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Abstract We present an efficient, optimally-resilient Asyn-
chronous Byzantine Agreement (ABA) protocol involving
n = 3t+1 parties over a completely asynchronous network,
tolerating a computationally unbounded Byzantine adver-
sary, capable of corrupting at most t out of the n parties.
In comparison with the best known optimally-resilient ABA
protocols of Canetti and Rabin (STOC 1993) and Abraham,
Dolev and Halpern (PODC 2008), our protocol is signifi-
cantly more efficient in terms of the communication com-
plexity.

Our ABA protocol is built on a new statistical asyn-
chronous verifiable secret sharing (AVSS) protocol with op-
timal resilience. Our AVSS protocol significantly improves
the communication complexity of the only known statistical
and optimally-resilient AVSS protocol of Canetti et al. Our
AVSS protocol is further built on an asynchronous primi-
tive called asynchronous weak commitment (AWC), while
the AVSS of Canetti et al. is built on the primitive called
asynchronous weak secret sharing (AWSS). We observe that
AWC has weaker requirements than AWSS and hence it can
be designed more efficiently than AWSS.

Few of the results in this paper appeared in PODC 2009 [22] and PODC
2012 [9]. The work in this paper was initiated when the first two au-
thors were PhD students at Department of Computer Science and En-
gineering, IIT Madras.
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The common coin primitive is one of the most important
building blocks for the construction of an ABA protocol. In
this paper, we extend the existing common coin protocol to
make it compatible with our new AVSS protocol that shares
multiple secrets simultaneously. As a byproduct, our new
common coin protocol is more communication efficient than
all the existing common coin protocols.
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1 Introduction

The problem of Byzantine Agreement (BA) was introduced
in [23] and since then it has emerged as one of the most
fundamental problems in distributed computing. Informally,
a (threshold) BA protocol allows a set of n mutually dis-
trusting parties, each holding a private bit, to agree on a
common bit, even though t out of the n parties may act
in any arbitrary manner to make the remaining parties dis-
agree. The BA problem has been investigated extensively in
various models (see for example [20,15,7,2] and their ref-
erences). Studying the BA problem in an asynchronous set-
ting is interesting, since an asynchronous network models a
real-life network like the Internet more appropriately than
a synchronous network. The problem of asynchronous BA
(called ABA) has received relatively less attention in com-
parison to the BA problem in the synchronous setting. Un-
like a synchronous network, there is no upper bound on the
message delivery time in an asynchronous network and the
messages can be arbitrarily (but finitely) delayed. The in-
herent difficulty in designing an asynchronous protocol is
that it is impossible to distinguish between a slow but hon-
est sender (whose messages are delayed) and a corrupted
sender (who did not send any message); due to this, at any
stage of an asynchronous protocol, a party cannot wait to
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receive the communication from all the n parties (to avoid
endless waiting) and the communication from t (potentially
slow but honest) parties may have to be ignored; this poses
new challenges for constructing asynchronous protocols.

Compared to the synchronous BA protocols, the best
known ABA protocols involve huge communication com-
plexity (more on this later). This paper aims to present a
communication efficient ABA protocol.

1.1 Existing Results

We consider a computationally unbounded, threshold ad-
versary Adv, who can corrupt any t parties out of the n
parties in a Byzantine1 fashion. It was shown in [23] that
a BA (and an ABA) protocol tolerating Adv is possible if
and only if t < n/3. Thus, an ABA protocol designed with
exactly n = 3t + 1 parties is called an optimally-resilient
ABA protocol. Fisher, Lynch and Paterson’s seminal im-
possibility result on deterministic ABA protocols [14] im-
plies that any (randomized) ABA protocol must have non-
terminating runs, where some honest2 party(ies) may not
output any value and thus may not terminate at all. An ABA
protocol is called (1−ε)-terminating [8,7], if the honest par-
ties terminate the protocol with probability3 at least (1− ε),
where ε > 0. On the other hand, an ABA protocol is called
almost-surely terminating [1], if the probability of the occur-
rence of a non-terminating execution is asymptotically zero.
The important parameters of an ABA protocol are:

– Resilience: The maximum number of corruptions t, that
the protocol can tolerate.

– Communication Complexity (CC): The total number
of bits communicated by the honest parties in the proto-
col. The communication complexity has two parts: the
private communication which is done over the point-
to-point secure channels4 and the broadcast communi-
cation which is done in order to send a message (pub-
licly) to everyone. The broadcast primitive in the asyn-
chronous setting is implemented using Bracha’s asyn-
chronous broadcast protocol [6] (see Section 2.6).

– Expected Running Time (ERT): We consider the ex-
pected running time (ERT) R of an ABA protocol, con-
ditioned on the event that all the (honest) parties termi-
nate; this notion of expectancy is weaker than the usual
notion of expectation, where the expectancy is over all
possible events. An (1 − ε)-terminating ABA protocol

1 A Byzantine corrupted party can behave in any arbitrary manner
during the execution of a protocol.

2 A party is called honest if it is not under the control of Adv.
3 In the rest of the paper, all probabilities are taken over the random

coins of the honest parties.
4 We assume that every pair of parties are directly connected by a

secure and authentic channel.

may have non-terminating runs, where the (usual) ex-
pected running time will be infinite. Thus, our measure
of ERT, also followed in [8,7], is with respect to the ex-
ecutions where the parties terminate (more on this later).

Based on the above parameters, the best known ABA proto-
cols are summarized in Table 1.

Table 1 Summary of the best known ABA protocols; poly(x) stands
for polynomial in x and AST stands for almost-surely terminating.

Ref. Type Resilience CC ERT (R)
[6] AST t < n/3 O(2n) O(2n)

[12,13] AST t < n/4 poly(n) O(1)
[8,7] (1− ε) t < n/3 poly(n, 1

ε
) O(1)

[1] AST t < n/3 poly(n) O(n2)

Over a period of time, the techniques and the design ap-
proaches of ABA protocols have evolved spectacularly. Ra-
bin [25] designed an ABA protocol assuming that the parties
have access to a “common coin protocol”, which allows the
honest parties to output a common random bit with some
probability (called the success probability). Bracha [6] pre-
sented a simple implementation of the common coin pro-
tocol, whose success probability is Θ(2−n). Feldman and
Micali [12,13] came up with a common coin protocol that
has a constant success probability. The essence of [12] is the
reduction of implementing the common coin to that of de-
signing an Asynchronous Verifiable Secret Sharing (AVSS)
protocol. Informally, an AVSS protocol is a two phase proto-
col (sharing and reconstruction) carried out among the par-
ties. The goal of an AVSS protocol is to allow a special party
called dealer to share a secret s among the parties during the
sharing phase in a way that would later allow for a unique re-
construction of the shared secret in the reconstruction phase,
while preserving the secrecy of s until the reconstruction
phase. Following [12,13], almost all the optimally-resilient
ABA protocols including the protocols of [8,1], followed
the same approach of reducing the ABA problem to that of
AVSS. In this paper, we follow the same approach too.

1.2 Our Contribution

We present an optimally-resilient, (1− ε)-terminating ABA
protocol with a private and broadcast communication of O(
R n4 log 1

ε ) bits for reaching agreement on t + 1 = Θ(n)

bits5 concurrently; where R is the ERT of the protocol. So
the (expected) amortized communication complexity of our
protocol, for reaching agreement on a single bit, is O(R n3

log 1
ε ) bits of private, as well as broadcast communication.

Moreover, conditioned on the event that our ABA protocol

5 For n = 3t+ 1, we have t = Θ(n).
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terminates, it does so in a constant expected time; i.e. R =

O(1). In Table 2, we compare our ABA protocol with the
best known optimally-resilient ABA protocols of [8,1].

Table 2 Comparison of our optimally-resilient ABA protocol with the
best known optimally-resilient ABA protocols; AST stands for almost-
surely terminating. The communication complexity is the expected
communication complexity as it depends on the ERT of the protocol.
While the protocols of [8,1] are designed for single bit inputs, our pro-
tocol handles multiple bit inputs. In this table, we consider the amor-
tized communication complexity of our protocol for single bit inputs.

Ref. Type R CC
[8] (1− ε) O(1) Private– O(Rn11(log 1

ε
)4)

Broadcast– O(Rn11(log 1
ε
)2 logn)

[1] AST O(n2) Private– O(Rn6 logn)

Broadcast– O(Rn6 logn)

This (1− ε) O(1) Private– O(Rn3 log 1
ε
)

Paper Broadcast– O(Rn3 log 1
ε
)

On one hand, communication-complexity wise our ABA
protocol improves over the ABA protocol of [8] by a large
margin, while keeping all other properties in place (namely
(1 − ε)-terminating and a constant expected running time).
On the other hand, our ABA protocol enjoys the following
merits over the ABA protocol of [1]:

1. Our ABA protocol is better in terms of communication
complexity when log 1

ε < n5 log n.
2. Our ABA protocol has a constant ERT whereas the ABA

protocol of [1] has O(n2) ERT.

On the negative side, our protocol is (1 − ε)-terminating,
whereas the protocol of [1] is almost-surely terminating. We
now briefly discuss the approaches used in the ABA proto-
cols of [8], [1] and the current article.

• The ABA protocol of Canetti et al. [8,7] uses the reduction
of [12,13] from ABA to AVSS; i.e. an AVSS protocol with
n = 3t + 1 parties is constructed first. The authors in [8]
followed the following route to design their AVSS protocol:
ICP → A-RS → AWSS → Two & Sum AWSS → AVSS,
where X → Y means that protocol Y is designed using
the protocol X as a black-box and ICP, A-RS and AWSS
stand for Information Checking Protocol, Asynchronous Re-
coverable Sharing and Asynchronous Weak Secret Sharing
respectively. The final AVSS protocol is highly communica-
tion intensive as well as involved. The protocol incurs a pri-
vate communication ofO(n9(log 1

ε )
4) bits and broadcast of

O(n9(log 1
ε )

2 log(n)) bits during the sharing phase; during
the reconstruction phase, it incurs a private communication
ofO(n6(log 1

ε )
3) bits and broadcast ofO(n6(log 1

ε ) log(n))

bits6. The protocol allows a dealer to share a single secret

6 The exact communication complexity analysis of the AVSS (and
the ABA) protocol of [8] was not done earlier. For the sake of com-
pleteness, we carry out the same in APPENDIX A.

and all the (honest) parties terminate the protocol with prob-
ability at least (1− ε).

• The ABA protocol of [1] followed the same reduction from
ABA to AVSS as in [8], except that a variant of AVSS called
shunning (asynchronous) VSS (SVSS) is used in place of
AVSS. SVSS is a weaker notion of AVSS: if all the parties
behave correctly, then SVSS satisfies all the properties of
AVSS without any error; else it enables some honest party
to identify at least one corrupted party, whom the honest
party “shuns” from then onwards. In [1], an SVSS scheme is
constructed building on a primitive called weak SVSS (W-
SVSS). Notably W-SVSS is the “shunning” variant of the
AWSS primitive, where the latter served as a building block
for the AVSS protocol of [8,7].

The use of SVSS instead of AVSS in generating the com-
mon coin causes the ABA protocol of [1] to have O(n2)
ERT (intuitively this is because in the worst case it requires
O(n2) executions of the SVSS, so that every honest party
shuns every corrupted party). The SVSS protocol allows the
dealer to share a single secret and requires a private commu-
nication as well as broadcast of O(n4 log(n)) bits.

• Although we follow the same approach of designing our
ABA protocol from an AVSS protocol, we depart from the
standard practice at several places:

1. We design a communication efficient, optimally-resilient
AVSS protocol (i.e. with n = 3t+1), taking a “shorter”
route, namely ICP → AWC → AVSS, rather than fol-
lowing the route suggested in [8]. Here AWC stands for
Asynchronous Weak Commitment.

2. While the AVSS protocols of [8] as well as of [1] (the
shunning variant) used AWSS as the building block, we
replace AWSS by AWC, a new primitive introduced in
this paper. We find that AWC has “weaker” requirements
than AWSS and can be designed more efficiently than
the existing AWSS protocols (the details are elaborated
in Section 2.3.3 and Section 4.3). Specifically, while the
existing AWSS and W-SVSS are based on the idea of
using bivariate polynomials of degree t in each vari-
able, we design an AWC protocol based on Shamir se-
cret sharing [27] and therefore using univariate poly-
nomials of degree t; this immediately implies a gain of
Θ(n) in the communication complexity.

3. We extend the existing notion of ICP [8] to deal with mul-
tiple verifiers simultaneously, instead of a single verifier
(see Section 2.4). Informally, ICP allows to authenticate
data in the presence of a computationally unbounded
adversary and it serves as the “starting point” of our
AVSS as well as the AVSS protocol of [8]. Our multiple-
verifier ICP readily fits in our AWC protocol. In [8], the
(single-verifier) ICP was implicitly extended for multi-
ple verifiers when it was used in the higher level primi-
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tives. Presenting ICP for multiple verifiers thus provides
greater conceptual clarity when it is plugged into the
next level primitive which is AWC in our case. Further-
more, our multiple-verifier ICP achieves better commu-
nication complexity than the existing single-verifier ICP
extended to deal with multiple verifiers.

4. We design each of the above building blocks (i.e. ICP,
AWC, AVSS) to deal with multiple values concurrently
(unlike the existing protocols which are designed to han-
dle only a single value). This leads to a significant gain in
the communication complexity over executing multiple
instances of the protocols dealing with a single value.

Combining the above results, we obtain an AVSS protocol
that significantly improves over the only known optimally-
resilient (statistical) AVSS of [8] and is of independent inter-
est. Specifically, our AVSS protocol requires a private com-
munication and broadcast communication of O((`n2 + n3)

log 1
ε ) bits to share ` secrets concurrently, where ` ≥ 1.

Moreover, it requires a broadcast communication of O((`
n2 + n3) log 1

ε ) bits to reconstruct the ` secrets.

5. Finally, we make several changes to the existing com-
mon coin protocol. The best known common coin pro-
tocol of [13,7] employs AVSS sharing a single secret.
Informally, in the common coin protocol of [13], each
party is asked to act as a dealer and share n random se-
crets using n separate instances of an AVSS protocol.
One can improve the communication complexity if the
n instances of the AVSS (dealing with a single secret)
are replaced by a single instance of an AVSS protocol
which allows the dealer to share all the n secrets con-
currently. When plugging our new AVSS protocol (shar-
ing multiple secrets concurrently) for the same, we no-
ticed that this “trivial” substitution leads to an “incor-
rect” common coin protocol. So we bring forth several
modifications to the existing common coin protocol that
allow us to use our AVSS protocol for sharing multiple
secrets concurrently. As a result, our new common coin
protocol is more communication efficient than the exist-
ing common coin protocol of [13,7,8]. Interestingly, the
new common coin protocol is a multi-bit protocol, which
allows the parties to generate t+ 1 = Θ(n) random and
independent common coins concurrently further leading
to reach agreement on t+ 1 bits concurrently.

Our multi-bit common coin protocol leads to an ABA proto-
col with an amortized private and broadcast communication
of O(n3 log 1

ε ) bits for reaching agreement on a single bit.

Organization of the Paper: In the next section, we de-
scribe the asynchronous network model and formally define
ABA, AVSS, AWC, AWSS, asynchronous ICP (AICP), sin-
gle and multi-bit common coin, followed by the description

of the existing tools. In Section 3, we present our AICP, fol-
lowed by our new primitive AWC in section 4; in the same
section, we also compare our AWC scheme with the best
known existing AWSS scheme of [22] and the existing W-
SVSS scheme of [1]. In Section 5, we present our AVSS
scheme. In Section 6, we recall the existing common coin
protocol from [7] and present our multi-bit common coin
protocol. In Section 7, we recall the existing voting protocol
from [7], which together with the multi-bit common coin
protocol implies our ABA protocol presented in Section 8.

2 Model and Definitions

We consider an asynchronous network consisting of n par-
ties, say P = {P1, . . . , Pn}, where each party is modelled
as a probabilistic polynomial time interactive Turing ma-
chine. We assume that each pair of parties are directly con-
nected by a secure and authentic channel and t out of the
n parties can be under the influence of a computationally
unbounded Byzantine (active) adversary, denoted as Adv.
Moreover, we assume n = 3t+1. The adversary Adv, com-
pletely dictates the parties under its control and can force
them to deviate from the honest behavior in any arbitrary
manner during the execution of a protocol. The parties not
under the influence of Adv are called honest or uncorrupted.

The communication channels are asynchronous, having
arbitrary, but finite delay (i.e the messages are guaranteed to
reach their destinations eventually). Moreover, the order in
which the messages reach their destinations may be differ-
ent from the order in which they were sent. To model the
worst case scenario, Adv is given the power to schedule the
delivery of every message in the network. While Adv can
schedule the messages of the honest parties at its will, it has
no access to the “contents” of the messages communicated
between the honest parties.

As in [7], we consider a protocol execution in the asyn-
chronous model as a sequence of atomic steps, where a sin-
gle party is active in each such step. A party gets activated
by receiving a message after which it performs an internal
computation and then possibly sends messages on its outgo-
ing channels. The order of the atomic steps are controlled
by a “scheduler”, which is controlled by Adv. At the begin-
ning of the computation, each party will be in a special start
state. We say a party has terminated/completed the computa-
tion if it reaches a halt state, after which it does not perform
any further computation. A protocol execution is said to be
complete if each (honest) party terminates the protocol.

Running Time of an Asynchronous Protocol [8]. Con-
sider a virtual “global clock”, measuring the time in the net-
work. Note that the parties cannot read this clock. Let the
delay of a message be the time elapsed from its sending to
its receipt. Let the period of a finite execution of a protocol
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be the longest delay of a message in the execution. The du-
ration of a finite execution is the total time measured by the
global clock divided by the period of the execution (infinite
executions have infinite duration).

Let C be the event that the (honest) parties terminate the
execution of a given protocol. The expected running time
(ERT) of a protocol, relative to an adversary and some spe-
cific choice of the input values for the parties and condi-
tioned on the event C, is the expected value of the duration
of a complete execution (thus the expectancy is taken only
over the random inputs of the parties in which the event C
occurs). The (non-relative) expected running time R(π|C)
of a protocol π, conditioned on C, is the maximum over all
inputs ~x = (x1, . . . , xn) and adversaries Adv, of the ex-
pected running time of the protocol relative to the input ~x
and adversary Adv and conditioned on the event C. That is:

R(π|C) = Max~x,Adv

{
Exp~r[D(π,Adv, ~x, ~r) | C]

}
,

whereD(π,Adv, ~x, ~r) is the duration of the execution of the
protocol π with inputs ~x = (x1, . . . , xn) and random inputs
~r = (r1, . . . , rn) for the parties and with adversary Adv.

We next present the definition of ABA and the other re-
lated primitives. We note that all computation and commu-
nication in our protocols are done over a finite field F. Our
ABA protocol is (1 − ε)-terminating, for a given ε > 0.
Looking ahead, to bound the error probability of our ABA
by ε, we select a finite field F = GF (2κ) for the minimum
κ such that ε ≥ 4n5(n+t−1)

2κ−n . Without loss of generality, we
assume that n is polynomial in 1

ε ; i.e. n = poly( 1ε ). So each
element of F can be represented by O(κ) = O(log 1

ε ) bits.

2.1 Asynchronous Byzantine Agreement (ABA)

Definition 1 (ABA [8]) Let π be an asynchronous protocol
executed among the parties in P , where each party has a
(private) binary input and a binary output. We say that π is
a (1 − ε)-terminating ABA protocol for a single bit, for an
allowed error parameter ε (with ε > 0) if the following hold
for every possible Adv and every input vector of the parties:

1. Termination: If all the honest parties participate in the
protocol then with probability at least (1 − ε), all the
honest parties eventually terminate the protocol.

2. Correctness: All the honest parties who terminate the
protocol hold identical bit as the output. Moreover, if all
the honest parties had the same input bit, say ρ, then all
the honest parties output ρ upon termination.

The above definition can be easily extended for ` bits, where
` > 1 and we call such a protocol a multi-bit ABA protocol.

2.2 Asynchronous Verifiable Secret Sharing (AVSS)

An AVSS protocol consists of two sub-protocols: a shar-
ing protocol (called Sh) where a special party called dealer
shares a secret among the parties and a reconstruction proto-
col (called Rec) where the parties reconstruct the secret from
their shares without any “help” from the dealer. Formally:

Definition 2 (Asynchronous Verifiable Secret Sharing (A
VSS) [8]) Let (Sh,Rec) be a pair of protocols for the n par-
ties, where a dealer D ∈ P has a private input s ∈ F for Sh.
Then (Sh,Rec) is a (1 − ε)-AVSS scheme7, for an allowed
error parameter ε (where ε > 0), if the following require-
ments hold for every possible Adv:

– Termination: With probability at least (1 − ε), the fol-
lowing requirements hold:
1. If D is honest and all the honest parties participate

in the protocol Sh, then each honest party eventually
terminates the protocol Sh.

2. If some honest party terminates Sh, then every hon-
est party eventually terminates Sh.

3. If all the honest parties invoked Rec, then each hon-
est party eventually terminates Rec.

– Correctness: If some honest party terminates Sh, then
there exists a fixed value s, where s ∈ F ∪ {⊥}, such
that the following requirements hold8:
1. If D is honest, then s = s. Moreover, all the honest

parties output s upon terminating Rec (i.e. s is the
reconstructed secret), with probability at least (1−ε).

2. Even if D is corrupted, all the honest parties out-
put s upon terminating Rec, with probability at least
(1 − ε). This property is also called the strong com-
mitment property.

– Secrecy: Let VIEW(s) be the random variable, describ-
ing the view of the adversary during an execution of Sh,
where D has the input s. If D is honest during Sh and no
honest party has begun executing the protocol Rec, then
VIEW(s) is identically distributed for all s ∈ F.

