
Randomizable Proofs and

Delegatable Anonymous Credentials

Mira Belenkiy, Microsoft Research, mibelenk@microsoft.com
Jan Camenisch, IBM Zurich Research Laboratory

Melissa Chase, Microsoft Research, melissac@microsoft.com
Markulf Kohlweiss, KU Leuven, ESAT-COSIC / IBBT, markulf.kohlweiss@esat.kuleuven.be

Anna Lysyanskaya, Brown University, anna@cs.brown.edu
Hovav Shacham, UC San Diego, hovav@cs.ucsd.edu

September 16, 2009

Abstract
We construct an efficient delegatable anonymous credentials system. Users can anonymously

and unlinkably obtain credentials from any authority, delegate their credentials to other users,
and prove possession of a credential L levels away from a given authority. The size of the
proof (and time to compute it) is O(Lk), where k is the security parameter. The only other
construction of delegatable anonymous credentials (Chase and Lysyanskaya, Crypto 2006) relies
on general non-interactive proofs for NP-complete languages of size kΩ(2L). We revise the entire
approach to constructing anonymous credentials and identify randomizable zero-knowledge proof
of knowledge systems as the key building block. We formally define the notion of randomizable
non-interactive zero-knowledge proofs, and give the first instance of controlled rerandomization
of non-interactive zero-knowledge proofs by a third-party. Our construction uses Groth-Sahai
proofs (Eurocrypt 2008).

1 Introduction

Access control is one of the most fundamental problems in security. We frequently need to answer
the question: does the person requesting access to a resource possess the required credentials?
A credential typically consists of a certification chain rooted at some authority responsible for
managing access to the resource and ending at the public key of the user in question. The user
presents the credential and demonstrates that he knows the corresponding secret key. Sometimes,
the trusted authority issues certificates directly to each user (so the length of each certification chain
is 1). More often, the authority delegates responsibility. A system administrator allows several
webmasters to use his server. A webmaster can create several forums, with different moderators
for each forum. Moderators approve some messages, reject others, and even give favored users
unlimited posting privileges. Imagine the burden on the system administrator if he had to approve
every single moderator and user for every single forum.

We want cryptographic credentials to follow the same delegation model as access control follows
in the real world. The system administrator can use his public key to sign a webmaster’s public
key, creating a credential of length 1. In general, a user with a level L credential can sign another
user’s public key and give him his credential chain, to create a level L+ 1 credential.

1

The design of an anonymous delegatable credential scheme in which participants can obtain,
delegate, and demonstrate possession of credential chains without revealing any additional infor-
mation about themselves is a natural and desirable goal. Our main contribution is the first efficient
delegatable anonymous credential scheme. The only known construction of delegatable anonymous
credentials, due to Chase and Lysyanskaya [CL06], needs kΩ(L) space to store a certification chain of
length L (for security parameter k), and therefore could not tolerate non-constant L. Our solution
is practical : all operations on chains of length L need Θ(kL) time and space.

Pseudonymous systems. Prior work on anonymous credentials [Lys02, CL02b, CL04, BCKL08]
created systems where each user has one secret key but multiple “public keys.” Given a secret
key skA, Alice can create a new public key by choosing a random value open and publishing a
commitment pkA = Commit(skA, open). Alice could register pkA with Oliver and pk ′A with Olga.

Oliver can give Alice a credential by signing the statement that the value in commitment pkA
has some attribute. Alice can then show pk ′A to Olga and prove that Oliver signed that the value
in pk ′A had that attribute. This works because pkA and pk ′A are commitments to the same value
skA. The chief building block of an anonymous credential scheme is a signature scheme that lends
itself to the design of efficient protocols for (1) obtaining a signature on a committed value; and
(2) proving that a committed value has been signed.

Why delegation is a challenging problem. There is no straightforward transformation of anony-
mous credential schemes [Cha85, Dam90, Bra99, LRSW99, CL01, CL04, BCKL08]into delegatable
schemes. Suppose instead of giving Alice a direct credential, Oliver delegates his own credential to
Alice. If Oliver gives Alice a sig on Oliver’s secret key, then Alice could learn who gave Oliver his
credential. Generalizing this approach would reveal to Alice the identity of every person in Oliver’s
credential chain.

Our approach. Instead of giving Alice his signature, Oliver gives Alice a non-interactive proof-of-
knowledge of the signature. We show how Alice can (1) delegate the credential by extending the
proof and (2) rerandomize the proof every time she shows (or extends it) to preserve her anonymity.

Let’s say Oliver is a credential authority and Alice wants to obtain the credential directly
from Oliver (so her certification chain will be of length 1). Under the old approach, they would
run a secure two-party protocol as a result of which Alice obtains a signature σpkO(skA) on skA,
while Oliver gets no output. Under the new approach, Alice’s output is (CA, πA), where CA is a
commitment to her secret key skA, and πA is a proof of knowledge of Oliver authenticating the
contents of CA. Note that a symmetric authentication scheme is sufficient because no one ever sees
the authenticator ; all verification is done on the proof of knowledge. The symmetric key skO is still
known only to Oliver; we create a “public” key CO that is simply a commitment to skO.

How can Alice use this credential anonymously? If the underlying proof system is malleable
in just the right way, then given (CA, πA) and the opening to CA, Alice can compute (C ′A, π

′
A)

such that C ′A is another commitment to her skA that she can successfully open, while π′A is a
proof of knowledge of Oliver authenticating the contents of C ′A. Malleability is usually considered
a bug rather than a feature. However, in combination with the correct extraction properties, we
still manage to guarantee that these randomizable proofs give us a useful building block for the
construction.

How does Alice delegate her credential to Bob? Alice and Bob can run a secure protocol as
a result of which Bob obtains (CB, πB) where CB is a commitment to Bob’s secret key skB and
πB is a proof of knowledge of an authenticator issued by the owner of C ′A on the contents of CB.

2

Now, essentially, the set of values (C ′A,CB, π
′
A, πB) together indicate that the owner of C ′A got a

credential from Oliver and delegated to the owner of CB, and so it constitutes a proof of possession
of a certification chain. Moreover, it hides the identity of the delegator Alice! Now Bob can, in
turn, use the randomization properties of the underlying proof system to randomize this set of
values so that it becomes unlinkable to his original pseudonym CB; he can also, in turn, delegate
to Carol.

Our malleable proofs do not allow adversaries to forge credentials because we use an extractable
proof system. This lets us extract a certification chain from any proof, no matter how randomized.
We can use an adversary that forges a proof to attack the underlying authentication scheme.

Randomizable proof systems. The key to our construction is a randomizable proof system that
lets the prover (1) randomize the proof without knowing the witness, and (2) control the outcome
of the randomization process. This is a fundamentally new notion, and one we think will be of
independent interest. We give a formal definition and show that we can instantiate it by adding a
randomization procedure to the pairing-based proof system of Groth and Sahai [GS08]. Our use of
pairings is not merely a matter of efficiency – we do not know of any proof system based on general
assumptions that can be randomized.

In fact the Groth-Sahai proofs allow us to go beyond merely randomizing the proof to actually
change the statements we are proving. What do we mean by this? Groth-Sahai proofs make
statements about the values inside commitments. Let C = Commit(x, open). A prover who knows
(x, open) can choose a new value open ′ so that in the rerandomized proof, C is transformed to C ′ =
Commit(x, open ′). Otherwise, the prover can choose whether to leave C unchanged or randomize
it to C ′ that uses a some random open ′ unknown to the prover. This fine level of control together
with the basic randomization property gives a very useful building block, which is crucial in our
application.

There has been prior work on some related notions: Burmester et al [BDI+99] show a third party
can help randomize proofs during the execution of an interactive protocol to prevent subliminal
channels. De Santis and Yung [DSY90] propose the notion of meta proofs, in which anyone who
holds a proof for a given statement can generate a proof that there exists a proof for the statement.
Neither of these approaches work for our scenario because we need to randomize non-interactive
proofs, and, unlike a meta-proof, the randomized proof must be indistinguishable from the original.

Our delegatable credentials construction. We construct delegatable credentials using randomizable
proofs. By concatenating rerandomized credential chains, we can create a credential chain of
length L that takes O(L) space. Our strong anonymity properties are an immediate consequence of
rerandomization: each showing of the credential is unlinkable and users do not learn the identities
of delegators in their own credential chain.

Our solution (1) prevents adversarial users from mixing and matching pieces of different cre-
dential chains to create unauthorized credential chains and (2) protects the user’s anonymity even
when the adversary delegates to the user. We solve the second problem by creating an authentica-
tion scheme (symmetric signature scheme) that is secure even when the adversary gets a signature
on the user’s secret key.

Attributes. Our delegatable anonymous credentials system lets users add human-readable attributes
to each credential. Oliver can give Alice a level 1 credential with attribute “webmaster of Crypto
Forum”. Alice can then delegate her credential to Bob with attribute “moderator of Crypto Forum”.
As a result, Bob can log on to the server anonymously and prove that the “webmaster of Crypto

3

Forum” made him the “moderator of Crypto Forum”. Our construction lets users add as many
attributes as they want to each credential, allowing for the expressibility that we see in modern
(non-anonymous) access control systems.

Advanced abuse prevention mechanisms. Our construction shows how to efficiently implement
maximum anonymity at all levels and all roles in the delegation chain—with the exception of the
credential authority. Some applications will not require this full anonymity. Indeed, a large number
of abuse prevention mechanisms for anonymous credentials (anonymity revocation [CL01], creden-
tial revocation [CL02a], limited show [CHK+06]) aim at striking a balance between privacy and
accountability. Concerning our own scheme we make three simple observations: (i) global trace-
ability can be achieved by providing a trusted tracing authority with the extraction trapdoors for
the common parameters of the Groth Sahai (GS) proof system; (ii) at the last level of the delega-
tion chain, we can make use of all abuse prevention mechanisms known for traditional anonymous
credentials; (iii) many abuse prevention mechanisms known from the literature can be adapted to
our construction by replacing traditional sigma proofs [Dam02] with GS proofs [GS08].

