setting. This bares relatively little weight
extra to that of traditional mechanism design. Then do a privacy-enhanced Nash implementation of
the designed mechanism for the complicated setting, and appeal to privacy-enhanced Nash preserva-
tion. In proving that the implementation is a privacy-enhanced Nash implementation, transitivity can
allow for modular proofs.

6 Rational Auctions for Internet-Like Networks

In this section we present a protocol for running an auction on an Internet-like network. The overall
goal is get a protocol which is a privacy-enhanced Nash and which implements a reasonable utility
profile. The design methodology will be to consider any privacy-enhanced Nash equilibrium in the
mediated setting with reject and then provide a privacy-enhanced Nash preserving implementation of
this equilibrium in the Internet-like network. Our privacy-enhanced Nash preserving implementation
is generic, and applies to essentially all mechanisms with one winner (defined in Section 4). For
technical reasons, we first consider an intermediate, more elaborate, communication device which
will serve as middle ground between the mediated setting with reject and the unmediated one.

The communication device CunfMec is parameterized by a number of rounds R and works as follows:

compute result: In round 1 each Pi inputs (bi, li, fi), where bi is a bid, fi ∈ [0, 1
2] and li ∈

{0, 1, . . . , n}. Sample (j, p) ← Mec(b), and let f = maxi fi, l = minfi=f li, oj = (j, p)
and oi = sorry for i 6= j.

possible abort: The execution is possibly aborted, as follows: Let j be the index of the winner. If j < l,
then set oj ← sorry with probability f , where Pj is the winner. If j ≥ l, then set oj ← sorry
with probability 2f .

offer contract, define outcome, side-channel: As in CMec
REJ .

The recommend strategy πunfj for Pj is to input bj ← Bj(tj) and fj = 0 and lj = 1, and give the local
output wj = (tj , oj).

Figure 4: The Mediated Setting with Unfair Abort (and Reject) (CunfMec, π
unf
B)

11

6.1 Mediation with Unfair Abort

We consider a variant of the mediated setting with reject, where all parties have the possibility of
having the mediation aborting, see Fig. 4.3 The aborting is unfair in the sense that the party, Pk,
inputting the largest probability has the advantage of setting a cut l dividing between different failure
probabilities for winners Pj with j < l and j ≥ l. This introduces an advantage of suggesting the
largest error probability. Nonetheless, if all parties, after seeing their type, still have a sufficiently
large expected utility, it is an equilibrium to have all parties input fi = 0. Intuitively, the only
advantage of using fi > 0 is the gain in privacy of not having the price leak if one looses. If Pk wins
with probability w, this gain is at most (1 − w)fα, where α is the weight of the information utility
qk. On the other side, when Pk would have won, an abort gives a lose of expected monetary utility.
This is a cost of at least w 1

2fγ
′, where γ′ is the expected utility given that Pj wins, and 1

2 comes from
the unfairness of the abort. If we let γ denote the expected monetary utility of Pj , then γ = wγ′.
From ex interim individual rationality, 1−w > 1. To have an equilibrium, it is therefore enough that
α ≤ 1

2γ. The following theorem is proved in detail in Appendix D.

Theorem 2 Let γ ≥ 0 be the ex interim rationality of (πrej, CREJ, T) and let α be the weight of q. If
πrej is an ε-Nash equilibrium for (CREJ, u, T) and α ≤ 1

2γ, then πunf is an ε-Nash equilibrium for
(Cunf, u, T).

Comments. Unfairness U in the abort, right now it is U = 2, would give the bound 1
U . So, for U

close to 1, α can be close to γ. The theorem can also be proved for collusions. In that case we need
that any collusion always have a positive chance of winning even after seeing each others types. We
omit the details, as this theorem is less interesting in our case—we do not know of a good auction
mechanism for the mediated setting which tolerates collusion.

6.2 Assigning value to signed contracts

We want a protocol for the device Cint. For this to be meaningful we need to make explicit how
the Internet protocol allocates monetary utility. This is a fundamentally problematic issue as we are,
after all, talking about a pure communication protocol which anyone can set up and run without no
money being exchanged. As indicated in the introduction, we assign monetary value to a document if
it is a possible winners outcome for Mec and is signed by all parties. In our setting we can make the
reasonable assumption that the seller is willing to sell at any price (over some reservation price), and
that he will sell to the first party presenting a properly signed document. This immediately assigns
monetary value to properly signed contracts. A stronger assumption could be that we can use society
to enforce signed contracts (cf. [14]).

In more detail, we assume that the key pair in Cint for each party Pi consists of a verification
key pki for a digital signature scheme and the signing key ski. We call σ a contract on (j, p) if
σ = (σ1, . . . , σn) and σi is a valid signature on (j, p) under pki. We define (o1, . . . , on) = Out(msg)
by letting oi = (i, p) if Pi at some point sent (i, p), σ to itself, where σ is a contract on (i, p). We let
oj = sorry for all other parties. If no such contract was sent then oj = sorry for all parties. If
several such contracts were sent, then the first one is used to define the outcome.4

3This has the potential to change the equilibria: If one is not the winner it is in ones advantage to have the execution
abort, as it hides the result from the winner and therefore leaks less information on ones type.

4In each round messages are sent to one specific Pi, so it is well-defined which party sends a contract to itself first.

12

6.3 Mediation via a secure protocol

We proceed to implement the mediation with unfair abort (and reject) by a protocol πumed. The idea
is to compute the result as in the mediated setting, using a secure MPC protocol, but then release
the result in a particular manner. The release phase will consist of E so-called epochs indexed e =
1, . . . , E, each consisting of n tries indexed i = 1, . . . , n. We index a try iwithin an epoch e by (e, i).
In try (e, i) party Pi is given a value Vi,e, if the other parties allow it. The recommended strategy is
to allow all deliveries, but as soon as a party has been denied a delivery, it will deny all parties their
deliveries in all following tries. When Pj is the winner, then Ve,i = > for all i 6= j. For the winner
Pj a random epoch e0 ∈ {1, . . . , E} is chosen, and Ve0,j = Contract((j, p), sk) and Ve6=e0,j = >.
The epoch e0 is chosen using a probabilistic function e0 ← Epoch(E), where e0 ∈ {1, . . . , E} and
Pr[e0 = e] = 2−e for e = 1, . . . , E − 1. When Pj receives Contract((j, p), sk), it sends it to the
seller (formally it sends it to itself and the device defines Pj to be the winner).

The recommend strategy πumedj for Pj is as follows:

1. Receive (pk, skj) from the communication device.

2. In the rounds with point-to-point communication, run the code of Pj in a secure MPC for the
following probabilistic function f :

• Each Pi inputs some bi and some (pk′, ski). If all Pi input the same pk′, and sk′i
is a signature key for pk′i, then sample (j, p) ← Mec(b), e0 ← Epoch(E), σ =
Contract((j, p), sk′), (V1,1, . . . , VE,n) ← Values(σ, (e0, j), E), (S1,1, . . . , SE,n) ←
Sharings(V), and let yi = (S(i)

1,1, . . . , S
(i)
E,n). Otherwise, let yi = ⊥. The output to Pi

is yi.

Use inputs bj ← Bj(tj) and (pk′, sk′j) = (pk, skj).

3. Afterwards, initialize a variable dj ∈ {allegiance,defection}, where dj = defection
iff the secure MPC protocol outputs yj = ⊥. If dj 6= defection, then parse yj as shares
(S(j)

1,1, . . . , S
(j)
E,n).

4. Use En rounds of point-to-point communication to sequentially run E epochs, each consisting of
tries i = 1, . . . , n. In each epoch e, try i 6= j send sj = S

(j)
e,i to Pi if dj = alligiance and

send sj = ⊥ to Pi otherwise. In epoch e, try j, compute Ve,j = ⊕ni=1S
(i)
e,j . If Ve,j 6= > and Ve,j is

not a valid contract, let sj = ⊥. Otherwise, let sj = >. If sj 6= ⊥ and Ve,j is a valid contract for
Pj , then input it to Cumed and send it to all other parties. If sj = ⊥, then let dj = defection.

5. If a valid contract on (j, p) was received, give the local output wj = (tj , (j, p)). Otherwise, give
the local output wj = (tj ,sorry).

Figure 5: The Unmediated Protocol

We keep the index e0 hidden from all parties. This ensures that denying another party a delivery
will imply that one (with some positive probability) indirectly denied oneself the contract σ in a later
try. This will ensure that denying another party a delivery has an expected negative utility for oneself.
This holds for all epochs except the last one. SettingE large enough ensures that the probability 2−E

that e0 = E is negligible. Therefore denying in the last round gives at most a negligible advantage,
and we have an ε-Nash.

It is convenient to have a notation for the Ve,i values: For any bit-string σ, epoch index
e0 ∈ {1, . . . , E} and party index j, we define values V = (V1,1, . . . , V1,n, V2,1, . . . , VE,n) =
Values(σ, (e0, j), E), where Ve0,j = σ and Ve,i = > for e 6= e0 or i 6= j. We use a secure

13

MPC to compute sharings of the values Ve,i. Given inputs (b1, . . . , bn), the protocol securely sam-
ples V = (V1,1, . . . , V1,n, V2,1, . . . , VE,n) and generates sharings (S1,1, . . . , SE,n) ← Sharings(V),
where Se,i = (S(1)

e,i , . . . , S
(n)
e,i) is an n-out-of-n sharing of Ve,i. E.g., let all shares be uniformly

random bit-strings, except that Ve,i = ⊕nj=1S
(j)
e,i . Then the protocol gives all S(j)

e,i to Pj . The MPC
protocol is chosen to tolerate the active corruption of up to t = n − 1 parties. With this threshold
termination cannot be guaranteed. The protocol should, however, guarantee that all parties Pj which
received an output yj 6= ⊥, where ⊥ is some designated error symbol, received a correct output.
Furthermore, the protocol should guarantee that yj 6= ⊥ for all parties if all parties followed the
protocol.