We conclude with the following note:

Note 1 An alternate definition of VSS/AVSS requires that
D’s committed secret s belongs to F, instead of F∪{⊥} [17,
19]. However, Definition 2 is “equivalent” to this alternate
definition, since in Definition 2 we can say that s ∈ F, by
fixing a default value in F, which may be output in case the
Rec protocol completes with a ⊥ output. A VSS satisfying
the definition of [17,19] is required when VSS serves as the
building block for secure multi-party computation (MPC)
[3]. On the other hand, VSS (AVSS) satisfying our defini-
tion is enough for the construction of (asynchronous) BA

7 Such schemes are also called statistical AVSS.
8 We often say that D has committed/shared s during Sh; the inter-

pretation of s =⊥ will be clear during the description of our AVSS.
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protocols. We also note that our definition of VSS was used
in [21] to study the round complexity of VSS. 2

Definition 2 can be extended in a straight-forward way for a
secret ~S = (s1, . . . , s`), containing ` elements from F.

2.3 AWSS and AWC

In this section, we first define AWSS, a “weaker” primitive
than AVSS; we note that AWSS was used in [8] to design a
(1−ε)-AVSS and a “shunning variant” of AWSS was used in
[1] to construct a shunning AVSS. We then introduce a new
asynchronous primitive called AWC, which has weaker re-
quirements than AWSS. We propose this new primitive as a
“replacement” for AWSS in the construction of our (1− ε)-
AVSS. The section concludes with a comparison between
AWSS and AWC, where we argue that indeed AWC has
weaker requirements than AWSS.

2.3.1 Asynchronous Weak Secret Sharing (AWSS)

An AWSS protocol consists of two sub-protocols: a sharing
protocol (WSh), where the dealer shares a secret and a re-
construction protocol (WRec), where the parties reconstruct
the shared secret. The Termination and the Secrecy condi-
tions of AVSS (see Definition 2) remain the same for AWSS,
except that Sh is replaced by WSh and Rec is replaced by
WRec. The Correctness condition of AVSS also remains
the same for AWSS for the case when D is honest; however,
the Correctness condition is “weakened” in AWSS for the
case when D is corrupted as follows:

If an honest party terminates WSh then a value, say
s ∈ F ∪ {⊥} is fixed. Moreover, with probability at
least (1 − ε), each honest party will output either s
or ⊥ at the end9 of WRec.

Notice that the only difference between AVSS and AWSS is
for the case when D is corrupted and the shared value s is
not equal to ⊥; in this case while the parties in WRec may
reconstruct ⊥, the parties in Rec will always reconstruct s.

2.3.2 Asynchronous Weak Commitment (AWC)

Informally, an AWC scheme consists of two protocols: a
commitment protocol (called Com) and a decommitment
protocol (called Decom). In the commitment protocol, a spe-
cial party called Committer “commits” a secret to the parties
in a distributed fashion. Later during the decommitment pro-
tocol, Committer “decommits/opens” the committed secret
and the parties verify whether this was the secret commit-
ted earlier and accordingly either accept or reject the secret.
Thus AWC can be viewed as a distributed version of the
classical two-party commitment schemes [24]. Formally:

9 It is possible that some parties output s, while others output ⊥.

Definition 3 (Asynchronous Weak Commitment (AWC))
Let (Com, Decom) be a pair of protocols for the n parties,
where a Committer ∈ P has a private input s ∈ F for
Com (the secret to be committed). In the protocol Decom,
Committer has a private input s? (the secret to be decommit-
ted)10 and all the parties upon terminating Decom either out-
put s? or⊥. Then (Com, Decom) is a (1− ε)-AWC scheme,
for an allowed error parameter ε (where ε > 0), if the fol-
lowing requirements hold for every possible Adv:

– Termination: With probability at least (1 − ε), the fol-
lowing requirements hold:
1. If Committer is honest and all the honest parties par-

ticipate in the protocol Com, then each honest party
eventually terminates the protocol Com.

2. If some honest party terminates Com, then every hon
est party eventually terminates Com.

3. If Committer invokes Decom and all the honest par-
ties participate in Decom, then the following require-
ments hold:
(a) If Committer is honest, then all the honest par-

ties eventually terminate Decom.
(b) If Committer is corrupted and some honest par-

ty terminates Decom, then all the honest parties
eventually terminate Decom.

– Correctness: If some honest party terminates Com, then
there exists a fixed value s, where s ∈ F∪{⊥}, such that
the following requirements hold11 :
1. If s? = s, then with probability at least (1 − ε), all

the honest parties output s? (i.e. s? is accepted as the
decommitted secret), upon terminating Decom.

2. If s? 6= s, then with probability at least (1 − ε), all
the honest parties output ⊥ (i.e. s? is rejected as the
decommitted secret12) upon terminating Decom.

– Secrecy: Let VIEW(s) be the random variable, denot-
ing the view of Adv during an execution of Com, where
Committer has the input s. If Committer is honest dur-
ing Com and has not begun executing Decom, then VI-
EW(s) is identically distributed for all s ∈ F.

The above definition can be easily extended for a secret ~S =

(s1, . . . , s`), containing ` elements from F.

2.3.3 Comparison between AWSS and AWC

The sharing protocol of AWSS and the commitment pro-
tocol of AWC achieves the same outcome, namely a dis-
tributed commitment to a unique value s, which remains pri-

10 The value of s? is defined by the information disclosed by
Committer during Decom.

11 We say that Committer has committed s during Com; the interpre-
tation of s = ⊥ will be clear during the description of our AWC.

12 For an honest Committer, s? = s will always hold; moreover
s = s and hence s ∈ F will also hold. The condition s? 6= s may
happen only for a corrupted Committer.
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vate if D and Committer are honest. However, there is a sub-
tle difference between the reconstruction protocol of AWSS
and the decommitment protocol of AWC. Specifically, the
difference is in the role that D and Committer plays respec-
tively to ensure the termination of the respective protocols.
The reconstruction protocol of an AWSS does not demand a
“special” role by D to enforce the termination. So this pro-
tocol will always terminate, if it is invoked by the honest
parties, even if D is corrupted and does not participate in
the reconstruction protocol. On the other hand, the decom-
mitment protocol demands a special role from Committer to
enforce termination; here Committer has to invoke the pro-
tocol. So if Committer is corrupted and does not invoke the
decommitment protocol, this protocol may never terminate.

The above difference intuitively suggests that “more”
communication/distribution of information to the parties m-
ay be called for during the sharing protocol of an AWSS
scheme, as compared to the commitment protocol of an AW-
C scheme. The intuition is that the “additional” information
may enable the honest parties to reconstruct the shared se-
cret during the reconstruction protocol, even without the par-
ticipation of the dealer. The intuition turns out to be right as
we are able to design an AWC protocol that is more efficient
than the known AWSS protocols (see Section 4.3).

Finally we note that both AWSS and AWC provides the
same type of commitment. Namely if Committer is honest
then it will decommit the committed secret and thus the se-
cret will be accepted by the honest parties. On the other hand
if Committer is corrupted, then it cannot commit s ∈ F and
later decommit a different secret s? ∈ F. Such an attempt by
a corrupted Committer (in co-operation with the corrupted
parties) will cause the honest parties to output ⊥.

2.4 Asynchronous Information Checking Protocol (AICP)

An ICP is used for authenticating data in the presence of
computationally unbounded corrupted parties. The notion of
ICP was first introduced by Rabin et al. [26]. As described in
[26,8,11], an ICP is executed among three parties: a Signer,
an intermediary INT and a Verifier. Informally, an ICP con-
sists of two stages, implemented by different protocol(s):

– Signature-generation stage: it consists of two phases.
In the first phase, Signer computes its IC (information
checking) signature on a secret s ∈ F, denoted by ICSig(
Signer, INT,Verifier, s) and hands it to INT. Signer also
computes some verification information for Verifier and
hands it to Verifier. In the second phase, INT (in co-
operation with Signer and Verifier) confirms whether in-
deed the received signature is a “valid” signature.

– Signature-revelation stage: here INT reveals the signa-
ture ICSig(Signer, INT,Verifier, s), claiming that it has
received it from Signer. Verifier then verifies the sig-

nature, using the verification information and either ac-
cepts or rejects the signature (and hence s).

An IC signature may be considered as the information-theo-
retically secure variant of digital signatures. It provides pro-
perties like unforgeability and non-repudiation; in addition,
it provides information-theoretic security of the secret. That
is, if Signer and INT are honest, then at the end of signature-
generation stage, a corrupted Verifier does not learn any in-
formation about s in the information-theoretic sense.

We extend the notion of ICP in two directions: Firstly,
we consider multiple verifiers, where each party in P acts
as a Verifier. Looking ahead, the multiple-verifier ICP con-
cept readily fits in our AWC protocol; note that Signer and
INT can be any two parties from the setP . Secondly, instead
of a single secret, we consider ICP that can deal with mul-
tiple secrets concurrently; later this allows to achieve bet-
ter communication complexity, than executing multiple in-
stances of ICP, dealing with a single secret. Our ICP is exe-
cuted in the asynchronous setting and thus we call it AICP.

Definition 4 ((Multi-Verifier) Asynchronous Informatio
n Checking Protocol (AICP)) An AICP involves three en-
tities: a Signer ∈ P , an intermediary INT ∈ P and the set
of parties P acting as verifiers. The protocol is carried out in
three phases, each implemented by a different sub-protocol:

1. Generation Phase: it is initiated by Signer, having a se-
cret input ~S = (s1, . . . , s`) ∈ F`, on which Signer wants
to give its signature to INT. In this phase, Signer sends
~S to INT, along with some authentication information.
In addition, Signer sends some verification information
to each individual verifier.

2. Verification Phase: it is initiated by INT, who interacts
with Signer and the verifiers to ensure that he holds a se-
cret ~S and a corresponding authentication information,
which will be later accepted by every (honest) verifier in
P during the revelation phase. The secret ~S and the cor-
responding authentication information, which INT holds
at the end of this phase13 is called Signer’s IC signature
on ~S, denoted as ICSig(Signer, INT,P, ~S).

3. Revelation Phase: it is carried out by INT and the ver-
ifiers in P , where they interact among themselves. Here
INT reveals ICSig(Signer, INT,P, ~S) and each verifier
locally verifies ICSig(Signer, INT,P, ~S) with respect to
its verification information and possibly let its findings
known to the other verifiers. Based on the verification
information and possibly on the response received from
the other verifiers, each individual verifier Pi ∈ P either
outputs Reveali = ~S (indicating that Pi is convinced
that INT indeed obtained ~S from Signer) or Reveali =⊥

13 This may be different from the secret and authentication infor-
mation that INT received from Signer during the generation phase if
Signer is corrupted; the details will be cleared during the description
of our AICP.
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(indicating that Pi is not convinced that INT obtained
~S from Signer). Accordingly, we say that Pi accepted
(resp. rejected) the ICSig and hence ~S.

A triplet of protocols (Gen,Ver,RevealPublic) (for the gen-
eration, verification and revelation phase respectively), with
Signer having a private input ~S ∈ F` for the protocol Gen,
is called a (1 − ε)-AICP, for an allowed error parameter ε
(where ε > 0), if the following requirements14 hold for ev-
ery possible Adv:

1. AICP-Correctness1: If Signer and INT are honest, then
each honest verifier Pi ∈ P outputs Reveali = ~S at the
end of RevealPublic.

2. AICP-Correctness2: If Signer is corrupted and INT is
honest, holding ICSig(Signer, INT,P, ~S) at the end of
Ver, then with probability at least (1− ε), all honest ver-
ifiers output Reveali = ~S at the end of RevealPublic.

3. AICP-Correctness3: If Signer is honest and INT holds
ICSig(Signer, INT,P, ~S) at the end of Ver, then the pro-
bability that an honest verifier Pi outputs Reveali = ~S?

at the end of RevealPublic, where ~S? 6= ~S, is at most ε.
4. AICP-Secrecy: If Signer and INT are honest, then the

information received by Adv till the end of Ver is dis-
tributed independently of the secret ~S. More specifically,
let VIEW(~S) denote the random variable, describing the
view of the adversary during an execution of Gen and
Ver, where the secret input of Signer is ~S. If Signer and
INT are honest and INT has not executed RevealPublic,
then VIEW(~S) is identically distributed for all ~S ∈ F`.

2.5 Single and Multi-bit Common Coin

We now give the definition of common coin protocol, fol-
lowed by the extension to multi-bit common coin protocol.

Definition 5 (Common Coin [7]) Let π be an asynchronou-
s protocol, where each party in P has a random input and
a binary output. We say that π is a (1 − ε)-completing, t-
resilient, p-common coin protocol, for a given ε, where ε >
0, if the following requirements hold for every possible input
of the honest parties and every possible Adv:

– Termination: If all the honest parties participate in π,
then with probability at least (1−ε), all the honest parties
terminate the protocol.

– Correctness: For every possible value σ ∈ {0, 1}, with
probability at least p, all the honest parties output σ.

Definition 6 (Multi-Bit Common Coin) Let π be an asyn-
chronous protocol, where each party in P has a random in-
put and an output of ` bits. We say that π is a (1 − ε)-
completing, t-resilient, p-multi-bit common coin protocol,

14 A closer look reveals that AICP-Correctness2 and AICP-
Correctness3 are analogous to the non-repudiation and unforgeability
property respectively of traditional digital signatures.

with an output of ` bits, for a given error parameter ε, where
ε > 0, if the following requirements hold for every possible
input of the honest parties and every possible Adv:

– Termination: If all the honest parties participate in π,
then with probability at least (1−ε), all the honest parties
terminate the protocol.

– Correctness: For every l = 1, . . . , `, all the honest par-
ties output σl as the lth bit with probability at least p for
every σl ∈ {0, 1}. 15

2.6 Existing Tools

Asynchronous Broadcast: This primitive, called A-cast,
was introduced and implemented by Bracha [6] with 3t+ 1

parties. Formally, A-cast is defined as follows:

Definition 7 (A-cast [8]) Let π be an asynchronous proto-
col initiated by a Sender ∈ P , having an input m (the mes-
sage to be broadcast). We say that π is an A-cast protocol if
the following requirements hold, for every possible Adv:

– Termination:
1. If Sender is honest and all the honest parties partic-

ipate in the protocol, then each honest party eventu-
ally terminates the protocol.

2. Irrespective of the behavior of Sender, if any honest
party terminates the protocol then each honest party
eventually terminates the protocol.

– Correctness: If the honest parties terminate the protocol
then they do so with a common outputm?. Furthermore,
if Sender is honest then m? = m.

In Fig. 1, we recall the Bracha’s A-cast protocol from [7];
the protocol incurs a private communication of O(`n2) bits
to broadcast an ` bit message [7].

In the rest of the paper, we use the following terminolo-
gies while using the A-cast protocol:

Terminology 1 (Terminologies for Using the A-cast Pro-
tocol). We say that:

1. “Pi broadcasts m” to mean that Pi acts as a Sender and
invokes an instance of A-cast to broadcast m.

2. “Pj receives m from the broadcast of Pi” to mean that
Pj (as a receiver) completes the execution of Pi’s broad-
cast (namely the instance of the A-cast protocol where
Pi is Sender), with m as the output.

Randomness Extraction [5,4]: In our common coin pro-
tocol, we use a well known method for “extracting” ran-
domness with information-theoretic security. The setting is
as follows: let a1, . . . , aN ∈ F, such that at least K out
of these N values are selected uniformly at random from

15 Thus, the probability p is associated with each individual bit.
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Fig. 1 Bracha’s A-cast protocol with n = 3t+ 1.

A-cast(m)

The following step is executed only by Sender:

1. Send the message (MSG,m) to all the parties.

Every Pi ∈ P (including Sender) executes the following steps:

1. Upon receiving a message (MSG,m) from Sender, send the
message (ECHO,m) to all the parties.

2. Upon receiving n − t messages (ECHO,m?) that agree on
the value of m?, send the message (READY,m?) to all the
parties.

3. Upon receiving t+ 1 messages (READY,m?) that agree on
the value of m?, send the message (READY,m?) to all the
parties.

4. Upon receiving n − t messages (READY,m?) that agree
on the value of m?, send the message (OK,m?) to all the
parties, output m? and terminate the protocol.

F; however, the exact identities of those K values are not
known. The goal is to compute K values from a1, . . . , aN ,
say b1, . . . , bK , each of which is uniformly distributed over
F. This is achieved as follows: let f(x) be the polynomial
of degree at most N − 1, such that f(i) = ai+1, for i =

0, . . . , (N − 1). Then set b1 = f(N), . . . , bK = f(N +

K − 1) (note that, we require |F| ≥ N + K to make the
technique work; in our protocols, N,K and |F| will be such
that this relationship will be true). The elements b1, . . . , bK
are uniformly distributed over F, as there exists a one-to-one
mapping between b1, . . . , bK and theK random elements in
the vector (a1, . . . , aN ). We call this algorithm as EXT and
invoke it as (b1, . . . , bK) = EXT(a1, . . . , aN ).

3 Asynchronous Information Checking Protocol

We present an AICP called MultiVerifierAICP, which is a
(1 − µ)-AICP16, where µ = n(`+t−1)

|F|−` and ` is the number
of secrets on which the signature is generated. Let the secret
input of Signer be ~S = (s1, . . . , s`) ∈ F`. The underlying
idea behind the protocol is as follows: During the generation
phase, Signer selects a polynomial F (x) of degree at most
`+t−1, which is an otherwise random polynomial such that
F (βi) = si, for i = 1, . . . , `. Here β1, . . . , β` are publicly
known distinct elements from F. The polynomial F (x) is
given to INT. In addition, Signer gives the value of F (x)
at a random evaluation-point αi (different from all βj’s) to
each verifier Pi. During the revelation phase, INT discloses
F (x) (by broadcasting) and each verifier Pi checks whether
the value held by him is indeed the value of F (x) at αi.

An AICP with the aformentioned generation and rev-
elation phase, and with a void verification phase, already
satisfies the AICP-Correctness3 property. Specifically, if

16 We use µ instead of ε to denote the error probability of our AICP,
as we reserve ε to represent the error probability of our ABA protocol.

Signer is honest and INT is corrupted, then INT will not
know the evaluation-point αi of an honest verifier Pi and so
with high probability, INT cannot disclose an incorrect poly-
nomial F ?(x), different from F (x), and still remain unno-
ticed by an honest verifier Pi. The above AICP further sat-
isfies the AICP-Secrecy property, as the degree of F (x) is
at most ` + t − 1 and at most t points on F (x) will be dis-
closed to Adv; so Adv will lack ` additional points on F (x)
to uniquely interpolate F (x) and obtain the value of F (x) at
β1, . . . , β` (which are the secrets). More specifically, from
the view-point of Adv, who holds t random points on a poly-
nomial of degree at most ` + t − 1, there exists a polyno-
mial that will be “consistent” with those t random points and
any ` secrets. As we disclose below, the above AICP, how-
ever, does not achieve the AICP-Correctness2. Specifically
if Signer is corrupted, then he might give F (x) to INT, but
evaluations of a different polynomial F (x) to each honest
verifier, where F (x) 6= F (x). A verification phase, allow-
ing interaction among Signer, INT and the verifiers is thus
incorporated to bar Signer from doing the above. The inter-
action should be in a “zero-knowledge” fashion, meaning
that it should not compromise the privacy of the information
held by INT and the (honest) verifiers.

To enable the zero-knowledge interaction, Signer dis-
tributes some additional information to INT and the veri-
fiers during the generation phase. Specifically, in addition to
F (x), Signer gives to INT another random polynomialR(x)
of degree at most ` + t − 1. In parallel, to each individual
verifier Pi, Signer gives the value of R(x) at αi. Now the
specific details of the zero-knowledge consistency checking,
along with the other formal steps are given in Fig. 2.

We now prove the properties of the protocol MultiVerifie
rAICP. We begin with the following two supporting claims.

Claim 1. Let F (x), R(x) be two polynomials of degree at
most `+t−1 and (αi, vi, ri) be a tuple such that F (αi) 6= vi
and R(αi) 6= ri. Then for a random d ∈ F \ {0}, the con-
dition B(αi) 6= dvi + ri will be true except with probability

at most 1
|F|−1 , where B(x)

def
= dF (x) +R(x).

PROOF: We first argue that there exists only one non-zero
d ∈ F, for which the condition B(αi) = dvi + ri will hold,
even though F (αi) 6= vi and R(αi) 6= ri. For otherwise,
assume there exists another non-zero e ∈ F, where e 6= d,
for which B(αi) = evi + ri is true, even if F (αi) 6= vi and
R(αi) 6= ri. This implies that

dF (αi)+R(αi) = dvi+ri and eF (αi)+R(αi) = evi+ri,

further implying (d − e)F (αi) = (d − e)vi or F (αi) =

vi, which is a contradiction. As d is random, the condition
B(αi) = dvi + ri holds with probability at most 1

|F|−1 . 2

Claim 2. In the protocol MultiVerifierAICP, if Signer and
INT are honest, then Signer will broadcast the OK message
(and not the polynomial F (x)) during the protocol Ver.
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Fig. 2 AICP with n = 3t+ 1.
˜

MultiVerifierAICP(Signer, INT,P, ~S = (s1, . . . , s`))

˜
Gen(Signer, INT,P, ~S)

The following steps are executed only by Signer:

1. Select a random polynomial F (x) over F of degree at most ` + t− 1, such that F (βi) = si, for i = 1, . . . , `, where β1, . . . , β` are
publicly known distinct elements from F. In addition, select a random polynomial R(x) over F of degree at most `+ t− 1.

2. For i = 1, . . . , n, select αi randomly from F as the evaluation-point, corresponding to the verifier Pi, subject to the condition that
αi ∈ F \ {β1, . . . , β`}. Send F (x), R(x) to INT and (αi, vi, ri) to the verifier Pi, where vi = F (αi) and ri = R(αi).

˜
Ver(Signer, INT,P, ~S)

Signer, INT and the verifiers in P interact as follows:

1. For i = 1, . . . , n, verifier Pi sends the message (Received, i) to INT after receiving (αi, vi, ri) from Signer.
2. Upon receiving the message (Received, i) from the verifier Pi, INT includes Pi to a dynamic set R, which is initially ∅. If
|R| ≥ 2t+ 1, then INT randomly selects d ∈ F \ {0}, computes B(x) = dF (x) +R(x) and broadcasts (d,B(x),R) (as a Sender).