Other related work. At first glance, our delegatable credentials scenario might resemble the HIBE
or HIBS settings [GS02, BBG05], where a root delegator can issue decryption or signing keys to
recipients, who in turn can delegate subkeys to lower level participants. There are two key differ-
ences between such a HIBE/HIBS scheme and anonymous credential schemes: (1) In HIBE/HIBS
two users with the same attributes are completely interchangeable while an anonymous credentials
system gives them distinct sets of pseudonyms and (2) anonymous credentials allow a user to show
that he has obtained valid credentials from two independent authorities.

In a somewhat different direction, Barak [Bar01] presented a general (inefficient) construction for
delegatable signatures. In that work, the goal was a signature scheme which would allow the signer
to delegate signing rights for a restricted message space, such that signatures generated with the
delegated key are indistinguishable from the originals. In our setting, we want the opposite: once
we delegate a credential, the delegatee should be able to issue lower level credentials to any users he
chooses, however we require that credentials at different levels be clearly distinguishable. Finally,
the definition in [Bar01] does not consider anonymity between the delegator and the delegatee,
while we do.

Somewhat closer to our approach are anonymous proxy signatures [FP08]. There, the delegation
of the signing rights is, however, non-interactive and requires that the delegator knows the public
key and thus the identity of the delegee, while the parties in a delegatable anonymous credentials
at all stages only know each other under unlinkable pseudonyms.

Our contribution and organization of the paper. We (1) define and construct a randomizable
NIZKPK (Section 2) and (2) define and construct an efficient delegatable anonymous credential
system (Section 3). We also create an appropriate message authentication scheme and some other
additional building blocks for the delegatable credentials scheme. We show how these building
blocks can be instantiated under appropriate assumptions about groups with bilinear maps.

2 Randomizable NIZK proof systems

Let R(params, y, w) be any polynomial-time computable relation. A non-interactive proof system
for relation R allows the prover to convince a verifier that for some instance y there exists a witness
w such that R(params, y, w), where params is a common (public) reference string. The prover

4

generates a proof π ← Prove(params, y, w), the verifier checks it via VerifyProof(params, y, π). A
trusted third party runs params ← Setup(1k) once to initialize the system.

Informally, zero-knowledge captures the notion that a verifier learns nothing from the proof but
the truth of the statement. Witness indistinguishability merely guarantees that the verifier learns
nothing about which witness was used in the proof. Soundness means an adversary cannot convince
an honest verifier of a false statement. Completeness means all honest verifiers accept all correctly
computed proofs. See [GMR89, Gol00, BFM88, FLS99] for formal definitions.

We define randomizable proof systems, which have an additional algorithm RandProof that takes
as input a proof π for instance y in relation R, and produces a new proof for the same statement
y. The resulting proof must be indistinguishable from a new proof for y. We allow the adversary
to choose the instance y, the proof π that is used as input for RandProof, and the witness w that
is used to form a new proof of the same statement. Formally:

Definition 1 We say that Setup,Prove,VerifyProof,RandProof constitute a randomizable proof sys-
tem if the following property holds. For all ppt. (A1,A2) there exists a negligible function ν such
that:

Pr[params ← Setup(1k); (y, w, π, state)← A1(params);
π0 ← Prove(params, y, w);π1 ← RandProof(params, y, π);
b← {0, 1}; b′ ← A2(state, πb) :
RL(y, w) ∧ VerifyProof(params, y, π) = 1 ∧ b = b′] ≤ 1/2 + ν(k) .

2.1 Instantiating a randomizable proof system

Randomization is a fundamentally new property. It is not clear how one might randomize proofs
in any of the existing NIZK proof systems [BDMP91, KP98, FLS99] without knowing the witness.
The one exception is the recent proof system of Groth and Sahai [GS08] (an extension of [GOS06]),
which gives witness indistinghishable (and in some cases zero-knowledge) NIPKs. We will show how
to add a randomization procedure to Groth-Sahai proofs. This was also independently observed by
Fuchsbauer and Pointcheval [FP09] for the variant of Groth-Sahai proofs based on composite order
groups.

Summary of Groth-Sahai proofs. Let paramsBM = (p,G1, G2, GT , e, g, h) be the setup for
pairing groups of prime order p, with pairing e : G1 × G2 → GT , and g, h generators of G1, G2

respectively.1

Let {aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈ GT , and {αq,m}q=1...Q,m=1...M , {βq,n}q=1...Q,n=1...N ∈
Zp be the coefficients of a pairing product equation The prover in a Groth-Sahai proof system
knows secret values {xm}Mm=1, {yn}Nn=1 and wants to prove that these values satisfy the pairing
product equation

Q∏
q=1

e(aq
M∏
m=1

x
αq,m
m , bq

N∏
n=1

y
βq,n
n) = t .

We now give some details about the internals of Groth-Sahai proof systems. Let M1, M2, and MT

be R-modules for some ring R, and let E : M1×M2 →MT be a bilinear map. Also let µ1, µ2, µT be
efficiently computable embeddings that map elements of G1, G2, GT into M1,M2,MT , respectively.

1For simplicity, we do not consider Groth-Sahai proofs for composite order groups.

5

The public parameters paramsPK contain elements u1, . . . , uI ∈ M1, v1, . . . , vJ ∈ M2 and values
ηh,i,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ h ≤ H.

To create a Groth-Sahai commitment to x ∈ G1, choose random opening open = (r1, . . . , rI)←
RI , and compute c = µ1(x) ·

∏I
i=1 u

ri
i . Elements y ∈ G2 are committed to in the same way

using µ2 and v1, . . . , vJ ∈ M2, and an opening vector open ∈ RJ . For simplicity we assume that
GSCommit(paramsPK ,m, open) first determines whether m ∈ G1 or m ∈ G2 and then follows the
appropriate instructions.

In a Groth-Sahai proof system, the prover creates or knows the openings of perfectly binding,
computationally hiding commitments {cm}m=1...M and {dn}n=1...N for all values xm, yn in G1 and
G2 respectively.

Groth and Sahai [GS08] show how to efficiently compute proofs {πi}Ii=1, {ψj}Jj=1 that prove
that the values in the commitments cm and dn satisfy a pairing product equation. The verifier
computes, for all 1 ≤ q ≤ Q, ĉq ← µ1(aq) ·

∏M
m=1 c

αq,m
m and d̂q ← µ2(bq) ·

∏N
n=1 d

βq,n
n . Then the

verifier checks that
∏Q
q=1E(ĉq, d̂q) = µT (t) ·

∏I
i=1E(ui, πi) ·

∏J
j=1E(ψj , vj).

Depending on the relation that is proven, the commitments {cm}m=1...M and {dn}n=1...N are
interpreted as being part of the instance or as part of the proof. For ease of exposition we for
now assume that all commitments are internal commitments, i.e., the proof consists of [(π1, . . . ,
πI , ψ1, . . . , ψJ),Π] where Π contains the internal commitments c1, . . . , cM and d1, . . . , dN . We will
show how to relax this condition in Section 2.2.

Randomizing Groth-Sahai proofs. RandProof gets as input an instance with the aq, bq, t, αq,m,
βq,n values as well as the proof [(π1, . . . , πI , ψ1, . . . , ψJ),Π]. Π contains the internal commitments
c1, . . . , cM and d1, . . . , dN .

The algorithm first chooses randomization exponents (s1,1, . . . , sM,I) and (z1,1, . . . , zN,J) at ran-
dom from Zp. It then rerandomizes the internal commitments cm and dn to c′m = cm ·

∏I
i=1 u

sm,i
i

and d′n = dn ·
∏J
j=1 v

zn,j
j . Then it computes ŝq,i =

∑M
m=1 sm,i · αq,m, ẑq,j =

∑N
n=1 zn,j · βq,n, and

D′q ← µ2(bq)·
∏N
n=1 d

′βq,n
n and Cq ← µ1(aq)·

∏M
m=1 c

αq,m
m . Next, the prover sets π′i ← πi ·

∏Q
q=1(D′q)

ŝq,i

and ψ′j ← ψj ·
∏Q
q=1(Cq)ẑq,j . These π′i and ψ′j will satisfy the verification equation for the new com-

mitments.2

Now the prover must make a certain technical step to fully randomize the proof. Intuitively,
for every set of commitments, there are many proofs (π1, . . . , πI , ψ1, . . . , ψJ) that can satisfy the
verification equation. Given one such proof, we can randomly choose another: The prover chooses

ti,j , th ← R, and multiplies each π′i := π′i ·
∏J
j=1 v

ti,j
j and each ψ′j := ψ′j ·

∏I
i=1 u

PH
h=1 thηh,i,j

i

∏I
i=1 u

ti,j
i .

See [GS08] for a detailed explanation.
The algorithm outputs the new proof [(π′1, . . . , π

′
I , ψ

′
1, . . . , ψ

′
J),Π′] where Π′ contains the internal

commitments c′1, . . . , c
′
M and d′1, . . . , d

′
N . See Appendix D for details. A similar approach works for

composite order groups.

Composable Proofs. Groth-Sahai proofs are composable witness indistinguishable, and in some
cases composable zero-knowledge. To simplify our definitions and proofs, we use a similar notion

2This procedure becomes slightly more complex, if not all commitments are internal: as randomization is supposed
to leave the instance unchanged, commitments that are interpreted as being part of the instance are not randomized,
i.e. the sm,i, zn,j for these commitments are 0. We treat changes to such commitments as a form of malleability, see
Section 2.1.

6

for randomizability.
In a composable (under the definition of Groth and Sahai [GS08]) non-interactive proof system

there exists an algorithm SimSetup that outputs params together with a trapdoor sim, such that
params output by SimSetup is indistinguishable from those output by Setup. Composable witness-
indistinguishability (or zero-knowledge) requires that, under these parameters, the witness-indistin-
guishability (resp. zero-knowledge) property holds even when the adversary is given the trapdoor
sim. Groth-Sahai commitments are perfectly hiding under the simulated parameters. (Under
the honest parameters they are perfectly binding.) In the same spirit, we say the composable
randomizability property must hold even when the distinguisher is given the trapdoor sim.

2.2 Malleable proofs and randomizable commitments

For our application, randomizing proofs is not sufficient. We also need to randomize (anonymize)
the statement that we are proving. Consider a family of transformations {Ys, Ps}s∈S that transform
the instance and the proof respectively (for us, S is the set of all possible commitment openings).
We require that ∀(y, π), ∀s ∈ S, if π is a valid proof for y, then Ps(π) is a valid proof for Ys(y).