After the secure MPC protocol terminates, the parties reconstruct the sharings. Details are given
in Fig. 5. We show that this protocol is an implementation of the mediated setting with unfair abort.
In particular, in Appendix E we show the following theorem.

Theorem 3 (πumed, Cumed) is an (n− 1)-resilient ε-Nash implementation of (πunf, Cunf) for all α.

The intuition is that not sending a share to some other party corresponds to aborting with some
probability fj . Making the MPC protocol fail corresponds to aborting with probability 1 (fi = 1

2 ,
li = 0). Not sending the contract to oneself corresponds to rejecting an offered contract. Combining
Theorems 1–3 we have that:

Corollary 1 If πrej is an ε-Nash equilibrium for (CMec
REJ , u, T), and α < 1

2γ, then πumedMec is an ε-Nash
equilibrium for (Cumed, u, T).

This allows to take the mechanism from Section 4 and compile it into an ε-Nash protocol for
an Internet-like setting. Note that Theorem 3 is much stronger than needed to facilitate this. We
do, however, still find the extra strength of Theorem 3 assuring: Even though the protocol from
Section 4 does not tolerate collusion, Theorem 3 at least guarantees that collusions in the protocol
for the Internet have no more incentive to deviate than in the designed mechanism.

14

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory:
robust mechanisms for rational secret sharing and multiparty computation. In PODC ’06: Pro-
ceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 53–62, New York, NY, USA, 2006. ACM.

[2] P. Bogetoft, I. Damgård, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. A practical imple-
mentation of secure auctions based on multiparty integer computation. In Proceedings of 10th
International Conference on Financial Cryptography and Data Security, volume 4107 of Lec-
ture Notes in Computer Science, pages 142–147. Springer, 2006.

[3] P. G. Bradford, S. Park, and M. H. Rothkopf. Protocol completion incentive problems in cryp-
tographic Vickrey auctions. Technical Report RRR 3-2004, Rutgers Center for Operations
Research (RUTCOR), 2004.

[4] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. In
Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference,
volume 1880 of Lecture Notes in Computer Science, pages 112–130. Springer, August 2000.

[5] G. Escamocher, P. B. Miltersen, and R. Santillan-Rodriguez. Existence and computation of
equilibria of first-price auctions with integral valuations and bids. Manuscript, 2008.

[6] S. D. Gordon and J. Katz. Rational secret sharing, revisited. In Proceedings of 5th International
Conference on Security and Cryptography for Networks, pages 229–241, 2006.

[7] J. Halpern and R. Pass. Game theory with costly computation. Manuscript, 2008.

[8] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended ab-
stract. In Proceedings of 36th Annual ACM Symposium on Theory of Computing (STOC), pages
623–632, 2004.

[9] S. Izmalkov, M. Lepinski, and S. Micali. Rational secure computation and ideal mechanism
design. In Proceedings of 46nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 585–594, 2005.

[10] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging
information. In Proceeding of Fifth Theory of Cryptography Conference (TCC), volume 4948
of Lecture Notes in Computer Science, pages 320–339. Springer, 2008.

[11] G. Kol and M. Naor. Games for exchanging information. To appear at the 40th Annual ACM
Symposium on Theory of Computing (STOC), 2008.

[12] M. Lepinksi, S. Micali, and abhi shelat. Collusion-free protocols. In STOC ’05: Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing, pages 543–552, New York,
NY, USA, 2005. ACM.

[13] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and coalition-safe cheap
talk. In Proceedings of the twenty-third annual ACM symposium on Principles of Distributed
Computing (PODC), pages 1–10, 2004.

[14] A. Y. Lindell. Legally-enforceable fairness in secure two-party computation. In T. Malkin,
editor, Proceedings of CT-RSA, volume 4964 of Lecture Notes in Computer Science, pages
121–137. Springer, 2008.

[15] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-party
computation. In Proceedings of Advances in Cryptology (CRYPTO), pages 180–197, August
2006.

15

[16] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In
EC ’99: Proceedings of the 1st ACM conference on Electronic commerce, pages 129–139, New
York, NY, USA, 1999. ACM.

[17] S. J. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and a rational
majority. Manuscript, 2008.

[18] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A. Thorpe. Practical secrecy-preserving,
verifiably correct and trustworthy auctions. In ICEC ’06: Proceedings of the 8th international
conference on Electronic commerce, pages 70–81, New York, NY, USA, 2006. ACM.

[19] Y. Shoham and M. Tennenholtz. Non-cooperative computation: Boolean functions with cor-
rectness and exclusivity. Theoretical Comput. Sci., 343(2):97–113, 2005.

16

Appendix

A The mediator as communication device

Mediator. We can model a mechanism as a function which given an input bi from each Pi computes
(o1, . . . , on) ← Mec(b1, . . . , bn), where oi is the outcome for Pi. By the revelation principle, we
could consider only mechanisms where bi is the type of Pi. For later use we will, however, consider
mechanisms where each Pi submit some function bi = Bi(ti) of its type ti. The full mechanism is
then specified by (B1, . . . , Bn,Mec, u). In the mediated setting, the communication device plays the
role of a trusted mediator which computes Mec for the parties and sends back the outcomes. The
details are given in Fig. 6.

The communication device CmedMec works as follows:

1. Each Pi inputs some bi.

2. Sample (o1, . . . , on)← Mec(b), where b = (b1, . . . , bn).

3. Output oi to Pi.

The recommend strategy πmedj for each Pj is to input bj ← Bj(tj), and output wj = (tj , oj).

Figure 6: The Mediated Setting (CmedMec, π
med
B) for mechanism (B1, . . . , Bn,Mec)

The utility of Pi is then given as ui(t, o, w). In the typical mediated setting the utility only
depends on types and outcomes, i.e., ui(t, o, w) = ui(t, o). As an example, we can model a Vickrey
auction byBi(ti) = ti and letting oi = (i, p) for the Pi giving the highest bid bi (draws are broken by
randomization), and p being the value of the second highest bid, and letting oj = sorry for all other
parties but the winner. The utility is uj(t, o) = 0 for all Pj with oj = sorry and ui(t, o) = ti − p
when oi = (i, p).

B Proof of Lemma 1

Proof: We show a slightly stronger result. Consider the following class of predictable one-winner
mechanisms satisfying the following property: when a bidder bids, he does not know if he will win or
not; but if he does win, the output from the mediator depends only on his own input to the mechanism.
Clearly the first-price auction is an example as the winner gave the maximal bid and receives (i, p),
where p is the maximal bid.

For any predictable one-winner mechanism, any equilibrium in the mediated setting without
reject, where the recommended strategy does not use the reject option, induces an equilibrium in the
mediated setting with reject. The proof is as follows. First, the equilibrium in the mediated setting
without reject certainly induces a strategy profile in the setting with reject. Now consider a deviation
πreji

∗
in the setting with reject. We can run this strategy in the mediated setting as a strategy πmedi

∗.
The strategy πmedi

∗ runs πreji

∗
until it gives a bid b′i. Then it returns to πreji

∗
the outcome Oi that

CREJ would offer to πreji

∗
if player i is the winner (it can by assumption predict this value).

• If this makes πreji

∗
try to reject the contract, then πmedi

∗ inputs bi = Bi(ti) to Cmed (i.e., the
bid recommended by Mec).

• If it makes πreji

∗
accept the contract, then πmedi

∗ inputs b′i to Cmed.

17

Then πmedi
∗ receives a result from Cmed.

• If it is oi = sorry!, then it rewinds πreji

∗
to the point where it output b′i and reruns it from

this point, now giving it the result oi = sorry! as if coming from CREJ. When πreji

∗
produces

a local output wi, πmedi
∗ gives the local output wi.

• If oi 6= sorry!, then oi = Oi, where Oi is the value predicted above. In this case πmedi
∗

simply runs πreji

∗
until it produces a local output wi, and πmedi

∗ gives the local output wi.

We do a proof along the lines of Theorem 2. Let W be the event that party i wins and let A be
the event that πreji

∗
accepts an offered contract. We look at three cases.

• IfA, then the monetary outcome for party i is clearly the same in the two setting, as b′i is played
in both setting and the contract accepted in the setting with reject. In addition, the value wi
output by party i is by construction computed from the same view in both settings (as is wj for
all other Pj). Therefore also the privacy utilities are identical in the two settings.

• If W and Ā, then the monetary utility in the mediated setting is at least µ′, where µ′ is the
expected monetary utility for party i playing πmedi conditioned on W and Ā. In the setting
with reject the monetary utility is 0 because Ā. Since the difference between the privacy
utilities in the two settings is at most α, it follows that πmedi

∗ gets an extra utility over πreji

∗
of

at least µ′ − α.

• If W̄ and Ā, then the monetary utility is 0 in both cases. The difference in the privacy utility is
at most α. It follows that πreji

∗
gets an extra utility over πmedi

∗ of at most α.

It follows that πmedi
∗ gets an extra utility over πreji

∗
of at least

Pr[A]0 + Pr[W, Ā](µ′ − α)− Pr[W̄ , Ā]α = Pr[W, Ā]µ′ − α(Pr[W, Ā] + Pr[W̄ , Ā])
= Pr[W, Ā]µ′ − αPr[Ā] .