3. Upon receiving (d,B(x),R) from the broadcast of INT, Signer checks dvi + ri
?
= B(αi) for every Pi ∈ R.

If dvi + ri = B(αi) for every verifier Pi ∈ R, then Signer broadcasts the message OK.
Otherwise Signer broadcasts the polynomial F (x).

4. INT and the verifiers do the following, depending upon the broadcast of Signer:
(a) If OK is received from the broadcast of Signer then:

i. INT sets ICSig(Signer, INT,P, ~S) = F (x), where F (x) was received from Signer during Gen.
ii. For i = 1, . . . , n, verifier Pi sets (αi, vi) as its verification information, where αi and vi was received by Pi from

Signer during Gen.
(b) If a polynomial F (x) of degree at most `+ t− 1 is received from the broadcast of Signer, then:

i. INT sets ICSig(Signer, INT,P, ~S) = F (x).
ii. For i = 1, . . . , n, verifier Pi computes vi = F (αi) and sets (αi, vi) as its verification information.

˜
RevealPublic(Signer, INT,P, ~S)

1. INT broadcasts ICSig(Signer, INT,P, ~S).
2. For i = 1, . . . , n, verifier Pi does the following:

(a) Wait to receive ICSig(Signer, INT,P, ~S) from the broadcast of INT. Upon receiving, interpret ICSig(Signer, INT,P, ~S) as a
polynomial F ?(x) of degree at most `+ t− 1.

(b) If Pi ∈ R, then broadcast the message Accept if one of the following conditions holds:
i. vi = F ?(αi) — we call this as condition as C1.

ii. B(αi) 6= dvi + ri and Signer broadcasted the OK message during the protocol Ver— we call this as condition as C2.
If Pi ∈ R and neither C1 nor C2 holds, then broadcast the message Reject.

(c) If the Accept message is received from the broadcast of t+1 different verifiers in the setR, then output Reveali = ~S?, where
~S? is the vector of ` values of the polynomial F ?(x) at x = β1, . . . , β`.

(d) If the Reject message is received from the broadcast of t+ 1 different verifiers inR, then output Reveali = ⊥.

PROOF: Follows from the fact that if Signer and INT are
honest then F (αi) = vi and R(αi) = ri holds for every
verifier Pi ∈ R. Moreover, INT will broadcast the polyno-

mial B(x) during Ver, where B(x)
def
= dF (x) + R(x) and

so dvi + ri = B(αi) will hold for every Pi ∈ R. 2

Lemma 1 (AICP-Correctness1) If Signer and INT are h-
onest, then in the protocol RevealPublic, each honest verifier
Pi ∈ P will output Reveali = ~S? = ~S.

PROOF: From Claim 2, if Signer and INT are honest, then
Signer will broadcast the OK message during Ver, as vi =
F (αi) and ri = R(αi) will be true for each verifier Pi ∈ R
and there are at least t + 1 honest verifiers in R. Now dur-
ing RevealPublic, INT will broadcast ICSig = F (x) (so
F ?(x) = F (x)) and each honest verifier Pi ∈ R will broad-

cast the Accept message, as the condition C1, i.e. vi =

F (αi) will hold for each of them. Hence each honest ver-
ifier Pi ∈ P will eventually receive t + 1 Accept mes-
sages from at least t+1 verifiers inR and hence will output
Reveali = ~S?. Now it is easy to see that ~S? = ~S. 2

Lemma 2 (AICP-Correctness2) If Signer is corrupted and
INT is honest, holding ICSig(Signer, INT,P, ~S) at the end
of Ver, then except with probability at most n

|F|−1 , all honest

verifiers will output Reveali = ~S at the end of RevealPublic.

PROOF: We first claim that except with probability at most
1
|F|−1 , an honest verifier Pi ∈ R will broadcast the Accept
message during RevealPublic, in response to ICSig(Signer,
INT,P, ~S) broadcasted by the honest INT; so except with
probability at most |R| · 1

|F|−1 ≤
n
|F|−1 , all the honest ver-
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ifiers in R will broadcast Accept. Now since there are at
least t+1 honest verifiers (and at most t corrupted verifiers)
in the set R, it implies that each honest verifier Pi ∈ P
will eventually receive the Accept message from at least
t + 1 different verifiers in R and will output Reveali = ~S.
We now prove our claim by considering the following two
cases, depending upon what Signer broadcasts during Ver:

1. Signer broadcasts a polynomial F (x) during Ver: In this
case, the claim is true, as INT will set ICSig(Signer, INT,
P, ~S) = F (x) as the IC signature and each honest ver-
ifier Pi ∈ R will set vi = F (αi) as its verification in-
formation at the end of Ver. During RevealPublic, the
honest INT will broadcast ICSig(Signer, INT,P, ~S) =

F ?(x) = F (x) and so the condition C1, namely F ?(αi)
= vi will hold for each honest verifier Pi ∈ R.

2. Signer broadcasts the OK message during Ver: In this
case, INT will broadcast ICSig(Signer, INT,P, ~S) =
F ?(x) = F (x) during RevealPublic. Now we have the
following cases depending on the relationship between
(F (x), R(x)) held by INT and the tuple (αi, vi, ri) held
by an honest verifier Pi ∈ R:
(a) F (αi) = vi: clearly Pi will broadcast Accept, as

the condition C1, i.e. F ?(αi) = vi will hold for Pi.
(b) F (αi) 6= vi and R(αi) = ri: Here also Pi will

broadcast the Acceptmessage, as the condition C2,
i.e. B(αi) 6= dvi + ri will hold for Pi.

(c) F (αi) 6= vi and R(αi) 6= ri: In this case, Pi will
broadcast Accept, except with probability at most

1
|F|−1 , as the condition C2, i.e. B(αi) 6= dvi + ri
will hold for Pi, which follows from Claim 1. More
specifically, if F (αi) 6= vi and R(αi) 6= ri, then
there exists a unique, non-zero d, for whichB(αi) =

dvi+ri will hold. However, a corrupted Signer while
distributing the tuple (αi, vi, ri) to an honest Pi ∈
R during the protocol Gen, has no idea (other than
guessing) about the random d, which will be selected
by the honest INT only during Ver (when (αi, vi, ri)

has been already delivered to Pi). 2

Lemma 3 (AICP-Correctness3) If Signer is honest and
INT holds ICSig(Signer, INT,P, ~S) at the end of Ver, then
the probability that an honest Pi outputs Reveali = ~S? at
the end of RevealPublic, where ~S? 6= ~S is at most n(`+t−1)|F|−` .

PROOF: First of all we have to consider a corrupted INT,
as an honest INT always reveals ICSig(Signer, INT,P, ~S).
To make an honest verifier Pi ∈ P output Reveali = ~S?

at the end of RevealPublic, where ~S? 6= ~S, it must be the
case that INT revealed incorrect ICSig during RevealPublic.
More specifically, INT must have broadcasted an incorrect
polynomial F ?(x) during RevealPublic, that evaluates to the
elements of ~S? at x = β1, . . . , β`. We now claim that if
INT does so, then except with probability at most `+t−1

|F|−` ,

an honest verifier Pi ∈ R will broadcast the Reject mes-
sage during RevealPublic; so except with probability at most
|R| · `+t−1|F|−` ≤

n(`+t−1)
|F|−` , all the honest verifiers in R will

broadcast Reject. As there can be at most t corrupted ver-
ifiers in the setR (who may broadcast the Acceptmessage
in response to the incorrect polynomial), this implies that no
honest verifier in the set P will output ~S?. We now prove
our claim by considering the following two cases, based on
the broadcast of the honest Signer during Ver:

1. Signer broadcasts the polynomial F (x) during Ver: This
implies that B(αi) = dvi + ri does not hold for all the
verifiers Pi ∈ R during Ver. So clearly the condition
C2 will not hold for any honest verifier Pi ∈ R during
RevealPublic. An honest verifier Pi ∈ R can therefore
broadcast the Accept message under the condition C1,
namely when F ?(αi) = vi holds. However, F ?(x) 6=
F (x) and the corrupted INT will have no information
about αi, as both Signer and Pi are honest. Moreover,
αi’s are randomly selected from F \ {β1, . . . , β`}. So
the probability that INT can ensure that F ?(αi) = vi =

F (αi) holds is the same as INT can correctly guess αi,
which is at most `+t−1|F|−` (since F ?(x) and F (x) can have
the same value for at most `+ t− 1 values of x).

2. Signer broadcasts the OK message during Ver: This im-
plies that B(αi) = dvi + ri holds for all the verifiers
Pi ∈ R. We show that in this case, the conditions un-
der which an honest verifier Pi ∈ R would broadcast
the Accept message (in response to the polynomial
F ?(x) 6= F (x)) during RevealPublic are either impossi-
ble or may happen with probability at most `+t−1|F|−` :
(a) F ?(αi) = vi = F (αi): As discussed above, this can

happen with probability at most `+t−1|F|−` .
(b) B(αi) 6= dvi + ri and Signer broadcasted the OK

message during Ver: This is impossible because if
B(αi) 6= dvi+ri, then an honest Signer would have
broadcasted F (x), instead of OK during Ver. 2

Lemma 4 (AICP-Secrecy) If Signer and INT are honest,
then the information received by Adv till the end of Ver is
distributed independently of the secret ~S = (s(1), . . . , s(`)).

PROOF: If Signer and INT are honest, then Signer will broa-
dcast the OK message during Ver. Without loss of general-
ity, let the verifiers P1, . . . , Pt ∈ P be under the control
of Adv. At the end of Ver, Adv will know d and the poly-
nomial B(x) = dF (x) + R(x), as they are broadcasted.
In addition, Adv will also know αi and vi = F (αi), ri =

R(αi), for i = 1, . . . , t. Further, the adversary Adv can
compute B(β1), . . . , B(β`), from which it gets dF (β1) +
R(β1), . . . , dF (β`) + R(β`). However, the degree of the
polynomials F (x) and R(x) is at most ` + t − 1 and the
two polynomials are independent of each other. It is easy
to see that d, F (α1), . . . , F (αt), R(α1), . . . R(αt), dF (β1)
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+ R(β1), . . . , dF (β`) + R(β`) have distribution indepen-
dent of F (β1) = s1, . . . , F (β`) = s`. This is because from
the adversary’s point of view, for every possible choice of
s1, . . . , s`, there exists polynomials R(x) and F (x) of de-
gree ` + t − 1 with r1 = R(α1), . . . , rt = R(αt), v1 =

F (α1), . . . , vt = F (αt) and F (β1) = s1, . . . , F (β`) = s`,
such that dv1 + r1 = dF (β1) + R(β1), . . . , dv` + r` =

dF (β`) +R(β`) will hold. 2

Theorem 1 Protocols (Gen,Ver,RevealPublic) constitute
a (1−µ)-AICP, where µ = n(`+t−1)

|F|−` . Protocol Gen requires
a private communication of O((`+ n) log 1

ε ) bits. Protocol
Ver requires broadcast of O((`+ n) log 1

ε ) bits and private
communication of O(n log n) bits. Protocol RevealPublic
requires broadcast of O((`+ n) log 1

ε ) bits.

PROOF: During Gen, Signer privately sends ` + t field ele-
ments to INT and three field elements to each verifier. Since
each field element can be represented by κ = O(log 1

ε ) bits,
Gen incurs a private communication of O((` + n) log 1

ε )

bits. In the protocol Ver, every verifier privately sends the
message (Received, ?) to INT, thus causing a private
communication of O(n log n) bits (assuming that the iden-
tity of each party can be represented by log n bits). In ad-
dition, INT and separately Signer broadcast a polynomial
represented by ` + t field elements, thus incurring a broad-
cast of O((` + n) log 1

ε ) bits. In the protocol RevealPublic,
INT broadcasts ICSig that consists of ` + t field elements.
Each verifier in R broadcasts Accept/Reject message.
So RevealPublic involves broadcast ofO((`+n) log 1

ε ) bits.
The proof now follows from Lemmas 1-4 and the fact that
n
|F|−1 <

n(`+t−1)
|F|−` . 2

In the rest of the paper, we will use the following termi-
nologies while using the protocol MultiVerifierAICP.

Terminology 2 (Terminologies for Using the Gen,Ver and
RevealPublic Protocols). Recall that Signer and INT can be
any party from the set P . We say that:

1. “Pi gives ICSig(Pi, Pj ,P, ~S) to Pj” to mean that Pi as a
Signer executes the protocol Gen(Pi, Pj ,P, ~S), consid-
ering Pj as an INT, to give its IC signature on ~S.

2. “Pi receives ICSig(Pj , Pi,P, ~S) from Pj” to mean that
Pi as an INT has completed the protocol Ver(Pj , Pi,P,
~S) and holds ICSig(Pj , Pi,P, ~S), where Pj is Signer.

3. “Pi reveals ICSig(Pj , Pi,P, ~S)” to mean that Pi as an
INT executes RevealPublic(Pj , Pi,P, ~S) for revealing
ICSig(Pj , Pi,P, ~S) and hence ~S, where Pj is Signer,
while the verifiers in P participate in the instance of
RevealPublic.

4. “Pk completes the revelation of ICSig(Pj , Pi,P, ~S) with
output Revealk = ~S? (resp. Revealk = ⊥)” to mean that
Pk as a verifier has completed the protocol RevealPublic

(Pj , Pi,P, ~S), where Pj is Signer and Pi is INT, with
output Revealk = ~S? (resp. Revealk = ⊥).

5. “Pi successfully/correctly revealed ICSig(Pj , Pi,P, ~S)
(and hence ~S)” to mean that every honest verifier Pk ∈
P outputs Revealk = ~S after completing RevealPublic(
Pj , Pi,P, ~S), where Pi is INT and Pj is Signer.

6. “Pi failed to reveal ICSig(Pj , Pi,P, ~S) (and hence ~S)”
to mean that each honest verifier Pk outputs Revealk =

⊥ after completing RevealPublic(Pj , Pi,P, ~S), where
Pi is INT and Pj is Signer.

4 Asynchronous Weak Commitment (AWC)

We present an AWC scheme, which is a (1−δ)-AWC, where
δ = n2(`+t−1)

|F|−` and ` is the number of secrets committed in
the scheme. For the ease of presentation, we first present
an AWC scheme which allows to commit and decommit a
single secret (i.e. ` = 1). This is followed by the modifica-
tions required to deal with ` secrets concurrently. Next, we
compare our AWC scheme with the existing AWSS and W-
SVSS schemes. We conclude with an important interpreta-
tion of our AWC on committing and decommitting polyno-
mials (instead of committing and decommitting a secret as
it is projected now). The interpretation plays a crucial role
when AWC is plugged in the AVSS scheme.

4.1 AWC Scheme for a Single Secret

We present an AWC scheme called AWC-Single, consist-
ing of a pair of protocols (Com,Decom), which allows a
Committer ∈ P to commit a secret s ∈ F in a distributed
fashion among the parties in P . The high level idea of the
protocol is as follows: During the protocol Com, Committer
computes n Shamir-shares [27] for the secret s, with thresh-
old t. Specifically, Committer selects a random polynomial
of degree at most t, subject to the condition that the constant
term of the polynomial is the secret s. Let Sh1, . . . , Shn
be the n shares of s, which are nothing but n distinct eval-
uations of the polynomial. Then Committer sends the ith
share Shi to the party Pi. On receiving the share Shi from
Committer, party Pi “acknowledges” by signing Shi and
giving ICSig(Pi,Committer,P, Shi) to Committer.

To avoid endless waiting (due to asynchronicity), on re-
ceiving the signatures from n−t = 2t+1 parties, Committer
broadcasts the identities of these 2t + 1 parties (we denote
these parties by the set WCORE) and every (honest) party
terminates Com on receiving WCORE from Committer. At
this stage, Committer has committed a secret determined by
the shares of the (honest) parties in WCORE. Specifically,
let f(x) be the polynomial, defined by the shares17 of the

17 A set of shares S = {(i, Shi)} is said to define a polynomial, say
p(·), if p(i) = Shi holds for every index i in the set S; we also say that
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honest parties in WCORE. Then, the committed secret, say
s, is the constant term of f(x) (thus belongs to F) if the
polynomial is of degree at most t, else s = ⊥.

If Committer is honest then the protocol Com preserves
the privacy of the secret s; this follows from the privacy of
Shamir secret-sharing and the secrecy property of the AICP.
Furthermore, protocol Com terminates since every honest
party in the set of at least 2t+1 honest parties will be even-
tually included in WCORE. The committed secret s is the
same as the secret input s of the honest Committer. Now
consider the case when Committer is corrupted. In that case,
it may not distribute “consistent” Shamir-shares to the hon-
est parties in WCORE. More specifically, the shares given to
the honest parties in the set WCORE may not lie on a unique
polynomial of degree at most t, so the committed secret s
may be ⊥. However, as discussed in the sequel, during the
protocol Decom, a corrupted Committer cannot decommit
any s? different from the committed secret ⊥.

In the protocol Decom, Committer reveals the signa-
tures of all the 2t + 1 parties in the set WCORE on the
corresponding shares. So the participation of Committer is
very crucial in the protocol Decom, as otherwise, the hon-
est parties will never participate and terminate the protocol
Decom. A corrupted Committer might thus choose to let
Decom never complete. Now if all the signatures (on the
shares) are revealed correctly by Committer and the 2t + 1

shares lie on a unique polynomial of degree at most t, then
the constant term of the polynomial is output as the decom-
mitted secret; otherwise the parties output⊥. The interpreta-
tion is that Committer wants to decommit the secret, say s?,
which is the constant term of the polynomial, defined by the
2t+1 shares (corresponding to the parties in WCORE), that
are revealed by Committer (along with the corresponding
signatures). If these shares define a polynomial of degree at
most t, then s? is the constant term of the polynomial (thus
belongs to F); otherwise s? = ⊥.

It is easy to see that an honest Committer will success-
fully reveal the required signatures, leading to a decommit-
ment of s. On the other hand, a corrupted Committer can
only successfully reveal the signature on the same share Shi,
which it had given to an honest party Pi ∈ WCORE dur-
ing Com (follows from the AICP-Correctness3 property of
AICP). This implies that if s? ∈ F is the decommitted secret
then with high probability, s? is the same as secret s, com-
mitted during Com. That is, the constant term of the polyno-
mial defined by the shares of the honest parties in WCORE
(namely s) in Com is s?.18

the shares in S lie on the polynomial p(·). Note that the degree of p(·)
will be at most |S| − 1.

18 Note that there are at least t+1 honest parties in WCORE and thus
the shares of the honest parties in WCORE uniquely define a single
polynomial of degree at most t.

Without violating the properties of the protocol, we add
few additional steps in the protocol Com. These additional
steps do not play any role for the AWC scheme, but they
are crucial to our AVSS scheme (described in the next sec-
tion) that is built on AWC scheme. Firstly, while distribut-
ing Shi to party Pi, the Committer signs the share and gives
ICSig(Committer, Pi,P, Shi) to Pi. To distinguish these si-
gnatures from the ones described before, we use the follow-
ing notations: (1) The signatures ICSig(Pi,Committer,P,
Shi), given by the share-holders Pi to Committer are called
primary signatures. (2) The signatures ICSig(Committer,
Pi,P, Shi), given by Committer to the share-holders Pi are
called secondary signatures. Secondly, (Sign-Sent, ?, ?)
and (Sign-Received, ?, ?) messages are broadcasted by
the share-holders and Committer respectively, after giving
and receiving the primary signatures. The formal details of
AWC-Single are given in Fig 3.

We now prove the properties of AWC-Single.

Lemma 5 (Termination) Protocols (Com,Decom) satisfy
the termination condition of Definition 3 without any error.

PROOF: If Committer is honest then eventually it will re-
ceive ICSig(Pi,Committer,P, Sh′i) from every honest Pi,
where Sh′i = Shi and there are at least 2t + 1 such hon-
est parties. So eventually, Committer will broadcast a set
WCORE and the corresponding (Sign-Received, ?, ?)
messages and by the properties of broadcast, every honest
party will eventually receive the set and the messages. More-
over, the honest Committer also must have received the me-
ssage (Sign-Sent, i,Committer) from the broadcast of
every party Pi ∈ WCORE, before including Pi in the set
WCORE and so from the properties of broadcast every other
honest party will also eventually receive these messages and
will terminate the protocol Com. This proves the first re-
quirement.

Let Pi be an honest party who has terminated Com. Thus
Pi has received the set WCORE of size 2t + 1 and the re-
quired (Sign-Received, ?, ?) messages from the broad-
cast of Committer, along with the message (Sign-Sent,
j,Committer) from the broadcast of every Pj ∈ WCORE.
Now from the properties of broadcast, every other honest
party will also eventually receive this set and the correspond-
ing messages and will terminate Com. This proves the sec-
ond requirement.

Now we show that if Committer is honest then every
party will terminate Decom. The claim is trivially true since
an honest Committer will invoke the protocol Decom and
reveal the signature ICSig(Pj ,Committer,P, Shj) corres-
ponding to each Pj ∈ WCORE. Irrespective of whether
Committer has revealed the signatures successfully or not,
every party will terminate the protocol eventually.

It is left to show that if Committer is corrupted and some
honest party, say Pi, terminates Decom, then every other
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Fig. 3 AWC with n = 3t+ 1.
˜

AWC-Single(Committer,P, s)

˜
Com(Committer,P, s)

GENERATING THE COMMITMENT INFORMATION: The following code is executed only by Committer:
1. Select a random polynomial f(x) over F of degree at most t, such that f(0) = s and for i = 1, . . . , n, compute the ith share

Shi = f(i).
2. For i = 1, . . . , n, give ICSig(Committer, Pi,P, Shi) to Pi by acting as a Signer and considering Pi as an INT.
3. For i = 1, . . . , n, if ICSig(Pi,Committer,P, Sh′i) is received from Pi, such that Sh′i = Shi and the message

(Sign-Sent, i,Committer) is received from the broadcast of Pi, then include Pi in a dynamic set WCORE, which is ini-
tialized to ∅. In addition, broadcast the message (Sign-Received, i,Committer) to publicly notify the receipt of signature
from the party Pi.