Definition 2 We say that Setup, Prove, VerifyProof, RandProof, {Ys, Ps}s∈S, constitute a Y -
malleable randomizable proof system, if it is randomizable and if for all ppt. A there exists a
negligible ν such that:

Pr[params ← Setup(1k); (y, π, s)← A(params) :
VerifyProof(params, y, π) = 1 ∧ VerifyProof(params, Ys(y), Ps(π)) = 0] = ν(k) .

If we apply RandProof to Ps(π), then the result will be indistinguishable from a random fresh proof
for Ys(y).

Groth-Sahai proofs can be used to prove that the values in a given set of commitments form a
solution to a specific set of pairing product equations; the commitments can be part of the proof
or the instance y. In our application, we will need to anonymize not only the proof, but also the
commitments in the instance.

Suppose a prover wants to show that some Condition holds for the values inside commit-
ments C1, . . . , Cn. Then the instance is y = (Condition, C1, . . . , Cn), and the witness is w =
(x1, open1, . . . , xn, openn, z), where (xi, openi) is the opening of commitment Ci, while z is some
value that has nothing to do with the commitments. We define the relationR = {(params, y, w)|C1 =
Commit(params, x1, open1)∧ . . .∧Cn = Commit(params, xn, openn)∧Condition(params, x1, . . . , xn,
z)}.

A proof system supports randomizable commitments if there exist efficient algorithms Y and P ,
such that on input (s, y, π), where s = (open ′1, . . . , open ′n) and π ← Prove(params, y, w), (1) Y (s, y)
outputs instance y′ = (Condition, C ′1, . . . , C

′
n), where C ′i = Commit(params, xi, openi + open ′i), (2)

P (s, π) outputs a proof π′ for instance y′, and (3) Y and P fulfill the malleability requirements of
Definition 2.

Lemma 1 The Groth-Sahai proof system is malleable with respect to the randomness in the com-
mitments. See Appendix D for details.

Remark 1 To simplify notation, RandProof will take s = (open ′1, . . . , open ′n) as input, apply Ps,
and then run the randomization algorithm. To leave Ci unchanged, we set open ′i = 0.

7

2.3 Partially Extractable Non-interactive Proofs of Knowledge

A NIPK system is a non-interactive proof system that is extractable. We recall the notion of f-
extractability [BCKL08], which is an extension of the original definition of extractability [SCP00].
In an extractable proof system, there exists a ppt. extractor (PKExtractSetup,PKExtract).

PKExtractSetup(1k) outputs (td , params) where params is distributed identically to the output
of Setup(1k). For all polynomial time adversaries A, the probability that A(1k, params) outputs
(y, π) such that VerifyProof(params, y, π) = accept and PKExtract(td , y, π) fails to extract a witness
w such that R(params, y, w) = accept is negligible in k. We have perfect extractability if this
probability is 0. f -Extractability means that the extractor PKExtract only has to output a w′ such
that ∃w : R(params, y, w) = accept ∧ w′ = f(params, w). If f(params, ·) is the identity function,
we get the usual notion of extractability.

Let C be an unconditionally binding commitment. By ‘x inC’ we mean ∃open : C = Commit(
params, x, open). We use NIPK notation [CS97, BCKL08], to denote an f -extractable NIPK for
instance (C1, . . . , Cn,Condition) with witness (x1, open1, . . . , xn, openn, z):

π ← NIPK[x1 inC1, . . . , xn inCn]{(f(params, (x1, open1, . . . , xn, openn, z))) :
Condition(params, x1, . . . , xn, z)}.

The f -extractability property ensures that if VerifyProof accepts then we can extract f(params, (x1,
open1, . . . , xn, openn, z)) from π, such that xi is the content of the commitment Ci, and Condition(
params, x1, . . . , xn, z) is satisfied.

In our notation, π ∈ NIPK[. . . } means that VerifyProof accepts the proof π for instance
(C1, . . . , Cn,Condition). To further abbreviate notation, we omit params and assume that Condition
is clear from the context, and so the sole inputs to VerifyProof are (C1, . . . , Cn) and π. If the proof
is zero-knowledge instead of merely witness indistinguishable, we will write NIZKPK.

The concatenation of two proofs π and π′ is a proof π◦π′ that combines all the commitments and
proves the AND of the two conditions. If a proof π proves a condition about a set of commitments C,
a projection π′ = π ◦S proves a condition about the contents of the subset C \S of commitments. A
projected proof π′ is obtained by removing the commitments in S from the instance and appending
them to the proof.

Groth-Sahai proofs (in which all commitments are interpreted as being part of the instance)
give us NIPK of the form:

NIPKGS[
{
xm in cm

}M
m=1

,
{
yn in dn

}N
n=1

]{(x1, . . . , xM , y1, . . . , yN) :
Q∏
q=1

e(aq
M∏
m=1

x
αq,m
m , bq

N∏
n=1

y
βq,n
n) = t}.

3 Delegatable Anonymous Credentials

An anonymous delegatable credential system has only one type of participant: users. Each user has
a single secret key and uses it to generate different pseudonyms. User A with secret key skA can
be known to user O as Nym(O)

A and to user B as Nym(B)
A . Any user O can become an originator

of a credential; all he needs to do is publish one of his pseudonyms NymO as his public key. If
authority O issues user A a credential for Nym(O)

A , then user A can prove to user B that Nym(B)
A

has a credential from authority O. Credentials received directly from the authority are level 1

8

credentials, credentials that have been delegated once are level 2 credentials, etc. A delegatable
credential system consists of the following algorithms:

Setup(1k) outputs the trusted public parameters of the system, paramsDC .

Keygen(paramsDC) creates the secret key of a party in the system.

Nymgen(paramsDC , sk). On each run, the algorithm outputs a new pseudonym Nym with auxiliary
info aux (Nym) for secret key sk .3

Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred ,NymU , L)

↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymI , L) are the interactive algorithms
that let a user I issue a level L + 1 credential to a user U . The pseudonym NymO is the
authority’s public key, sk I is the issuer’s secret key, NymI is the issuer’s pseudonym with
auxiliary information aux (NymI), cred is the issuer’s level L credential rooted at NymO,
skU is the user’s secret key, and NymU is the user’s pseudonym with auxiliary information
aux (NymU). If L = 0 then cred = ε. The issuer gets no output, and the user gets a credential
credU .

CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L). Takes as input a level L credential cred
from authority NymO, outputs a value credproof .

CredVerify(paramsDC ,NymO, credproof ,Nym, L). Outputs accept if credproof is a valid proof that
the owner of pseudonym Nym possesses a level L credential with root NymO and reject
otherwise.

3.1 Security Definition of Delegatable Credentials

We formally define a secure delegatable credential system in Appendix A. Intuitively, the algo-
rithms Setup,Keygen,Nymgen,VerifyAux, Issue,Obtain,CredProve, and CredVerify constitute a secure
anonymous delegatable credential scheme if the following properties hold:

Correctness. We say that a credential cred is a proper credential, if for all of the user’s pseudo-
nyms, CredProve always creates a proof that CredVerify accepts.The delegatable credential system
is correct if an honest user and an honest issuer can run Obtain↔ Issue and the honest user gets a
proper credential.

Anonymity. The adversary’s interactions with the honest parties in the real game should be in-
distinguishable from some ideal game in which pseudonyms, credentials and proofs are independent
of the user’s identity and delegation chain. The adversary should not even recognize a credential
he delegated.

There must exist a simulator (SimSetup, SimProve, SimObtain, SimIssue). SimSetup produces
parameters indistinguishable from those output by Setup, along with some simulation trapdoor sim.
Under these parameters, we require that the following properties hold when even the adversary is
given sim:

3We do not address how to prove ownership of a pseudonym; in our constructions this involves interactively proving
knowledge of the opening of a commitment.

9

• Nym is distributed independently of sk .

• No adversary can tell if it is interacting with Issue run by an honest party with a proper
credential, or with SimIssue which is not given the credential and the issuer’s secret key, but
only the name of the authority, the length of the credential chain, and the pseudonyms of the
issuer and user.

• No adversary can tell if it is interacting with Obtain run by an honest party with secret sk ,
or with SimObtain that is only given the authority, the length of the credential chain, and the
pseudonyms of the issuer and user.

• The simulator SimProve can output a fake credproof that cannot be distinguished from a real
credential, even when SimProve is only told the authority, the length of the credential chain,
and the pseudonym of the user.

Remark 2 Our definition implies the more complex but weaker definition in which the adversary
only controls the public inputs to the algorithm. Our definition is easier to work with as we need
only consider one protocol at a time, and only a single execution of each protocol.

Unforgeability. For unforgeability of credentials to make sense, we have to define it in a setting
where pseudonyms are completely binding, i.e. for each pseudonym there is exactly one valid
corresponding secret key. Thus, there must exist some (potentially exponential-time) extraction
algorithm which takes as input a pseudonym and outputs the corresponding secret key. A forgery
of a level L credential occurs when the adversary can “prove” that Nym has a level L credential
when such a credential was never issued to any pseudonym owned by skL = Extract(Nym). Our
definition is slightly stronger, in that we require an efficient algorithm Extract that produces F (skL)
for some bijection F , and so we get F -extraction.

Suppose we can extract an entire chain of secret keys from the credential proof. Then we can
say a forgery occurs when the adversary produces a proof of a level L credential with authority
O from which we extract sk1, . . . , skL−1, skL such that a level L credential rooted at O was never
delegated by skL−1 to skL. Thus, we are not concerned with exactly which set sk2, . . . , skL−2 are
extracted. In practical terms, this means that once skL−1 has delegated a level L credential from
authority O to skL, we don’t care if the adversary can forge credentials with different credential
chains as long as they have the same level, are from the same authority, and are for the same skL.
(Obviously, we can also consider functions of the secret keys F (ski) in this discussion).

Of course, this only makes sense if skL−1 belongs to an honest user; otherwise we have no way
of knowing what credentials he issued. But what if the owner of skL−1 is adversarial and the owner
skL−2 is honest? Then the owner of skL should be able to prove possession of a credential if and
only if skL−2 delegated a level L− 1 credential rooted at authority O to user skL−1. Generalizing
this idea, our definition says a forgery is successful if we extract sk0, . . . , skL such that there is a
prefix skO, . . . , sk i where sk i−1 is honest, but sk i−1 never issued a level i credential from root O to
sk i.

