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Abstract. In the model of perfectly secure message transmission schemes
(PSMTs), there are n channels between a sender and a receiver. An in-
finitely powerful adversary A may corrupt (observe and forge) the mes-
sages sent through t out of n channels. The sender wishes to send a
secret s to the receiver perfectly privately and perfectly reliably without
sharing any key with the receiver.
In this paper, we show the first 2-round PSMT for n = 2t + 1 such that
not only the transmission rate is O(n) but also the computational costs
of the sender and the receiver are both polynomial in n. This means that
we solve the open problem raised by Agarwal, Cramer and de Haan at
CRYPTO 2006.
The main novelty of our approach is to introduce a notion of pseudo-
basis to the coding theory. It will be an independent interest for coding
theory, too.
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1 Introduction

In the model of (r-round, n-channel) message transmission schemes [2], there are
n channels between a sender and a receiver. An infinitely powerful adversary A
may corrupt (observe and forge) the messages sent through t out of n channels.
The sender wishes to send a secret s to the receiver in r-rounds without sharing
any key with the receiver.

We say that a message transmission scheme is perfectly secure if it satisfies
perfect privacy and perfect reliability. The perfect privacy means that the ad-
versary A learns no information on s, and the perfect reliability means that the
receiver can output ŝ = s correctly.

For r = 1, Dolev et al. showed that there exists a 1-round perfectly secure
message transmission scheme (PSMT) if and only if n ≥ 3t + 1 [2]. They also
showed an efficient 1-round PSMT [2].

For r ≥ 2, it is known that there exists a 2-round PSMT if and only if
n ≥ 2t + 1 [2]. However, it is very difficult to construct an efficient scheme for



n = 2t + 1. Dolev et al. [2] showed a 3-round PSMT such that the transmission
rate is O(n5), where the transmission rate is defined as

the total number of bits transmitted
the size of the secrets

.

Sayeed et al. [7] showed a 2-round PSMT such that the transmission rate is
O(n3).

Recently, Srinathan et al. showed that n is a lower bound on the transmission
rate of 2-round PSMT [8]. Then Agarwal, Cramer and de Haan [1] showed a
2-round PSMT such that the transmission rate is O(n) at CRYPTO 2006 based
on the work of Srinathan et al. [8] 3. However, the communication complexity is
exponential because the sender must broadcast consistency check vectors of size
4

w =
(

n− 1
t + 1

)
=

(
2t

t + 1

)
.

In other words, Agarwal et al. [1] achieved the transmission rate of O(n) by
sending exponentially many secrets. Therefore, the computational costs of the
sender and the receiver are both exponential. Indeed, the authors wrote [1, Sec.6]
that:

”We do not know whether a similar protocol can exist where sender and receiver
restricted to polynomial time (in terms of the number of channels n) only”.

In this paper, we solve this open problem. That is, we show the first 2-round
PSMT for n = 2t + 1 such that not only the transmission rate is O(n) but also
the computational costs of the sender and the receiver are both polynomial in
n.

Table 1. 2-Round PSMT for n = 2t + 1

Trans. rate com. complexity Receiver Sender

Agarwal et al. [1] O(n) exponential exponential exponential

This paper O(n) O(n3) poly poly

The main novelty of our approach is to introduce a notion of pseudo-basis to
the coding theory. Let C be a linear code of length n over a finite field F with the
minimum Hamming distance d = t+1. Consider a message transmission scheme
such that the sender chooses a codeword Xi = (xi1, · · · , xin) of C randomly and

3 Srinathan et al. claimed that they constructed a 2-round PSMT such that the trans-
mission rate is O(n) in [8]. However, Agarwal et al. pointed out that it has a flaw
in [1].

4 Indeed, in [1, page 407], it is written that ”at most O(w) indices and field elements
are broadcast ....”, where w is defined in [1, page 403] as shown above.



sends xij through channel j for j = 1, · · · , n. Note that the receiver can detect t
errors, but cannot correct them because d = t + 1.

If the sender sends many codewords, however, then we can do something
better. Suppose that the sender sent Xi as shown above, and the receiver received
Yi = Xi+Ei for i = 1, · · · ,m, where Ei is an error vector caused by the adversary.
We now observe that the dimension of the space E spanned by the error vectors
E1, · · · , Em is at most t because the adversary corrupts at most t channels.
Suppose that {Ei1 , · · · , Eik

} is such a basis, where k ≤ t. For the same indices,
we say that B = {Yi1 , · · · , Yik

} is a pseudo-basis of Y = {Y1, · · · , Ym}. We then
show that a receiver can find a pseudo-basis B of Y in polynomial time.

By using this algorithm, we first show a 3-round PSMT for n = 2t + 1 such
that the transmission rate is O(n) and the computational cost of the sender and
the receiver are both polynomial in n. (See Fig.4.) Then combining the technique
of [8, 1], we show a 2-round PSMT such that not only the transmission rate is
O(n) but also the computational cost of the sender and the receiver are both
polynomial in n.

(Remark) Recently, Fitzi et al. showed an efficient 2-round PSMT for n ≥ (2+ε)t
for any constant ε > 0 [4], but not for n = 2t + 1.

2 Main Idea

Suppose that there are n channels between the sender and the receiver, and an
adversary may corrupt t out of n channels. We use F to denote GF (p), where p
is a prime such that p > n. 5

Let C be a linear code of length n such that a codeword is X = (f(1), · · · , f(n)),
where f(x) is a polynomial over F with deg f(x) ≤ t.