4. Wait till |WCORE| = 2t+ 1 and then broadcast the set WCORE.
SIGNING THE SHARES, VERIFYING Committer’S CLAIM AND TERMINATION: For i = 1, . . . , n, every party Pi ∈ P (including

Committer) executes the following code:
1. On receiving ICSig(Committer, Pi,P, Shi) from Committer, act as a Signer and give ICSig(Pi,Committer,P, Shi) to

Committer, considering Committer as an INT. In addition, broadcast the message (Sign-Sent, i,Committer) to notify that
signature is given to Committer.

2. Wait to receive a set WCORE of size 2t + 1 from the broadcast of Committer, along with the messages
(Sign-Received, j,Committer), corresponding to each Pj ∈ WCORE, from the broadcast of Committer. On receiv-
ing WCORE and these messages, wait to receive the message (Sign-Sent, j,Committer) from the broadcast of every
Pj ∈WCORE. On receiving all these messages, terminate the protocol.

˜
Decom(Committer,P, s)

DECOMMITTING THE SECRET: The following code is executed only by Committer:
1. Act as an INT and reveal ICSig(Pj ,Committer,P, Shj), corresponding to each Pj ∈WCORE.

VERIFYING THE DECOMMITMENT AND TERMINATION: For i = 1, . . . , n, every party Pi ∈ P (including Committer) executes the
following code:
1. Act as a verifier and wait to complete the revelation of ICSig(Pj ,Committer,P, Shj), corresponding to each Pj ∈WCORE.
2. If ∃Pj ∈WCORE, such that Pi completes the revelation of ICSig(Pj ,Committer,P, Shj) with output Reveali = ⊥ then output
⊥ and terminate.

3. If Pi completes the revelation of ICSig(Pj ,Committer,P, Shj) with output Reveali = Shj for every Pj ∈ WCORE, then do
the following:

(a) If the points {(j, Shj) : Pj ∈WCORE} lie on a unique polynomial, say f?(x), of degree at most t, then output s? = f?(0)

and terminate.
(b) If the points {(j, Shj) : Pj ∈WCORE} do not lie on a unique polynomial of degree at most t, then output⊥ and terminate.

honest party eventually terminates the protocol. From the
protocol steps, it follows that Pi must have completed the
revelation of ICSig(Pj ,Committer,P, Shj), corresponding
to every Pj ∈WCORE with some output Reveali. From the
protocol steps of RevealPublic, every other honest party will
also eventually complete the revelation of these ICSigs and
hence will terminate the protocol Decom. This concludes
the proof of termination. 2

Lemma 6 (Correctness) Protocols (Com,Decom) satisfy
the correctness condition of Definition 3 with probability at
least (1− δ), where δ = n2t

|F|−1 .

PROOF: First we show that if some honest party terminates
Com, then there exists a committed secret s ∈ F ∪ {⊥}.
The secret s is defined as follows: if the shares of the honest
parties in WCORE lie on a unique polynomial of degree at
most t, say f(x), then s = f(0), otherwise s = ⊥. Note
that s is well defined, as there are at least t + 1 honest par-
ties in WCORE and the condition that some honest party
terminated Com ensures that every honest party in WCORE

has received its share from Committer. We next define s?,
the input for Committer during the protocol Decom (namely
the value for decommitting): s? is the constant term of the
polynomial, defined by the 2t+1 shares, which are revealed
by Committer during the protocol Decom; if the polynomial
has degree at most t, then s? ∈ F, otherwise s? = ⊥. Now
we consider the following two cases (depending upon the
behaviour of Committer):

– Committer is honest: In this case, s? = s = s. This
is because, the 2t + 1 shares which Committer reveals
during Decom are the points on the original polynomial
f(x), selected by Committer during Com. In this case,
Committer will successfully reveal the signature corre-
sponding to every party in WCORE, except with proba-
bility at most tµ ≤ δ, where µ = nt

|F|−1 (for every hon-
est party in WCORE, the claim is true without any error
due to AICP-Correctness1; for every corrupted party in
WCORE, the claim is true due to AICP-Correctness2,
except with probability µ; the rest follows from the fact
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that there can be at most t corrupted parties in WCORE).
So except with probability at most δ, all the honest par-
ties will output s upon terminating Decom. This proves
the first requirement.

– Committer is corrupted: we show that if Committer tri-
es to decommit s?, where s? 6= s, then except with
probability at most δ, all the honest parties will output
⊥ upon terminating Decom. To decommit s? 6= s, it
must be the case that during Decom, Committer reveals
Sh′j as the share on the behalf of at least one honest
party Pj ∈ WCORE, such that Sh′j is different from
the share Shj , which Committer has given to Pj during
the Com protocol. However, if Committer does so, then
except with probability at most µ, Committer will fail
to reveal ICSig(Pj ,Committer,P, Sh′j) due to AICP-
Correctness3. Now there are at least t + 1 honest par-
ties in WCORE and so except with probability at most
|WCORE| · µ ≤ δ, Committer will fail to successfully
reveal the IC signature on any incorrect share on the be-
half of any honest party in WCORE. This proves the sec-
ond requirement of the correctness property. 2

Lemma 7 (Secrecy) If Committer is honest then the infor-
mation received by Adv till the end of Com is distributed
independently of the secret s.

PROOF: The proof follows from the properties of Shamir
secret-sharing and the AICP-Secrecy. More specifically,
Adv gets to know t points (namely the shares) on the random
polynomial f(x) of degree at most t from the corrupted par-
ties. From the view-point of Adv, for every possible secret s,
there exists a unique polynomial of degree at most t which
is consistent with the t shares that Adv knows and the secret
s. So all possible secrets are equi-probable from Adv’s point
of view. Moreover, Adv does not get any extra information
about the shares of the honest parties from the corresponding
instances of AICP. That is, corresponding to every honestPi,
the adversary obtains no information about the share Shi =
f(i) during the instances Gen(Committer, Pi,P, Shi),Ver(
Committer, Pi,P, Shi),Gen(Pi,Committer,P, Shi) and
Ver(Pi,Committer,P, Shi), which are invoked in Com to
generate Committer’s and Pi’s IC signature on Shi (this fol-
lows from Lemma 4). 2

Theorem 2 Protocols (Com,Decom) is a (1 − δ)-AWC
scheme for a single secret, where δ = n2t

|F|−1 . Protocol Com

requires a private communication of O(n2 log 1
ε ) bits and

broadcast of O(n2 log 1
ε ) bits. Protocol Decom requires a

broadcast of O(n2 log 1
ε ) bits.

PROOF: In the protocol Com, 2n instances of Gen and Ver,
each dealing with a single value are executed to generate
the IC signatures. During Decom, at most n instances of
RevealPublic, each dealing with a single value are executed
to reveal the signatures. The proof now follows from Theo-
rem 1 by substituting ` = 1 and from Lemmas 5-7. 2

4.2 AWC Scheme for ` Secrets

The AWC scheme presented in the last section allows to
commit and later decommit a single secret. Now let the se-
cret be a vector ~S = (s1, . . . , s`), consisting of ` elements
from F, where ` > 1. We can execute one “dedicated” in-
stance of the Com and Decom protocol for each element
sl ∈ ~S; this will require a private as well as broadcast com-
munication of O(`n2 log 1

ε ) bits. However, we now show
how to commit and decommit all the ` elements of ~S con-
currently, so that it requires a private as well as broadcast
communication of O((`n+ n2) log 1

ε ) bits. So if ` = Ω(n)

(which will be the case when AWC is plugged in our AVSS
scheme and the common coin protocol) then the broadcast
communication of our protocol will be O(`n log 1

ε ) bits, in-
stead of O(`n2 log 1

ε ) bits. This is a significant gain in the
communication complexity, considering the fact that imple-
menting broadcast through the A-cast protocol over a point-
to-point network is very expensive19.

We extend the protocol Com and Decom in a “natural”
way to deal with ` values concurrently. Firstly, Committer
computes ` Shamir-sharings, one corresponding to each sl ∈
~S. Secondly the instances of Gen,Ver and RevealPublic in
the Com and Decom protocol are invoked to deal with `

values concurrently, instead of a single value. The modified
protocols are presented in Fig 4. The new scheme is called
AWC-Multiple, as it deals with multiple secrets. The prop-
erties of AWC-Multiple follow using the same arguments as
for the earlier scheme: more specifically, the argument for
termination is exactly the same as in Lemma 5. The cor-
rectness property follows similarly. Specifically, the vector
of secret committed by Committer is defined by the vec-
tor of Shamir-shares of the honest parties in WCORE, while
the vector of secret decommitted by Committer is defined
by the vector of Shamir-shares corresponding to the parties
in WCORE revealed by Committer (along with the signa-
tures). Finally the secrecy is argued as follows. We observe
that each element of ~S is independently Shamir-shared with
threshold t; moreover the vector of Shamir-shares of the
honest parties remain private during the generation of pri-
mary and secondary signatures on them, thanks to the se-
crecy property of AICP. We state the following theorem; the
communication complexity of AWC-Multiple follows from
the properties of the protocol and the communication com-
plexity of our AICP (Theorem 1).

Theorem 3 Protocols (Com,Decom) is a (1 − δ)-AWC
scheme for ` secrets, where δ = n2(`+t−1)

|F|−` . Protocol Com

requires a private communication ofO((`n+n2) log 1
ε ) bits

and broadcast of O((`n + n2) log 1
ε ) bits. Protocol Decom

requires a broadcast of O((`n+ n2) log 1
ε ) bits.

19 Recall that an instance of A-cast requires a private communication
of O(`n2) bits to broadcast an ` bit message.
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Fig. 4 AWC for ` secrets with n = 3t+ 1.
˜

AWC-Multiple(Committer,P, ~S = (s1, . . . , s`))

˜
Com(Committer,P, ~S)

GENERATING THE COMMITMENT INFORMATION: The following code is executed only by Committer:
1. For l = 1, . . . , `, corresponding to the secret sl ∈ ~S, select a random polynomial fl(x) over F of degree at most t, such that

fl(0) = sl.
2. For i = 1, . . . , n, compute the vector of ith share ~Shi = (f1(i), . . . , f`(i)).
3. For i = 1, . . . , n, give ICSig(Committer, Pi,P, ~Shi) to Pi by acting as a Signer and considering Pi as an INT.
4. For i = 1, . . . , n, if ICSig(Pi,Committer,P, ~Sh′i) is received from Pi, such that ~Sh′i =

~Shi, and the message (Sign-Sent,
i, Committer) is received from the broadcast of Pi, then include Pi in a dynamic set WCORE, which is initialized to ∅. In
addition, broadcast the message (Sign-Received, i,Committer) to publicly notify the receipt of signature from the party
Pi.

5. Wait till |WCORE| = 2t+ 1 and then broadcast the set WCORE.
SIGNING THE SHARES, VERIFYING Committer’S CLAIM AND TERMINATION: For i = 1, . . . , n, every party Pi ∈ P (including

Committer) executes the following code:
1. On receiving ICSig(Committer, Pi,P, ~Shi) from Committer, act as a Signer and give ICSig(Pi,Committer,P, ~Shi) to

Committer, considering Committer as an INT. In addition, broadcast the message (Sign-Sent, i, Committer) to pub-
licly notify that signature is given to Committer.

2. Wait to receive a set WCORE of size 2t + 1, along with the messages (Sign-Received, j,Committer), corresponding to
each Pj ∈ WCORE, from the broadcast of Committer. On receiving WCORE and the messages, wait to receive the mes-
sage (Sign-Sent, j,Committer) from the broadcast of every Pj ∈ WCORE. On receiving all these messages, terminate the
protocol.

˜
Decom(Committer,P, ~S)

DECOMMITTING THE SECRET: The following code is executed only by Committer:
1. Act as an INT and reveal ICSig(Pj ,Committer,P, ~Shj), corresponding to each Pj ∈WCORE.

VERIFYING THE DECOMMITMENT AND TERMINATION: For i = 1, . . . , n, every party Pi ∈ P (including Committer) executes the
following code:
1. Act as a verifier and wait to complete the revelation of ICSig(Pj ,Committer,P, ~Shj), corresponding to each Pj ∈WCORE.
2. If ∃Pj ∈WCORE, such that Pi completes the revelation of ICSig(Pj ,Committer,P, ~Shj) with output Reveali = ⊥ then output
⊥ and terminate.

3. If Pi completes the revelation of ICSig(Pj ,Committer,P, ~Shj) with output Reveali = ~Shj for every Pj ∈ WCORE, then
interpret ~Shj as (f1(j), . . . , f`(j)) and do the following:

(a) If for l = 1, . . . , `, the points {(j, fl(j)) : Pj ∈WCORE} lie on a unique polynomial, say f?l (x), of degree at most t, then
output ~S? = (f?1 (0), . . . , f

?
` (0)) and terminate.

(b) If ∃l ∈ {1, . . . , `}, such that the points {(j, fl(j)) : Pj ∈WCORE} do not lie on a unique polynomial of degree at most t,
then output ⊥ and terminate.

4.3 Comparison of Our AWC with the AWSS of [22] and
W-SVSS of [1]

The best known AWSS scheme was presented in [22]. The
scheme is a (1−ε)-AWSS scheme and is based on the idea of
using a bivariate polynomial to share a secret. Specifically,
to share a secret s, a random bivariate polynomial F (x, y)
with s as the constant term is used and each party receives n
points on this polynomial (along with additional information
like the IC signatures). So this approach inherently requires
the distribution of Ω(n2) elements from F to share a single
secret. On the other hand, in our AWC scheme, to commit a
secret, only n elements from F need to be distributed, as the
secret is shared using a univariate polynomial. This clearly
suggests a gain of Ω(n) in the communication complexity.

The weak-shunning VSS (W-SVSS) of [1], which may
be considered as a “shunning” variant of AWSS, is based

on the idea of using a bivariate polynomial of degree t in
each variable to share the secret (however, it does not use
any IC signature) and so it also requires distributing Ω(n2)

elements from the underlying field to share a single secret.
Moreover, W-SVSS does not satisfy all the properties of
AWSS. Specifically, if all the parties behave honestly dur-
ing the protocol then we get the same properties as in an
AWSS scheme; else the protocol ensures that there exists
at least one honest party, who will shun (ignore commu-
nication from) at least one corrupted party from then on-
wards for the rest of the protocol execution. Property wise,
W-SVSS is incomparable to AWC.

4.4 AWC for Sharing Polynomials

An interesting interpretation of the computation done in the
protocol AWC-Single and AWC-Multiple is presented be-
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low; this interpretation is very crucial for understanding how
the AWC is used later in our AVSS scheme. For simplic-
ity, we present the discussion with respect to AWC-Single
(Fig 3); the discussion for the protocol AWC-Multiple (Fig
4) will follow similarly. Recall that in the protocol Com in
AWC-Single, in order to commit a secret s, Committer se-
lected a polynomial f(x) of degree at most t with s as the
constant term and shared s through this polynomial by giv-
ing a point on the polynomial to each party as a share. We
defined the committed value s as follows: we considered the
polynomial f(x) defined by the shares of the honest par-
ties in WCORE; if f(x) has degree at most t, then s =

f(0) ∈ F; otherwise s = ⊥. Moreover, if Committer is hon-
est then f(x) = f(x) (see the proof of Lemma 6); further-
more the view of the adversary will be independent of f(0)
(see the proof of Lemma 7). We can recast the entire com-
putation (during the protocol Com) in terms of Committer
committing a polynomial f(x) instead of a secret s. Es-
sentially, we now consider f(x) instead of s as the input
of Committer, while rest of the protocol steps remain the
same. Similarly, we can recast the computation in Decom in
terms of Committer decommitting a polynomial. Namely,
if the polynomial f?(x) reconstructed in Decom has degree
at most t, then all the (honest) parties output this polyno-
mial; moreover the same polynomial was committed during
Com. If the polynomial has degree more than t or the same
polynomial was not committed during Com, then the parties
output ⊥.

We remark that the above idea of abusing the notion of
“committing (decommitting) a secret” to “committing (de-
committing) a polynomial f(x) of degree at most t” is not
new and it is commonly used in the literature of WSS and
VSS (for example, see [21,16,19]).

Following the above discussion, in the rest of the paper,
we will “abuse” the notion of committing and decommit-
ing secrets (through AWC) and instead say that Committer
commits and decommits polynomials (in the sense explain-
ed above) using the Com and Decom protocols. More specif-
ically, we will use the following terminologies:

Terminology 3 (Terminologies for Using AWC to Com-
mit/Decommit Polynomials). Recall that Committer can
be any party in the set P . We say that:

1. “Committer commits f1(x), . . . , f`(x)” to mean that
Committer invokes Com(Committer,P, (f1(0), . . . , f`
(0))), where Committer uses f1(x), . . . , f`(x) for gen-
erating the Shamir-shares of s1, . . . , s` respectively dur-
ing the step 1 of GENERATING THE COMMITMENT IN-
FORMATION in the protocol AWC-Multiple. If the hon-
est parties terminate this protocol, then they will know a
set WCORE of size 2t+1, such that each (honest) Pj ∈
WCORE has the secondary signature ICSig(Committer,
Pj ,P, ~Shj) and Committer has the primary signature

ICSig(Pj ,Committer,P, ~Shj), corresponding to every
Pj ∈ WCORE; here ~Shj = (f1(j), . . . , f`(j)) is called
the jth share of the committed polynomials f1(x), . . . ,
f`(x).

2. “Committer decommits f1(x), . . . , f`(x)” to mean that
Committer invokes Decom(Committer,P, (f1(0), . . . ,
f`(0))), where during the step DECOMMITTING THE

SECRET in AWC-Multiple, Committer reveals the pri-
mary signatures ICSig(Pj ,Committer,P, ~Shj), corre-
sponding to each Pj ∈ WCORE, where ~Shj = (f1(j),

. . . , f`(j)). If the honest parties terminate the protocol,
then they either output f1(x), . . . , f`(x), if these poly-
nomials are of degree at most t and the same polyno-
mials were committed earlier by Committer, during the
Com protocol; otherwise the parties output ⊥.

5 Asynchronous Verifiable Secret Sharing (AVSS)

We present a (1 − γ)-AVSS scheme, where γ = n3(`+t−1)
|F|−`

and ` is the number of secrets shared in the scheme. For the
ease of presentation, we first present an AVSS scheme for
sharing a single secret. Later we will brief the modifications
needed for the multi-secret version.

5.1 AVSS for Sharing a Single Secret

Our AWC schemes (AWC-Single and AWC-Multiple) read-
ily give “honest dealer” AVSS schemes where Committer
takes the role of the dealer D. Saying differently, they of-
fer all the properties an AVSS scheme provides when D is
honest. On the contrary, our AWC schemes are not AVSS
schemes when a corrupted Committer takes the role of the
dealer. There are two reasons for that: the third requirement
of the termination condition (that informally says that the
termination of the reconstruction protocol is not controlled
by the corrupted dealer) and the second requirement of the
correctness condition (that informally says that nothing but
the committed secret is reconstructed) of AVSS are violated.

In this section, we build our AVSS based on the idea of
sharing the secret using a bivariate polynomial of degree t in
each variable. The idea of bivariate-polynomial based secret
sharing is not new and has been widely used in the liter-
ature of VSS in the synchronous setting (for example, see
[21,19,11,16,17] and their references). The same idea was
also used in [1] to design a shunning-VSS (SVSS). Our con-
tribution for AVSS is the way we plug in our AWC scheme
in the AVSS scheme. Thus far, almost all the existing VSS
protocols are in general constructed from AWSS (AWC has
been differentiated from AWSS in section 2.3.3 where we
argued that AWC has weaker requirements than AWSS and
hence can be designed more efficiently). In what follows, we
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provide a brief background about symmetric bivariate poly-
nomials, which are used in our protocol.

Bivariate Polynomials: A symmetric bivariate polynomial
F (x, y) over F of degree t is a polynomial over two vari-
ables, each of degree at most t, where F (x, y) has the fol-
lowing form:

F (x, y) =

t∑
i,j=0

rijx
iyj and F (i, j) = F (j, i),∀i, j ∈ F,

which implies that rij = rji, for i, j = 1, . . . , t. Notice
that F (x, y) has (t + 1) + t + . . . + 1 = (t+1)(t+2)

2 dis-

tinct coefficients. Let fi(x)
def
= F (x, i), for i = 1, . . . , n;

then fi(x) is a univariate polynomial of degree at most t.
Moreover, fi(j) = F (j, i) = fj(i) = F (i, j), which fol-
lows from the symmetry of the bivariate polynomial. Notice
that the knowledge of fi(x) provides t+1 distinct points on
the polynomial F (x, y); i.e. given fi(x), one can compute
fi(j) = F (j, i), for j = 1, . . . , t+ 1. This immediately im-
plies that given any t+1 distinct fi(x) polynomials, one can
efficiently compute F (x, y), as the knowledge of t+ 1 such
distinct polynomials provides (t+1)(t+2)

2 distinct points on
F (x, y), which are sufficient to interpolate F (x, y).

Looking ahead, the following important property of the
bivariate polynomials will be used to prove the secrecy of
our AVSS schemes: let s ∈ F be the secret and F (x, y)

be a random, symmetric bivariate polynomial of degree t,
subject to the condition that s = F (0, 0). Then given only
t distinct polynomials fi(x), where fi(x) = F (x, i) and
i ∈ {1, . . . , n}, no information is revealed about s in the
information-theoretic sense; intuitively this is because the
knowledge of t such distinct fi(x) polynomials provides
(t+1)+t+. . .+2 = (t+1)(t+2)

2 −1 points on F (x, y), which
is one less than the number of coefficients in F (x, y). We
will later formalize this intuition, while proving the proper-
ties of our AVSS. We now discuss the underlying ideas used
in our AVSS.