Let µ′′ denote the expected monetary utility of party i playing the recommended strategy conditioned
on W̄ and Ā. Clearly, µ′′ = 0 (as W̄). Let µ denote the expected monetary utility of party i playing
the recommended strategy conditioned on Ā. Since the decision to reject or not can be taken given
the type, we have that Pr[Ā]µ ≥ Pr[Ā]γ. We get that

Pr[W, Ā]µ′ − αPr[Ā] = Pr[W, Ā]µ′ + Pr[W̄ , Ā]µ′′ − αPr[Ā]
= Pr[Ā]µ− αPr[Ā]
≥ Pr[Ā]γ − αPr[Ā]
= Pr[Ā](γ − α) ≥ 0 .

Intuitively, this bound just says that where the strategy would reject, it would have been off
playing as recommended and then accepting. Since πreji

∗
gets less utility by deviating than does

πmedi
∗ and πmedi

∗ is deviating in an (ε-)Nash equilibrium, it follows that πreji

∗
gets no (at most

negligible) utility out of deviating. 2

C Proof of Theorem 1

Proof: That the notion is transitive is trivial.

18

To show that the notion is t-resilient ε-Nash preserving, assume that (γ,D, T) is a t-resilient ε-
Nash. We show that so is (π, C, T). Let C ⊂ {1, . . . , n}, |C| ≤ t, let l ∈ C, and let π∗C be a strategy
for PC for C. By (π, C) giving no more incentive to deviate than (γ,D) there exists γ∗C such that

ul((π∗C , π−C), C, T) ≤ ul((γ∗C , γ−C),D, T) + ε1 .

By (γ,D) being a t-resilient ε-Nash, we have that

ul((γ∗C , γ−C),D, T) ≤ ul(γ,D, T) + ε2 .

By (π, C) having no less utility we have that

ul(γ,D, T) ≤ ul(π, C, T) + ε3 .

It follows that
ul((π∗C , π−C), C, T) ≤ ul(π, C, T) + ε ,

where ε = ε1 + ε2 + ε3 is negligible.
To show that the utility profile is negligibly close to that of (γ,D) it is sufficient to prove that

there exists a negligible ε such that ul(π, C, T) ≥ ul(γ,D, T)− ε and ul(π, C, T) ≤ ul(γ,D, T) + ε
for all Pl. From no less utility it follows that ul(π, C, T) ≥ ul(γ,D, T)−ε1. From no more incentive
to deviate with C = ∅ it follows that ul(π, C, T) ≤ ul(γ,D, T) + ε2. Let ε = ε1 + ε2. 2

D Proof of Theorem 2

Proof: For sake of proof we can change to output code possible abort code in Fig. 4 to work as
follows: Sample a bit a with Pr[a = 0] = 1− f and sample a bit b with Pr[b = 0] = (1− f)−1(1−
2f). Now set oj ← sorry if either (j < l and a = 1) or (j ≥ l and (a = 1 or b = 1)). Note that the
probabilities of aborting were not changed, as the probability that a = 1 is f and the probability that
a = 0 and b = 0 is 1− 2f , and thus the probability that a = 1 or b = 1 is 2f . In the below proof it
is, however, convenient to have the independent random bits a and b defined.

Consider any deviating strategy πunfj
∗ for (Cunf, u, T). For ease of presentation only, assume

that fj and bj are deterministic functions of tj . In addition, we consider only the case where the
deviator Pj uses lj = j + 1; If j = n, then lj = 1. Using a larger lj will only give some of the other
parties a higher probability of getting the result, while keeping the probability that Pj gets the result
the same. The techniques needed for handling this case is an easy special case of the techniques used
below.

Consider the following deviating strategy πrejj

∗
for the mediated setting with reject: It runs

πunfj
∗(tj) to get (bj , lj , fj). Then it samples a bit a, where a = 0 with probability 1− fj and flips a

uniformly random bit b, where b = 0 with probability (1− fj)−1(1− 2fj).

• If a = 0 then πrejj

∗
inputs bj and accepts the offered contract if πunfj

∗(tj) would have done
so.

• If a = 1, then it inputs Bj(tj) and always accepts the contract if it is offered by the device.

The idea is to play like πunfj
∗(tj) when there is no abort and to play the recommended strategy when

πunfj
∗(tj) would have aborted. The intuition is that playing as recommended is better than aborting.

In the recommended strategies πrejj and πunfj , and any other setting where tj is known, we can
also compute (bj , lj , fj) from tj as above and flip bits a and b as above, if they are not already defined
by the device. In all such settings, let A be the event that a = 1 and let B be the event that b = 1.

19

We use u...,¬Aj to denote the expected utility given that A does not occur. We start by bounding

p(¬A)(u∗,unf,¬Aj − uunf,¬Aj).

It is clear that conditioned on A occurring, u∗,rejj = urejj , as both πrejj

∗
and πrejj input Bj(tj)

and accept the offered contract when a = 1. We use u...,Aj to denote the expected utility given the
event A, and thus write

u∗,rej,Aj = urej,Aj .

It then follows from πrej being an ε-Nash that

u∗,rejj − urejj = p(A)(u∗,rej,Aj − urej,Aj) + p(¬A)(u∗,rej,¬Aj − urej,¬Aj)

= p(¬A)(u∗,rej,¬Aj − urej,¬Aj) ≤ ε .

It is clear that urej,¬Aj = uunf,¬Aj (we are looking at the recommended strategies), which then
implies that

p(¬A)(u∗,rej,¬Aj − uunf,¬Aj) ≤ ε .

We get that

p(¬A)(u∗,unf,¬Aj − uunf,¬Aj) = p(¬A)(u∗,unf,¬Aj − u∗,rej,¬Aj) + p(¬A)(u∗,rej,¬Aj − uunf,¬Aj)

≤ p(¬A)(u∗,unf,¬Aj − u∗,rej,¬Aj) + ε .

Let L denote the event that j = l, i.e., that Pl is the winner. We have that

p(¬A)(u∗,unf,¬Aj − u∗,rej,¬Aj) =

p(¬A,L)(u∗,unf,¬A,Lj − u∗,rej,¬A,Lj) + p(¬A,¬L)(u∗,unf,¬A,¬Lj − u∗,rej,¬A,¬Lj)

and
u∗,unf,¬A,Lj = u∗,rej,¬A,Lj ,

which implies that

p(¬A)(u∗,unf,¬Aj − u∗,rej,¬Aj) =p(¬A,¬L)(u∗,unf,¬A,¬Lj − u∗,rej,¬A,¬Lj)

=p(¬A,¬L,B)(u∗,unf,¬A,¬L,Bj − u∗,rej,¬A,¬L,Bj)+

p(¬A,¬L,¬B)(u∗,unf,¬A,¬L,¬Bj − u∗,rej,¬A,¬L,¬Bj) .

Since u∗,unf,¬A,¬L,¬Bj = u∗,rej,¬A,¬L,¬Bj , it follows that

p(¬A)(u∗,unf,¬Aj − u∗,rej,¬Aj) = p(¬A,¬L,B)(u∗,unf,¬A,¬L,Bj − u∗,rej,¬A,¬L,Bj)

= p(¬A,¬L,B)(q∗,unf,¬A,¬L,Bj − q∗,rej,¬A,¬L,Bj)

≤ p(¬A,¬L,B)α ,

where α is the weight of q. So,

p(¬A)(u∗,unf,¬Aj − uunf,¬Aj) ≤ p(¬A,¬L,B)α+ ε . (1)

We now bound p(A)(u∗,unf,Aj − uunf,Aj). We have that

p(A,L)(u∗,unf,A,Lj − uunf,A,Lj) = p(A,L)(q∗,unf,A,Lj − runf,A,Lj − qunf,A,Lj)

≤ −p(A,L)runf,A,Lj + ε′ ,

20

as q∗,unf,A,Lj ≤ qunf,A,Lj + ε′, by qj preferring collection of knowledge. Since runf,A,¬Lj = 0, we
have that

p(A,L)runf,A,Lj = p(A,L)runf,A,Lj + p(A,¬L)runf,A,¬Lj

= p(A)runf,Aj ≥ p(A)γ ,

as A depends only on tj , which means that there is individual rationality γ given A. Furthermore,

p(A,¬L)(u∗,unf,A,¬Lj − uunf,A,¬Lj) = p(A,¬L)(q∗,unf,A,¬Lj − qunf,A,¬Lj) ≤ p(A,¬L)α .

So, p(A)(u∗,unf,Aj − uunf,Aj) ≤ −p(A,L)runf,A,Lj + ε′ + p(A,¬L)α, which with (1) implies that

u∗,unf,Aj − uunf,Aj ≤ (p(¬A,¬L,B) + p(A,¬L))α− γp(A) + ε+ ε′ ,

where ε+ ε′ is negligible. So, it is sufficient that γp(A) ≥ (p(¬A,¬L,B) + p(A,¬L))α. We have
chosen B such that the probability that B occurs and A does not occur is equal to the probability that
A occurs. So, p(¬A,¬L,B) = p(A,¬L) and (p(¬A,¬L,B) + p(A,¬L))α = p(A,¬L)α. So, it is
sufficient that α ≤ 1

2γ. 2

E Proof of Theorem 3

In this section we prove Theorem 3. For convenience of proof, we assume that the digital signature
schemes used by the parties have unique signatures. This implies that given a contract σ and n − 1
signing keys ski it is infeasible to compute a new contract σ′ 6= σ even on the same value (j, p),
which allows a simplified proof.