2.1 Difference from Random t Errors

Consider a message transmission scheme such that the sender chooses a codeword
X = (f(1), · · ·, f(n)) of C randomly, and sends f(i) through channel i for
i = 1, · · · , n. Then the adversary learns no information on f(0) even if she
observes t channels because deg f(x) ≤ t. Thus perfect privacy is satisfied.

If n = 3t+1, then the minimum Hamming distance of C is d = n− t = 2t+1.
Hence the receiver can correct t errors caused by the adversary. Thus perfect
reliability is also satisfied. Therefore we can obtain a 1-round PSMT easily.

If n = 2t + 1, however, the minimum Hamming distance of C is d = n− t =
t + 1. Hence the receiver can only detect t errors, but cannot correct them. This
is the main reason why the construction of PSMT for n = 2t + 1 is difficult.

What is a difference between usual error correction and PSMTs ? If the
sender sends a single codeword X ∈ C only, then the adversary causes t errors
5 We adopt GF (p) only to make the presentation simpler, where the elements are

denoted by 0, 1, 2, · · ·. But in general, our results hold for any finite field F whose
size is larger than n.



randomly. Hence there is no difference. If the sender sends many codewords
X1, · · · , Xm ∈ C, however, the errors are not totally random. This is because the
errors always occur at the same t (or less) places !

To see this more precisely, suppose that the receiver received

Yi = Xi + Ei, (1)

where Ei = (ei1, · · · , ein) is an error vector caused by the adversary. Define

support(Ei) = {j | eij 6= 0}.

Then there exist some t-subset {j1, · · · , jt} of n channels such that each error
vector Ei satisfies

support(Ei) ⊆ {j1, · · · , jt}, (2)

where {j1, · · · , jt} is the set of channels that the adversary forged.
This means that the space E spanned by E1, · · · , Em has dimension at most

t. We will exploit this fact extensively.

2.2 Pseudo-Basis and Pseudo-Dimension

For i = 1, · · · ,m, suppose that the receiver received Yi such that

Yi = Xi + Ei, (3)

where Xi ∈ C is a codeword that the sender sent and Ei is the error vector
caused by the adversary. We say that {E1, · · · , Em} is the real error-vector set
of Y = {Y1, · · · , Ym}. We also say that E is the real error-vector space if it is
spanned by the real error-vector set {E1, · · · , Em}.

For two vectors Y and E, we write

Y = E mod C

if Y − E ∈ C. In particular, eq.(3) means that

Yi = Ei mod C.

Let Y = {Y1, · · · , Ym} be a set of received words. We say that {E1, · · · , Em}
is an admissible error-vector set of Y if each Ei satisfies Yi = Xi + Ei for some
codeword Xi, and

|
⋃
i

support(Ei)| ≤ t (4)

We say that E is an admissible error-vector space of Y if it is spanned by an
admissible error-vector set {E1, · · · , Em}.

For given Y, an admissible error-vector set {E1, · · · , Em} may not be unique.
Nevertheless, the following results holds for any admisible error-vector set.

We begin with a definition of linearly pseudo-express.



Definition 1. We say that Y ∈ Y is linearly pseudo-expressed by {B1, · · · , Bk}
if there exists some α = (a1 · · · , ak) such that

Y = a1B1 + · · ·+ akBk mod C.

Lemma 1. Let {E1, · · · , Em} be an admissible error-vector set of Y. Then Ei is
linearly expressed by {Ej1, · · · , Ejk} if and only if Yi is linearly pseudo-expressed
by {Yj1, · · · , Yjk}.

(Proof) Let Yi = Xi + Ei for each i, where Xi is a codeword. Suppose that

Ei = a1Ej1 + · · ·+ akEjk

for some a1, · · · , ak. Then in modC,

Yi − (a1Yj1 + · · ·+ akYjk)
= (Xi + Ei)− a1(Xj1 + Ej1)− · · · − ak(Xj1 + Ej1)
= Ei − a1Ej1 − · · · − akEjk

= 0

Hence Yi is linearly pseudo-expressed by {Yj1, · · · , Yjk} if Ei is linearly expressed
by {Ej1, · · · , Ejk}. Next suppose that

Yi − (a1Yj1 + · · ·+ akYjk) = 0 mod C.

Then in modC,

0 = Yi − (a1Yj1 + · · ·+ akYjk)
= (Xi + Ei)− a1(Xj1 + Ej1)− · · · − ak(Xj1 + Ej1)
= Ei − a1Ej1 − · · · − akEjk

Hence
Ei − a1Ej1 − · · · − akEjk ∈ C.

From eq.(4), the Hamming weight of the left hand side is at most t while the
minimum Hamming weight of C is t + 1. Therefore, Ei − a1Ej1 − · · · − akEjk is
a zero-vector. Hence we obtain that

Ei = a1Ej1 + · · ·+ akEjk.

This means that if Yi is linearly pseudo-expressed by {Yj1, · · · , Yjk}, ten Ei is
linearly expressed by {Ej1, · · · , Ejk}.

Q.E.D.
We next define pseudo-span.

Definition 2. We say that {Yj1, · · · , Yjk} ⊂ Y pseudo-spans Y if each Yi ∈ Y
can be written as

Yi = a1Yj1 + · · ·+ akYjk mod C

for some ai ∈ F.



We then define a pseudo-basis and the pseudo-dimension of Y.