Informal Description of Our AVSS: First, consider a sim-
ple scheme as follows: A dealer D, on having an input se-
cret s, selects a random, symmetric bivariate polynomial
F (x, y) of degree t, subject to the condition F (0, 0) = s.
For i = 1, . . . , n, D sends the polynomial fi(x) = F (x, i)

to the party Pi and we call fi(x) as the share of s for the
party Pi. The distribution of information as above does not
violate the secrecy of s for an honest D. Next, assume that
the parties can agree on a common “defining” set ShVCORE
of at least n − t = 2t + 1 parties, who have received their
shares from D. Based on the shares received by the par-
ties in ShVCORE, we define the committed secret s as fol-
lows: if there exists a unique, symmetric bivariate polyno-
mial of degree t, say F (x, y), such that for every honest

Pj ∈ ShVCORE, it holds that fj(x) = F (x, j) (we will of-
ten say that the share fj(x) lies on F (x, y) if this condition
is satisfied), where fj(x) is the share of Pj , then we say that
D has committed s = F (0, 0) during the sharing protocol;
otherwise we say that D has committed s = ⊥.20 Now fur-
ther assume that the share fj(x) of each Pj ∈ ShVCORE is
“shared” among the parties in such a way that the following
requirements are met:

(R1) If Pj is honest, then fj(x) can be reconstructed back
robustly;

(R2) If Pj is corrupted and s 6= ⊥, then either the correct
share fj(x) or⊥ (and nothing else) can be reconstructed
back, even without any help from Pj

21.

The above described scheme readily gives an AVSS. Namely
if s 6= ⊥, then the shares of all honest parties in ShVCORE
can be reconstructed robustly; moreover corresponding to
the corrupted parties in ShVCORE, either the correct share
or ⊥ can be reconstructed. All together, these reconstructed
shares will give s. For s = ⊥, irrespective of what is re-
constructed for the corrupted parties Pj ∈ ShVCORE, the
shares of the honest parties in ShVCORE can be reconstruct-
ed robustly, which along with the other reconstructed shares
will output⊥. We next discuss how to find an ShVCORE and
how to make an agreement on it among the parties.

We employ the following idea to find an ShVCORE:
each party Pj on receiving its share fj(x) from D acts as
a Committer and commits fj(x) by invoking an instance of
Com (this is where we use the notion of committing a poly-
nomial through AWC); we denote the instance of Com (resp.
Decom) executed on behalf of the party Pj as Comj (resp.
Decomj) and the instance of WCORE constructed during
Comj as WCOREj . A corrupted Pj is prevented from com-
mitting an incorrect share f ′j(x) different from fj(x) in the
instance Comj via a trick supported by the “symmetric”
property of the bivariate polynomials. Specifically, let fj(i)
be the AWC-Share (of the polynomial fj(x)) for the party
Pi that it is supposed to receive from the Committer Pj in
the instance Comj ; ideally for an honest Pj (and D), the

condition fj(i)
?
= fi(j) should be true where fi(x) de-

notes the share of s (as received by Pi from D). So we
enforce that a party Pi participates in the instance Comj

only if its AWC-share is “consistent” with the share received
from D, namely fj(i)

?
= fi(j) should hold. We refer this

checking as pre-verification and stress that the purpose of
executing Comj (coupled with this pre-verification) is not

20 Notice that s is well defined, as there will be at least t + 1 honest
parties in ShVCORE, each holding a univariate polynomial of degree at
most t as a share, which are sufficient to define a symmetric, bivariate
polynomial of degree t. This is analogous to AWC, where the shares of
the parties in WCORE defined the committed univariate polynomial.

21 If s = ⊥, then we do not bother what is reconstructed back for a
corrupted Pj ∈ ShVCORE.
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to provide any “new” information about fj(x) to the par-
ties, but rather to prevent a corrupted Pj from committing
an incorrect share. Once the parties commit their received
shares, the parties then try to find a common set of at least
2t+1 committers ShVCORE, such that each committer Pj ∈
ShVCORE has committed its share to at least 2t+ 1 parties
within ShVCORE; i.e. the condition |ShVCORE∩WCOREj |
≥ 2t+1 holds for each committerPj ∈ ShVCORE. Looking
ahead, we note that the condition |ShVCORE∩WCOREj | ≥
2t + 1 plays a key role to ensure (R1) and (R2) as desired.
Now, notice that if D is honest then ShVCORE with the
above properties is sure to exist. An immediate possibility
is the set of all honest parties. The questions that remain to
be settled are: (1). How to find out such a set of committers
and how the parties agree on such a common set, if it exists?
(2). How (R1) and (R2) can be met? We next discuss how
these issues are addressed.

We put on D the job of finding ShVCORE and making
the parties agree on the same. Specifically D keeps a “track”
of all such Pj whose instance of Comj is (locally) termi-
nated by D and as soon as D finds 2t+ 1 such Pj , it assigns
them as a “potential” ShVCORE. Some subtleties arise as
the condition |ShVCORE∩WCOREj | ≥ 2t+1 has to be met
for each Pj ∈ ShVCORE. Namely, the “first” 2t+ 1 parties
whose Com instances have been terminated might not sat-
isfy this condition. The way out is that D and the other par-
ties should not “immediately” terminate an instance Comj

after receiving a “valid” WCOREj from the Committer Pj ;
rather they dynamically “update” ShVCORE and WCOREj
by including new “qualified” parties in these sets using the
(Sign-Sent, ?, ?) and the (Sign-Received, ?, ?) mes-
sages, which are broadcasted in the Com protocol. The pro-
cess of updating is repeated till D finds a potential set of
committers ShVCORE with the desired overlap in the cor-
responding WCOREjs and broadcasts the same, after which
the parties terminate the sharing protocol. The idea is that if
D is honest, then eventually every honest party will be in-
cluded in the WCORE of every other honest party (provided
D dynamically updates the WCOREs as above beyond its
recommended size of 2t + 1) and there are at least 2t + 1

honest parties and so D will eventually find the desired set
of committers.

We now briefly sketch the reconstruction protocol where
(R1) and (R2) are met. The reconstruction protocol consists
of two main steps. First, we weed out a number of corrupted
parties from ShVCORE based on several tests and assign
the rest of the parties in RecVCORE. Second, the informa-
tion published by the parties in RecVCORE is used to re-
construct the share of every party in ShVCORE, satisfying
(R1) and (R2). More concretely, a three-stage test that every
party Pj in ShVCORE must pass is as follows: First, as a
committer, Pj ∈ ShVCORE must decommit a polynomial
f j(x) (and not ⊥) in Decomj ; second, Pj should success-

fully reveal the secondary signature ICSig(Pk, Pj ,P, fk(j))
received from committer Pk for every Pk in ShVCORE such
that Pj ∈ WCOREk

22; third, fk(j) as revealed above as a
part of IC signature should be the same as f j(k) (f j(x) is
the decommitted polynomial). If Pj ∈ ShVCORE fails the
three-stage test then it is discarded.

An honest Pj ∈ ShVCORE will pass the three-stage
test, due to the correctness property of AWC, the correctness
property of AICP for the case of an honest INT and the en-
forcement of pre-verification mentioned earlier. As soon as
|ShVCORE|− t non-discarded committers have been found,
we denote the set by RecVCORE. The information revealed
by the committers in RecVCORE is then used to reconstruct
the committed shares of all the committers in ShVCORE,
satisfying (R1) and (R2). The rest of the details appear in
the formal description of protocol AVSS-Single presented in
Fig 5.

We now prove the properties of AVSS-Single.

Lemma 8 (Termination) Protocols (Sh,Rec) satisfy the
termination condition of Definition 2 with probability at
least 1− γ, where γ = n3t

|F|−1 .

PROOF: If D is honest, then fi(j) = fj(i) will hold for ev-
ery pair (Pi, Pj) of honest parties, which implies that every
honest party will eventually participate in the Com instance
of every other honest party. This implies that D will eventu-
ally include every honest party Pi in the instance WCOREj
corresponding to every honest Pj . This is because D (and
the parties) do not immediately terminate the instance Comj

after receiving a WCOREj of size 2t+1 from Committer Pj
in the instance Comj . Now every honest party will be even-
tually included in the set T and so D will eventually find an
ShVCORE ⊆ T of size at least 2t+1, such that |ShVCORE
∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE. So
D will eventually broadcast ShVCORE and WCOREjs cor-
responding to every Pj ∈ ShVCORE. By the properties of
broadcast, every honest party will eventually receive these
sets from the broadcast of D. Moreover, every honest party
will eventually receive the desired (Sign-Sent, ?, ?) and
(Sign-Received, ?, ?) messages, as D received them
while constructing ShVCORE. So every honest party will
eventually terminate the protocol Sh. This proves the first
requirement.

Let Phon be the first honest party who have terminated
Sh. This implies that Phon have received the set ShVCORE
of size at least 2t + 1 and the sets WCOREjs correspond-
ing to every Pj ∈ ShVCORE from the broadcast of D and

22 Recall that during Comk, the Committer Pk would have received
the primary signatures {ICSig(Pj , Pk,P, fk(j))} from the parties
Pj ∈WCOREk, while every Pj ∈WCOREk would have received the
secondary signature ICSig(Pk, Pj ,P, fk(j)) from the Committer Pk.
The secondary signatures were not used in the Decom protocol of the
AWC scheme; we will now use them, while executing the Decom in-
stances in the reconstruction protocol of AVSS.
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Fig. 5 AVSS with n = 3t+ 1.

AVSS-Single(D,P, s)
Sh(D,P, s)

DISTRIBUTION OF SHARES — The following code is executed only by D:
1. Select a random, symmetric bivariate polynomial F (x, y) of degree t, such that F (0, 0) = s. For i = 1, . . . , n, compute

fi(x)
def
= F (x, i).

2. For i = 1, . . . , n, send the share fi(x) to the party Pi.
COMMITMENT OF THE SHARES — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive fi(x) from D.
2. If fi(x) has degree at most t, then act as a Committer and invoke an instance of Com to commit the share fi(x)a. We call this

instance of Com, invoked by Pi as Comi and let WCOREi be the instance of WCORE constructed in the instance Comi.
3. For j = 1, . . . , n, participate in the instance Comj , invoked by Pj . During the instance Comj , if the secondary signature

ICSig(Pj , Pi,P, fj(i)) is received from the Committer Pj , then check whether fj(i)
?
= fi(j). If fj(i) = fi(j), then perform

the rest of the steps of the protocol Com that Pi is supposed to perform in the instance Comj . Otherwise, do not participate
further in the instance Comj . b

4. For j = 1, . . . , n, do not terminate and keep participating in the instance Comj , even after receiving a set WCOREj of size
2t+ 1 from the broadcast of Committer Pj . c

ShVCORE CONSTRUCTION — The following code is executed only by D:
1. If a WCOREj of size 2t+ 1, along with messages (Sign-Received, k, Pj) corresponding to the parties Pk ∈WCOREj are

received from the broadcast of Committer Pj and the messages (Sign-Sent, k, Pj) are received from the broadcast of every
Pk ∈ WCOREj in the instance Comj , then include Pj in a dynamic set T (which is initialized to ∅). Do not terminate Comj

and keep participating in the instance Comj .
2. If the message (Sign-Received, k, Pj) and (Sign-Sent, k, Pj) is received from the broadcast of Committer Pj and party

Pk respectively during the instance Comj , such that Pj ∈ T and Pk 6∈WCOREj , then update WCOREj by including Pk in it. d

3. Keep updating T and the existing WCOREjs, corresponding to the Pjs in T , by performing the previous two steps, until there
exists a set ShVCORE ⊆ T , such that |ShVCORE ∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE. e

4. On finding ShVCORE, broadcast the set ShVCORE and the set WCOREj corresponding to each Pj ∈ ShVCORE.
VERIFICATION OF ShVCORE AND TERMINATION — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive ShVCORE and WCOREj corresponding to each Pj ∈ ShVCORE from the broadcast of D. On receiving check
if |ShVCORE ∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE.

2. If the previous checking passes, then corresponding to each Pj ∈ ShVCORE, wait to receive the message (Sign-Sent, k, Pj)
from the broadcast of every party Pk ∈ WCOREj and the messages (Sign-Received, k, Pj) from the broadcast of Pj , for
every Pk ∈WCOREj , during the instance Comj . On receiving all these messages, terminate the protocol.

Rec(D,P, s)

DECOMMITTING THE SHARE — The following code is executed by every party Pj ∈ ShVCORE:
1. Act as a Committer and decommit the share fj(x) committed during Comj by executing an instance of Decom. Denote this

instance of Decom as Decomj .
2. For every Pk ∈ ShVCORE for which Pj ∈ WCOREk, reveal the secondary signature ICSig(Pk, Pj ,P, fk(j)), received during

the instance Comk from Committer Pk, by executing an instance of RevealPublic.
VERIFYING THE DECOMMITTED SHARES, RECONSTRUCTING THE SECRET AND TERMINATION — For i = 1, . . . , n, every party
Pi ∈ P executes the following code:
1. Corresponding to every Pj ∈ ShVCORE, participate in the instance Decomj , executed by Pj .
2. Corresponding to every Pj ∈ ShVCORE, participate in the instances of RevealPublic, executed by Pj to reveal the secondary

signatures ICSig(Pk, Pj ,P, fk(j)), corresponding to every Pk ∈ ShVCORE where Pj ∈WCOREk.
3. Construct a dynamic set RecVCORE, which is initialized to ∅. Include Pj ∈ ShVCORE in RecVCORE if all the following hold:

(a) A polynomial of degree at most t, say fj(x) is obtained as the output at the end of Decomj .
(b) Corresponding to every Pk ∈ ShVCORE where Pj ∈ WCOREk, party Pi completed the revelation of the secondary

signature ICSig(Pk, Pj ,P, fk(j)) with output Reveali = fk(j) and fj(k) = fk(j) holds.
4. Wait till |RecVCORE| = |ShVCORE| − t.
5. Corresponding to every Pk ∈ ShVCORE, compute its share fk(x) as follows:

(a) If Pk ∈ RecVCORE, then fk(x) is the same as obtained at the end of Decomk.
(b) If Pk 6∈ RecVCORE, then fk(x) is obtained by interpolating the points {(j, fk(j))}, where Pj ∈

(RecVCORE ∩ WCOREk) and Pj revealed the secondary signature ICSig(Pk, Pj ,P, fk(j)).
6. If the shares {fk(x) : Pk ∈ ShVCORE} lie on a unique, symmetric bivariate polynomial of degree t, say F (x, y), then output

s = F (0, 0) and terminate; otherwise output ⊥ and terminate.

a See the last section for the interpretation of committing and decommitting a polynomial through our AWC scheme.
b This pre-verification step prevents a corrupted Pj from committing an incorrect share during Comj .
c Recall that as per the protocol-code of Com, a party should (locally) terminate it after receiving and verifying a WCORE of size 2t + 1

from the corresponding Committer.
d This step denotes the update of WCOREj beyond its initial size of 2t+ 1.
e This automatically implies that |ShVCORE| ≥ 2t+ 1 should hold.
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verified that |ShVCORE∩WCOREj | ≥ 2t+1. By the prop-
erties of broadcast, every other honest party will also eventu-
ally receive these sets which are verified consequently. Party
Phon must have received all the desired (Sign-Sent, ?, ?)
and (Sign-Received, ?, ?) messages from the broadcast
of the corresponding parties before terminating Sh. The pro-
perties of broadcast imply that every other honest party will
also eventually receive the same messages and will eventu-
ally terminate the protocol Sh. This proves the second re-
quirement.

If the honest parties terminate Sh, then they know a set
ShVCORE of size at least 2t+1, with at least |ShVCORE|−t
honest parties in it. During the protocol Rec, each honest
party (in ShVCORE) will honestly perform all the steps re-
quired during DECOMMITTING THE SHARE; namely except
with probability at most δ, it will be able to decommit its
share, which is a univariate polynomial of degree at most
t, where δ = n2t

|F|−1 (follows from the correctness property
of AWC, substituting ` = 1). Moreover each such hon-
est party will be able to correctly reveal any secondary sig-
nature (which it is required to), except with probability at
most µ, where µ = nt

|F|−1 (follows from the properties of
AICP, substituting ` = 1). So even if the corrupted par-
ties in ShVCORE do not perform their steps correctly during
the Rec protocol, the honest parties from ShVCORE will be
eventually included in the set RecVCORE, except with prob-
ability at most |ShVCORE| · δ ≤ n3t

|F|−1 . It is now easy to see
that once the set RecVCORE is constructed, every honest
party will eventually output either an s ∈ F or ⊥ and hence
will terminate Rec. This proves the third requirement. 2

Lemma 9 (Secrecy) If D is honest then the information re-
ceived by Adv till the end of Sh is distributed independently
of the secret s.

PROOF: Let C be the set of parties under the control of Adv,
where |C| ≤ t and D 6∈ C. So Adv will know the shares
fi(x), where Pi ∈ C. We first claim that throughout the pro-
tocol Sh, the adversary obtains no extra information other
than these shares. During the instance Comi corresponding
to an honest party Pi, Adv will obtain at most t AWC-shares
of the share fi(x). These t AWC-shares are already known
to Adv, as these can be computed from the shares of the t
parties in C. The secrecy property of Com ensures that the
information revealed to Adv during Comi is independent of
fi(0) and hence no new information about the share fi(x) is
revealed to Adv during Comi. We now show that given only
the shares of the corrupted parties in C, no information about
the secret s = F (0, 0) is revealed to Adv. The proof follows
from the properties of symmetric bivariate polynomials of
degree t, as given in [10]; for the sake of completeness, we
recall the proof in the sequel.

To complete the proof, it is sufficient to show that from
the view-point of the adversary, for every possible secret

s ∈ F, there are same number of symmetric bivariate poly-
nomials F (x, y) of degree t, with s = F (0, 0), such that
F (x, y) is consistent with the shares received by Adv during
Sh; i.e. fi(x) = F (x, i) holds for every Pi ∈ C. We proceed
to do the same in the following.

Let f i(x)
def
= F (x, i). Consider the polynomial

h(x) =
∏
Pi∈C

(
−1
i
· x+ 1

)
.

The polynomial h(x) has degree at most t, where h(0) = 1

and h(i) = 0, for every Pi ∈ C. Now define the bivariate
polynomial

Z(x, y)
def
= h(x) · h(y).

Note that Z(x, y) is a symmetric bivariate polynomial of de-

gree t and Z(0, 0) = 1 and zi(x)
def
= Z(x, i) = 0, for every

Pi ∈ C. Now if during the protocol Sh, D in reality has used
the polynomial F (x, y), then for every possible s, the infor-
mation (namely the shares) held by Adv is also consistent
with the polynomial

F (x, y) = F (x, y) + (s− s) · Z(x, y).

Indeed F (x, y) is a symmetric bivariate polynomial of de-
gree t and for every Pi ∈ C,

f i(x) = F (x, i) = fi(x) + (s− s) · zi(x) = fi(x),

and

F (0, 0) = F (0, 0) + (s− s) · Z(0, 0) = s+ s− s = s.

Thus there exists a one-to-one correspondence between the
consistent polynomials for the shared secret s and those for
s and so all secrets are equally likely from the view-point of
the adversary. 2

Lemma 10 (Correctness) Protocols (Sh,Rec) satisfy the
correctness condition of Definition 2 with probability at
least 1− γ, where γ = n3t

|F|−1 .

PROOF: Let Phon be the first honest party to terminate Sh;
this implies that Phon has received the set ShVCORE of
size at least 2t + 1 and the corresponding WCOREjs from
D and verified that |ShVCORE ∩WCOREj | ≥ 2t + 1 for
every Pj ∈ ShVCORE. Let H be the set of honest parties
in ShVCORE, so |H| ≥ |ShVCORE| − t ≥ t + 1. No-
tice that each party Pi in H has committed the same share
fi(x), as received from D. We define the committed secret
s, committed by D as follows: if there exists a unique sym-
metric bivariate polynomial of degree t, say F (x, y), such
that fi(x) = F (x, i) holds for every Pi ∈ H (recall that this
means that the shares of the parties inH lie on F (x, y)), then
s = F (0, 0); otherwise s = ⊥. It is easy to see that if D is
honest, then s = s, as F (x, y) = F (x, y) in this case. We
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next show that each honest party upon terminating Rec will
output only s with probability at least 1−γ; we consider the
following two cases, depending upon whether D is honest or
corrupted:

1. D is honest: we first observe that if there exists a cor-
rupted Pj ∈ ShVCORE, then the share f j(x) committed
by Pj during Comj is the same as fj(x), where fj(x) =
F (x, j) and F (x, y) is the polynomial selected by D.
This is because each honest party Pi ∈ WCOREj must
have pre-verified that the AWC-share f j(i) received fro-
m Pj during Comj satisfies the condition f j(i) = fi(j)

before participating in Comj (namely exchanging the
primary and secondary signatures); here fi(x) denotes
the share of s received by Pi from D. Moreover, there
are at least t + 1 such honest party Pi in WCOREj ,
whose fi(j) uniquely define the share fj(x) of Pj (fol-
lows from the properties of symmetric bivariate polyno-
mials) and so f j(x) = fj(x).
We next claim that during Rec, the share fk(x) com-
puted on the behalf of a party Pk ∈ ShVCORE is the
same as fk(x) = F (x, k), except with probability at
most δ, where δ = n2t

|F|−1 ; this will further imply that
s = F (0, 0) will be output, except with probability at
most |ShVCORE| · δ ≤ n3t

|F|−1 . There are two cases:

(a) Pk ∈ RecVCORE: In this case, fk(x) is the out-
put of the instance Decomk. If Pk is honest then
clearly fk(x) = fk(x), as the (correctness) prop-
erty of AWC ensures that if Committer is honest,
then the polynomial (of degree at most t) committed
by it during the Com protocol, will be obtained as
the output during Decom. On the other hand, if Pk is
corrupted, then also fk = fk(x), except with proba-
bility δ; this is because the (correctness) property of
AWC ensures that if Committer is corrupted and the
output of Decom is a polynomial of degree at most t,
then except with probability δ, the same polynomial
was committed during the Com protocol. Moreover,
as discussed above the polynomial committed by a
corrupted Pk ∈ ShVCORE during Comk is the same
as fk(x).