We in addition need that

• P2−E+1 is negligible, where P is the largest bid which the system accepts; this can be accom-
plished by setting E appropriately. And,

• the probability of breaking the signature scheme σ using a poly-time algorithm should have the
property that σ(κ)P is negligible; this can be accomplished by e.g. letting P be polynomial in
κ and using a signature scheme secure against poly-time adversaries.

The security needed for the multiparty computation protocol is specified below, when we need it.

E.1 Fleshing out

Below we will a number of times prove that some (πhyb(x+1), Chyb(x+1)) is a n − 1-resilient ε-
implementation of (πhybx, Chybx). Almost all proofs will be based on proving three properties, and
it is convenient to once and for all prove that these three properties are sufficient.

We will always prove that:

Q1: The distributions of (t, ohyb(x+1), whyb(x+1)) and (t, ohybx, whybx) are the same, where
ohyb(x+1), whyb(x+1) are the outcome and local outputs in a random run of
(πhyb(x+1), Chyb(x+1))(t) and ohybx, whybx are the outcome and local outputs in a random
run of (πhybx, Chybx)(t).

This implies no less utility, as rl and ql are functions of (t, o, w, T) which has the same distribution
in the two settings given Q1.

We then prove that for all C ⊂ {1, . . . , n}, |C| ≤ n − 1 and all deviations πhyb(x+1)
C

∗
, there

exists a deviation πhybxC

∗
and a negligible ε such that it holds for all Pl, l ∈ C that:

21

Q2: rl((πhybxC

∗
, πhybx−C), Chybx) ≥ rl((π

hyb(x+1)
C

∗
, π

hyb(x+1)
−C), Chyb(x+1))− ε.

Q3: (t, view
(π

hyb(x+1)
C

∗
,π

hyb(x+1)
−C),Chyb(x+1)(t)) and (t, view

(πhybx
C

∗
,πhybx−C),Chybx(t)) are computation-

ally indistinguishable, where t ← T and view(π∗C ,π−C),C(t) = {wi}ni=1 is the local outputs
after a random run on t.

Properties Q2 and Q3 imply no more incentive to deviate: From Q2 we have that

uhybxl (t, o, w) = rhybxl (t, o, w) + qhybxl (t, w)

≥ (rhyb(x+1)
l (t, o, w)− ε) + qhybxl (t, w)

= u
hyb(x+1)
l (t, o, w)− ε+ (qhybxl (t, w)− qhyb(x+1)

l (t, w)) .

So, it is sufficient that |qhybxl (t, w) − q
hyb(x+1)
l (t, w)| is negligible, which follows from Q3 as ql

is a function of (t, view(π∗C ,π−C),C(t)) and assigns negligibly different valuation to computationally
indistinguishable distributions.

In addition, when proving that (πhyb(x+1), Chyb(x+1)) is an (n− 1)-resilient εNash implementa-
tion of (πhybx, Chybx) we sometimes give a set B of strategies for (πhyb(x+1), Chyb(x+1)). We then
show that for all πhyb(x+1)

C

∗
6∈ B that there exists a better strategy πhyb(x+1)

C

∗
∈ B in which all

colluders do better, a la Q2 and Q3, and for all πhyb(x+1)
C

∗
∈ B in we show that there exists πhybxC

∗

meeting Q2 and Q3. This gives an implicit strategy mapping of all πhyb(x+1)
C

∗
to some πhybxC

∗

meeting Q2 and Q3.

E.2 Hybrid 0

The details of Hybrid 0 are given in Fig. 7.

The communication device Ch0 works as follows:

compute result: Each Pi inputs some bi along with some (ei, li) ∈ {1, . . . , E} × {1, . . . , n} ∪ {(E +
1, 1)}. Let (e, l) = mini(ei, li) a and sample (j, p) ← Mec(b) and e0 ← Epoch(E). Let
oj = (j, p) and oi 6=j = sorry.

possible abort: If (e0, j) ≥ (e, l), then set oj = sorry.

offer contract, define outcome, side-channel: As in CREJ.

The recommend strategy πh0j for Pj is as follows:

1. Input bj = tj and (ej , lj) = (E + 1, 1).

2. If offered the contract, accept.

3. Output wj = (tj , oj).

aThe minimum is taken according to the lexicographic ordering of (e, l).

Figure 7: Hybrid 0

Theorem 4 (Ch0, πh0) is an (n− 1)-resilient ε-Nash implementation of (Cunf, πunf).

Proof: Property Q1 is obvious.

22

Here we prove no more incentive to deviate directly (i.e., not through Q2 and Q3). For a deviating
strategy πh0j

∗ we let πunfj
∗(tj) run πh0j

∗(tj) until it outputs (bj , (ej , lj)). Then πunfj
∗(tj) inputs

(bj , lj , fj), where fj = 2−ej , except that if ej = E + 1, then it uses fj = 0. It then runs πh0j
∗

with Cunf. I.e., if offered a contract from Cunf, it inputs it to πh0j
∗ and accepts if πh0j

∗ accepts. It
then inputs the final outcome oi from Cunf to πh0j

∗(tj) and runs it until it outputs some wj , which
πunfj

∗(tj) uses as local output. During this the colluding parties let the πh0j
∗(tj) communicate using

the side-channel as they desire, i.e., as they would have done in Hybrid 1.
In Hybrid 0, if j < l, then Pj is denied the result with probability 2−e. If j ≥ l, then Pj is denied

the result with probability 2−e+1. In Hybrid 1, if j < l, then Pj is denied the result iff e0 > e. If
j ≥ l, then Pj is denied the result iff e0 ≥ e. If e ≤ E − 1, then the probability that e0 > e is
2−e and the probability that e0 ≥ e is 2−e+1, giving exactly the same probabilities. If e = E + 1,
then the probability that e0 > e is 0 and the probability that e0 ≥ e is 0. So, when e0 = E + 1, the
probabilities are the same in the two hybrids. If e = E, then the probability that e0 > e is 0 and the
probability that e0 ≥ e is 2−E+1. So, when e0 > e the probability is 2−E in one hybrid and 0 in the
other. This shows that the statistical distance between (t, o, w, T) in the two settings is at most 2−E .
So, the statistical distance between ui(t, o, w, T) in the two settings are at most 2−E . The difference
between the expected value of ui(t, o, w, T) in the two hybrids is at most P + γ, where P is the
polynomial upper bound on the price and γ is the weight of the privacy concern. By γ < α we have
that γ < P . So, the difference is at most 2P2−E , which is negligible. 2

E.3 Hybrid 1

The details of Hybrid 1 are given in Fig. 8.

The communication device Ch1 works as follows:

compute result: Each Pi inputs some bi. Sample (j, p) ← Mec(b), e0 ← Epoch(E),
(V1,1, . . . , VE,n)← Values((i, p), (e0, j), E). Let oj = (j, p) and oi6=j = sorry.

possible abort: Run sequential epochs e = 1, . . . , E, each consisting of sequential tries i = 1, . . . , n.
In epoch e, try i, each Pj 6= Pi inputs a bit sj ∈ {send,hold}. If sj = send for all Pj , then
output Vi,e to Pi. Otherwise, output ⊥ to Pi. If the winner Pj does not receive (j, p) as output in
some round, then set oj ← sorry.

offer contract, define outcome, side-channel: As CREJ.

The recommend strategy πh1j for Pj is as follows:

1. Input bj = tj .

2. Initialize a variable dj = allegiance.

3. In each epoch e, try i 6= j, input sj = send iff dj = alligiance. In epoch e, try j, set
dj = defection if Ch1 outputs ⊥.

4. If offered the contract, accept.

5. Output wj = (tj , oj).

Figure 8: Hybrid 1

Theorem 5 (Ch1, πh1) is an (n− 1)-resilient ε-Nash implementation of (Ch0, πh0).

23

Proof: Property Q1 is obvious.
For Q2 and Q3 we specify strategy mappings. We let B be the set of strategies, where 1) no

colluder inputs hold in a try (e, j) for j ∈ C and 2) at most one colluder inputs hold in a try (e, j)
for j 6∈ C, and does so at most once.

Given πh1C
∗ which does not have property 1 we map it to one which does by having the colluders

run πh1C
∗, except that when instructed to input hold in try (j, p) for j ∈ C, a colluder inputs send

instead and signals to Pj that it should ignore the output from the device. No matter the output, Pj
then runs πh1C

∗ as if the output from the device was⊥. In the end, each colluder gives the local output
specified by πh1j

∗. Clearly, all colluders end up giving the exact same local outputs. The same for
non-colluders, as their outputs from the device were not affected by the transformation. The only
possible difference is that some colluder Pj might get (j, p) instead of sorry in some try. If this
happens it simply rejects the contract.