In the game defining the property, all of the honest parties are controlled by a single oracle that
keeps track of all honestly issued credentials. An adversary given access to this oracle should have
only negligible probability of outputting a forged credential.

Let F be an efficiently computable bijection and a one-way function. There exists a ppt.
algorithms ExtSetup and Extract with five properties:

10

• ExtSetup and Setup output identically distributed params.

• Under these parameters, pseudonyms are perfectly binding for sk .

• Extract always extracts the correct chain of L identities from an honestly generated level L
credproof .

• Given an adversarially generated level L credential proof credproof from authority NymO for
the pseudonym Nym, Extract will always produce either the special symbol ⊥ or f0, . . . fL
such that NymO is a pseudonym for F−1(f0) and Nym is a pseudonym for F−1(fL).

• No adversary can output a valid credential proof from which an unauthorized chain of iden-
tities is extracted. More formally we require that for all ppt. A there exists a negligible ν
such that:

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);
(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :
CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept ∧
(∃i such that (f0, i, fi−1, fi) 6∈ ValidCredentialChains∧
fi−1 ∈ HonestUsers)] ≤ ν(k) ,

where O(paramsDC , command , input) describes all possible ways for the adversary A to interact
with the delegatable credentials system: A can ask the oracle to add new honest users; the oracle
generates sk ← Keygen(paramsDC), stores it in the list HonestUsers, and returns F (sk) as the
handle. A can ask for new pseudonyms for existing honest users, referenced by F (sk), and he
can provide a credential and ask an honest user to generate the corresponding proof. Finally, he
can run the Issue ↔ Obtain protocols on credentials of his choice, either between honest users, or
with an adversarial issuer or obtainer. In this case, we need to keep track of which credentials
are being issued, so that we will be able to identify a forgery. To do this, we use the Extract
algorithm to extract the chain of identities behind each credential being issued and store it on the
list ValidCredentialChains. For details, see Appendix A.

The oracle responds to the following types of queries:

AddUser. The oracle runs sk ← Keygen(paramsDC). It stores (sk , F (sk)) in the user database,
gives the adversary F (sk), and stores F (sk) in the list HonestUsers.

FormNym(f). The oracle looks up (sk , f) in its user database and terminates if it does not exist.
It calls (Nym, aux (Nym))← Nymgen(paramsDC , sk). The oracle stores (sk ,Nym, aux (Nym))
in its pseudonym database and gives the adversary Nym.

Issue(NymI ,NymU , cred I , L,NymO). The oracle looks up (skU ,NymU , aux (NymU)) and (sk I ,NymI ,
aux (NymI)) in its pseudonym database and outputs an error if they do not exist, or if
skU = sk I (honest users cannot issue to themselves). The oracle runs CredProve(paramsDC ,
NymO, cred I , sk I ,NymI , aux (NymI), L) to obtain credproof (for L = 0, credproof = ε). It
runs Extract(paramsDC , td , credproof ,NymO,NymI , L) to obtain f0, f1, . . . fL. The oracle
runs Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred I ,NymU , L) ↔ Obtain(paramsDC ,

11

NymO, skU ,NymU , aux (NymU),NymI , L)→ credU . The oracle stores (f0, L+ 1, fL, F (skU))
in ValidCredentialChains and outputs credU to the adversary.

IssueToAdv(NymI , cred I ,Nym, L,NymO). The oracle looks up (sk I ,NymI , aux (NymI)) in its data-
base of pseudonyms, and outputs an error if they do not exist. The oracle generates a creden-
tial proof by running CredProve(paramsDC ,NymO, cred , sk I ,NymI , aux (NymI), L) to obtain
credproof . It runs Extract(paramsDC , td , credproof ,NymI ,NymO, L) to obtain f0, . . . fL. It
then identifies the recipient by running Extract(paramsDC , td , ε,Nym,Nym, 0) to obtain fL+1.
Finally the oracle executes the algorithm Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred I ,
Nym, L) interacting with the adversary. If the protocol does not abort, the oracle stores
(f0, L+ 1, fL, fL+1) in ValidCredentialChains.

ObtainFromAdv(NymA,NymU ,NymO, L). The oracle looks up (skU ,NymU , aux (NymU)) in its data-
base of pseudonyms, and outputs an error if they do not exist. Then it runs Obtain(paramsDC ,
NymO, skU ,NymU , aux (NymU),NymA, L) with the adversary to get cred . It outputs cred .

Prove(Nym, cred ,NymO, L). The oracle looks up (sk ,Nym, aux (Nym)) in its pseudonym database,
and outputs an error if they do not exist. The oracle then runs CredProve(paramsDC ,
NymO, cred , sk ,Nym, aux (Nym), L) to obtain credproof , and outputs this result.

Remark 3 We let the adversary track honest users’ credentials and pseudonyms (but, of course,
not their secret keys). Our definition is strictly stronger than one that uses a general oracle that
does not reveal the credentials of honest users to the adversary. This approach results in a simpler
definition and analysis.

3.2 Construction of Delegatable Credentials

We construct delegatable credentials using a randomizable NIZK proof system with randomizable
commitments (as described in Section 2) and a message authentication scheme for a vector of
messages ~m (in our basic scheme |~m| = 2)in the common parameters model: AuthSetup(1k) outputs
common parameters paramsA, AuthKg(paramsA) outputs a secret key sk , Auth(paramsA, sk , ~m)
outputs an authentication tag auth that authenticates a vector of messages ~m, and VerifyAuth(
paramsA, sk , ~m, auth) accepts if auth is a proper authenticator for ~m under key sk . (We will discuss
the properties we will require from this authentication scheme after we present our delegatable
credentials construction.)

The parameters of the delegatable credentials system combine the parameters paramsA from
the authentication scheme and paramsPK from the composable and randomizable NIZKPK system
and its associated commitment scheme Commit. We assume that all algorithms are aware of these
parameters and omit them when appropriate to simplify our notation.

Intuition behind our construction. The keyspace of the authenticator must be a subset of the
input space of the commitment scheme. Each user U has a secret key skU ← AuthKg(paramsA),
and forms his pseudonyms using Commit: NymU = Commit(skU , openU). U can create arbitrarily
many different pseudonyms by choosing new random values openU . A user can act as an authority
(originator) for credentials by making his pseudonym NymO publicly available.

The user’s secret credential cred is a NIZKPK of a statement about U ’s specific secret pseudo-
nym SU = Commit(skU , 0) (this specific pseudonym does not in fact hide skU since it is formed

12

as a deterministic function of skU). To show or delegate the credential, the user randomizes and
mauls cred to obtain credproof using the RandProof algorithm described in Section 2. The resulting
credproof is a proof about a proper pseudonym, NymU = Commit(skU , open) for a randomly chosen
open.

Suppose a user with secret key skU has a level L credential from some authority O, and let
(skO, sk1, . . . , skL−1, skU) be the keys such that the owner of sk i delegated the credential to sk i+1

(we let sk0 = skO and skL = skU). A certification chain is a list of authenticators auth1, . . . , authL,
such that sk i was used to generate authenticator authi+1 on message sk i+1.

To make sure that pieces of different certification chains cannot be mixed and matched, we add a
label ri to each authenticator. The labels have to be unique for each authority and delegation level.
Let H be a collision resistant hash function with an appropriate range. For a credential chain rooted
at NymO, we set ri = H(NymO, i). Each authi is then an output of Auth(paramsA, sk i−1, (sk i, ri)).
Let F be an efficiently computable bijection. The user U ’s level L private credential cred is a proof
of the form

NIZKPK[sk0 in NymO; skL inSU]{(F (sk0), . . . , F (skL), auth1, . . . , authL) :
VerifyAuth(sk0, (sk1, r1), auth1) ∧ . . . ∧ VerifyAuth(skL−1, (skL, rL), authL)}

Full construction. Let PKSetup,PKProve,PKVerify, and RandProof be a randomizable NIPK
system and let AuthSetup,AuthKg,Auth,VerifyAuth be an authentication scheme, and let H :
{0, 1}∗ → Zp be a hash function.

Setup(1k).Use AuthSetup(1k) to generate paramsA and PKSetup(1k) to generate paramsPK ; choose
the hash function H (as explained above); and output paramsDC = (paramsA, paramsPK , H).

Keygen(paramsDC).Run AuthKg(paramsA) and output the secret key sk .
Nymgen(paramsDC , sk).Choose random open, compute Nym = Commit(paramsPK ,

sk , open) and output pseudonym Nym and auxiliary information open.
CredProve(paramsDC ,NymO, cred , skU ,NymU , openU , L). If PKVerify(paramsPK ,

(NymO,Commit(skU , 0)), cred) rejects, or if NymU 6= Commit(skU , openU), abort.
Return credproof ← RandProof((NymO,NymU), (0, openU), cred).

CredVerify(paramsDC ,NymO, credproof ,NymU , L) runs PKVerify.
Issue(paramsDC ,NymO, sk I ,NymI , openI , cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , openU ,NymI , L). Abort if L = 0 and NymO 6= NymI .
The issuer verifies cred using CredVerify and if it does not verify or if NymI 6= Commit(sk I , openI)
or NymU is not a valid pseudonym, the issuer aborts. Else, the issuer and the user both compute
rL+1 = H(NymO, L + 1). The issuer and the user run a two-party protocol with the following
specifications: the public input is (NymI ,NymU , rL+1); the issuer’s private input is (sk I , openI)
and the user’s private input is (skU , openU). The output of the protocol is as follows: if the
issuer did not supply (sk I , openI) such that NymI = Commit(sk I , openI), or if the user did not
supply (skU , openU) such that NymU = Commit(skU , openU), the protocol aborts; otherwise, the
issuer receives no output while the user receives as output the value π computed as:
π ← NIZKPK[sk I in NymI ; skU in Commit(skU , 0)]{(F (sk I), F (skU), auth) :

VerifyAuth(sk I , (skU , rL+1), auth)} .

In Section 3.3 we give an efficient instantiation of such a 2PC protocol for the specific authenti-
cation and NIZKPK schemes we use.