(b) Pk 6∈ RecVCORE: In this case, fk(x) is computed
by interpolating the points {(j, fk(j))}, where Pj ∈
(RecVCORE∩WCOREk) and Pj (correctly) reveal-
ed the secondary signature ICSig(Pk, Pj ,P, fk(j))
on the AWC-share fk(j), which was given to Pj by
Pk during the instance Comk. Moreover the revealed
fk(j) lies on the share f j(x), where f j(x) is com-
puted as the (decommitted) share on the behalf of
Pj during Rec; i.e. fk(j) = f j(k) holds. We first
notice that there will be at least t + 1 such inter-
polating points {(j, fk(j))}. This follows from the
fact that Pk ∈ ShVCORE implies that during Sh,

the condition |ShVCORE ∩ WCOREk| ≥ 2t + 1

was true and at least t + 1 of these common par-
ties (which were present in ShVCORE as well as in
WCOREk) will be present in RecVCORE. This is be-
cause RecVCORE ⊂ ShVCORE with |RecVCORE|
= |ShVCORE| − t. Now we have already shown in
the previous case that the share f j(x) computed on
the behalf of each Pj ∈ RecVCORE is the same as
the original share fj(x) except with probability δ;
i.e. f j(x) = fj(x) = F (x, j). Now the fact that for
each interpolating point (j, fk(j)) used to interpo-
late fk(x) the relation fk(j) = f j(k) holds implies
that fk(j) = fj(k) = F (j, k) holds. So except with
probability δ, fk(x) = fk(x).

2. D is corrupted: If s = F (0, 0), then the proof is ex-
actly the same as for the case when D is honest. Now let
us consider the case when s = ⊥, which implies that the
shares of the parties inH do not lie on a unique symmet-
ric bivariate polynomial of degree t. We show that except
with probability at most δ, the share of each party Pk in
H will be computed correctly during the protocol Rec
and so except with probability at most |H| ·δ ≤ n ·δ, ev-
ery honest party will output ⊥, irrespective of the shares
which are computed on behalf of the corrupted parties in
ShVCORE.
If Pk ∈ RecVCORE, then the above claim is true, as
in this case, the share fk(x) computed on the behalf of
Pk is obtained as the output of Decomk and the cor-
rectness property of AWC ensures that for an honest
Committer, the committed polynomial will be obtained
correctly during Decom. If Pk 6∈ RecVCORE, then also
the claim is true, as in this case fk(x) computed on
the behalf of Pk is obtained by interpolating the points
{(j, fk(j))}, where Pj ∈ (RecVCORE ∩ WCOREk)
and Pj has (correctly) revealed the secondary signature
ICSig(Pk, Pj ,P, fk(j)) on the AWC-share fk(j), which
was given to Pj by the Committer Pk during the in-
stance Comk. The AICP-Correctness3 property ensur-
es that each revealed point {(j, fk(j))} indeed lies on
the original polynomial fk(x), which was committed by
Pk during Comk, except with probability at most µ,
where µ = nt

|F|−1 (by substituting ` = 1); as there can
be at most n such interpolating points (on the behalf of
Pk), fk(x) = fk(x) will be true, except with probability
at most nµ ≤ δ. 2

Theorem 4 Protocols (Sh,Rec) is a (1 − γ)-AVSS scheme
for a single secret, where γ = n3t

|F|−1 . Protocol Sh requires
a private communication of O(n3 log 1

ε ) bits and broadcast
of O(n3 log 1

ε ) bits. Protocol Rec requires a broadcast of
O(n3 log 1

ε ) bits.

PROOF: During the protocol Sh, D distributes n univari-
ate polynomials of degree at most t as shares and n in-



23

stances of Com are executed. During the protocol Rec, at
most n instances of Decom and at most n2 instances of
RevealPublic are executed. The proof now follows from
Theorem 1 by substituting ` = 1, Theorem 2 and from Lem-
mas 8-10. 2

5.2 AVSS for Sharing ` Secrets

A simple way to share and later reconstruct a vector of se-
crets ~S = (s1, . . . , s`), consisting of ` elements from F,
where ` > 1, is to execute a dedicated instance of the Sh and
Rec protocol for each element sl ∈ ~S; this will require a
private as well as broadcast communication ofO(`n3 log 1

ε )

bits. We next show how to share and reconstruct all the ` el-
ements of ~S concurrently, so that it requires a private as well
as broadcast communication of O((`n2 + n3) log 1

ε ) bits.
For ` = Ω(n), the broadcast communication of our protocol
will be then O(`n2 log 1

ε ) bits, instead of O(`n3 log 1
ε ) bits.

This is a significant gain in the communication complexity,
considering the fact that communication-wise, implement-
ing broadcast through the A-cast protocol over a point-to-
point network is expensive.

The underlying idea is to “extend” the AVSS scheme for
sharing a single secret to deal with ` secrets concurrently in a
“natural” way, similar to what was done earlier for the AWC.
More specifically, D selects a random symmetric bivariate
polynomial Fl(x, y) for sharing each sl ∈ ~S and computes

` ith shares f1,i(x), . . . , f`,i(x), where fl,i(x)
def
= Fl(x, i)

and distributes these shares. But now, instead of executing `
different instances of Com to commit ` ith shares, party Pi
executes a single instance of Com to commit all the ` poly-
nomials (shares) concurrently. The rest of the protocol steps
of AVSS-Single are modified in the same way, so as to deal
with ` shares concurrently. The modified protocols are pre-
sented in Fig 6. The new scheme is called AVSS-Multiple, as
it deals with multiple secrets. The properties of the modified
scheme follow using the similar arguments as for the earlier
scheme.

We state the following theorem, stating the communica-
tion complexity of the protocol AVSS-Multiple, whose proof
follows from the properties of the protocol and the com-
munication complexity of our AICP (Theorem 1) and AWC
(Theorem 3).

Theorem 5 Protocols (Sh,Rec) is a (1 − γ)-AVSS scheme
for ` secrets, where γ = n3(`+t−1)

|F|−` . Protocol Sh requires
a private communication of O((`n2 + n3) log 1

ε ) bits and
broadcast ofO((`n2+n3) log 1

ε ) bits. Protocol Rec requires
a broadcast of O((`n2 + n3) log 1

ε ) bits.

6 Existing Single-Bit Common Coin and Our Multi-Bit
Common Coin

This section starts with the description of the existing com-
mon coin protocol from [7] for generating a single com-
mon coin based on any AVSS scheme sharing a single se-
cret. With the goal of constructing a more efficient common
coin protocol, we substitute the AVSS scheme in the ex-
isting common coin protocol by AVSS-Multiple. This step
requires an additional technique to surpass the issues aris-
ing from the fact that individual secrets are not allowed to
be reconstructed in AVSS-Multiple and the reconstruction
of a single shared secret leads to the reconstruction of all
the secrets shared in the scheme. We further propose a trick
that allows to generate n − 2t = Θ(n) random23 common
coins concurrently with no additional communication. Thus,
our protocol is a multi-bit common coin protocol. Looking
ahead, our multi-bit common coin protocol leads to an ABA
protocol that allows to agree on Θ(n) bits concurrently.

6.1 Existing Common Coin Protocol

Let (Sh,Rec) be a given AVSS scheme, for sharing and re-
constructing a single secret. The existing common coin pro-
tocol [7], referred as CC, consists of two stages. In the first
stage, each party acts as a dealer and shares n random se-
crets, using n distinct instances of Sh. The ith secret shared
by each party is “associated” with the party Pi. Once a party
Pi terminates any t + 1 instances of Sh, corresponding to
t + 1 secrets associated with Pi, it broadcasts the identities
of the dealers, who have shared those t + 1 secrets. We say
that these t+1 secrets are attached to Pi and later these t+1

secrets are reconstructed to compute a “value”, say Vi, that
will be associated with Pi.

During the second stage, after terminating the Sh in-
stances corresponding to all the secrets attached to a party
Pi, party Pj is sure that a fixed (yet unknown) value is at-
tached to Pi. Once Pj is assured that values have been at-
tached to “sufficient” number of parties, it participates in
the Rec instances of the relevant secrets. This process of en-
suring that there are enough parties that are attached with
values is the core idea of the protocol. Once all the rele-
vant secrets are reconstructed, each party locally computes
Vis for every Pi, that it knows is associated with a value.
Each party then computes its binary output based on the
Vis, in a way described in the protocol, recalled in Fig. 7.
If the underlying AVSS has an associated error parameter
ε′ (i.e. (Sh,Rec) is a (1 − ε′)-AVSS scheme), then the pro-
tocol CC is a (1− n2ε′)-completing, t-resilient, 1

4 -common
coin protocol; the complete proof can be found in [7]. Pro-
tocol CC requires O(n11κ4) bits of private communication

23 Recall that n = 3t+ 1 and so n− 2t = t+ 1 = Θ(n).
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Fig. 6 AVSS with n = 3t+ 1.

AVSS-Multiple(D,P, ~S = (s1, . . . , s`))

Sh(D,P, ~S = (s1, . . . , s`))

DISTRIBUTION OF SHARES — The following code is executed only by D:
1. For l = 1, . . . , `, corresponding to the secret sl ∈ ~S, select a random, symmetric bivariate polynomial Fl(x, y) of degree t, such

that Fl(0, 0) = sl. For i = 1, . . . , n, compute fl,i(x)
def
= Fl(x, i).

2. For i = 1, . . . , n, send the shares f1,i(x), . . . , f`,i(x) to the party Pi.
COMMITMENT OF THE SHARES — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive f1,i(x), . . . , f`,i(x) from D.
2. If f1,i(x), . . . , f`,i(x) have degree at most t, then act as a Committer and invoke an instance of Com to commit the shares

f1,i(x), . . . , f`,i(x). We call this instance of Com, invoked by Pi as Comi and let WCOREi be the instance of WCORE con-
structed in the instance Comi.

3. For j = 1, . . . , n, participate in the instance Comj , invoked by the Committer Pj . During the instance Comj , if the secondary

signature ICSig(Pj , Pi,P, (f1,j(i), . . . , f`,j(i))) is received from Pj , then check whether fl,j(i)
?
= fl,i(j), for l = 1, . . . , `. If

fl,j(i) = fl,i(j) for all l = 1, . . . , `, then perform the rest of the steps of the protocol Com that Pi is supposed to perform in the
instance Comj . Otherwise, do not participate further in the instance Comj .

4. For j = 1, . . . , n, do not terminate and keep participating in the instance Comj , even after receiving (and verifying) a set
WCOREj of size 2t+ 1 from the broadcast of Committer Pj .

ShVCORE CONSTRUCTION — The following code is executed only by D:
1. If a WCOREj of size 2t+ 1, along with messages (Sign-Received, k, Pj) corresponding to the parties Pk ∈WCOREj are

received from the broadcast of Committer Pj and the messages (Sign-Sent, k, Pj) are received from the broadcast of every
Pk ∈ WCOREj in the instance Comj , then include Pj in a set T (which is initialized to ∅). Do not terminate Comj and keep
participating in the instance Comj .

2. If the message (Sign-Received, k, Pj) and (Sign-Sent, k, Pj) is received from the broadcast of Committer Pj and party
Pk respectively during the instance Comj , such that Pj ∈ T and Pk 6∈ WCOREj , then update WCOREj and include Pk in
WCOREj .

3. Keep updating T and the existing WCOREjs, corresponding to the Pjs in T , by performing the previous two steps, until there
exists a set ShVCORE ⊆ T , such that |ShVCORE ∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE.

4. On finding ShVCORE, broadcast the set ShVCORE and the set WCOREj corresponding to each Pj ∈ ShVCORE.
VERIFICATION OF ShVCORE AND TERMINATION — For i = 1, . . . , n, every party Pi ∈ P (including D) executes the following code:

1. Wait to receive ShVCORE and WCOREj corresponding to each Pj ∈ ShVCORE from the broadcast of D. On receiving check
if |ShVCORE ∩WCOREj | ≥ 2t+ 1 holds for every Pj ∈ ShVCORE.

2. If the previous checking passes, then corresponding to each Pj ∈ ShVCORE, wait to receive the message (Sign-Sent, k, Pj)
from the broadcast of every party Pk ∈ WCOREj and the messages (Sign-Received, k, Pj) from the broadcast of Pj , for
every Pk ∈WCOREj , during the instance Comj . On receiving all these messages, terminate the protocol.

Rec(D,P, ~S = (s1, . . . , s`))

DECOMMITTING THE SHARE — The following code is executed by every party Pj ∈ ShVCORE:
1. Act as a Committer and decommit the shares f1,j(x), . . . , f`,j(x) committed during Comj by executing an instance of Decom.

Denote this instance of Decom as Decomj .
2. For every Pk ∈ ShVCORE for which Pj ∈WCOREk, reveal the secondary signature ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))),

received during the instance Comk from Committer Pk.
VERIFYING THE DECOMMITTED SHARES, RECONSTRUCTING THE SECRETS AND TERMINATION — For i = 1, . . . , n, every party
Pi ∈ P executes the following code:
1. Corresponding to every Pj ∈ ShVCORE, participate in the instance Decomj , executed by Pj .
2. Corresponding to every Pj ∈ ShVCORE, participate in the instances of RevealPublic, executed by Pj to reveal the secondary

signatures ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))), corresponding to every Pk ∈ ShVCORE where Pj ∈WCOREj .
3. Construct a dynamic set RecVCORE, which is initialized to ∅. Include Pj ∈ ShVCORE in RecVCORE if all the following hold:

(a) ` polynomials of degree at most t, say f1,j(x), . . . , f`,j(x) are obtained as the output at the end of Decomj .
(b) Corresponding to every Pk ∈ ShVCORE where Pj ∈ WCOREk, party Pi completed the revelation of the secondary sig-

nature ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))) with output Reveali = (f1,k(j), . . . , f`,k(j)). Moreover, for l = 1, . . . , `,
f l,j(k) = fl,k(j) holds.

4. Wait till |RecVCORE| = |ShVCORE| − t.
5. Corresponding to every Pk ∈ ShVCORE, compute its shares f1,k(x), . . . , f`,k(x) as follows:

(a) If Pk ∈ RecVCORE, then f1,k(x), . . . , f`,k(x) are the same as obtained at the end of Decomk.
(b) If Pk 6∈ RecVCORE, then for l = 1, . . . , `, the polynomial f l,k(x) is obtained by interpolating the points {(j, fl,k(j))},

where Pj ∈ (RecVCORE∩WCOREk) and Pj revealed the secondary signature ICSig(Pk, Pj ,P, (f1,k(j), . . . , f`,k(j))).
6. If for l = 1, . . . , `, the shares {f l,k(x) : Pk ∈ ShVCORE} lie on a unique, symmetric bivariate polynomial of degree t, say

F l(x, y), then output S = (F 1(0, 0), . . . , F `(0, 0)) and terminate; otherwise output ⊥ and terminate.
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Fig. 7 Existing common coin protocol based on any AVSS scheme (Sh,Rec).

CC

For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. Initialize a Boolean flag flagi = 0.
2. For j = 1, . . . , n, corresponding to the party Pj , choose a random value xij and act as a D to invoke an instance of Sh, denoted by

Shij , to share xij .
3. For every j, k ∈ {1, . . . , n}, participate in the instances Shjk.
4. Construct a dynamic set Ti, which is initialized to ∅. On terminating all the n instances Shj1, . . . ,Shjn invoked by Pj (as a D), add

Pj to Ti.
5. Wait till |Ti| = t+ 1. Then assign Ti = Ti and broadcast the message (Attach Ti to Pi).

(We say that the secrets {xji|Pj ∈ Ti} are attached to the party Pi).
6. Create a dynamic set Gi, which is initialized to ∅. Add party Pj to Gi if

(a) The message (Attach Tj to Pj) is received from the broadcast of Pj and
(b) Tj ⊆ Ti.
Wait until |Gi| = 2t+ 1. Then assign Gi = Gi and broadcast the message (Pi Accepts Gi).

7. Create a dynamic set Si, which is initialized to ∅. Add party Pj to Si if
(a) The message (Pj Accepts Gj) is received from the broadcast of Pj and
(b) Gj ⊆ Gi.
Wait until |Si| = 2t+ 1. Then set flagi = 1 and let Hi be the current contents of Gi.

8. Wait until flagi = 1. Then for every Pj ∈ Gi, participate in the instance Reckj , corresponding to every Pk ∈ Tj , to reconstruct the
secret xkj , which was shared in the instance Shkj .
(note that some parties may be included in Gi after flagi has been set to 1. The corresponding instances of Rec are invoked immedi-
ately).

9. Let u = d0.87nea. Every party Pj ∈ Gi is associated with a value, say Vj , where Vj is the sum modulo u of all the secrets attached
to Pj . That is, Vj = (

∑
Pk∈Tj

xkj) mod u, where xkj is obtained as the output in the instance Reckj .
10. Wait until the values associated with all the parties in Hi are computed. If there exists a party Pj ∈ Hi such that Vj = 0, then output

0 and terminate. Otherwise output 1 and terminate.

a Here u is selected like this to ensure that the probability computations satisfy certain conditions while proving the properties of the
protocol; see [7] for the details.

and O(n11κ2 log n) bits of broadcast communication (see
Appendix A).

6.2 A More Efficient Multi-bit Common Coin Protocol

Our AVSS scheme AVSS-Single that claims the best known
communication complexity for sharing a single secret, read-
ily gives a common coin protocol that improves over the
communication complexity of protocol CC by a factor of24

Ω(n6). Our demonstration in Section 5.2 shows that shar-
ing n secrets using a single instance of AVSS-Multiple is
“cheaper” by a factor of n, than using n dedicated instances
of AVSS-Single. Thus, we can get an even more efficient
common coin protocol, by plugging in a single instance of
AVSS-Multiple for each party, capable of handling n se-
crets, in the protocol CC. However, this replacement raises a
subtle difference in the execution of CC. In CC, the secrets
were reconstructed in an “on-demand” basis and so the se-
crets shared by a party are reconstructed independently of
each other at different point of time as and when they are
needed to be reconstructed. On contrary, in the modified CC

24 If we use AVSS-Single in protocol CC, then the resultant common
coin protocol will incur a private communication of O(n5 log 1

ε
) bits

and broadcast ofO(n5 log 1
ε
) bits, as Θ(n2) instances of AVSS-Single

are invoked.

(where AVSS-Multiple is used), concurrent reconstruction
of all the secrets shared by a party is unavoidable, because
AVSS-Multiple “ties up” all the shared secrets and supports
concurrent sharing and reconstruction of all the shared se-
crets. In what follows, we demonstrate that the adversary
can take the concurrent reconstruction to its advantage and
completely “bias” the output of the common coin protocol.

More concretely, let Pk be an honest party, who shares
~Sk = (xk1, . . . , xkn) in CC using AVSS-Multiple. Now the
adversary can schedule the messages in the protocol in such
a way that a “situation” is created where a particular secret,
say xki alone, needs to be reconstructed, leading to the in-
vocation of the reconstruction protocol of AVSS-Multiple.
This leads to the adversary learning the entire vector ~Sk.
This allows the adversary to bias the value Vj attached to an
honest party Pj by fixing the secrets to be shared by the cor-
rupted parties 25 corresponding to Pj . Thus, Vjs of some of
the honest parties are no longer random values. As a result,
one of the crucial lemmas in the correctness proof of the
protocol CC is not true anymore for the modified CC, which
in turn, leads to a biased and adversarially chosen output
in the common coin protocol. Below, we recall the lemma
statement verbatim.

25 Recall that the jth secret of each party’s vector can contribute to
decide Vj .
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Lemma 11 ([7]) In the protocol CC, once an honest party
Pj receives the message (Attach Ti to Pi) from the broa-
dcast of Pi and adds Pi to the set Gj , then a unique value,
say Vi, is fixed such that the following holds:

1. All the honest parties will associate the value Vi with Pi,
except with probability at most nε′.

2. Vi is distributed uniformly over [0, . . . , u] and is inde-
pendent of values associated with the other parties.

To foil the attack described above, we employ a tech-
nique that prevents a corrupted party to share its secret vec-
tor via the sharing protocol of AVSS-Multiple after it learns
the secret vector of any honest party. 26 Lastly, we employ
a trick in our common coin protocol that allows to output
` = n−2t = t+1 = Θ(n) common coins (instead of a sin-
gle coin), without requiring any additional communication
from the parties. We denote the resultant protocol by MCC
to emphasize that it is a multi-bit common coin protocol.

The High Level Idea of MCC: First, we note that CC can
be converted to a multi-bit common coin protocol by asking
each party to “attach” itself with 2t+ 1 secrets, each from a
different dealer, in Step 5 of CC. That is, instead of ensuring
that |Ti| = t + 1, party Pi ensures that |Ti| = 2t + 1. This
can be enforced without any harm, as there are at least 2t+1

honest parties who will be eventually included in Ti of every
honest party Pi. This step enables to associate n− t values,
instead of a single value Vi, with a party Pi via an applica-
tion of the randomness extraction algorithm EXT. Next, we
introduce/modify some of the steps of protocol CC to foil
the attack of biasing the output of common coin protocol:

M1. In step 4, a party Pi includes Pj in Ti after it is con-
firmed that n − t parties have terminated the instance
Shj .

M2. In step 7, party Pi upon confirming that |Si| = 2t+ 1,
broadcasts a Reconstruct Enabled message, in-
dicating that it is “ready” to participate in the relevant
Rec instances. However, only after receiving the Recon
struct Enabled message from n − t parties, it ac-
tually starts participating in the corresponding Rec in-
stances.

26 In the context of distributed key generation for threshold Discrete-
Log based cryptosystems, [18] demonstrated a somewhat similar at-
tack of biasing the distribution of a jointly computed key. While the
“nature” of their attack is similar to the attack presented here, the at-
tacks themselves are different. Saying differently, the way adversary
mounts the attack is completely different in these two scenarios. Thus,
their technique to foil the attack is inapplicable in our context. Specif-
ically, the attack in their work exploits the computational security of
the underlying VSS scheme. On contrary, our attacker takes advantage
of the concurrent reconstruction feature of our underlying VSS scheme
AVSS-Multiple. While [18] foils the attack by strengthening the secu-
rity of their VSS scheme, we prevent the attack by a technique that
bars a corrupted party to share its secret vector ~S after seeing the re-
constructed secret vector of honest parties.

M3. As soon as Pi broadcasts Reconstruct Enabled,
it stops participating in the Sh instances of all the parties,
which are not present in its Ti set at that stage. Thus, if
Pj 6∈ Ti, then Pi stops participating in the instance Shj
and later resumes its participation in Shj only if Pj is
included in Ti.