Given πh1C
∗ which has property 1, but does not have property 2, we map it to one which has both

by having the colluders run πh1C
∗, except that when the first colluder inputs hold in try (e, j) for

j 6∈ C, it signals to the other parties that it did so. In the following tries all colluders keep running
πh1C
∗, except that they actually input send in all tries. Since this will not affect the output of the

device (as at least one honest party is inputting hold in each try already), the final local outputs of
πh1C
∗ will be the same. Clearly this also holds for the non-colluders, and clearly the outcome will be

the same for all parties.
We then describe how to map a strategy πh1C

∗ from B into one, πh0C
∗, for Hybrid 0. In πh0C

∗ some
fixed colluder is elected coordinator, and all parties send their type to the coordinator. Then the coor-
dinator runs πh1C

∗(tC , ρC) as it would have been run in Hybrid 1, letting the colluders communicate
via the side-channels until all πh1j

∗(tj , ρC), j ∈ C output some bj . Here ρC denotes the randomness
used by the colluders. The coordinator sends bj to colluder Pj , which inputs (bj , (E + 1, 1)) to Ch0.
Then the coordinator keeps running πh1C

∗(tC , ρC) with a copy of Ch1(ρ). It lets this copy run as
if Ve,j = > for all e and all j ∈ C, and as if all non-colluders follow the recommended strategy.
The coordinator runs the local πh1C

∗(tC , ρC) until all colluders gave local outputs wi. If, during this,
some colluder in this copy of πh1C

∗(tC , ρC) input hold to Ch1, the coordinator records the try (e, i)
in which this happened. Otherwise, it sets (e, i) = (E + 1, 1). Then the coordinator Pj inputs
(bj , (e, i)) to Ch0. All colluders report their oj to the coordinator. If no colluder received (j, p),
then the coordinator sends wi to each colluder Pi, which outputs wi. Otherwise, if some colluder
Pj received (j, p),5 the coordinator samples a random e0 such that (e0, j) has the distribution that
(e0, j) has in Hybrid 1 given the fixed value of j and the condition that (e0, j) ≤ (e, i). This can be
done in expected poly-time by sampling e0 ← Epoch(E) until (e0, j) ≤ (e, i), but can also be done
in strict poly-time, as required. Then the coordinator “rewinds” the local copy πh1C

∗(tC , ρC) until try
(e0, j) and then runs πh1C

∗(tC , ρC) forward from here, but this time letting Ch1(ρ) return (j, p) to Pj
in try (e0, j). This makes the parties in the local copy πh1C

∗(tC , ρC) eventually produce new local
outputs w′i. These the coordinator sends to the colluders, and colluder Pi outputs w′i. If Pj accepts
the contract in the local copy πh1C

∗(tC , ρC), then the coordinator instructs Pj to accept the contract.
Imagine the copy of πh1C

∗(tC , ρC), run by the coordinator, having been run in Hybrid 1 with
Ch1(ρ). Here we can define (e, i) as in Hybrid 0: The first try in which a colluder inputs hold
if all colluders keep receiving > from the device. It is clear that Pj receives (j, p) if and only if
(e0, j) ≤ (e, i) in both hybrids, and that this happens with the same probability in both hybrids.
Therefore the outcomes will be the same in both hybrids.

5When some Pj receivers the contract, it does not accept it yet. It waits for a go from the coordinator, as described
below.

24

Furthermore, if (e0, j) > (e, i) or j 6∈ C, then in Hybrid 1 all colluders will receive > in all tries
until the first colluder inputs hold, after which all colluders input send and receive hold in all
tries, exactly as in the copy of πh1C

∗(tC , ρC) run by the coordinator in Hybrid 0. Therefore both the
outcomes and the local outputs will be exactly the same in this case.

If (e0, j) ≤ (e, i) and j ∈ C, then in Hybrid 1 all colluders in πh1C
∗(tC , ρC) will input send until

the colluder Pj receives (j, p), as (e0, j) ≤ (e, i). After this all colluders run as πh1C
∗(tC , ρC) now

runs after a colluder receives the result. This is exactly the same behaviour as the rewound and rerun
copy of πh1C

∗(tC , ρC) inside the coordinator in Hybrid 0. Therefore, also in this case, the outcome
and the local outputs will be the same in both settings.

From the above it is easy to establish Q2 and Q3. 2

E.4 Hybrid 2

By a communication device C handing out values (v1, . . . , vn) to parties (P1, . . . , Pn) in unfair
round-robin we mean the following. In round i, C tries to deliver vi to Pi. In round i each party Pj
inputs sj ∈ {send,hold}. If sj = send for j = 1, . . . , n, then C outputs vi to Pi. Otherwise, C
outputs some reserved failure symbol ⊥ to Pi. The recommended strategy for Pj is always to input
dj = send in rounds i = 1, . . . , j and to input dj = send in rounds i = j + 1, . . . , n if and only if
Pj did not receive output ⊥ in round j.

In Hybrid 2 (Fig. 9) we introduce an initial unfair round-robin of some dummy values. If a party
defects in this round, the other parties punish by defecting in all tries. This initial unfair round-robin
will be expanded into the cryptographic secure sampling of sharings by later hybrids.

The communication device Ch2 works as follows:

compute result: Each Pi inputs some bi. Sample (j, p) ← Mec(b), e0 ← Epoch(E),
(V1,1, . . . , VE,n)← Values((i, p), (e0, j), E).

round-robin delivery: Deliver (>, . . . ,>) to (P1, . . . , Pn) in unfair round-robin.

possible abort: Run sequential epochs e = 1, . . . , E, each consisting of sequential tries i = 1, . . . , n.
In epoch e, try i, each Pj 6= Pi inputs a bit sj ∈ {send,hold}. If sj = send for all Pj , then
output Vi,e to Pi. Otherwise, output ⊥ to Pi. If the winner Pj does not receive (j, p) as output in
some round, then set oj ← sorry

offer contract, define outcome, side-channel: As CREJ.

The recommend strategy πh2j for Pj is as follows:

1. Input bj = tj .

2. Use the standard recommended strategy for unfair round-robin, and afterwards initialize a variable
dj ∈ {allegiance,defection}, where dj = defection iff ⊥ was received from the
unfair round robin.

3. In each epoch e, try i 6= j input sj = send iff dj = alligiance. In epoch e, try j, set
dj = defection if Ch2 outputs ⊥.

4. If offered the contract, accept.

5. Output wj = (tj , oj).

Figure 9: Hybrid 2

Theorem 6 (Ch2, πh2) is an (n− 1)-resilient ε-Nash implementation of (Ch1, πh1).

25

Proof: Q1 is trivial.

Strategy mapping. For properties Q2 and Q3 we must for each strategy πh2C
∗ for Ch2 specify a

strategy πh1C
∗ for Ch1.

As for the proof of Theorem 5 we can assume that no colluder inputs hold in the initial unfair
round-robin when it is the turn of another colluder. We can also assume that some fixed coordinator
takes care of inputting hold in the turns of the non-colluders.

In πh1C
∗ each πh1l

∗ runs πh2l
∗ as a sub-routine, and they let these πh2l

∗ communicate using the
side-channel, as they would have done in Hybrid 2.

First πh1l
∗ inputs tl to πh2l

∗ to get bl, which it inputs to Ch1. Then it internally runs the n rounds
of the unfair round-robin with πh2l

∗. Initially all colluders return > to πh2l
∗ as if it came from Ch2.

Let Pj denote the coordinator. If πh2j
∗ inputs hold to Ch2 in some turn, then πh1j

∗ informs the other
colluders of that, and from that point on they all return ⊥ to πh2l

∗ as if it came from Ch2.
The En tries are run as follows:
If the coordinator input send in all rounds in the initial unfair round-robin, then πh1l

∗ runs πh2l
∗

with Ch1: It sends the same as πh2l
∗ in all tries and returns the values from Ch1 to πh2l

∗ as if they came
from Ch2. In the end it adopts the local output of πh2l

∗. This will produce the exact same distribution
on outcomes and local outputs.

If the coordinator sent hold in some round in the initial unfair round-robin, then πh1l
∗ runs πh2l

∗

with Ch1, as follows: No matter what πh2l
∗ sends, πh1l

∗ sends hold in all tries, and then returns
to πh2l

∗ what it receives from Ch1. In the end it adopts the local output of πh2l
∗. In Hybrid 2, the

inputting of hold in the initial unfair round-robin would make the affected non-colluder input hold
in allEn tries, so in both hybrids Ch1 respectively Ch2 outputs⊥ to all colluders in all tries. Therefore
the exact same distribution on local outputs is produces. It can also be seen that the outcomes are
identically distributed in the two hybrids.

From the above it is easy to prove Q2 and Q3. 2

E.5 Hybrid 3

In Hybrid 3 (Fig. 10) we essentially just introduce the distribution of random public keys and the
outputting of a signature, see Fig. 10.

We show that introducing the distribution of the joint randomness vk did not disturb the equi-
librium. The intuitive reason is that the recommended strategies do not use vk and therefore any Pl
could in fact just have sampled its own vk.

Theorem 7 (Ch3, πh3) is an (n− 1)-resilient ε-Nash implementation of (Ch2, πh2).

Proof: Q1 is trivial.

Strategy mapping. For properties Q2 and Q3 we must for each strategy πh3C
∗ for Ch3 specify a

strategy πh2C
∗ for Ch2. For l ∈ C, the strategy πh2l

∗ runs πh3l
∗. First πh2l

∗ inputs tl to πh3l
∗.

Then one of the πh2l
∗ samples key pairs (vki, ski) for all Pi and sends them to the other parties

PC , and each Pj inputs (vk, skj) to πh3j
∗. Then each Pl runs πh3l

∗ internally. When it sends a
message to another πh3j

∗, then πh2l
∗ sends the message to πh2j

∗ which inputs it to πh3j
∗. When πh3l

∗

outputs some bl, then it is input to Ch2. Then again it internally runs πh3l
∗ as above. In addition it

relays all outputs from πh3l
∗ to Ch2 and all outputs from Ch2 to πh3l

∗, except that if Ch2 outputs (l, p),
then πh2l

∗ inputs σ = Contract((l, p), sk), to πh3l
∗. When πh3l

∗ outputs some wl, then πh2l
∗ outputs

wl.