13

If L = 0, then the user outputs credU = π. Otherwise, the issuer obtains credproof I ←
CredProve(paramsDC ,NymO, cred , sk I ,NymI , openI , L) and sends it to the user. Let SU =
Commit(skU , 0). Intuitively, credproof I is a proof that the owner of NymI has a level L cre-
dential under public key NymO, while π is proof that the owner of NymI delegated to the owner
of SU . The user concatenates credproof I and π to obtain credproof I ◦ π. ∈

NIZKPK[skO in NymO; sk I in NymI ;skU inSU]{(F (skO), F (sk1), . . . , F (skL−1), F (sk I), F (skU),
auth1, . . . , authL, authL+1) :VerifyAuth(paramsA, skO, (sk1, r1), auth1)∧

VerifyAuth(paramsA, sk1, (sk2, r2), auth2) ∧ . . .∧
VerifyAuth(paramsA, skL−1, (sk I , rL), authL)∧
VerifyAuth(paramsA, sk I , (skU , rL+1), authL+1)} .

To get credU , U needs to project credproof I ◦π into a proof about (NymO, SU) instead of NymI .

Remark 4 We can attach public attributes to each level of the credential. We compute r` =
H(skO, `, attr1, . . . , attr`), where attri is the set of attributes added by the ith delegator in the del-
egation chain. When the user shows or delegates a credential, he must display all the attributes
associated with each level.

Message authentication scheme. Just like a signature scheme, an authentication scheme must
be complete and unforgeable. For our application we need to strengthen the unforgeability property
in two ways. First, we require F -Unforgeability [BCKL08], which guarantees that for some well-
defined bijection F , no adversary can output (F (~m), auth) without first getting an authenticator
on m. (We write F (~m) = F (m1, . . . ,mn) to denote (F (m1), . . . , F (mn)).) Second we require a new
property which we call certification security ; the authenticator is unforgeable even if the adversary
learns a signature on the challenge secret key. An authentication scheme is F -unforgeable and
certification secure if for all ppt. adversaries A there exists negligible ν such that:

Pr[paramsA ← AuthSetup(1k); sk ← AuthKg(paramsA);

(~y, auth)← AOAuth(paramsA,sk ,.),OCertify(paramsA,.,(sk ,.,...))(paramsA, F (sk)) :

VerifyAuth(paramsA, sk , F−1(~y), auth) = 1 ∧ F−1(~y) /∈ QAuth] ≤ ν(k) ,

where the oracle OAuth(paramsA, sk , ~m) outputs Auth(paramsA, sk , ~m) and stores ~m on QAuth, and
oracle OCertify(paramsA, sk∗, (sk ,m2, . . . ,mn)) outputs the authenticator Auth(paramsA, sk∗, (sk ,
m2, . . . ,mn)).

Theorem 1 Let AuthSetup,AuthKg,Auth,VerifyAuth be an F-unforgeable certification-secure au-
thentication scheme, H be a collision resistant hash function, and PKSetup,PKProve,PKVerify be a
randomizable, partially extractable, composable zero-knowledge non-interactive proof of knowledge
system. Then the above construction constitutes a secure anonymous delegatable credential scheme.
See Appendix C.2 for proof.

We will construct our authentication scheme based the BB-CDH and BB-HSDH assumptions
(defined in Section 3.3). Groth-Sahai proofs require either the SXDH assumption or the Decision
Linear Assumption [GS08]. Our two party protocol requires a homomorphic encryption scheme.

14

3.3 Building Block Instantiations

Bilinear Maps and Assumptions. We use standard notation for groups with a computable
bilinear map e : G1 × G2 → GT . See, e.g., [BLS04, GPS06]. The security of our scheme is based
on strengthened versions of the SDH [BB04] and CDH assumptions. BB-CDH is implied by SDH;
[Boy08] describes how to extend Generalized Diffie Hellman [BBG05] to cover these two assumptions
and prove their generic group security.

Definition 3 (BB-HSDH) Let x, c1 . . . cq ← Zp. On input g, gx, u ∈ G1, h, hx ∈ G2 and the
tuple {g1/(x+c`), c`}`=1...q, it is computationally infeasible to output a new tuple (g1/(x+c), hc, uc).

Definition 4 (BB-CDH) Let x, y, c1 . . . cq ← Zp. On input g, gx, gy ∈ G1, h, hx ∈ G2 and the
tuple {g1/(x+c`), c`}`=1...q, it is computationally infeasible to output gxy.

F -Unforgeable Certification Secure Message Authentication Scheme. Our authentica-
tion scheme is based on the Boneh-Boyen weak signature scheme [BB04], where Signsk (m) =
g1/(sk+m). Belenkiy et al. showed that the Boneh-Boyen signature scheme is F -unforgeable for
the bijection F (m) = (gm, um) (under a very strong assumption), and that the Groth-Sahai proof
system can be used to prove knowledge of such a signature. Boneh-Boyen signatures are not certi-
fication secure because Signsk (m) = Signm(sk). We show how to achieve certification security; we
also authenticate a vector of messages and weaken the underlying security assumption. The con-
struction is as follows: Auth(sk ,m1||m2) chooses random keys K∗,K1,K2 and returns (Signsk (K∗),
SignK∗(K1),SignK∗(K2),SignK1

(m1),SignK2
(m2), F (K∗), F (K1), F (K2)). At a high level, this con-

struction eliminates any symmetries between Authsk (m) and Authm(sk). See Appendix C for details.

Theorem 2 The message authentication scheme above is F -unforgeable and certification secure
for F (mi) = (hmi , umi) under the BB-HSDH and BB-CDH assumptions. See Appendix C for
proof. The signature scheme obtained by setting pk = hsk may be of independent interest.

Commitment scheme. A commitment to x ∈ Zp consists of two GS commitments GSCommit(hx,
o1), GSCommit(ux, o2)) and a NIPKGS proof that these are commitments to the same value x. This
allows us to extract F (x) = (hx, ux).

Proof of knowledge of an authenticator. We need a NIZKPK of an authenticator for messages
~m = (m1,m2), where the first value is hidden in commitment Cm1 and the second value m2 is
publicly known. In our notation, this is:

NIZKPK[sk in Csk ;m1 in Cm1]{(F (sk), F (m1), auth) :
VerifyAuth(paramsA, sk , (m1,m2), auth) = 1}.

Since Boneh-Boyen signatures are verified using pairing product equations, we can use Groth-
Sahai proofs, see Appendix C.3 for details.

15

Creating a NIZKPK of an authenticator. The issuer chooses K∗,K1,K2 and can generate
most of the proof. Then, the issuer and user need to jointly compute a NIZKPK of a Boneh-Boyen
signature on the user’s secret key. We outline the protocol, see Appendix C for details.

Let Keygen,Enc,Dec be an additively homomorphic semantically secure encryption scheme, let
“⊕” denote the homomorphic operation on ciphertexts; for e a ciphertext and r an integer, e ⊗ r
denotes “adding” e to itself r times. The user with input m1, and the issuer with input K1 run the
following protocol to compute SignK1

(m1) = g1/(K1+m1):

1. The issuer generates (skhom , pkhom) ← Keygen(1k) in such a way that the message space is
of size at least 2kp2. He then computes e1 = Enc(pkhom ,K1) and sends e1, pkhom to the user
and engages with her in an interactive zero-knowledge proof that e1 encrypts to a message in
[0, p].

2. The user chooses r1 ← Zp and r2 ← {0, . . . , 2kp}, then computes e2 = ((e1⊕Enc(pkhom ,m1))⊗
r1)⊕ Enc(pkhom , r2p) and sends e2 to the user.

3. The issuer and the user perform an interactive zero-knowledge proof in which the user shows
that e2 has been computed correctly using the message in Cm1 , and that r1, r2 are in the
appropriate ranges.

4. The issuer decrypts x = Dec(skhom , e2), sends the user σ∗ = g1/x.

5. The user computes σ = σ∗r1 and verifies that it is a correct weak BB signature on m1. The
issuer obtains no information about m1.

Theorem 3 The above is a secure two-party computation for computing Boneh-Boyen signatures.
(See Appendix E for proof.)

Acknowledgements. Jan Camenisch was supported in part by the European Commission through the
ICT and IST programmes under contract ICT-216483 PRIMELIFE. Markulf Kohlweiss was supported in
part by the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish Government, by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the European
Commission through the ICT and IST programmes under the following contracts: ICT-216483 PRIMELIFE
and ICT-216676 ECRYPT II. Hovav Shacham was supported by an AFOSR MURI grant and, while at the
Weizmann Institute of Science, by a Koshland Scholars Program postdoctoral fellowship. Mira Belenkiy,
Melissa Chase and Anna Lysyanskaya acknowledge the support of NSF grants 0831293, 0627553 and 0347661.
The information in this document reflects only the authors’ views.

References

[Bar01] Boaz Barak. Delegatable signatures. Technical report, Weizmann Institute of Science,
2001.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004, volume 3027 of LNCS, pages 54–73, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, Proceedings of Eurocrypt
2005, LNCS. Springer, 2005.

16

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures
and noninteractive anonymous credentials. In Theory of Cryptography Conference,
LNCS, pages 356–374. Springer Verlaag, 2008.

[BCM05] Endre Bangerter, Jan Camenisch, and Ueli M. Maurer. Efficient proofs of knowledge of
discrete logarithms and representations in groups with hidden order. In Serge Vaudenay,
editor, Public Key Cryptography, volume 3386 of LNCS, pages 154–171. Springer, 2005.

[BDI+99] Mike Burmester, Yvo Desmedt, Toshiya Itoh, Kouichi Sakurai, and Hiroki Shizuya. Di-
vertible and subliminal-free zero-knowledge proofs for languages. Journal of Cryptology,
12(3):197–223, Nov 1999.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-interactive
zero-knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In STOC ’88: Proceedings of the twentieth annual ACM symposium
on Theory of computing, pages 103–112, New York, NY, USA, 1988. ACM Press.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
J. Cryptology, 17(4):297–319, September 2004. Extended abstract in Proceedings of
Asiacrypt 2001.

[Boy08] Xavier Boyen. The uber-assumption family. In Pairing ’08: Proceedings of the 2nd in-
ternational conference on Pairing-Based Cryptography, pages 39–56, Berlin, Heidelberg,
2008. Springer-Verlag.

[Bra99] Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building
in Privacy. PhD thesis, Eindhoven Inst. of Tech. The Netherlands, 1999.