Definition 3. – We say that {Yj1, · · · , Yjk} is a pseudo-basis of Y if it is a
minimum set which pseudo-spans Y.

– Suppose that {Yj1, · · · , Yjk} is a pseudo-basis of Y, where k = |{Yj1, · · · , Yjk}|.
Then we say that Y has the pseudo-dimension k.

Theorem 1. Let {E1, · · · , Em} be an admissible error-vector set of Y. Then
Be = {Ej1, · · · , Ejk} is a basis of the admisible error-vector space E if and only
if By = {Yj1, · · · , Yjk} is a pseudo-basis of Y. (Note that Be and By have the
same indices.)

In particular, the pseudo-dimension of Y is equal to the dimension of E.

(Proof) Suppose that Be is a basis of E . That is, Be is a minimum set which
spans E . Since Be spans E , By pseudo-spans Y from Lemma 1.

Suppose that By is not minimum. That is, suppose that there exists a smaller
subset of Y which pseudo-spans Y. Then the corresponding subset of {E1, · · · , Em}
also spans E from Lemma 1. However, this contradcits to the fact that Be is min-
imum. Hence By is minimum. This shows that By is a pseudo-basis of Y.

Similarly, Be is a basis of E if By is a pseudo-basis of Y.
Hnece the pseudo-dimension of Y is equal to the dimension of E .

Q.E.D.
Since the real error-vector set is an admisible error-vector set, we obtain the

following corollary from Theorem 1.

Corollary 1. Let {E1, · · · , Em} be the real error-vector set of Y. If By = {Yj1, · · · , Yjk}
is a pseudo-basis of Y, then Be = {Ej1, · · · , Ejk} is a basis of the real error-vector
space.

Let {E1, · · · , Em} be the real error-vector set of Y, and let {X1, · · · , Xm} be
the codewords which the sender sent. Define

FORGED =
m⋃

i=1

support(Ei).

That is, FORGED is the set of all channels that the adversary forged. Suppose
that By = {Yj1, · · · , Yjk} is a pseudo-basis of Y. Then from Corollary 1, it holds
that

FORGED =
m⋃

i=1

support(Ei) (5)

=
k⋃

i=1

support(Eji) (6)

=
k⋃

i=1

support(Yji −Xji), (7)



where eq.(5) comes from the definition of FORGED, eq.(6) holds because {Ej1, · · · , Ejk}
is a basis and eq.(7) holds because Yji = Xji + Eji.

The following theorem is clear since the adversary forges at most t channels.

Theorem 2. The pseudo-dimension of Y is at most t.

(Proof) The dimension of the real error-vector space is at most t because the ad-
versary forges at most t channels. Hence from Theorem 1, The pseudo-dimension
of Y is at most t.

Q.E.D.

2.3 How to Find Pseudo-Basis

In this subsection, we show a polynomial time algorithm which finds the pseudo-
dimension k and a pseudo-basis B = {B1, · · · , Bk} of Y = {Y1, · · · , Ym}.

Theorem 1 shows that By = {Yj1, · · · , Yjk} is a pseudo-basis of Y if and
only if Be = {Ej1, · · · , Ejk} is a basis of an admisible error-vector space E ,
where {E1, · · · , Em} is the admissible error-vector set. On the other hand, we
can find a basis of a vector space easily by using a greedy algorithm as shown in
Fig.1. This means that a pseudo-basis B can be found by using a similar greedy
algorithm.

Fig. 1. How to Find a Basis of E

Input: {E1, · · · , Em}.

1. Let i = 1 and B = ∅.
2. While i ≤ m and |B| < t, do:
(a) Check if Yi is linearly expressed by B.

If NO, then add Ei to B.
(b) Let i← i + 1.
3. Output B as a basis and k = |B| as the dimension.

Remember that Y is linearly pseudo-expressed by {B1, · · · , Bk} if there exists
some α = (a1 · · · , ak) such that

X(α) = Y − (a1B1 + · · ·+ akBk) ∈ C (8)

Let
X(α) = (x1(α), · · · , xn(α)).

Then it is clear that xj(α) is a linear expression of (a1 · · · , ak) from eq.(8).
In Fig.2, we show a polynomial time algorithm which checks if Y is linearly

pseudo-expressed by {B1, · · · , Bk}. It is easy to see that each coefficient of fα(x)
is a linear expression of (a1 · · · , ak). Hence at step 3, fα(j) = xj(α) is a linear



equation on (a1 · · · , ak). It is now clear that the algorithm of Fig.2 outputs YES
if and only if X(α) ∈ C for some α. Hence it outputs YES if and only if Y is
linearly pseudo-expressed by {B1, · · · , Bk}.

Fig. 2. How to Check if Y is linearly pseudo-expressed by B

Input: Y and B = {B1, · · · , Bk}.

1. Construct X(α) = (x1(α), · · · , xn(α)) of eq.(8).
2. Construct a polynomial fα(x) with deg fα(x) ≤ t such that

fα(i) = xi(α)
for i = 1, · · · , t + 1 by using Lagrange formula.

3. Output YES if the following set of linear equations has a solution α.
fα(t + 2) = xt+2(α),

...
fα(n) = xn(α).

Otherwise output NO.