26

The communication device Ch3 works as follows:

key distribution: For each Pi sample a key pair (vki, ski) and output (vk, ski) to Pi, where vk =
(vk1, . . . , vkn).

compute result: Each Pi inputs some bi. Sample (j, p) ← Mec(b), e0 ← Epoch(E), σ =
Contract((j, p), sk), (V1,1, . . . , VE,n)← Values(σ, (e0, j), E).

round-robin delivery: Deliver (>, . . . ,>) to (P1, . . . , Pn) in unfair round-robin.

possible abort: Run sequential epochs e = 1, . . . , E, each consisting of sequential tries i = 1, . . . , n.
In epoch e, try i, each Pj 6= Pi inputs a bit sj ∈ {send,hold}. If sj = send for all Pj , then
output Vi,e to Pi. Otherwise, output ⊥ to Pi. If the winner Pj does not receive σ in some round,
then set oj ← sorry

offer contract, define outcome, side-channel: As CREJ.

The recommend strategy πh3j is as πh2j .

Figure 10: Hybrid 3

Q3: Trivial, as the view seen by the copy of πh3C
∗ run by πh2C

∗ is identical to the view they have
when run with Ch3. The view is simply augmented with a random signature on the result.

Q2: Trivial using similar arguments. 2

E.6 Hybrid 4

In Hybrid 4 (Fig. 11) we let the winner be the first one to input a valid signed contract. In Hybrid 3
the winner was the first to receive a valid contract and accept.

We show that changing the winner from being the first to receive a contract to the first to produce
a contract does not disturb the ε-equilibrium. Intuitively, the reason is that inputting a contract before
receiving one involves breaking the signature scheme of one of the other parties, which happens with
negligible probability.

Theorem 8 (Ch4, πh4) is an (n− 1)-resilient ε-Nash implementation of (Ch3, πh3).

Proof: Q1 holds for ε being the probability that a properly generated contract is rejected, which is 0
assuming that the signature schemes have perfect correctness.

Strategy mapping. For properties Q1 and Q2 we must for each Pl, l ∈ C and strategy πh4l
∗ for

Ch4 specify a strategy πh3l
∗ for Ch3. The strategy πh3l

∗ runs πh4l
∗. First πh3l

∗ inputs tl to πh4l
∗ and

then it simply runs πh4l
∗ with Ch3. The strategies πh3l

∗ let their internal copies of πh4l
∗ communicate

as they would in Hybrid 4.

Q2: The only way it can happen that rl(πh4C
∗
, πh4−C) > rl(πh3C

∗
, πh3−C) is that πh4l

∗ input a contract
on (l, p′) to Ch3 respectively Ch4 without having received a contract on (l, p′). With Ch4 this can
result in Pl winning, if no other parties were faster. With Ch4 this does not result in Pl winning, as
the winner is the one to receive a contract (and accept it). So, let q be the probability that some πh4l

∗

outputs a contract on (l, p′) without having received a contract on (l, p′). Using a standard reduction
to the unforgeability of any of the signature schemes of Pj , j 6∈ C (recall that |C| ≤ n − 1) it can
be shown that q is no larger than σ(κ) — the security level of the signature scheme. When a contract

27

The communication device Ch4 works as follows:

key distribution: As h3.

compute result: Each Pi inputs some bi. Sample (j, p) ← Mec(b), e0 ← Epoch(E), σ =
Contract((j, p), sk), (V1,1, . . . , VE,n)← Values(σ, (e0, j), E).

round-robin delivery: As h3.

release contract: Run sequential epochs e = 1, . . . , E, each consisting of sequential tries i = 1, . . . , n.
In epoch e, try i, each Pj 6= Pi inputs a bit sj ∈ {send,hold}. If sj = send for all Pj , then
output Vi,e to Pi. Otherwise, output ⊥ to Pi.

accept contract: In all rounds allow all Pi to input some special value σ′. In the last round, output oi
to Pi, where the outcome oi is computed as follows: If Pi was the first to input a contract σ′ on
some (i, p), then let oi = (i, p). Otherwise, let oi = sorry.

side-channel: As CREJ.

The recommend strategy πh4j for Pj is as follows:

1. Input bj = tj .

2. Use the standard recommended strategy for unfair round-robin, and afterwards initialize a variable
dj ∈ {allegiance,defection}, where dj = defection iff ⊥ was received from the
unfair round robin.

3. In each epoch e, try i 6= j input sj = send iff dj = alligiance. In epoch e, try j, set
dj = defection if Ch4 outputs ⊥. If Ch4 outputs a contract σ, then input σ to Ch4.

4. If a valid contract on (j, p) was received, give the local output wj = (tj , (j, p)). Otherwise, give
the local output wj = (tj ,sorry).

Figure 11: Hybrid 4

on (l, p′) is input to Ch4, the monetary utility is at most P — the upper bound on monetary utility.
Therefore rl(πh4C

∗
, πh4−C) − rl(πh3C

∗
, πh3−C) ≤ σ(κ)P . We have set P and σ(κ) exactly such that

σ(κ)P is negligible.

Q3: This is almost trivial as the same strategies are run in both settings. The only complication is
that if Pl, l ∈ C inputs a valid contract before receiving one, the outcome oj from the communication
device Ch3 respectively Ch4 might differ. This, however, happens with negligible probability. 2

E.7 Hybrid 5

In Hybrid 5 (Fig. 12) we hand out sharings of the values Ve,j and we replace inputting send and
hold with inputting the true share or not.

Theorem 9 (Ch5, πh5) is an (n− 1)-resilient ε-Nash implementation of (Ch4, πh4).

Proof: Q1 is trivial.

Strategy mapping. For properties Q2 and Q3 we must for each Pl, l ∈ C and each strategy πh5l
∗

for Ch5 specify a strategy πh4l
∗ for Ch4. The strategy πh4l

∗ runs πh5l
∗. First πh4l

∗ inputs tl and
(vk, skl) to πh5l

∗ and runs πh5l
∗ to get bl which it inputs to Ch4. During this, and below, the πh5l

∗ are

28

The communication device Ch5 works as follows:

key distribution: As Ch4.

compute result: Each Pi inputs some bi. Sample (j, p) ← Mec(b), e0 ← Epoch(E),
σ = Contract((j, p), sk), (V1,1, . . . , VE,n) ← Values(σ, (e0, j), E), (S1,1, . . . , SE,n) ←
Sharings(V). Let yi = (S(i)

1,1, . . . , S
(i)
E,n), where S(i)

e,j is the share of Pi in Se,j .

round-robin delivery: Deliver (y1, . . . , yn) to (P1, . . . , Pn) in unfair round-robin.

release contract: Run sequential epochs e = 1, . . . , E, each consisting of sequential tries i = 1, . . . , n.
In epoch e, try i, each Pj 6= Pi inputs a value sj . If ⊕jS(j)

e,i = ⊕jsj , then let Ii = >. Otherwise,
let Ii = ⊥. Output Ii to Pi along with all the sj .

accept contract, side-channel: As Ch4 respectively CREJ.

The recommend strategy πh5j for Pj is as follows:

1. Input bj = tj .

2. Use the standard recommended strategy for unfair round-robin, and afterwards initialize a variable
dj ∈ {allegiance,defection}, where dj = defection iff ⊥ was received from the
unfair round robin.

3. In each epoch e, try i 6= j input sj = S
(j)
e,i if dj = alligiance and input sj = ⊥ otherwise. In

epoch e, try j, if Ij 6= ⊥, then let Ve,j = ⊕ni=1si. If Ve,j is a valid contract, then input it to Ch5. If
Ij = ⊥, then let dj = defection.

4. If a valid contract on (j, p) was received, give the local output wj = (tj , (j, p)). Otherwise, give
the local output wj = (tj ,sorry).

Figure 12: Hybrid 5

allowed to communicate as in Hybrid 5. Then πh4l
∗ runs πh5l

∗ with Ch4 in the initial unfair round-
robin. If the output is >, then πh4l

∗ lets yl consist of random shares S(l)
e,i and inputs yl to πh5l

∗. If the
output is ⊥, then ⊥ is input to πh5l

∗. Then πh4l
∗ runs πh5l

∗ with Ch4 with the following four changes:
When πh5l

∗ outputs sl (in epoch e, try i), it sends it to all colluders along with S(l)
e,i . If⊕jS(j)

e,i = ⊕jsj ,
then they all input send to Ch4. Otherwise they all input hold. When Ch4 outputs Ve,l (in epoch e,
try l) which is > or a valid contract, then πh4l

∗ inputs (s1, . . . , sn) to πh5l
∗, where sj was sent to Pj

for j ∈ C and Pl picks si for i 6∈ C to be uniformly random values such that ⊕ni=1si = Ve,l. When
Ch4 outputs Ve,l = ⊥, then some Pi input hold. For all Pi, i 6∈ C doing so, use si = ⊥. For the
rest, pick si uniformly at random. When πh5l

∗ produces a local output, πh4l
∗ uses it as its own local

output.

Q2: The two settings will deny the winner the value (j, p) with the exact same probabilities.

Q3: In both settings the shares seen by πh5l
∗ are uniformly random sharings of the values Ve,i when

all shares are received. When less than n shares are received, the share are uniformly random and
independent values in both settings (as at least one share is missing and any n−1 shares are uniformly
random, independent values). Therefore the local outputs of πh5l

∗ will have the same distribution in
the two settings. 2

29

E.8 Hybrid 6

In Hybrid 6 the indicator Ii of whether the reconstruction is correct is computed by the party Pi and
not by the communication device. Since⊕ni=1si should be either> or a valid contract, Pi sets Ii = >
iff this is the case.