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother
obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to win the clonewars: efficient periodic n-times anonymous authen-
tication. In CCS ’06: Proceedings of the 13th ACM conference on Computer and com-
munications security, pages 201–210, New York, NY, USA, 2006. ACM Press.

[CL01] Jan Camenisch and Anna Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Birgit Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer Verlag, 2001.

[CL02a] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer Verlag, 2002.

[CL02b] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In
SCN 2002, volume 2576 of LNCS, pages 268–289, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 2004, volume 3152 of LNCS, pages 56–72, 2004.

17

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 78–96, 2006.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups.
In Burt Kaliski, editor, CRYPTO ’97, volume 1296 of LNCS, pages 410–424. Springer
Verlag, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO ’03, volume 2729 of LNCS, pages 126–144, 2003.

[Dam90] Ivan Bjerre Damg̊ard. Payment systems and credential mechanism with provable secu-
rity against abuse by individuals. In Shafi Goldwasser, editor, CRYPTO ’88, volume
403 of LNCS, pages 328–335. Springer Verlag, 1990.

[Dam02] Ivan Damg̊ard. On σ-protocols. Available at http://www.daimi.au.dk/~ivan/Sigma.
ps, 2002.

[DSY90] Alfredo De Santis and Moti Yung. Cryptographic applications of the non-interactive
metaproof and many-prover systems. In Alfred J. Menezes and Scott A. Vanstone,
editors, CRYPTO 1990, volume 537 of LNCS, pages 366–377. Springer Verlag, 1990.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail
Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN, volume 5229 of Lecture
Notes in Computer Science, pages 201–217. Springer, 2008.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in bilinear groups
and an application to anonymity of signatures. In Hovav Shacham and Brent Waters,
editors, Pairing, volume 5671 of Lecture Notes in Computer Science, pages 132–149.
Springer, 2009.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York, NY, USA, 2000.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for np. In EUROCRYPT, pages 339–358, 2006.

[GPS06] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers. Cryptol-
ogy ePrint Archive, Report 2006/165, 2006. http://eprint.iacr.org/.

18

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer
Verlag, 2002.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel Smart, editor, EUROCRYPT 2008, 2008.

[KP98] Joe Kilian and Erez Petrank. An efficient non-interactive zero-knowledge proof system
for np with general assumptions. J. of Cryptology, 1998.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In EUROCRYPT 2007, 2007.

[LRSW99] Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems.
In Howard Heys and Carlisle Adams, editors, Selected Areas in Cryptography, volume
1758 of LNCS, 1999.

[Lys02] Anna Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol De-
sign. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,
September 2002.

[SCP00] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Necessary and
sufficient assumptions for non-interactive zero-knowledge proofs of knowledge for all
NP relations. In Ugo Montanari, José P. Rolim, and Emo Welzl, editors, Proc. 27th
International Colloquium on Automata, Languages and Programming (ICALP), volume
1853 of LNCS, pages 451–462. Springer Verlag, 2000.

A Definition of Delegatable Credentials

We say that a function ν : Z → R is negligible if, for all integers c, there exists an integer K such
that ∀k > K, |ν(k)| < 1/kc. We use the standard GMR [GMR88] notation to describe probability
spaces.

Correctness. We say that a credential cred is a proper level L credential for organization NymO

with respect to (paramsDC , sk) iff it creates accepting proofs for all pseudonyms, or more formally

Pr[Nym, aux (Nym)← Nymgen(paramsDC , sk);
credproof ← CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) :

CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept] = 1.

We define the predicate proper(paramsDC , cred , sk ,NymO, L) to be true iff cred is a proper level L
credential with respect to paramsDC , cred , sk , and NymO. We require the following property:

(a). Obtain always either outputs a proper L+ 1 credential (in the sense above) or aborts.

(b). Users with proper level L credentials can delegate proper level L+ 1 credentials. Users with
credentials that are not proper will abort.

19

(c). Issue(paramsDC ,NymO, skD,NymD, aux (NymD), cred ,NymU , L) aborts without starting any
communication if proper(paramsDC , cred , skD,NymO, L) = 0, or if there does not exist skU ,
aux (NymU) such that VerifyAux(paramsDC ,NymU , skU , aux (NymU)) = 1, or if VerifyAux(
paramsDC ,NymD, skD, aux (NymD)) = 0.

(d). CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) aborts without output if proper(
paramsDC , cred , sk ,NymO, L) = 0, or if VerifyAux(paramsDC ,Nym, sk , aux (Nym)) = 0.

(e.) VerifyAux always accepts pseudonyms generated by Nymgen.

Anonymity During any protocol when a user reveals his pseudonym Nym but does not inten-
tionally reveal (sk , aux (Nym)), the other user should learn no information about (sk , aux (Nym)).
By no information, we mean that the user can be replaced by a simulator that does not know
(sk , aux (Nym)), but still can execute the protocol. The simulator SimSetup, SimProve, SimObtain,
SimIssue has the following properties:

(a). The public parameters generated by SimSetup is indistinguishable from those output by Setup.

|Pr[paramsDC ← Setup(1k); b← A(paramsDC) : b = 1]

− Pr[(paramsDC , sim)← SimSetup(1k); b← A(paramsDC) : b = 1]| < ν(k)

(b). A pseudonym Nym reveals no information about the identity sk . Let paramsDC , sim ←
SimSetup(1k), sk ← Keygen(paramsDC), and (Nym, aux (Nym)) ← Nymgen(paramsDC , sk).
Then (paramsDC , sim,Nym) is information theoretically independent of sk .

(c). The simulator can output a fake credential credproof that cannot be distinguished from a
real credential, even though the simulator does not have access to skU and cred (and skU
and cred are chosen adversarially). Formally, for all PPTM adversaries A = (A1,A2), there
exists a negligible function ν so that:

|Pr[(paramsDC , sim)← SimSetup(1k);
(NymO, cred , sk ,Nym, aux (Nym), L, state)← A1(paramsDC , sim);
π ← CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L); b← A2(state, π) : b = 1]

−Pr[(paramsDC , sim)← SimSetup(1k);
(NymO, cred , sk ,Nym, aux (Nym), L, state)← A1(paramsDC , sim);
flag← Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L);
π ← SimProve(paramsDC , sim,NymO,Nym, L, flag); b← A2(state, π) : b = 1]| < ν(k).

Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) outputs accept if VerifyAux(paramsDC ,
Nym, sk , aux (Nym)) = 1 and proper(paramsDC , cred , sk ,NymO, L) = 1

(d). The adversary cannot tell if it is interacting with Obtain or SimObtain. Formally, for all

20

PPTM adversaries A = (A1,A2), there exists a negligible function ν so that:∣∣Pr[paramsDC , sim ← SimSetup(1k);
(NymO, sk ,Nym, aux (Nym), L,NymA, state)← A1(paramsDC , sim);
b← A2(state)↔ Obtain(paramsDC ,NymO, sk ,Nym, aux (Nym),NymA, L) : b = 1]

−Pr[paramsDC , sim ← SimSetup(1k);
(NymO, sk ,Nym, aux (Nym), L,NymA, state)← A1(paramsDC , sim);
flag← Check(paramsDC , sk ,Nym, aux (Nym));
b← A2(state)↔ SimObtain(paramsDC , sim,NymO,Nym,NymA, L, flag) : b = 1]

∣∣ < ν(k).

Check(paramsDC , sk ,Nym, aux (Nym)) outputs accept in case VerifyAux(paramsDC ,Nym, sk ,
aux (Nym)) = 1 and reject otherwise.

(e). The adversary cannot tell if it is interacting with Issue or SimIssue. Formally, for all PPTM
adversaries A = (A1,A2), there exists a negligible function ν so that:

|Pr[(paramsDC , sim)← SimSetup(1k);
(NymO, sk ,Nym, aux (Nym), cred ,NymA, L, state)← A1(paramsDC , sim);
Issue(paramsDC ,NymO, sk ,Nym, aux (Nym), cred ,NymA, L)↔ A2(state)→ b : b = 1]

−Pr[(paramsDC , sim)← SimSetup(1k);
(NymO, sk ,Nym, aux (Nym), cred ,NymA, L, state)← A1(paramsDC , sim);
flag← Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L);
SimIssue(paramsDC , sim,NymO,Nym,NymA, L, flag)↔ A2(state)→ b : b = 1]| < ν(k)

Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) outputs accept iff VerifyAux(paramsDC ,
Nym, sk , aux (Nym)) = 1 and proper(paramsDC , cred , sk ,NymO, L) = 1.

Security of NymProve. NymProve must be a zero knowledge proof of knowledge of sk , aux (sk)
such that VerifyAux(paramsDC ,Nym, sk , aux (sk)) = 1. Note that this can be an interactive proof
system.

Unforgeability. Let F be an efficiently computable bijection. There exists an extractor (ExtSetup,
Extract) with four properties:

(a). The parameters generated by ExtSetup are distributed identically as those generated by Setup.

(b). Under thse parameters pseudonyms are perfectly binding. I.e. for all (paramsDC , td) ←
ExtSetup, for all Nym, if there exists aux (Nym), aux (Nym)′ such that VerifyAux(paramsDC ,
Nym, sk , aux (Nym)) = 1 and VerifyAux(paramsDC ,Nym, sk ′, aux (Nym)′) = 1, then sk ′ = sk

(c). Given an honestly generated level L credential, Extract can always extract the corresponding
chain of L identities.

Also, for any valid pseudonym, Extract will produce the appropriate F (sk)← Extract(paramsDC ,
td ,⊥,Nym,Nym, 0). This can be seen as the extaction of a level 0 credential.

21

(d). Given an adversarially generated credential, Extract will always produce the correct values
for f0, fL, or produce ⊥.

Pr[(paramsDC , td)← ExtSetup(1k);
(credproof ,Nym,NymO, L),← A(paramsDC , td);
(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :
(f0, . . . , fL) 6= ⊥∧
((∃skU ′ ∃aux (Nym)′ : VerifyAux(paramsDC ,Nym, skU ′, aux (Nym)′) ∧ F (skU ′) 6= fL)
∨ (∃sk ′O ∃aux (NymO)′ : VerifyAux(paramsDC ,NymO, sk ′O, aux (NymO)′) ∧ F (sk ′O) 6= f0))]
≤ ν(k) .