In Fig.3, we show a polynomial time algorithm which finds the pseudo-
dimension k and a pseudo-basis B = {B1, · · · , Bk} of Y = {Y1, · · · , Ym}. Note
that Fig.3 is almost the same as Fig.1. Indeed, it is obtained by replacing Ei of
Fig.1 with Yi. We call the algorithm of Fig.1 the real-basis finding algorithm,
and call the algorithm of Fig.3 the pseudo-basis finding algorithm

Let {E1, · · · , Em} be an admissble error-vector set of Y, and let E be the
vector space spanned by {E1, · · · , Em}. Supppose that we apply the real-basis
finding algorithm to {E1, · · · , Em}, and apply the pseudo-basis finding algorithm
to Y = {Y1, · · · , Ym}. The real-basis finding algorithm outputs a basis B′ of E .
We will show that the pseudo-basis finding algorithm outputs a pseudo-basis B
of Y.

Step 2(a) is the only difference between the two algorithms. Further from
Lemma 1, Yi is added to B at step 2(a) if and only if Ei is added to B′ at
step 2(a). Hence the pseudo-basis finding algorithm behaves in the same way as
the real-basis finding algorithm. In particular, if the real-basis finding algorithm
outputs B′ = {Ej1, · · · , Ejk}, then the pseudo-basis finding algorithm outputs
B = {Yj1, · · · , Yjk}. Therefore B is a pseudo-basis of Y from Theorem 1 because
B′ is a basis of E .

2.4 Broadcast

We say that a sender (receiver) broadcasts x if it she sends x over all n channels.
Since the adversary corrupts at most t out of n = 2t + 1 channels, the receiver
(sender) receives x correctly from at least t+1 channels. Therefore, the receiver
(sender) can accept x correctly by taking the majority vote.



Fig. 3. How to Find a Pseudo-Basis B of Y

Input: Y = {Y1, · · · , Ym}.

1. Let i = 1 and B = ∅.
2. While i ≤ m and |B| < t, do:
(a) Check if Yi is linearly pseudo-expressed by B by using Fig.2.

If NO, then add Yi to B.
(b) Let i← i + 1.
3. Output B as a pseudo-basis and k = |B| as the pseudo-dimension.

2.5 How to Apply to 3-Round PSMT

We now present an efficient 3-round PSMT for n = 2t + 1 in Fig.4.

Fig. 4. Our 3-round PSMT for n = 2t + 1

The sender wishes to send ` = nt secrets s1, · · · , s` ∈ F to the receiver.

1. The sender sends a random codeword Xi = (fi(1), · · · , fi(n)),
and the receiver receives Yi = Xi + Ei for i = 1, · · · , ` + t,
where deg fi(x) ≤ t and Ei is the error vector caused by the adversary.

2. The receiver finds a pseudo-basis B = {Yj1, · · · , Yjk}, where k ≤ t,
by using the algorithm of Fig.3.
He then broadcasts B and ΛB = {j1, · · · , jk}.

3. The sender constructs FORGED of eq.(7) from {Ej = Yj −Xj | j ∈ ΛB},
encrypts s1, · · · , s` by using {fi(0) | i 6∈ ΛB} as the key of one-time pad,
and then broadcasts FORGED and the ciphertexts.

4. The receiver reconstructs fi(x) by ignoring all channels of FORGED,
and applying Lagrange formula to the remaining elements of Yi.
He then decrypts the ciphertexts by using {fi(0) | i 6∈ ΛB}.

Further by combining the technique of [8, 1], we can construct a 2-round
PSMT such that not only the transmission rate is O(n), but also the computa-
tional cost of the sender and the receiver are both polynomial in n. The details
will be given in the following sections.

3 Details of Our 3-Round PSMT

In this section, we describe the details of our 3-round PSMT for n = 2t + 1
which was outlined in Sec.2.5, and prove its security. We also show that the



transmission rate is O(n) and the computational cost of the sender and the
receiver are both polynomial in n.

Remember that FORGED is the set of all channels which the adversary forged,
and ”broadcast” is defined in Sec.2.4.

3.1 3-round Protocol for n = 2t + 1

The sender wishes to send ` = nt secrets s1, · · · , s` ∈ F to the receiver.

Step 1. The sender does the following for i = 1, 2, · · · , t + `.

1. She chooses a polynomial fi(x) over F such that deg fi(x) ≤ t randomly.
Let Xi = (fi(1), · · · , fi(n)).

2. She send fi(j) through channel j for j = 1, · · · , n.
The receiver then receives Yi = Xi + Ei, where Ei is the error vector caused
by the adversary.

Step 2. The receiver does the following.

1. Find the pseudo-dimension k and a pseudo-basis B = {Yj1, · · · , Yjk} of
{Y1, · · · , Yt+`} by using the algorithm of Fig.3.

2. Broadcast k, B and ΛB = {j1, · · · , jk}. where ΛB is the set of indices of B.

Step 3. The sender does the following.

1. Construct FORGED of eq.(7) from {Ej = Yj −Xj | j ∈ ΛB}.
2. Compute c1 = s1 + fi1(0), · · · , c` = s` + fi`

(0) for i1, · · · , i` 6∈ ΛB.
3. Broadcast FORGED and (c1, · · · , c`).

Step 4. The receiver does the following. Let Yi = (yi1, · · · , yin).

1. For each i 6∈ ΛB, find a polynomial f ′i(x) with deg f ′i(x) ≤ t such that

f ′i(j) = yi,j

for all j 6∈ FORGED.
2. Compute s′1 = c1 − f ′i1(0), · · · , s′` = c` − f ′i`

(0) for i1, · · · , i` 6∈ ΛB.
3. Output (s′1, · · · , s′`).