The communication device Ch6 works as Ch5 with the following modification:

release contract: Run sequential epochs e = 1, . . . , E, each consisting of sequential tries i = 1, . . . , n.
In epoch e, try i, each Pj 6= Pi inputs a value sj which is delivered to Pi.

The recommend strategy πh6j for Pj works as πh5j with the following modification:

3. In each epoch e, try i 6= j input sj = S
(j)
e,i if dj = alligiance and input sj = ⊥ otherwise. In

epoch e, try j, compute Ve,j = ⊕ni=1si. If Ve,j 6= > and Ve,j is not a valid contract, let Ij = ⊥.
Otherwise, let Ij = >. If Ij 6= ⊥ and Ve,j is a valid contract for Pj , then input the contract to
Ch6. If Ij = ⊥, then let dj = defection.

Figure 13: Hybrid 6

We argue that this way of computing Ii produces the same result as when computed by the
communication device, except with negligible probability.

Theorem 10 (Ch6, πh6) is an (n− 1)-resilient ε-Nash implementation of (Ch5, πh5).

Proof:

Q1: Trivial as Ii has the same value, >, no matter who computes it when all parties use the recom-
mended strategies.

Strategy mapping. For properties Q2 and Q3 we must for each Pl, l ∈ C and each strategy πh6l
∗

for Ch6 specify a strategy πh5l
∗ for Ch5. The strategy πh5l

∗ runs πh6l
∗ with Ch5, and the πh6l

∗ are
allowed to communicate as in Hybrid 5. The only modification needed is due to the fact that Ch5
outputs Il ∈ {⊥,>}. Since πh6l

∗ does not expect to see such a value from, the strategy πh5l
∗ does

not relay this value to πh6l
∗.

Properties Q2 and Q3 follow directly from the fact that the two different ways of computing Ii
lead to the same result unless the security of the signature scheme was broken, which is assumed to
happen with negligible probability. To prove this, it is sufficient to prove that if Pl, l ∈ C send sl
such that ⊕j∈Csj 6= ⊕j∈CS(l)

e,i for i 6∈ C, then Ii = ⊥ except with negligible probability.

Note that if (S(1)
e,i , . . . , S

(n)
e,i) is a sharing of Ve,i and the colluders Pl send sj such that ⊕j∈Csj 6=

⊕j∈CS(l)
e,i , then Pi computes V ′e,i = Ve,i ⊕∆l, where ∆l = (⊕j∈Csj) ⊕ (⊕j∈CS(j)

e,i). And, ∆l is a
value which the colluders together could compute efficiently by pooling their views. Assume now
that ∆l 6= 0 and Ii = >— the case we should argue happens with negligible probability.

We know that Ve,i = > or that Ve,i is a valid contract. Assume first that Ve,i = >. From
Ii = > we know that V ′e,i = > or that V ′e,i is a valid contract for Pi. From Ve,i = > we know that
V ′e,i = >⊕∆l 6= >. So, V ′e,i is a valid contract. Since Ve,i = > and V ′e,i = Ve,i ⊕∆l, it follows that
>⊕∆l is a valid contract. Since PC can efficiently compute ∆l and knows>, it follows that PC can
efficiently compute a valid contract for Pi after they input sC . Since PC were given no such contract,
this would be a break of the signature scheme if it happened with more than negligible probability.

30

Assume then that Ve,i = σ is a valid contract for Pi. Again, from Ii = > we know that V ′e,i = >
or that V ′e,i is a valid contract σ′ for Pi. Assume that V ′e,i = >. In this case it can again be seen that
∆l = >⊕σ, which implies that PC could efficiently compute σ, a contradiction, as they are missing
at least one share. Assume then that V ′e,i = σ′. Here ∆j = σ ⊕ σ′. This implies that PC given σ
could efficiently compute σ′. Since ∆j 6= 0 it follows that σ′ 6= σ. This means that PC given σ could
efficiently compute a new contract σ′ 6= σ. The construction of contracts implies that this requires to
break the signature scheme of all non-colluders. 2

E.9 Hybrid 7

Hybrid 7 is essentially just a bookkeeping step. We fill in the changes introduced from Hybrid 5 to
Hybrid 6 and move as many details from the communication device to the recommended strategy.

The communication device Ch7 works as follows:

key distribution: For each Pi sample a key pair (vki, ski) and output (vk, ski) to Pi.

compute result: Each Pi inputs some bi and some (vk′, sk′i). If all Pi input the same vk′ and
sk′i which is a signature key for vk′i, then sample (j, p) ← Mec(b), e0 ← Epoch(E),
σ = Contract((j, p), sk′), (V1,1, . . . , VE,n) ← Values(σ, (e0, j), E), (S1,1, . . . , SE,n) ←
Sharings(V). Let yi = (S(i)

1,1, . . . , S
(i)
E,n), where S(i)

e,j is the share of Pi of Se,j . Otherwise,
let all yi = ⊥.

round-robin delivery: Deliver (y1, . . . , yn) to (P1, . . . , Pn) in unfair round-robin.

release contract: Allow for En rounds of standard communication.

accept contract, side-channel: As Ch4 respectively CREJ.

The recommend strategy πh7j for Pj is as follows:

1. Input bj = tj and (vk′, sk′j) = (vk, skj).

2. Use the standard recommended strategy for unfair round-robin, and afterwards initialize a variable
dj ∈ {allegiance,defection}, where dj = defection iff ⊥ was received from the
unfair round robin.

3. Use the En rounds of standard communication to sequentially run E epochs, each consisting of
tries i = 1, . . . , n. In each epoch e, try i 6= j send sj = S

(j)
e,i to Pi if dj = alligiance and

send sj = ⊥ to Pi otherwise. In epoch e, try j, compute Ve,j = ⊕ni=1si. If Ve,j 6= > and Ve,j is
not a valid contract, let Ij = ⊥. Otherwise, let Ij = >. If Ij 6= ⊥ and Ve,j is a valid contract for
Pj , then input it to Ch6. If Ij = ⊥, then let dj = defection.

4. If a valid contract on (j, p) was received, give the local output wj = (tj , (j, p)). Otherwise, give
the local output wj = (tj ,⊥).

Figure 14: Hybrid 7

Theorem 11 (Ch7, πh7) is an (n− 1)-resilient ε-Nash implementation of (Ch6, πh6).

Proof: Almost trivial as the step consists essentially of syntactic changes. The only real change is
that Pi now has to re-input (vk, ski) to the device, or it will output ⊥ to all parties in the unfair
round-robin. Since at least one non-colluder will input vk′ = vk, all colluders must do the same
or have the device output ⊥ to all parties in the unfair round-robin. Therefore all colluders must
input sk′i which is a valid signing key for pki or have the device output ⊥ to all parties in the unfair

31

round-robin. So, the only extra power given to colluders is that they can make the device output ⊥
to all parties in the unfair round-robin. This power they already had, as they just input hold in all
rounds of the unfair round-robin. Specifying the strategy mapping is straight forward. 2

E.10 Hybrid 8

In the last hybrid (Fig. 15) we replace the device’s sampling of the yi and their unfair round-robin
delivery by a secure MPC protocol. We first define the notion of security that we need and a con-
struction using standard MPC building blocks.

Definition 7 Let µ = (µ1, . . . , µn) be an n-party protocol communicating via Cint. Let
(y1, . . . , yn) ← f(κ, x1, . . . , xn, r) be a randomized n-party function indexed by a security pa-
rameter κ. Let C ⊆ {1, . . . , n} specify a subset of corrupted parties, and let H = {1, . . . , n} \ C
denote the honest parties.

In the protocol setting, alternative programs µ∗C are specified for the corrupted parties, inputs
x = (x1, . . . , xn) are specified and the protocol is executed to produce (y1, . . . , yn)← µ′(x), where
µ′ = (µ∗C , µH) and yi is the final local output of µ′i. The alternative programs are allowed to
communicate using the side-channel. We use EXECµ(x, κ) to denote the distribution of the outputs y
on inputs x and security parameter κ, and we use EXECµ = {EXECµ(x, κ)} to denote the family of
distributions indexed by x and κ.

In the ideal setting, a simulator SC is given. Since the simulator is allowed to depend on
µ∗C , we sometimes write SC(µ∗C). First SC is run on xC to produce alternative inputs x∗C . Then
(y1, . . . , yn) ← f(κ, (x∗C , xH), r) is sampled for a uniformly random r. Then SC interacts in an
unfair round-robin delivery of the yi: The simulator SC inputs hold or send on behalf of PC
and the parties PH run the recommended strategy for unfair round-robin. This gives an output
y′i ∈ {0, 1}∗ ∪ {⊥} for i ∈ H . Then SC outputs y′i for i ∈ C, and the output of the simulation is
y′ = (y′1, . . . , y

′
n). We use IDEALSC(µ∗C),f (x, κ) to denote the distribution of the outputs y′ on inputs

x and security parameter κ, and we use IDEALSC(µ∗C),f = {IDEALSC(µ∗C),f (x, κ)} to denote the
family of distributions indexed by x and κ.

We say that µ is a t-secure implementation of f with unfair round-robin delivery if for all C,
|C| ≤ t there exists a poly-time simulator SC such that EXECµ and IDEALSC(µ∗C),f are computa-
tionally indistinguishable for all poly-time µ∗C .

Theorem 12 Under standard cryptographic assumptions, for all poly-time f , there exists an (n−1)-
secure implementation of f with unfair round-robin delivery.