(e). No adversary can output a valid credential from which the extractor extracts an unauthorized
chain of identities.

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);
(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :
CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept∧
(∃i such that (f0, i, fi−1, fi) 6∈ ValidCredentialChains ∧ fi−1 ∈ HonestUsers)] ≤ ν(k)

where O(paramsDC , command , input) behaves as follows:

AddUser. The oracle runs sk ← Keygen(paramsDC). It stores (sk , F (sk)) in the user database
and gives the adversary F (sk). Store F (sk) in the list HonestUsers.

FormNym(y). The oracle looks up (sk , y) in its user database and terminates if it does not
exist. It calls (Nym, aux (Nym))← Nymgen(paramsDC , sk). The oracle stores (sk ,Nym,
aux (Nym)) in its pseudonym database and gives the adversary Nym.

Issue(NymD,NymU , credD, L,NymO). The oracle looks up (skU ,NymU , aux (NymU)) and (skD,
NymD, aux (NymD)) in its pseudonym database and outputs an error if they do not exist.
The oracle then generates a credential proof by running CredProve(paramsDC ,NymO,
credD, skD,NymD, aux (NymD), L) to obtain credproof D (for L = 0, credproof D = ⊥).
It runs Extract(paramsDC , td , credproof D,NymO,NymD, L) to obtain f0, f1, . . . fL. The
oracle then runs

Issue(paramsDC ,NymO, skD,NymD, aux (NymD), credD,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymD, L)→ credU .

Finally, the oracle stores (f0, L + 1, fL, F (skU)) in ValidCredentialChains and outputs
credU to the adversary.

IssueToAdv(NymD, credD,Nym, L,NymO). The oracle looks up (skD,NymD, aux (NymD)) in
its pseudonym database, and outputs an error if they do not exist. The oracle generates a
credential proof by running CredProve(paramsDC ,NymO, cred , skD,NymD, aux (NymD),
L) to obtain credproof D. It runs Extract(paramsDC , td , credproof D,NymD,NymO, L) to

22

obtain f0, . . . fL. It then identifies the recipient by running Extract(paramsDC , td ,⊥,Nym,
Nym, 0) to obtain fL+1. Finally the oracle executes the algorithm Issue(paramsDC ,NymO,
skD,NymD, aux (NymD), credD,Nym, L) interacting with the adversary. If the protocol
does not abort, the oracle stores (f0, L+ 1, fL, fL+1) in ValidCredentialChains.

ObtainFromAdv(NymA,NymU ,NymO, L). The oracle looks up (skU ,NymU , aux (NymU)) in
its pseudonym database, and outputs an error if they do not exist. Then it runs
Obtain(paramsDC ,
NymO, skU ,NymU , aux (NymU),NymA) with the adversary to get cred . It outputs cred .

Prove(Nym, cred ,NymO, L) The oracle looks up (sk ,Nym, aux (Nym)) in its pseudonym data-
base, and outputs an error if they do not exist. The oracle then runs CredProve(paramsDC ,
NymO, cred , sk ,Nym, aux (Nym), L) to obtain credproof D, and outputs this result.

B Security Proof for Delegatable Credential Construction

Claim 1 (Correctness) The delegatable credential construction given in Section 3.2 satisfies the
Correctness property

Proof.

(a). Note that Obtain aborts if the credproof that it receives from the issuer does not pass
CredVerify. Then Obtain only completes without aborting if the two party computation com-
pletes successfully. In this case, by the security of the two party computation, we are certain
that πL is indistinguishable from an honestly generated proof of knoweldge of an honestly
generated authenticator. Then by the correctness of the NIZKPK system and correctness of
the authentication scheme, we know that πL will pass the NIZKPK verification. Thus, the
new cred that results from combining credproof with πL will pass the NIZKPK verification.
Furthermore, by correctness of rerandomization, this means that any rerandomization of this
proof will pass the NIZKPK verificaiton and thus be accepted by CredVerify, so cred is proper.

(b). Now, if Issue is interacting with Obtain with the appropriate inputs, then it will produce
credproof that will be accepted by the honest user. Then the two party computation will be
successful by the 2PC correctness property. That means Obtain will not abort, so by property
(a). it will produce a proper credential.

(c). If the cred is not a proper credential, then by the properties of the rerandomization, CredVerify
will not accept the resulting credproof , so Issue will abort. Issue also aborts if NymU is not
valid, or if sk I , openI do not satisfy VerifyAux.

(d). Note that if cred passes the CredVerify, then by correctness of rerandomization, it must be
a proper credential. Thus, if cred is not a proper credential, or if Nym, sk , aux (Nym) does
not pass VerifyAux, then CredProve aborts. If both of thse are correct, then credproof is a
rerandomization of a proper credential. That means that the proof must verify, so CredVerify
will accept.

(e). Follows from the definition of VerifyAux and Nymgen.

�

23

Claim 2 (Anonymity) The delegatable credential construction given in Section 3.2 satisfies the
Anonymity property under the assumption that our building blocks are secure.

Proof. Define the simulator algorithms as follows:

SimSetup(1k). Uses AuthSetup(1k) to generate paramsA for an F -unforgeable certificaton secure
authentication scheme and then uses GSSimSetup to choose corresponding paramsP for a
rerandomizable commitment scheme with a partially extractable randomizable composeable
NIZKPK proof system, and to choose the appropriate trapdoor simNIZK. Finally, the setup
chooses a collision resistant hash function H whose range is the message space of the au-
thentication scheme and outputs public parameters paramsDC = (paramsA, paramsP , H),
sim = simNIZK.

SimProve(paramsDC , sim,NymO,Nym, L,flag). If flag = reject, abort and return ⊥.

Otherwise let Nym0 = NymO and NymL = Nym, generate commitments Nym1, . . .NymL−1

to random values, and computes r1, . . . rL where ri = H(NymO, i).

Then we use the NIZKPK simulator and the simulation trapdoor sim to simulate proofs
π1 . . . πL, where πi is a simulated proof of the form

πi ← SimNIZKPK[sk i−1 in Nymi−1; sk i in Nymi]{(F (sk i−1), F (sk i), auth) :
VerifyAuth(params, sk i−1, (sk i, ri), auth) = accept}

Finally, we output Nym0, . . .NymL, and π1 ◦ · · · ◦ πL.

SimObtain(paramsDC ,NymO,NymU ,NymA, L,flag). If flag = reject, abort and return ⊥.

It then proceeds as follows:

1. Receives credproof from the adversary.

2. Runs CredVerify(paramsDC ,NymO, credproof ,NymI , L) to checks, that credproof is cor-
rect. If the checks fail, it aborts.
Otherwise, it computes rL = H(NymO, L)), the committed message Cm1 = (NymU),
and the public message m2 = rL.

3. Now we must simulate the two-party computation protocol. We will do this by using the
2PC simulator which interacts with a corrupt signer. (Note that this simulator expects
no input from the trusted functionality.)

SimIssue(paramsDC , sim,NymO,NymD,NymA, L,flag). If flag = reject, abort and return ⊥.

Otherwise let Nym0 = NymO, NymL = NymD and NymL+1 = NymA, generate commitments
Nym1, . . .NymL−1 to random values, and computes r1, . . . rL+1 where ri = H(NymO, i).

Then we use the NIZKPK simulator and the simulation trapdoor sim to simulate proofs
π1 . . . πL+1, where πi is a simulated proof of the form

πi ← SimNIZKPK[sk i−1 in Nymi−1; sk i in Nymi]{(F (sk i−1), F (sk i), auth) :
VerifyAuth(params, sk i−1, (sk i, ri), auth) = accept}

24

1. Send Nym0, . . . NymL, π1, . . . πL to the adversary

2. Receive Cm1 and check that it matches NymA.

3. Now we must simulate the two-party computation protocol. We will do this by using the
2PC simulator which interacts with a corrupt recipient. Note that this simulator expects
to be provided with a proof of knowledge of the appropriate authenticator. Thus, we
will give it the proof πL+1 computed above.

Now we will prove that these algorithms satisfy the required properties:

(a). Holds by the composable zero knowledge properties of the underlying NIZK proof system.

(b). Holds by the hiding property of the underlying composable commitment scheme.

(c). Note that the difference between SimProve and CredProve is that SimProve generates Nym1,
. . . ,NymL−1 as random commitments and uses SimNIZKPK to generated simulated proofs
π1, . . . , πL. These commitments are identical to the honest commitments by the strong com-
putational hidingproperty, and the simulated proofs are indistinguishable from the honestly
rerandomized proofs by the randomization property of the randomizable proof system.

(d). Note that the difference between SimObtain and Obtain is that SimObtain uses the simulator
to run the two party computation. This should be indistinguishable from the honest Obtain
protocol by the security of the 2PC.

(e). SimIssue differs in three ways from Issue. First, the initial credproof that is sent to the user
is formed using SimNIZKPK instead of by rerandomizing a real cred . Second, SimIssue uses
the simulator to run the two party computation. Third, the resulting πL+1 is the output of
SimNIZKPK and not the result of a valid NIZKPK of an Auth computed by the 2PC.

We can prove that SimIssue and Issue are indistinguishable by considering several hybrid
algorithms.

Hybrid 1 will be given the same input as Issue. It will verify that cred is proper, that it has
been given a correct sk ,Nym, aux (Nym) and that NymA is a valid pseudonym. It will compute
credproof honestly. Then it will use the 2PC simulator to run the two party protocol. This
simulator will extract skA, aux (NymA) from the user, and expect to receive a corresponding
authenticator proof. We will use sk to form an authenticator on skA, rL+1, and then we will
use the honest NIZKPK to generate πL+1 from it. Finally, we will pass πL+1 to the 2PC
simulator which will complete the protocol.

Note that Hybrid 1 is indistinguishable from the game involving the real Issue by the security
of the 2PC.

Hybrid 2 will be given the same input as Issue. It will verify that cred is proper, that it has
been given a correct sk ,Nym, aux (Nym) and that NymA is a valid pseudonym. It will compute
credproof honestly. Then it will use the 2PC simulator to run the two party protocol. This
simulator will extract skA, aux (NymA) from the user, and expect to receive a corresponding
authenticator proof. This time, we will use SimNIZKPK to simulate the proof of knowledge
of an authenticator on for NymA. We will pass πL to the 2PC simulator which will complete
the protocol.