We now argue that protocol MCC which incorporates the
above changes is not vulnerable to the attack discussed ear-
lier. The argument is made in three clear steps, each relying
on a different step (i.e. either on M1 or M2 or M3). Let Pj
be a corrupted party, who wants to select and share its se-
cret vector ~Sj after seeing the reconstructed secret vector
of some honest party. Such a Pj have to delay its sharing
instance (namely Shj) until at least 2t + 1 parties broad-
cast the Reconstruct Enabled message (due to M2).
This implies that at least t + 1 honest parties, say H , who
broadcast Reconstruct Enabled message are yet to
terminate Shj at the time they initiated the broadcast. There-
fore, the parties inH stop participating in Shj from then on-
wards (due to M3). So Pj cannot enter into Ti of any hon-
est Pi. This is because for Pj to enter Ti of any honest Pi,
the instance Shj must be terminated by at least 2t + 1 par-
ties (due to M1) which must include one party from the set
H .27 However, no party from H will ever terminate Shj , as
they stopped participating in Shj . Protocol MCC is now pre-
sented in Fig 8.

We now proceed to prove the properties of the proto-
col MCC. Most of the properties of MCC follow from the
properties of the protocol CC given in [7]. For the sake of
completeness, we will present them here. As in [7], while
proving the properties, we assume that the following event
E occurs: the invocations of Sh and Rec have been “prop-
erly” completed. This means that if an honest party has ter-
minated an instance of Sh, then a vector ~S of n values is
fixed, such that each honest party will eventually complete
the corresponding instance of Rec and output ~S. Moreover,
if the dealer of this instance of Sh is honest, then ~S is the
vector of n values, which he has shared on behalf of the n
parties. It is easy to see that the event E occurs with prob-
ability at least 1 − nγ (as there are n instances of AVSS),
where γ = n3(n+t−1)

|F|−n (follows from Theorem 5 by substi-
tuting ` = n). This implies that the event E occurs with
probability at least 1− ε

4n .28

Lemma 12 Conditioned on the event E, all the honest par-
ties terminate the protocol MCC in a constant time.

27 Note that H contains at least t + 1 parties. So any set of 2t + 1

parties will surely contain at least one party fromH, as the total number
of parties is 3t+ 1.

28 Since the field F is selected such that ε ≥ 4n5(n+t−1)
|F|−n , where

ε will be the error probability of our ABA protocol, we have that ε
4n
≥

n4(n+t−1)
|F|−n = nγ.
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Fig. 8 Multi-Bit common coin protocol.

Protocol MCC

For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. For j = 1, . . . , n, corresponding to the party Pj , choose a random value xij and act as a D and invoke the protocol Sh(Pi,P, ~Si), to
share the vector of secrets ~Si = (xi1, . . . , xin). Let this instance of Sh be denoted as Shi,

2. For j = 1, . . . , n, participate in the instance Shj .
3. Upon terminating the instance Shj , broadcast the message (Pi terminated j).
4. Create a dynamic set Ti, which is initialized to ∅. Upon receiving the message (Pk terminated j) from the broadcast of n − t

parties Pk, add Pj to Ti.
5. Wait till |Ti| = 2t+ 1. Then assign Ti = Ti and broadcast the message (Attach Ti to Pi).

(We say that the secrets {xji|Pj ∈ Ti} are attached to the party Pi).
6. Create a dynamic set Gi, which is initialized to ∅. Add party Pj to Gi if

(a) The message (Attach Tj to Pj) is received from the broadcast of Pj and
(b) Tj ⊆ Ti.
Wait until |Gi| = 2t+ 1. Then assign Gi = Gi and broadcast the message (Pi Accepts Gi).

7. Create a dynamic set Si, which is initialized to ∅. Add party Pj to Si if
(a) The message (Pj Accepts Gj) is received from the broadcast of Pj and
(b) Gj ⊆ Gi.

8. Wait until |Si| = 2t+ 1. Then do the following:
(a) Broadcast the message Reconstruct Enabled. Let Hi be the current contents of Gi.
(b) If a party Pj 6∈ Ti, then stop participating in the instance Shj . Later resume participating in the instance Shj only if Pj is

included in Ti.
9. Wait to receive the Reconstruct Enabled message from the broadcast of at least n − t parties. On receiving these messages,

participate in the instance Reck, corresponding to every Pk ∈ Ti, to reconstruct the secrets shared by Pk in the instance Shk.
(When new parties are added to Ti, party Pi participates in the corresponding Rec instances.)

10. Let u = d0.87ne. For every party Pj ∈ Gi, associate n− 2t = t+ 1 values (Vj1, . . . , Vj(n−2t)) with Pj as follows:
(a) Set (vj1, . . . , vj(n−2t)) = EXT(Xj), where Xj is the vector of size 2t + 1, consisting of the jth values, reconstructed during

the instances Reck, where Pk ∈ Tj . That is, Xj = {xkj}, where Pk ∈ Tj and xkj is the jth element of the n length vector,
reconstructed in the instance Reck.

(b) Set Vjl = vjl mod u, for l = 1, . . . , n− 2t.
11. Wait until the n− 2t values associated with all the parties in Hi are computed. Then for every l ∈ {1, . . . , n− 2t}, do the following:

(a) If there exits a party Pj ∈ Hi such that Vjl = 0 then (locally) set σl = 0 as the lth output bit.
(b) Otherwise (locally) set σl = 1 as the lth output bit.
Locally output the σ1, . . . , σn−2t and terminate.

PROOF: We structure the proof in the following way. We first
show that assuming every honest party has broadcasted the
message Reconstruct Enabled, every honest party
will terminate the protocol in a constant time. Then we show
that there exists at least one honest party who will broadcast
the Reconstruct Enabledmessage. Consequently, we
prove that if some honest party broadcasts the Reconstru
ct Enabled message, then eventually every other honest
party will do the same.

So let us prove the first statement. Assuming every hon-
est party has broadcasted the Reconstruct Enabled
message, it will hold that eventually every honest party Pi
will receive n− t such messages from the broadcast of n− t
honest parties and will start participating in the Reck in-
stances corresponding to each Pk ∈ Ti. Now it clear that if
a party Pk is included in the set Ti of an honest Pi, then Pk
will be also eventually included in the set Tj of every other
(honest) Pj . Hence if Pi participates in Reck, then eventu-
ally every other honest party will do the same. Now given
that the event E occurs, all invocations of Rec terminate in a
constant time. Also the protocol for the broadcast terminates
in a constant time. This proves the first statement.

We next show that there exists at least one honest party,
say Pi, who will broadcast the Reconstruct Enabled
message. First notice that till Pi broadcasts the Reconstru
ct Enabledmessage, every honest party will keep partic-
ipating in all the instances of Sh. By the termination prop-
erty of Sh, every honest party will eventually terminate the
Sh instance of every other honest party. Moreover, there are
at least n − t honest parties. So from the protocol steps, it
is easy to see that for the honest Pi, the set Ti will eventu-
ally contain at least n−t parties and hence Pi will eventually
broadcast the message (Attach Ti to Pi). Similarly, every
honest party Pj will be eventually included in the set Gi and
so Gi will eventually contain at least n− t parties and hence
Pi will broadcast the message (Pi AcceptsGi). Similarly,
the set Si will be eventually of size n− t and hence Pi will
broadcast the Reconstruct Enabled message.

Now we show that once the honest Pi broadcasts the
Reconstruct Enabled message, every other honest
party Pj will also eventually do the same. It is easy to see
that every party that is included in Ti will be also eventually
included in Tj . And hence, all the conditions that are satis-
fied for the honest Pi above will be eventually satisfied for
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every other honest Pj . So Pj will eventually broadcast the
Reconstruct Enabled message. 2

The following important lemma shows that in the proto-
col MCC, the adversary strategy discussed earlier for bias-
ing the distribution of the value associated with a party, is
not applicable.

Lemma 13 Let a corrupted party Pj is included in Ti of
an honest Pi in the protocol MCC. Then the values shared
by Pj in the instance Shj are completely independent of the
values shared by the honest parties in their instances of Sh.

PROOF: Let Pk be the first honest party who receives the
Reconstruct Enabledmessage from at least n−t par-
ties and starts participating in the Rec instances, correspond-
ing to each party in Tk. To prove the lemma, we first assert
that a corrupted party Pj will be never included in the set
Ti of any honest Pi, if Pj selects and shares its secrets after
Pk started participating in the Rec instances corresponding
to the parties in Tk. We prove this by contradiction.

So let Pk received the Reconstruct Enabled mes-
sage from the parties in the set B1, where |B1| ≥ n − t.
Moreover, assume that Pj executes the instance Shj only
after Pk received the Reconstruct Enabled message
from the parties in B1. Furthermore, assume that Pj is in-
cluded in the set Ti of some honest Pi. Now Pj ∈ Ti implies
that Pi must have received the message (Pm terminated
j) from the broadcast of at least n − t parties Pm, say B2,
which implies that the (honest) parties in B2 have termi-
nated the instance Shj and there are at least t + 1 such
honest parties in B2. Now |B1 ∩ B2| ≥ n − 2t and thus
there exists at least one honest party, say Pα, who is present
in B1 as well as in B2, as n = 3t + 1. This implies that
the honest Pα ∈ B1 must have terminated the instance Shj
before broadcasting the Reconstruct Enabled mes-
sage; otherwise Pα ∈ B2 would have stopped participat-
ing in the instance Shj and would never broadcast the mes-
sage (Pα terminated j). This is because during the step
8(b) of the protocol, Pα would have stopped participating
in the instance Shj while broadcasting the Reconstruct
Enabled message if Pα has not already terminated the in-
stance Shj . This further implies that Pj must have executed
the instance Shj (which the honest Pα have completed) be-
fore Pk started participating in the Rec instances. But this is
a contradiction to our assumption.

Hence if the corrupted Pj is included in Ti of any hon-
est Pi then it must have invoked the instance Shj before any
honest party started participating in any Rec instance. Thus
while choosing its own secrets for the instance Shj , the cor-
rupted Pj will have no knowledge about the secrets shared
by the honest parties in their instances of Sh, which follows
from the secrecy property of Sh. 2

Lemma 14 Let u = d0.87ne. In the protocol MCC, once an
honest party Pj receives the message (Attach Ti to Pi)
from the broadcast of Pi and includes Pi in the set Gj , then
n − 2t unique values, say Vi1, . . . , Vi(n−2t) are fixed such
that the following holds:

1. All the honest parties will associate Vi1, . . . , Vi(n−2t)
with Pi, except with probability at most ε

4n .
2. Each value Vi1, . . . , Vi(n−2t) is uniformly distributed

over [0, . . . , u] and independent of the values associated
with the other parties.

PROOF: The values Vi1, . . . , Vi(n−2t) are defined in the step
10 of the protocol. We now prove the first part of the lemma.
According to the lemma condition, Pi ∈ Gj . This implies
that Ti ⊆ Tj . So the honest Pj will participate in the in-
stance Reck, corresponding to each Pk ∈ Ti. Moreover,
eventually Ti ⊆ Tm and Pi ∈ Gm will hold for every other
honest party Pm. So, every other honest party will also even-
tually participate in the instance Reck corresponding to each
Pk ∈ Ti. Now by the property of Rec, all the honest parties
will eventually reconstruct ~Sk = (xk1, . . . , xki, . . . , xkn) at
the completion of Reck, except with probability at most γ,
where γ = n3(n+t−1)

|F|−n (follows from Theorem 5 by substi-
tuting ` = n). As there are 2t+1 parties in the set Ti, except
with probability at most nγ ≤ ε

4n , all the honest parties will
correctly have the vector Xi during the step 10 and hence
will associate the values Vi1, . . . , Vi(n−2t) with Pi.

We now prove the second part of the lemma. By Lemma
13, when Ti is fixed, the values that are shared by corrupted
parties in Ti are completely independent of the values shared
by the honest parties in Ti. Now Ti contains n−t parties and
hence at least n− 2t honest parties and every honest partys’
shared secrets are uniformly distributed and mutually inde-
pendent. This implies that in the vector Xi, there are at least
n − 2t uniformly random values and so from the proper-
ties of EXT, the values vi1, . . . , vi(n−2t) computed from Xi

will be completely random. Finally, since each Vil is com-
puted as vil modulo u, the values Vi1, . . . , Vi(n−2t) will be
uniformly distributed over [0, . . . , u]. 2

Lemma 15 In the protocol MCC, once an honest party
broadcasts the message Reconstruct Enabled, there
exists a set M of size |M | ≥ n

3 , such that the following
holds:

1. For every party Pj ∈M , some honest party has received
the message (Attach Tj to Pj) from the broadcast of
Pj .

2. When any honest party Pj broadcasts the Reconstru
ct Enabled message, then it will hold that M ⊆ Hj .

PROOF: Let Pi be the first honest party to broadcast the mes-
sage Reconstruct Enabled. Then let M be the set of
parties Pk, who belong to the set Gl of at least t + 1 parties
Pl, who are present in the set Si, when Pi broadcasted the
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Reconstruct Enabledmessage. We claim that this set
M has all the properties as stated in the lemma.

It is clear that M ⊆ Hi. Thus the party Pi must have re-
ceived the message (Attach Tj to Pj) from the broadcast
of every Pj ∈M . So this proves the first part of the lemma.

An honest Pj broadcasts the message Reconstruct
Enabled only when Sj contains 2t + 1 parties. Now note
that Pk ∈ M implies that Pk belongs to Gl of at least t + 1

parties Pl, who are present in Si. This ensures that there is
at least one such Pl who belongs to Sj , as well as Si. Now
Pl ∈ Sj implies that Pj had ensured that Gl ⊆ Gj . This im-
plies that Pk ∈ M belongs to Gj before the party Pj broad-
casted the Reconstruct Enabled message. Since Hj

is the instance of Gj at the time when Pj broadcasted the
Reconstruct Enabled message, it is obvious that Pk
∈M belongs toHj also. Using a similar argument, it can be
shown that every Pk ∈ M also belongs to Hj , thus proving
the second part of the lemma.

To complete the lemma, it remains to show that |M | ≥
n
3 , for which we use a counting argument. Let m = |Si| at
the time when Pi broadcasted the Reconstruct Enabl
edmessage. So we havem ≥ 2t+1. Now consider an n×n
tableΛi (relative to party Pi), whose lth row and kth column
contains 1 for k, l ∈ {1, . . . , n} if and only if the following
holds: (a) Pi has received the message (Pl Accepts Gl)
from the broadcast of Pl and included Pl in Si before broad-
casting the Reconstruct Enabled message and (b)Pk
∈ Gl. The remaining entries (if any) of Λi are left blank.
Then M is the set of parties Pk such that the kth column in
Λi contains 1 at least at t+1 positions. Notice that each row
of Λi contains 1 at n − t positions. Thus Λi contains 1 at
m(n− t) positions.

Let q denote the minimum number of columns in Λi that
contain 1 at least at t+1 positions. We will show that q ≥ n

3 .
The worst distribution of 1 entries in Λi is letting q columns
to contain all 1 entries and letting each of the remaining n−q
columns to contain 1 at t locations. This distribution requires
Λi to contain 1 at no more than qm + (n − q)t positions.
But we have already shown that Λi contains 1 at m(n − t)
positions. So we have

qm+ (n− q)t ≥ m(n− t).

This gives q ≥ m(n−t)−nt
m−t . Sincem ≥ n−t and n ≥ 3t+1,

we have

q ≥ m(n− t)− nt
m− t

≥ (n− t)2 − nt
n− 2t

,

≥ (n− 2t)2 + nt− 3t2

n− 2t
≥ n− 2t+

nt− 3t2

n− 2t
,

≥ n− 2t+
t

n− 2t
≥ n

3
.

This shows that |M | = q ≥ n
3 . 2

Lemma 16 Let ε ≤ 0.2 and assume that all the honest
parties have terminated the protocol MCC. Then for any
l ∈ {1, . . . , n − 2t}, for every possible value σl ∈ {0, 1},
with probability at least 1

4 , all the honest parties output σl
as the lth bit.

PROOF: By Lemma 14, for every Pi that is included in the
Gj of some honest party Pj , there exists some fixed (yet un-
known) n− 2t unique values, say Vi1, . . . , Vi(n−2t), that are
distributed uniformly over [0, . . . , u] and all the honest par-
ties will associate Vi1, . . . , Vi(n−2t) with Pi. Since the par-
ties have terminated the protocol MCC, this implies that the
event E occurs. This further implies that with probability at
least (1− ε

4n ), all the honest parties will agree on the values
associated with every party, as this depends upon whether
the instances of Sh and Rec have completed properly. Now
we fix an l ∈ {1, . . . , n − 2t} and consider the following
two cases:

– We show that the probability of outputting σl = 0 as
the lth bit by all the honest parties is at least 1

4 . Let M
be the set of parties guaranteed by Lemma 15. Clearly if
Vjl = 0 for some Pj ∈ M and if all the honest parties
associate Vjl (as the lth value) with Pj , then clearly all
the honest parties will output σl = 0. The probability
that for at least one party Pj ∈ M , the value Vjl = 0

is 1 − (1 − 1
u )
|M |. Now u = d0.87ne. Also |M | ≥ n

3 .
Therefore for all n > 4, we have 1−(1− 1

u )
|M | ≥ 0.316.

So, the probability that all the honest parties output σl =
0 is at least 0.316× (1− ε

4n ) ≥ 0.25 = 1
4 .

– We show that the probability of outputting σl = 1 as
the lth bit by all the honest parties is at least 1

4 . It is
obvious that if no party Pj has Vjl = 0 and if all honest
parties associate Vjl with Pj , then all the honest parties
will output σl = 1. As u = d0.87ne, the probability of
this event is at least (1− 1

u )
n ·(1− ε

4n ) ≥ e
−1.15 ·0.95 ≥

0.25 = 1
4 . 2

Theorem 6 For every ε, where 0 < ε ≤ 0.2, protocol MCC
is a (1 − ε

4n )-completing, t-resilient, 1
4 -multi-bit common

coin protocol, with n− 2t = Θ(n) bits output. Conditioned
on the event that all the honest parties terminate the pro-
tocol, they do so in a constant time. The protocol requires a
private communication ofO(n4 log 1

ε ) bits and broadcast of
O(n4 log 1

ε ) bits.

PROOF: In the protocol MCC, each party executes an in-
stance of Sh to share n secrets and the corresponding in-
stance of Rec is executed to reconstruct the n secrets. So
the communication complexity of MCC follows from Theo-
rem 5 by substituting ` = n. The theorem now follows from
Lemmas 12-16. 2
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7 Existing Voting Protocol

In this section, we recall the existing vote protocol from [7],
which will be required for the construction of our ABA pro-
tocol (along with the multi-bit common coin protocol).

Informally, the voting protocol does “whatever can be
done deterministically” to reach agreement. In a voting pro-
tocol, every party has a single bit as input. The protocol tries
to find out whether there is a detectable majority for some
value among the inputs of the parties. In the protocol, each
party’s output can have five different forms:

1. For σ ∈ {0, 1}, the output (σ, 2) stands for “overwhelm-
ing majority for σ”;

2. For σ ∈ {0, 1}, the output (σ, 1) stands for “distinct ma-
jority for σ”;

3. The output (Λ, 0) stands for “non-distinct majority”.

The voting protocol will have the following properties:

1. If all the honest parties have the same input σ, then all
the honest parties will output (σ, 2);

2. If some honest party outputs (σ, 2), then every other
honest party will output either (σ, 2) or (σ, 1);

3. If some honest party outputs (σ, 1) and no honest party
outputs (σ, 2) then each honest party outputs either (σ,
1) or (Λ, 0).

The voting protocol consists of three “stages”, each having
a similar structure. The protocol called VOTE is presented
in Fig 9. In the protocol, party Pi have the input bit xi.

The properties of the protocol VOTE are stated in the
following lemmas and the proofs (taken from [7]) are avail-
able in APPENDIX B.

Lemma 17 ([7]) All the honest parties terminate the proto-
col VOTE in a constant time.

Lemma 18 ([7]) If all the honest parties have the same in-
put σ, then all the honest parties will output (σ, 2).

Lemma 19 ([7]) If some honest party outputs (σ, 2), then
every other honest party will eventually output either (σ, 2)
or (σ, 1).

Lemma 20 ([7]) If some honest party outputs (σ, 1) and no
honest party outputs (σ, 2) then every other honest party will
output either (σ, 1) or (Λ, 0).

The communication complexity of the protocol VOTE is
stated in the following theorem.

Theorem 7 Protocol VOTE requires a broadcast of O(n2
log n) bits.

PROOF: In the protocol, each party may broadcast A,B and
C sets, each containing the identity of n − t parties. Since
the identity of each party can be represented by log n bits,
the protocol requires broadcast of O(n2 log n) bits. 2

8 Multi-bit ABA Protocol

Once we have the n−2t bit common coin protocol MCC and
the VOTE protocol, we can design our multi-bit ABA pro-
tocol to reach agreement on n − 2t bits concurrently, by
extending the idea used in [7]. We first informally discuss
the underlying idea used in [7] for reaching agreement on a
single bit by using protocol CC and VOTE; the same idea
is extended in a “natural” way in our protocol for reaching
agreement on n− 2t bits concurrently.

The Underlying Idea for Agreement on a Single Bit:
The ABA protocol (for a single bit) proceeds in “iterations”,
where in each iteration every party computes a “modified
input” value. In the first iteration, the modified input of a
party Pi is its private input bit (for the ABA protocol) xi. In
each iteration, the parties execute an instance of the proto-
col VOTE and CC sequentially, that is, a party participates
in the instance of CC only after terminating the instance
of VOTE (the reason for this provision will be clear while
proving the properties of the ABA protocol). If a party out-
puts (σ, 1) in the instance of the VOTE protocol, implying
that it finds a “distinct majority” for the value σ, then the
party sets its modified input for the next iteration to σ, irre-
spective of the value which is going to be output in the in-
stance of CC; otherwise, the party sets its modified input for
the next iteration to be the output of the CC protocol, which
is invoked by all the parties in each iteration, irrespective of
whether the output of the CC protocol is used or not by the
parties for setting the modified inputs for the next iteration.
Once a party outputs (σ, 2) in an instance of the VOTE pro-
tocol, implying that it finds an “overwhelming majority” for
the value σ, then it broadcasts σ. Finally, once a party re-
ceives σ from the broadcast of t+1 parties, it outputs σ and
terminates.