3.2 Security

We first prove the perfect privacy. Consider fi(x) such that i 6∈ ΛB. For such i,
Yi is not broadcast at step 2-2. Hence the adversary observes at most t elements
of (fi(1), · · · , fi(n)). This means that she has no information on fi(0) because
deg fi(x) ≤ t. Therefore since {fi(0) | i 6∈ ΛB} is used as the key of one-time-pad,
the adversary learns no information on s1, · · · , s`.

We next prove the perfect reliability. We first show that there exist ` indices
i1, i2, · · · , i` such that

{i1, i2, · · · , i`} ⊆ {1, 2, · · · , t + `} \ ΛB.



This is because
t + `− |ΛB| ≥ t + `− t = `.

from Theorem 2. We next show that f ′i(x) = fi(x) for each i 6∈ ΛB at Step 4.
This is because

f ′i(j) = yi,j = xi,j = fi(j)

for all j 6∈ FORGED, and

n− |FORGED| ≥ 2t + 1− t ≥ t + 1.

Also note that deg fi(x) ≤ t and deg f ′i(x) ≤ t. Therefore s′i = si for i = 1, · · · , `.

3.3 Efficiency

Let |F| denote the bit length of the field elements. Let COM(i) denote the com-
munication complexity of Step i for i = 1, 2, 3. Then

COM(1) = O(n(t + `))|F|) = O(n`|F|),
COM(2) = O(n2t|F|) = O(n`|F|),
COM(3) = O(n`|F|+ tn log2 n) = O(n`|F|)

since ` = nt. Hence the total communication complexity is O(n`|F|) = O(n3|F|).
Further the sender sends ` secrets s1, · · · , s` ∈ F. Therefore, the transmission
rate is O(n) because

n`|F|
`|F|

= n.

It is easy to see that the computational costs of the sender and the receiver
are both polynomial in n.

4 Our Basic 2-Round PSMT

In this section, we show our basic 2-round PSMT for n = 2t + 1 such that the
transmission rate is O(n2t) and the computational costs of the sender and the
receiver are both polynomial in n.

For two vectors U = (u1, · · · , un) and Y = (y1, · · · , yn), define

du(U, Y ) = {uj | uj 6= yj}
dI(U, Y ) = {j | uj 6= yj}.

Remember that C is the set of all (f(1), · · · , f(n)) such that deg f(x) ≤ t.

4.1 Randomness Extractor

Suppose that the adversary has no information on ` out of m random elements
r1, · · · , rm ∈ F. In this case, let R(x) be a polynomial with deg R(x) ≤ m − 1
such that R(i) = ri for i = 1, · · · ,m. Then it is well known [1, Sec.2.4] that the
adversary has no information on

z1 = R(m + 1), · · · , z` = R(m + `).



4.2 Basic 2-round Protocol

The sender wishes to send a secret s ∈ F to the receiver.

Step 1. The receiver does the following for i = 1, 2, . . . , n.

1. He chooses a random polynomial fi(x) such that deg fi(x) ≤ t.
2. He sends

Xi = (fi(1), · · · , fi(n))

through channel i, and the sender receives

Ui = (ui1, . . . , uin).

3. Through each channel j, he sends fi(j) and the sender receives

yij = fi(j) + eij ,

where eij is the error caused by the adversary. Let

Yi = (yi1, · · · , yin), Ei = (ei1, · · · , ein).

Step 2. The sender does the following.

1. For i = 1, · · · , n,
(a) If uii 6= yii or |du(Ui, Yi)| ≥ t + 1 or Ui /∈ C,

then broadcast ”ignore channel i”. 6

This channel will be ignored from now on because it is forged clearly.
(b) Else define ri as

ri = uii = yii. (9)

2. Find a polynomial R(x) with deg R(x) ≤ n− 1 such that

R(i) = ri

for each i.
3. Compute R(n + 1) and broadcast

c = s + R(n + 1).

4. Find the pseudo-dimension k and a pseudo-basis B = {Yj1, · · · , Yjk} of
{Y1, · · · , Yn} by using the algorithm of Fig.3.
Broadcast k,B and ΛB = {j1, · · · , jk}.

5. Broadcast du(Ui, Yi) and dI(Ui, Yi) for each i.

Step 3. The receiver does the following.

1. Construct FORGED of eq.(7) from {Ei = Yi −Xi | i ∈ ΛB}.
6 For simplicity, we assume that there are no such channels in what follows.



2. For each i, find a polynomial ui(x) with deg ui(x) ≤ t such that

ui(j) = uij for all j ∈ dI(Ui, Yi),
ui(j) = fi(j) for all j such that j /∈ dI(Ui, Yi) and j /∈ FORGED

3. Find a polynomial R′(x) with deg R′(x) ≤ n− 1 such that

R′(i) = ui(i)

for each i. 7

4. Compute R′(n + 1) and output

s′ = c−R′(n + 1).

4.3 Security

We first prove the perfect privacy.

Lemma 2. There is at least one ri on which the adversary has no information.

Proof. Consider a non-corrupted channel i such that i /∈ ΛB. First the sender
does not broadcast ri at step 2-4 because i /∈ ΛB. Next because fi(i) is sent
through channel i that the adversary does not corrupt, we have

ri = uii = fi(i).