Proof: One can use any generic secure MPC protocol with threshold t = n− 1 to compute verifiable
secret sharings (VSS) S1, . . . , Sn, where Si is a VSS of yi with threshold t = n − 1. Any Pi which
sees the generic secure MPC protocol fail outputs y′i = ⊥. Then in sequence, i = 1, . . . , n, all Pj
securely send their share of Si to Pi — if Pj already output y′j = ⊥ it sends the share ⊥. If any
party Pj sent ⊥, then Pi outputs y′i = ⊥; Otherwise Pi tries to reconstruct Si to some yi. If the
reconstruction fails, then Pi outputs y′i = ⊥; Otherwise Pi outputs y′i = yi.

For the VSS one can e.g. use an additive secret sharing yi = ⊕nj=1S
(j)
i and give Pi the share S(j)

i

along with a uniformly random field element b(j)i ∈ F (where F is a finite field large enough to hold
S

(j)
i). ThenPi is given a uniformly random field element a(j)

i ∈ F and T (j)
i = a

(j)
i S

(j)
i +b(j)i . To send

its share Pj sends (S(j)
i , b

(j)
i) and Pi checks that T (j)

i = a
(j)
i S

(j)
i + b

(j)
i . It is easy to see that Pj can

have an incorrect share accepted by Pi with probability at most 1/|F |: If Pj could send S(j)
i

′
6= S

(j)
i

32

and b(j)i
′

such that T (j)
i = a

(j)
i S

(j)
i

′
+ b

(j)
i

′
, then it could compute a(j)

i = (b(j)i
′
− b(j)i)(S(j)

i − S
(j)
i

′
),

and a(j)
i is uniformly random in F in the view of Pj . The simulator can, on the other hand, make

sure to know all the a(j)
i -values, and can then exactly compute a correct b(j)i

′
for all S(j)

i

′
.

The simulator SC then simulates a run of µ∗C in the generic secure MPC protocol generating
simulated VSS’s S′1, . . . , S

′
n of 0, say. Then it runs the unfair round-robin part of the µ∗C . If some

µ∗j sends an incorrect share, SC inputs hold on behalf of Pj ; Otherwise SC inputs send. If SC

receives an output yj 6= ⊥ for Pj , then SC changes the share S(i)
j of some honest Pi and changes it

to S(i)
j

′
= S

(i)
j ⊕ yj , and changes b(j)j

′
to the corresponding value. Then it runs as in the protocol. 2

The details of replacing mediation by the secure MPC protocol are given in Fig. 15.

The communication device Ch8 works as follows:

key distribution: For each Pi sample a key pair (vki, ski) and output (vk, ski) to Pi.

compute result and release contract: Allow A + En rounds of standard communication, where A
rounds are enough to run a secure MPC protocol specified below.

accept contract, side-channel: As Ch4 respectively CREJ.

The recommend strategy πh8j for Pj is as follows:

1. Receive and store (vk, skj).

2. Run the code of Pj in a secure MPC with unfair round-robin delivery for the following probabilis-
tic function f :

• Each Pi inputs some bi and some (vk′, sk′i). If all Pi input the same vk′ and sk′i a signature
key for vk′i, then sample (j, p) ← Mec(b), e0 ← Epoch(E), σ = Contract((j, p), sk′),
(V1,1, . . . , VE,n) ← Values(σ, (e0, j), E), (S1,1, . . . , SE,n) ← Sharings(V), and let yi =
(S(i)

1,1, . . . , S
(i)
E,n), where S(i)

e,j is the share of Pi of Se,j . Otherwise, let yi = ⊥. The output
to Pi is yi.

Use inputs bj ← Bj(tj) and (vk′, sk′j) = (vk, skj).

3. Afterwards initialize a variable dj ∈ {allegiance,defection}, where dj = defection
iff the secure MPC protocol output yj 6= ⊥. If dj 6= defection, then parse yj as shares
(S(j)

1,1, . . . , S
(j)
E,n).

4. Use En rounds of standard communication to sequentially run E epochs, each consisting of tries
i = 1, . . . , n. In each epoch e, try i 6= j send sj = S

(j)
e,i to Pi if dj = alligiance and send

sj = ⊥ to Pi otherwise. In epoch e, try j, compute Ve,j = ⊕ni=1si. If Ve,j 6= > and Ve,j is not a
valid contract, let Ij = ⊥. Otherwise, let Ij = >. If Ij 6= ⊥ and Ve,j is a valid contract for Pj ,
then input it to Ch6. If Ij = ⊥, then let dj = defection.

5. If a valid contract on (j, p) was received, give the local output wj = (tj , (j, p)). Otherwise, give
the local output wj = (tj ,sorry).

Figure 15: Hybrid 8

Theorem 13 (Ch8, πh8) is an (n− 1)-resilient ε-Nash implementation of (Ch7, πh7).

Proof: Q1 follows from the MPC being correct when all parties follow the code.

33

Strategy mapping. For properties Q2 and Q3 we must for each Pl, l ∈ C and each strategy πh8l
∗

for Ch8 specify a strategy πh7l
∗ for Ch7.

The strategy πh7l
∗ runs πh8l

∗ with Ch7. In addition it lets πh8l
∗ communicate with the πh8j

∗ run
by other πh7j

∗, j ∈ C as they would have done in Hybrid 8. It also uses the simulator SC of µ.
The only modification needed is due to the fact that Ch7 takes an input (bl, vk′, sk′l) and delivers

an output yl, whereas when using Ch8 the value yl is computed using the secure MPC protocol. This
is handled using SC . When πh8l

∗ reaches the point where it is about to take part in the execution
of µ, πh7l

∗ lets πh8l
∗,1 be the current state of πh8l

∗. So, πh8l
∗,1 is in particular a piece of code ready

to run the part of Pl in µ(x). Define xC = {xl}l∈C to be the inputs the parties PC would input to
µ(x). Note that Pl, l ∈ C knows xl = (bl, vk′, sk′j) as they were output by πh8l

∗, as it thought it was

sending them to Ch8. Let µ∗l be a piece of code which runs πh8l
∗,1 and in the end outputs the state of

πh8l
∗,1 after this execution, which we call πh8l

∗,2. Let µ∗C = {µ∗l }l∈C .
Now the parties Pl ∈ PC send xl and µ∗l to a coordinator, e.g., the lowest indexed colluder.

The coordinator runs SC(µ∗C) on input xC to get alternative inputs x∗C , and sends x∗l to πh7l
∗, which

inputs x∗l to Ch7. Then the coordinator runs SC(µ∗C) with the unfair round-robin delivery of Ch7.
If SC(µ∗C) sends sj ∈ {send,hold} on behalf of Pj , j ∈ C, then the coordinator sends sj to Pj
which inputs sj to Ch7. When Ch7 delivers yj to Pj , it sends it to the coordinator which inputs it
to SC(µ∗C). In the end SC(µ∗C) outputs {y′j}j∈C , where y′j simulates the final output of µ∗j . Recall

that the output of µ∗j is the state of πh8l
∗,1 after an execution of unfair round-robin delivery, which we

called πh8j
∗,2. Therefore y′j is a simulation of πh8j

∗,2. The coordinator sends πh8j
∗,2 to each Pj . After

the execution of the MPC protocol respectively the unfair round-robin delivery of Ch7, Hybrid 8 and
Hybrid 7 are identical. So, now each πh7j

∗ can finish the execution by letting πh8j
∗,2 run with Ch7.

When πh8j
∗,2 makes a local output, πh7j

∗ adopts this as its own local output.

As a final technicality, we ensure that the simulated states πh8j
∗,2 include the sequence of con-

tracts input to the device, for the following use: If the simulator sees that any simulated πh8j
∗,2

contains a simulated inputting of a valid contract σ to Ch8, then for the first Pj to give such an input
in the simulation, the coordinator informs Pj of its being first. Then on receiving πh8j

∗,2 from the
coordinator, Pj inputs σ to Ch7. Since no non-colluder inputs contracts in this phase of the execu-
tion, this possibly delayed inputting of σ will not change the identity of the first contract input to the
device in the two settings.

Q3: In Hybrid 8, let Dh8 denote the state of all parties after the execution of the MPC protocol.
For πh8j , j 6∈ C, this is tj , vk and the output yj from the MPC protocol — the party has to remember
tj to output oj = tj , has to remember vk to verify possible contracts and besides this only has to
remember yj . For πh8j

∗, j ∈ C, the state is some value, which we call πh8j
∗,2.

In Hybrid 7, let Dh7 denote the state of all parties after the execution of the MPC protocol. For
πh7j , j 6∈ C, this is tj , vk and the output yj from the unfair round-robin delivery. For πh7j

∗, j ∈ C,

we let it be the value πh8j
∗,2 sent by the coordinator.

By construction of the coordinator and the (n−1)-security of the MPC protocol, the distributions
Dh8 and Dh7 are computationally indistinguishable. In both hybrids the local outputs are computed
using the same poly-time computation on Dh8 respectively Dh7, namely completion of the protocol
with Ch8 respectively Ch7, which are identical throughout the completion of the protocol. Since
poly-time computation maintains computational indistinguishability, it follows that the local outputs
are computationally indistinguishable.

34

Q2: Using the same argument as above, the distribution of the first valid contract input to the device
is computationally indistinguishable in the two hybrids — it is the same poly-time function of Dh8

respectively Dh7. 2

E.11 Concluding

Since the unmediated protocol (Fig. 5) is identical to Hybrid 8, Theorem 3 follows from Theorem 4
to Theorem 13.

35