Extending the Idea for n− 2t Bits: In our multi-bit ABA
protocol, we extend the above idea as follows: during the
first iteration, the “modified input” for each party will con-
sists of its private n − 2t input bits, so each party will have
n−2tmodified input bits. Then in each iteration, the parties
execute n− 2t parallel instances of the VOTE protocol (one
instance on behalf of each bit), followed by a single instance
of the MCC protocol (on behalf of all the n− 2t bits). Note
that a party participates in the instance of MCC only after
terminating all the n − 2t instances of the VOTE protocol.
A party repeats the same logic explained as above to set each
of its modified bit for the next iteration taking into account
the outcome of the VOTE and MCC. More specifically, af-
ter completing the iteration k, each party sets the lth bit of
its modified input for the (k + 1)th iteration as follows, for
each l ∈ {1, . . . , n− 2t}: if (σl, 1) is obtained as the output
of the lth instance of VOTE during the kth iteration, then
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Fig. 9 Existing vote protocol.

Protocol VOTE

For i = 1, . . . , n, every party Pi ∈ P executes the following code:

1. On input xi, broadcast (input, Pi, xi).
2. Create a dynamic set Ai, which is initialized to ∅. Add (Pj , xj) to Ai if (input, Pj , xj) is received from the broadcast of Pj .
3. Wait until |Ai| = n− t. Assign Ai = Ai. Set ai to the majority bit among {xj | (Pj , xj) ∈ Ai} and broadcast (vote, Pi, Ai, ai).
4. Create a dynamic set Bi, which is initialized to ∅. Add (Pj , Aj , aj) to Bi if (vote, Pj , Aj , aj) is received from the broadcast of

Pj , Aj ⊆ Ai, and aj is the majority bit of Aj .
5. Wait until |Bi| = n − t. Assign Bi = Bi. Set bi to the majority bit among {aj | (Pj , Aj , aj) ∈ Bi} and broadcast

(re-vote, Pi, Bi, bi).
6. Create a set Ci, which is initialized to Add (Pj , Bj , bj) to Ci if (re-vote, Pj , Bj , bj) is received from the broadcast of Pj ,

Bj ⊆ Bi, and bj is the majority bit of Bj .
7. Wait until |Ci| ≥ n− t. If all the parties Pj ∈ Bi have the same vote aj = σ, then output (σ, 2) and terminate.

Otherwise, if all the parties Pj ∈ Ci have the same re-vote bj = σ, then output (σ, 1) and terminate.
Otherwise, output (Λ, 0) and terminate.

Fig. 10 Multi-bit ABA protocol to reach agreement on n− 2t = t+ 1 bits.

MABA(ε)

For i = 1, . . . , n, each party Pi ∈ P executes the following code:

1. Set r = 0. On having the input (xi1, . . . , xi(n−2t)), set v1l = xil, for l = 1, . . . , n− 2t and set the flagl = 0a.
2. Repeat until termination:

(a) Set r = r + 1. Participate in n − 2t instances of the VOTE protocol, with vrl as the input for the lth instance of the VOTE
protocol, for l = 1, . . . , n− 2t. Set (yrl,mrl) as the output of the lth instance of the VOTE protocol.

(b) Wait to terminate all the n− 2t instances of the VOTE protocol, executed in the previous step. Then invoke MCC and wait until
its termination with output (cr1, . . . , cr(n−2t)).

(c) For every l ∈ {1, . . . , n− 2t}, such that flagl = 0, do the following:
i. If mrl = 2, then set v(r+1)l = yrl, broadcast (Terminate with output v(r+1)l, l) and participate in one more

instance of VOTE protocol corresponding to the lth bit with v(r+1)l as the inputb.
Participate in one more instance of MCC if (Terminate with output v(r+1)l, l) is broadcasted for all l = 1, . . . , n−
2t. c

ii. If mrl = 1, set v(r+1)l = yrl.
iii. Otherwise, set v(r+1)l = crl.

(d) Upon receiving (Terminate with output σl, l) from the broadcast of at least t+ 1 parties, for some value σl, output σl
as the lth bit, terminate all the computation regarding lth bit and set flagl = 1.

(e) If flagl = 1 for every l = 1, . . . , n− 2t then terminate the protocol with output (σ1, . . . , σn−2t).

a Here flag1, . . . , flagn−2t are the (local) Boolean flags to indicate whether the agreement on the lth bit has been achieved.
b, c The purpose of these restrictions is to prevent the parties from participating in an unbounded number of iterations before enough
(Terminate with output σl, l) broadcasts are completed.

the lth bit is set as σl; otherwise the lth bit is set as the lth
output bit obtained at the end of MCC protocol during the
kth iteration. This process is repeated till (σl, 2) is obtained
as the output of the lth instance of VOTE during some iter-
ation, in which case, a party stops all computations related
to the lth bit and broadcasts σl. Our multi-bit ABA protocol,
called MABA, is presented in Fig 10.

We now proceed to prove the properties of the protocol
MABA; most of the proofs follow from the properties of the
single bit ABA protocol provided in [7], but for the sake of
completeness we provide them here.

Lemma 21 In the protocol MABA, if all the honest par-
ties have the same input (σ1, . . . , σn−2t), then all the honest
parties terminate and output (σ1, . . . , σn−2t).

PROOF: The proof follows from the fact that if all the honest
parties have the same input (σ1, . . . , σn−2t), then by Lemma
18, during the first iteration every honest party will output
(y1l,m1l) = (σl, 2) upon terminating the lth instance of
the VOTE protocol; consequently every honest party will
broadcast (Terminate with output σl, l). 2

Lemma 22 If some honest party terminates the protocol
MABA with output (σ1, . . . , σn−2t), then all the honest par-
ties will eventually terminate MABA with output (σ1, . . . ,
σn−2t).

PROOF: To prove the lemma, it is enough to show that for
every l ∈ {1, . . . , n − 2t}, if an honest party outputs σl
as the lth bit, then all the honest parties will also eventu-
ally output σl as the lth bit. We first claim that if an hon-
est party broadcasts (Terminate with output σl, l),
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then eventually every other honest party will also do the
same. Let k be the first iteration when an honest party Pi
broadcasts (Terminate with output σl, l); we show
that every other honest party will broadcast the same either
in the kth iteration or in the (k+1)th iteration. Since the hon-
est Pi has broadcasted (Terminate with output σl,
l) during the kth iteration, it implies that ykl = σl and
mkl = 2, which further implies that Pi has obtained (σl, 2)

as the output of the lth instance of the VOTE protocol, in-
voked during the kth iteration. So by Lemma 19, every other
honest party Pj will output either (σl, 2) or (σl, 1) during
this instance of the VOTE protocol. In case Pj outputs (σl,
2), then it will broadcast (Terminate with output
σl, l) during the kth iteration itself. Furthermore every hon-
est Pj will execute the lth instance of the VOTE during the
(k+1)th iteration with input v(k+1)l = σl. So clearly, during
the (k+1)th iteration, every honest party will have the same
input σl for the lth instance of VOTE. Therefore by Lemma
18, every honest party will output (σl, 2) during this instance
of the VOTE protocol. Thus all the honest parties broadcast
(Terminate with output σl, l) either during the kth
iteration or during the (k + 1)th iteration.

Now suppose that an honest party outputs σl as the lth
bit, so at least one honest party must have broadcasted (Ter
minate with output σl, l). Consequently, all the hon-
est parties will also broadcast the same. So eventually, every
honest party will receive (Terminate with output
σl, l) from the broadcast of n− t parties and (Terminate
with output σl, l) from the broadcast of at most t cor-
rupted parties. Therefore every honest party will output σl
as the lth bit. 2

Lemma 23 If all the honest parties have initiated and com-
pleted some iteration k, then for any l ∈ {1, . . . , n − 2t}
where flagl = 0, with probability at least 1

4 , all the honest
parties will have the same lth modified input v(k+1)l for the
(k + 1)th iteration.

PROOF: For any l ∈ {1, . . . , n − 2t} where flagl = 0, the
modified input v(k+1)l for the (k+1)th iteration is set based
on the outcome of either the lth instance of the VOTE pro-
tocol (during the kth iteration) or the lth output bit obtained
in the MCC protocol (during the kth iteration). For such a
v(k+1)l, we have two possible cases:

– All the honest parties execute step 2(c)-(iii) in iteration
k for setting v(k+1)l: in this case it holds that v(k+1)l is
set to the lth bit of the (local) output obtained in the in-
stance of MCC. The property of MCC ensures that with
probability at least 1

4 , all the honest parties obtain the
same lth output bit after completing MCC (see Lemma
16) and hence with the same probability, all the honest
parties will have the same value for v(k+1)l.

– Some honest party(ies) execute either step 2(c)-(i) or
step 2(c)-(ii) during iteration k for setting v(k+1)l =

σl for some σl ∈ {0, 1}, while the remaining honest
party(ies) execute step 2(c)-(iii) for setting v(k+1)l: in
this case, first of all it holds that no honest party will set
v(k+1)l = σl in step 2(c)-(i) or step 2(c)-(ii) (this follows
from Lemma 20). Moreover, the probability that all the
honest parties will have σl as the lth output bit at the
end of MCC is at least 1

4 . Now the parties start execut-
ing MCC, only after the termination of VOTE. Hence
the outcome of VOTE is fixed, before MCC is invoked.
Thus the corrupted parties can not force the output of
VOTE to prevent agreement. Hence with probability at
least 1

4 , all the honest parties will set v(k+1)l = σl. 2

Before proceeding further, we define the following event
Ck: let Ck be the event that each honest party completes
all the iterations it initiated, up to (and including) the kth it-
eration. That is, for each iteration 1 ≤ r ≤ k and for each
party P , if P initiated iteration r then it computes v(r+1)l,
for every l ∈ {1, . . . , n − 2t} for which flagl = 0. Let C
denote the event that Ck occurs for all k.

Lemma 24 Conditioned on the event C, all the honest par-
ties will set flagl = 1 in a constant expected time for any
l ∈ {1, . . . , n− 2t}.

PROOF: Let us fix an l ∈ {1, . . . , n − 2t}; we first claim
that all the honest parties will set flagl = 1 within a constant
time, after the first instance (iteration) when some honest
party broadcasts (Terminate with output σl, l), for
some σl ∈ {0, 1}. So let the first instance when an honest
party broadcasts (Terminate with output σl, l) oc-
curs during the iteration rl. This implies that all the honest
parties participated in the lth instance of the VOTE and in
the instance of MCC of all the iterations upto iteration rl+1.
From the proof of Lemma 22, it follows that all the honest
parties will broadcast (Terminate with output σl, l)
by the end of iteration rl+1. All these instances of broadcast
complete in a constant time. Moreover, each honest party
will set flagl = 1 after completing t + 1 of these broad-
casts and thus, after the first instance when some honest
party broadcasts (Terminate with output σl, l), all
the honest parties will set flagl = 1 in a constant time.

We next count the expected number of iterations un-
til (Terminate with outputσl, l) is broadcasted by
some honest party, for some σl ∈ {0, 1}. More specifically,
let the random variable τl count rl; if τl =∞, then the hon-
est parties will not terminate MABA, as the honest parties
will wait to set flagl to 1. Conditioned on the event C, all the
honest parties terminate each iteration in a constant time. To
complete the proof, it is enough to show that E(τl|C) is a
constant. We have

Prob(τl > k|Ck) ≤ Prob(τl 6= 1|Ck)× . . .×
Prob(τl 6= k|Ck ∩ τl 6= 1

. . . ∩ τl 6= k − 1).
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From Lemma 23, after completing an iteration k, all the
honest parties will have the same lth modified input for the
(k + 1)th iteration, except with probability at most 3

4 . This
implies that each of the k multiplicands on the right hand
side of the above equation is at most 3

4 and thus Prob(τl >
k|Ck) ≤ ( 34 )

k. Now it follows via a simple calculation that
E(τl|C) ≤ 16. 2

Lemma 25 In the protocol MABA, Prob(C) ≥ (1− ε).
PROOF: For l ∈ {1, . . . , n− 2t}, let rl and τl be the quanti-
ties as described in the proof of Lemma 24. We compute the
probability of the event C. We have

Prob(C) ≤
∑
k≥1

Prob(∃l ∈ {1, . . . , n− 2t} : τl > k

∩ Ck+1|Ck),

≤
∑
k≥1

n−2t∑
l=1

Prob(τl > k ∩ Ck+1|Ck),

≤
∑
k≥1

n−2t∑
l=1

Prob(τl > k|Ck) · Prob(Ck+1|Ck

∩ τl > k).

From the proof of Lemma 24, we have Prob(τl > k|Ck) ≤
( 34 )

k for any l ∈ {1, . . . , n − 2t}. We will now bound the
term Prob(Ck+1|Ck ∩ τl ≥ k). If all the honest parties exe-
cute the kth iteration and complete the instance of MCC dur-
ing the kth iteration, then all the honest parties complete the
kth iteration (as the instances of VOTE will always complete
in each iteration). Now the instance of MCC has an error
probability of at most ε

4n for termination (follows from The-
orem 6). Thus with probability at least 1− ε

4n , all the honest
parties complete the instance of MCC during the kth itera-
tion. Therefore, for each k, Prob(Ck+1|Ck ∩ τl ≥ k) ≤ ε

4n .
So we get

Prob(C) ≤
∑
k≥1

(
3

4
)k · ε

4n
· (n− 2t) ≤ ε. 2

Theorem 8 (Multi-Bit ABA) Let n = 3t+ 1. Then for ev-
ery 0 < ε ≤ 0.2, protocol MABA is a (1 − ε)-terminating,
multi-bit ABA protocol with n − 2t bits output. The proto-
col requires a private communication as well as broadcast
of O(R n4 log 1

ε ) bits, where R is the expected running time
of the protocol. Given that the parties terminate, they do so
in a constant expected time (i.e. R = O(1)).
PROOF: In each iteration of the protocol MABA, one in-
stance of MCC and n− 2t instances of VOTE are executed,
which requires a private as well as broadcast communication
ofO(n4 log 1

ε ) bits. Moreover, from the proof of Lemma 24,
there will be an (expected) constant number of such itera-
tions. The theorem now follows from Lemmas 21-25. 2

9 Conclusion and Open Problems

We presented a (1− ε)-terminating unconditional ABA pro-
tocol with optimal resilience, which significantly improves
the communication complexity of the best known (1 − ε)-
terminating ABA protocol of [8]. Our protocol also has bet-
ter communication complexity than the almost-surely termi-
nating ABA protocol of [1] (however the ABA protocol of
[1] has a stronger property of being almost-surely terminat-
ing). The key factors that have contributed to the gain in the
communication complexity of our ABA protocol are:

– Using a shorter route AICP→ AWC→ AVSS to get our
AVSS scheme and to introduce the new primitive AWC,
which can be designed more efficiently that AWSS, the
commonly used primitive in the AVSS of [8] and in the
SVSS of [1].

– Improving each of the underlying building blocks, so as
to deal with multiple values concurrently.

– Modifying the existing common coin protocol to make it
compatible with our AVSS scheme (sharing multiple se-
crets concurrently) and to generate Θ(n) common coins
concurrently.

An interesting open problem is to further improve the com-
munication complexity of our ABA protocol. Improving the
communication complexity of the almost-surely terminating
ABA protocol of [1] is another interesting open problem.
In that regard, it may be worth defining a “shunning” vari-
ant of AWC and investigating if the new primitive can be
used to design SVSS more efficiently than the known con-
struction. Furthermore, one can try to find the applicability
of our tricks for dealing with multiple secrets concurrently
in the context of the ABA of [1]. Perhaps the most chal-
lenging open problem is to get an almost-surely terminating,
optimally-resilient, ABA protocol with a constant expected
running time and with low communication complexity.
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APPENDIX A: Communication Complexity Analysis of
the AVSS and ABA of [8]

The communication complexity analysis of the AVSS and
ABA protocol of [8] was not reported anywhere so far. So
we have carried out the same at this juncture. To do so, we
have considered the detailed description of the AVSS pro-
tocol of [8] given in Canetti’s thesis [7]. To bound the er-
ror probability by ε, all communication and computation in
the protocol(s) of [8] are done over a finite field F, where
|F| = GF (2κ) and ε = 2−Ω(κ). Thus each field element
can be represented by κ = O(log 1

ε ) bits.
To begin with, in the ICP of [8], Signer gives O(κ) field

elements to INT andO(κ) field elements to Verifier. Though
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the ICP of [7] is presented with a single Verifier, it is exe-
cuted with n verifiers in the protocol A-RS. In order to exe-
cute ICP with n verifiers, Signer givesO(nκ) field elements
to INT andO(κ) field elements to each of the n verifiers. So
the communication complexity of ICP of [7] when executed
with n verifiers is O(nκ) field elements and hence O(nκ2)
bits.

Now by incorporating their ICP with n verifiers in Sha-
mir secret-sharing [27], the authors in [8] designed an asyn-
chronous primitive A-RS, consisting of two sub-protocols
A-RS-Share and A-RS-Rec. In the A-RS-Share protocol, D
generates n (Shamir) shares of a secret s and for each of the
n shares, D executes an instance of ICP with n verifiers. So
the A-RS-Share protocol of [8] involves a private communi-
cation of O(n2κ2) bits. In addition to this, the A-RS-Share
protocol also involves broadcast of O(log n) bits. During
the A-RS-Rec protocol, the IC signatures given by D during
A-RS-Share are revealed, which involves a private commu-
nication of O(n2κ2) bits. In addition, the A-RS-Rec proto-
col involves broadcast of O(n2 log n) bits.

Proceeding further, the authors in [8] designed an AWSS
scheme using their A-RS protocol. The scheme consists of
two sub-protocols, namely AWSS-Share and AWSS-Rec. In
the AWSS-Share protocol, D generates n (Shamir) shares
of the secret and instantiates n instances of ICP for each of
the n shares. Now each individual party A-RS-Share (as a
D) all the values that it has received in the n instances of
ICP. Since each individual party receives a total of O(nκ)
field elements in the n instances of ICP, the above step in-
curs a private communication ofO(n4κ3) bits and broadcast
of O(n2κ log n) bits. In the AWSS-Rec protocol, each party
Pi tries to reconstruct the values which are A-RS-shared by
each party Pj in a set Ei. Here Ei is a set which is defined
in the AWSS-Share protocol. In the worst case, the size of
each Ei is O(n). So in the worst case, the AWSS-Rec pro-
tocol requires a private communication ofO(n5κ3) bits and
broadcast O(n5κ log n) bits.

The authors then further extended their AWSS-Share
protocol to Two&SumAWSS-Share protocol, where each
party Pi has to A-RS-Share O(nκ2) field elements. So the
communication complexity of Two&SumAWSS-Share is
O(n4κ4) bits of private communication and O(n2κ2 log n)
bits of broadcast communication.

Using Two&SumAWSS-Share and AWSS-Rec, the au-
thors in [8] then finally deign their AVSS scheme, consist-
ing of sub-protocols AVSS-Share and AVSS-Rec. In the
AVSS-Share protocol, the most communication-expensive
step is the one where each party has to reconstruct O(n3κ)
field elements by executing instances of AWSS-Rec. So in
total, the AVSS-Share protocol involves a private commu-
nication of O(n9κ4) and broadcast of O(n9κ2 log n) bits.
The AVSS-Rec protocol involves n instances of AWSS-Rec,

resulting in a private communication of O(n6κ3) bits and
broadcast of O(n6κ log n) bits.

Now in the common coin protocol, each party in P acts
as a dealer and invokes n instances of AVSS-Share to share
n secrets. So the communication complexity of the com-
mon protocol of [8] isO(n11κ4) bits of private communica-
tion and O(n11κ2 log n) bits of broadcast communication.
Now in the ABA protocol of [8], common coin protocol is
called for R = O(1) expected time. Hence the ABA proto-
col of [8] involves a private communication of O(n11κ4)
bits and broadcast of O(n11κ2 log n) bits. As mentioned
earlier, κ = O(log 1

ε ). Thus the ABA protocol of [8] in-
volves a private communication of O(n11 log( 1ε )

4) bits and
broadcast of O(n11 log( 1ε )

2 log n) bits.

APPENDIX B: Proofs for the Protocol VOTE

Proof of Lemma 17: Every honest party Pi will broadcast
its input xi. As there are at least n−t honest parties, from the
properties of broadcast, every honest Pi will eventually have
|Ai| = n− t and then will eventually have |Bi| = n− t and
finally will eventually have |Ci| = n− t. Consequently, ev-
ery honest Pi will terminate the protocol in a constant time.
2

Proof of Lemma 18: Consider an honest party Pi. If all the
honest parties have the same input σ, then at most t (cor-
rupted) parties may broadcast σ as their input. Therefore, it
is easy to see that every Pk ∈ Bi must have broadcasted its
vote bk = σ. Hence the honest Pi will output (σ, 2). 2

Proof of Lemma 19: Let an honest Pi outputs (σ, 2). This
implies that every Pj ∈ Bi had broadcasted vote aj = σ.
As |Bi| = 2t+1, it implies that for every other honest party
Pj , it holds that |Bi ∩ Bj | ≥ t + 1 and so Pj is bound to
broadcast re-vote bj = σ and hence will output either (σ, 2)
or (σ, 1). 2

Proof of Lemma 20: Assume that an honest party Pi out-
puts (σ, 1). This implies that all the parties Pj ∈ Ci had
broadcasted the same re-vote bj = σ. Since |Ci| ≥ n− t, in
the worst case there are at most t parties (outside Ci) who
may broadcast re-vote σ. Thus it is clear that no honest party
will output (σ, 1). Now since the honest parties in Ci had
re-voted as σ, there must be at least t + 1 parties who have
broadcasted their vote as σ. Thus no honest party can output
(σ, 2) for which at least n−t = 2t+1 parties are required to
broadcast their vote as σ. So we have proved that no honest
party will output from {(σ, 2), (σ, 1)}. Therefore the honest
parties will output either (σ, 1) or (Λ, 0). 2