Further the adversary observes at most t values of (fi(1), · · · , fi(n)). Hence the
adversary has no information on ri = fi(i) because deg fi(x) ≤ t.

Finally there exists at least one non-corrupted channel i such that i /∈ ΛB
because

n− t− |ΛB| ≥ n− 2t = 1.

ut

Therefore, the adversary has no information on R(n + 1) from Sec.4.1. Hence
she learns no information on s from c = s + R(n + 1).

We next prove the perfect reliability. If j /∈ FORGED and j /∈ dI(Ui, Yi), then
fi(j) = yij = uij from the definition of dI(Ui, Yi). Therefore, at step 3-2,

ui(j) = uij

for all j ∈ dI(Ui, Yi), and for all j such that j /∈ dI(Ui, Yi) and j /∈ FORGED.
This means that ui(j) = uij for each j ∈ (FORGED ∪ dI(Ui, Yi)), where

|FORGED ∪ dI(Ui, Yi))| ≥ |FORGED| ≥ n− t = (2t + 1)− t = t + 1.

7 ”for each i” can be replaced by ”for each i /∈ ΛB” at step 2-2 and step 3-3.



Further since deg ui(x) ≤ t and Ui ∈ C, it holds that

(ui(1), · · · , ui(n)) = (ui1, · · · , uin).

In particular, ui(i) = uii. Therefore from eq.(9), we have that

R(i) = ri = uii = ui(i) = R′(i)

for each i. Hence we obtain that R′(x) = R(x) because deg R′(x) ≤ n − 1 and
deg R(x) ≤ n− 1. Consequently,

s′ = c−R′(n + 1) = c−R(n + 1) = s.

Thus the receiver can compute s′ = s correctly.

4.4 Efficiency

Let COM(i) denote the communication complexity of Step i for i = 1, 2. Note
that |du(Ui, Yi)| = |dI(Ui, Yi)| ≤ t for each i. Then

COM(1) = O(n(n + n)|F|) = O(n2|F|),
COM(2) = O((|dI(Ui, Yi)| log2 n + |du(Ui, Yi)||F|)n2

+(log2 n + n|B||F|+ |ΛB| log2 n)n + |F|n)
= O(tn2 log2 n + tn2|F|+ n log2 n + n2t|F|+ tn log2 n + |F|n)
= O(n2t|F|)

because |B| = |ΛB| ≤ t. Hence the total communication complexity is O(n2t|F|).
The transmission rate is O(n2t) because the sender sends one secret.

It is easy to see that the computational cost of the sender and the receiver
are polynomial in n.

5 More Efficient 2-Round Protocol

In our basic 2-round protocol, the sender sends a single secret. In this section,
we show a more efficient 2-round protocol such that the sender sends t2 secrets
by running the basic protocol t times in parallel. This implies that we can reduce
the transmission rate from O(n2t) to O(n2).

5.1 Protocol

The sender wishes to send ` = t2 secrets s1, s2, . . . , s` ∈ F to the receiver.

Step 1. The receiver does the following for each channel i.
For h = 0, 1, · · · , t− 1;

1. He chooses a random polynomial fi+hn(x) such that deg fi+hn(x) ≤ t.



2. He sends
Xi+hn = (fi+hn(1), · · · , fi+hn(n))

through channel i, and the sender receives

Ui+hn = (ui+hn,1, · · · , ui+hn,n)

3. Through each channel j, he sends fi+hn(j) and the sender receives

yi+hn,j = fi+hn(j) + ei+hn,j ,

where ei+hn,j is the error caused by the adversary. Let

Yi+hn = (yi+hn,1, · · · , yi+hn,n), Ei+hn = (ei+hn,1, · · · , ei+hn,n).

Step 2. The sender does the following.
1. Find the pseudo-dimension k and a pseudo-basis B = {Yj1, . . . , Yjk} of

{Y1, · · · , Ytn} by using the algorithm of Fig.3.
Broadcast k,B and ΛB = {j1, · · · , jk}.

2. For i = 1, · · · , n,
(a) If ui+hn,i 6= yi+hn,i or |du(Ui+hn, Yi+hn)| ≥ t + 1

or Ui+hn 6∈ C for some h, then broadcast ”ignore channel i”. 8

This channel will be ignored from now on because it is forged clearly.
(b) Else define ri+hn as

ri+hn = ui+hn,i = yi+hn,i (10)

for h = 0, · · · , t− 1.
3. Find a polynomial R(x) with deg R(x) ≤ nt− 1 such that

R(i + hn) = ri+hn

for each i + hn.
4. Compute R(nt + 1), · · · , R(nt + `) and broadcast

c1 = s1 + R(nt + 1), · · · , c` = s` + R(nt + `).

5. Broadcast du(Ui+hn, Yi+hn) and dI(Ui+hn, Yi+hn) for each i + hn.

Step 3. The receiver does the following.

1. Construct FORGED of eq.(7) from {Ei = Yi −Xi | i ∈ ΛB}.
2. For each i+hn, find a polynomial ui+hn(x) with deg ui+hn(x) ≤ t such that

ui+hn(j) = ui+hn,j for all j ∈ dI(Ui+hn, Yi+hn)
ui+hn(j) = fi+hn(j) for all j such that j /∈ dI(Ui+hn, Yi+hn) and j /∈ FORGED

3. Find a polynomial R′(x) with deg R′(x) ≤ nt− 1 such that

R′(i + hn) = ui+hn(i)

for each i + hn. 9

4. Compute R′(nt + 1), · · · , R′(nt + `) and output

s′1 = c1 −R′(nt + 1), · · · , s′` = c` −R′(nt + `).
8 For simplicity, we assume that there are no such channels in what follows.
9 ”for each i + hn” can be replaced by ”for each i + hn /∈ ΛB” at step 2-3 and step

3-3.



5.2 Security

We first prove the perfect privacy.

Lemma 3. There exists a subset A ⊂ {r1, · · · , rtn} such that |A| ≥ ` and the
adversary has no information on A.

Proof. Consider a non-corrupted channel i such that i + hn /∈ ΛB. First the
sender does not broadcast ri+hn at step 2-1 because i + hn /∈ ΛB. Next since
fi+hn(i) is sent through channel i that the adversary does not corrupt, we have

ri+hn = ui+hn,i = fi+hn(i).

Further the adversary observes at most t values of (fi+hn(1), · · · , fi+hn(n)).
Hence the adversary has no information on ri+hn = fi+hn(i) because deg fi+hn(x) ≤
t.

Note that the adversary corrupts at most t channels and for each corrupted
channel i, the adversary gets ri, ri+n, . . . , ri+(t−1)n. Therefore, there exists a
subset A ⊂ {r1, · · · , rtn} such that

|A| ≥ nt− |ΛB| − t2 = nt− k − t2

and the adversary has no information on A. Finally

nt− k − t2 ≥ (2t + 1)t− t− t2 = t2 = `.

ut

Therefore, the adversary has no information on R(nt + 1), . . ., R(nt + `) from
Sec.4.1. Hence she learns no information on si for i = 1, · · · , `.

We next prove the perfect reliability. If j /∈ FORGED and j /∈ dI(Ui+hn, Yi+hn),
then fi+hn(j) = yi+hn,j = ui+hn,j from the definition of dI(Ui+hn, Yi+hn). There-
fore,

ui+hn(j) = ui+hn,j

for all j ∈ dI(Ui+hn, Yi+hn), and for all j such that j /∈ dI(Ui+hn, Yi+hn) and
j /∈ FORGED. This means that ui+hn(j) = ui+hn,j for each j ∈ (FORGED ∪
dI(Ui+hn, Yi+hn)), where

|FORGED ∪ dI(Ui+hn, Yi+hn))| ≥ |FORGED| ≥ n− t = 2t + 1− t = t + 1.

Further since deg ui+hn(x) ≤ t and Ui+hn ∈ C, it holds that

(ui+hn(1), · · · , ui+hn(n)) = (ui+hn,1, · · · , ui+hn,n).

In particular, ui+hn(i) = ui+hn,i. Therefore from eq.(10), we have that

R(i + hn) = ri+hn = ui+hn,i = ui+hn(i) = R′(i + hn)

for each i + hn. Hence we obtain that R′(x) = R(x) because deg R′(x) ≤ nt− 1
and deg R(x) ≤ nt− 1. Consequently,

s′i = ci −R′(nt + i) = ci −R(nt + i) = si.

Thus the receiver can compute s′i = si correctly for i = 1, · · · , `.



5.3 Efficiency

Let COM(i) denote the communication complexity of Step i for i = 1, 2. Note
that |du(Ui+hn, Yi+hn)| = |dI(Ui+hn, Yi+hn)| ≤ t for each i + hn. Then

COM(1) = O(tn(n + n)|F|) = O(tn2|F|),
COM(2) = O((|dI(Ui+hn, Yi+hn)| log2 n + |du(Ui+hn, Yi+hn)||F|)tn× n

+ (log2 n + n|B||F|+ |ΛB| log2 n)n + t2|F|n)
= O(n2t2 log2 n + n2t2|F|+ n log2 n + n2t|F|+ tn log2 n + t2|F|n)
= O(n2t2|F|)

because |B| = |ΛB| ≤ t. Hence, the total communication complexity is O(n2t2|F|),
and the transmission rate is O(n2) because the sender sends t2 secrets.

It is easy to see that the computational costs of the sender and the receiver
are both polynomial in n.

6 Final 2-Round PSMT

The transmission rate is still O(n2) in the 2-round PSMT shown in Sec.5. In
this section, we show how to reduce it to O(n) by using the technique of [1, page
406] and [8]. Then we can obtain the first 2-round PSMT for n = 2t + 1 such
that not only the transmission rate is O(n) but also the computational costs of
the sender and the receiver are both polynomial in n.

6.1 Generalized Broadcast

Suppose that the receiver knows the locations of k (≤ t) channels that the
adversary forged, and the sender knows the value of k. For example, suppose that
the receiver knows that channels 1, 2, · · · , k are forged. Note that the adversary
can corrupt at most t − k channels among the remaining n − k channels k +
1, · · · , n.

In this case, it is well known that the sender can send k + 1 field elements
u1, u2, . . . , uk+1 reliably with the communication complexity O(n|F|) as follows.

1. The sender finds a polynomial p(x) with deg p(x) ≤ k such that p(1) = u1,
p(2) = u2, . . . , p(k + 1) = uk+1.

2. She sends p(i) through channel i for i = 1, · · · , n.

Without loss of generality, suppose that the receiver knows that channels
1, · · · , k are forged by the adversary. Then he consider a shortened code such
that a codeword is (p(k +1), · · · , p(n)). The minimum Hamming distance of this
code is (n− k)− k = 2t + 1− 2k = 2(t− k) + 1. Hence the receiver can correct
the remaining t− k errors.

This means that the receiver can decode (p(k + 1), · · · , p(n)) correctly. Then
he can reconstruct p(x) by using Lagrange formula because

n− k = 2t + 1− k ≥ 2k + 1− k = k + 1 ≥ deg p(x) + 1.

Therefore he can obtain u1 = p(1), . . . , uk+1 = p(k + 1) correctly.



6.2 Matching of Graph

Let G = (V,E) be the undirected simple graph with the vertex set V and the
edge set E. A matching of the graph G is an edge set M ⊆ E such that no two
edges in M are connected. A matching M is said to be maximal if there is no
matching M ′ 6= M such that M ⊆ M ′.

We can find a maximal matching M of G easily (in polynomial time) by
using a greedy algorithm as follows.

1. Let M = ∅.
2. For each edge e in E, do:

If e is not connected to any edge in M , then add e to M .
3. Output M .

Definition 4. For a vertex v ∈ V , let degG(v) denote the number of edges which
are connected to v. Define

Dmax = max
v∈V

degG(v).

We then say that Dmax be the maximum degree of the graph G.

Theorem 3. For a graph G = (V,E), let M be a maximal matching and Dmax

be the maximum degree. Then |E| ≤ 2|M | ·Dmax.

Proof. For a maximal matching M , define

V (M) = {v ∈ V | some e ∈ M is connected to a vertex v}.

Delete all the edges connected to V (M) from G. Then from the definition of
maximal matching, we have no edges. Further |V (M)| = 2|M |. Therefore,

|E| ≤ Σx∈V (M) degG(x) ≤ 2|M |Dmax.

ut

In [1, page 406] and [8], a maximum matching was used. Instead we use a
maximal matching because it is sufficient for our purpose, and it is easier to find
a maximal matching than a maximum matching.

6.3 How to Improve Step 2-5

In the 2-round PSMT shown in Sec.5, step 2-5 is the most expensive part, where
the sender broadcasts du(Ui+hn, Yi+hn) and dI(Ui+hn, Yi+hn) for each i + hn.

In this subsection, we will show a method which reduces the communication
complexity of step 2-5 from O(n2t2|F|) to O(n2t|F|). We modify step 2-5 as
follows.

Step 2. The sender does the following.



5’ For h = 0, 1, · · · , t− 1, do:
(a) Construct an undirected graph Gh = (N,Eh) such that (i, j) ∈ Eh if and

only if ui+hn,j 6= yi+hn,j or uj+hn,i 6= yj+hn,i. 10

(b) Find a maximal matching Mh of Gh.
(c) For each edge e = (i, j) ∈ Mh,

i. If ui+hn+i,j 6= yi+hn+i,j then broadcast xe = ((h, i, j), ui+hn,j , yi+hn,j).
ii. Else broadcast xe = ((h, i, j), uj+hn,i, yj+hn,i).

(d) Send {du(Ui+hn, Yi+hn) | i = 1, · · · , n} and {dI(Ui+hn, Yi+hn) | i =
1, · · · , n} to the receiver by using the generalized broadcasting as shown
below.

If there exists an edge e = (i, j) ∈ Mh, then channel-i is forged or channel-j
is forged. Therefore,

|Mh| ≤ t

from the definition of maximal matching. For each h, the communication com-
plexity of step 2-5’(c) is O(tn|F|) because |Mh| ≤ t. For all h, the communication
complexity is O(nt2|F|)

After step 2-5’(c), the receiver can find at least one forged channel from
each xe, where e ∈ Mh. Hence he can find at least |Mh| forged channels from
{xe | e ∈ Mh} from the definition of maximal matching.

Hence the sender can send |Mh|+ 1 field elements reliably with the commu-
nication complexity O(n|F|) by using the generalized broadcasting (see Sec.6.1).

Next from Theorem 3, we obtain that

|Eh| ≤ 2|Mh|t

because degGh
(i) ≤ t for all i from step 2-2(a). Further it is easy to see that

n∑
i=1

|du(Ui+hn, Yi+hn)| =
n∑

i=1

|du(Ui+hn, Yi+hn)| ≤ 2|Eh| ≤ 4|Mh|t

Therefore, for each h, the sender can send {du(Ui+hn, Yi+hn) | i = 1, · · · , n}
and {dI(Ui+hn, Yi+hn) | i = 1, · · · , n} to the receiver reliably with the commu-
nication complexity O(nt|F|) by using generalized broadcasting. For all h, the
communication complexity is O(nt2|F|).

This means that the sender can send all du(Ui+hn, Yi+hn) and dI(Ui+hn, Yi+hn)
reliably with the communication complexity O(nt2|F|).

6.4 Final Efficiency

Consequently, we obtain COM(2) = O(n2t|F|) because the communication com-
plexity of step 2-5’ is now reduced to O(n2t|F|). On the other hand, COM(1) =
O(n2t|F|) from Sec.5.3. To summarize,

COM(1) = O(n2t|F|) and COM(2) = O(n2t|F|)
10 This means that channel-i is forged or channel-j is forged.



in our final 2-round PSMT. Hence, the total communication complexity is O(n3|F|)
because n = 2t + 1.

Now the transmission rate is O(n) because the sender sends t2 secrets which
is O(n2|F|). Finally, it is easy to see that the computational costs of the sender
and the receiver are both polynomial in n.
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