25

Note that Hybrid 2 is indistinguishable from Hybrid 1 by the zero knowledge properties of
SimNIZKPK.

Finally, note that the difference between Hybrid 2 and game with SimIssue is that Hybrid 2
generates credproof by rerandomizing cred , while SimIssue uses the SimNIZKPK. This means
the two games are indistinguishable by the rerandomization properties of the NIZKPK system.

�

Claim 3 (Unforgeability) The delegatable credential construction given in Section 3.2 satisfies
the unforgeability property under the assumption that our building blocks are secure.

Proof. Let ExtSetup be the same as Setup except that when generating paramsPK it uses the
extraction setup of the partially extractable randomizable composeable NIZKPK proof system.

(a) Follows from the indistinguishability of the extraction setup of the proof system.

(b) The commitment schemes used with the NIZKPK proof system is perfectly binding, so are
our pseudonyms. Let F correspond to the F of the F -unforgeable authentication cheme and
let Extract be an algorithm that verifies the credential and aborts with output ⊥ if CredVerify
rejects, otherwise it uses the extractability features of the NIZKPK proof system to extract
all F (ski) values.

(c) An honestly generated level L credential is a proof of knowledge of a certification chain from
sk0 to skL. It allows us to extract (f0, . . . , fL) = (F (sk0), . . . , F (skL)). If the length of
certification chain is 0, Extract extracts f0 = F (skO) from any valid commitment NymO

using the extraction property of the commitment.

(d) If CredVerify accepts, then the NIPK extractor will succeed in extracting the appropriate
values.

(e) Let Q be the maximum number of users in a credential system. We consider two games.
In Game 1 the adversary plays the real unforgeability game. In Game 2 we pick a random
q ∈ {1, . . . , Q}. Game 2 is the same as Game 1, except that the oracle queries with command
IssueToAdv and ObtainFromAdv are answered differently for the qth user.

Let sk∗ be the secret key generated for the qth AddUser query.

IssueToAdv(NymI , cred I ,Nym, L,NymO). If Nym is not a valid pseudonym for sk , aux (Nym), the
oracle terminates. The oracle looks up (sk I ,NymI , aux (NymI)) in its pseudonym database, and
outputs an error if they do not exist. If sk I 6= sk∗ it proceeds as in Game 1. Otherwise the
oracle follows the Issue protocol, but uses the simulator for the two-party protocol to simulate
interaction with the adversarial user. Note that the simulator will extract the adversary’s message
m, and expect to get an authenticator proof as input. In this game we know sk∗, so we can
generate this by simply computing the authenticator.

ObtainFromAdv(NymA,NymU ,NymO, L). Similarly, the oracle looks up (skU ,NymU , aux (NymU))
in its pseudonym database, and outputs an error if they do not exist. If skU 6= sk∗ the oracle
runs Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymA) with the adversary to get cred
(the same as Game 1). Otherwise it follows the Obtain protocol, and now uses the simulator for
the two-party protocol to simulate the interaction with the adversarial issuer. It outputs cred .

26

By a simple hybrid argument either Game 1 and Game 2 are computationally indistinguishable
or we break the security of the two-party computation.

Next we give a reduction to show that an adversary A that can win in Game 2 can be used to
break the security of our authentication scheme. The reduction gets paramsA, f∗ = F (sk∗) and
access to OAuth(paramsA, sk∗, .),OCertify(paramsA, ., (sk∗, ., . . .)) for a challenge secret key sk∗ from
the authentication scheme’s unforgeability game. It creates matching proof system parameters
paramsPK and a trapdoor td , and combines them into paramsDC . It hands paramsDC and td to
A.

The reduction answers As oracle queries as follows:

AddUser.The oracle keeps a counter indicating the number of times it was queried, otherwise it
behaves as the original oracle, except for the qth query. To answers the qth query the oracle
stores (�, F (sk∗)) in the user database and adds F (sk∗) in the list HonestUsers. It returns F (sk∗)
to A. Note that we use the special token ‘�’ to indicate the unknown challenge key.

FormNym(f).The oracle looks up (sk , f) in its user database and terminates if it does not exist (we
explicitly allow sk = �). If f 6= f∗ the oracle behaves as the original oracle. Otherwise it picks
a random aux (Nym) and computes Nym = Commit′(f, aux (Nym)). The oracle stores (�,Nym,
aux (Nym)) in its pseudonym database and gives the adversary Nym.

Issue(NymI ,NymU , cred I , L,NymO).The oracle looks up (skU ,NymU , aux (NymU)) and (sk I ,NymI ,
aux (NymI)) in its pseudonym database and outputs an error if they do not exist or if skU = sk I .
If skU 6= � and sk I 6= � the oracle behaves as the original oracle. Otherwise we distinguish two
cases (note that skU = � and sk I = � is not possible as honest users do not issue to themselves):
(a) skU = �: If L > 0, it runs Extract(paramsDC , td , credproof I ,NymI) to obtain f0, f1, . . . fL.
If fL 6= F (sk I), it aborts. Otherwise the oracle computes credU in the same way as Issue ↔
Obtain except that it uses a query to OCertify(paramsA, sk I , (sk∗, H(NymO, L))) to obtain the
witness for proof π which it then can compute itself. The oracle stores (f0, L, f(sk I), f∗) in
ValidCredentialChains and outputs credU to the adversary.
(b) sk I = �: If L > 0,it runs Extract(paramsDC , td , credproof I ,NymI) to obtain f0, f1, . . . fL.
If fL 6= f∗, it aborts. Otherwise the oracle computes credU in the same way as Issue ↔
Obtain except that it uses a query to OAuth(paramsA, sk∗, (skU , H(NymO, L))) to obtain the
witness for proof π which it then can compute itself. The oracle stores (f0, L, f

∗, F (skU)) in
ValidCredentialChains and outputs credU to the adversary.

IssueToAdv(NymI , cred I ,Nym, L,NymO). If Nym is not a valid pseudonym for sk , aux (Nym), the
oracle terminates. The oracle looks up (sk I ,NymI , aux (NymI)) in its pseudonym database,
and outputs ⊥ if they do not exist. If sk I 6= � the oracle behaves as the original oracle.
Otherwise the oracle follows the Issue protocol, but uses the simulator for the two-party protocol
to simulate interaction with the adversarial user. We can simulate the ideal functionality of the
two-party protocol with a OAuth(paramsA, sk∗, H(NymO, L))) query. Note that the simulator of
the two-party protocol provides us with skU . If the oracle’s output is not ⊥, the oracle stores
(f0, L, f

∗, f(skU)) in ValidCredentialChains.
ObtainFromAdv(NymA,NymU ,NymO). Similarly, the oracle looks up (skU ,NymU , aux (NymU)) in

its pseudonym database, and outputs an error if they do not exist. If skU 6= � the oracle
behaves normally. Otherwise it follows the Obtain protocol, and now uses the simulator for the
two-party protocol to simulate the interaction with the adversarial issuer. After a successful
protocol execution the oracle outputs cred = OCertify(paramsA, sk I , (sk∗, H(NymO, L))).

27

Prove(Nym, cred ,NymO).The prove protocol does not require a user’s secret key, and is answered
as the original oracle.

This simulation of Game 2 is perfect. We now need to show that a forgery in the credential
system can be turned into a forgery for the authentication scheme.

A successful adversary outputs (credproof ,Nym,NymO, L) such that CredVerify(paramsDC ,NymO,
credproof ,Nym, L) = accept and (f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO).

If we guessed correcly for which honest user A would create the forgery, fi−1 = f∗ and we can
extract an authi such that VerifyAuth(paramsA, sk∗, (sk i, H(NymO, i)), authi) = 1. As (f0, i, fi) 6∈
ValidCredentialChains, this message was never signed before and consitutes a valid authentication
forgery. �

C A Certification-secure F-unforgeable Authentication Scheme

C.1 Intuition behind Construction

Our authentication scheme is loosely inspired by the weak Boneh Boyen signature scheme [BB04],
in which the signature under a secret key sk on a message m is computed as BBsig(sk ,m) = g

1
sk+m .

Our scheme is more complicated for several reasons. First, we must have a scheme which allows us
to authenticate several messages at once, without increasing the size of the secret key (the secret
key space must be a subset of the message space).

Second, as described in Section 3.2, we need a scheme which is unforgeable even when given
access to a certification oracle. Note that the basic BB scheme is not secure in this sense – the
response to a certification query with adversary key skA directly provides a forgery on the message
m = skA.

Also, we want this scheme to be F-unforgeable, in the sense that it is also hard to produce
F (m) and an authenticator on m for an m which has not been signed. In this case our bijection
F will be the information which we can extract from a commitment to a message, which will be in
the group G1, while if we emulate the BB scheme, m must be in the exponent space, Zp. Thus the
trivial bijection F (m) = m will not work, and F unforgeability must be a stronger definition than
standard unforgeability. Note, also that if F (m) = gm, and if the adversary is given v = F (sk) (as
he is in our certification definition), the above authentication scheme is not F unforgeable – for
any f ∈ Z∗p , the value g1/f is a valid BB signature for F (m) = gf/v = gf−sk. Thus, our bijection
F must be somewhat more complex.

Finally, the weak BB scheme is only secure for a previously determined polynomial sized message
space. We want to be able to sign arbitrary messages, since we must be able to sign any randomly
generated secret key. (This could be ‘solved’ by using an interactive assumption, however, as
interactive assumptions are generally considered very strong, we would like to avoid them.)

For simplicity, we will describe an authentication scheme for authenticating two messages at
once. It can be trivially extended to authenticate an arbitrary (polynomial) number of messages.

First, to solve the F-unforgeability problem, we use an approach similar to that given in the
construction for P-signatures [BDMP91]. We add an element u ∈ G1 to the parameters and set
F (m) = (hm, um). For this F , we can show that the weak BB signature on random messages is
F-unforgeable under the HSDH assumption. We will see soon how we allow arbitrary message.
Security will rely on the stronger (but still non-interactive) BB-HSDH assumption.

28

Next, we need to authenticate many messages at once, using the BB scheme which allows us
to sign only one message. A simple way to do this is to choose a new temporary key K∗ for each
authentication. Suppose we want to sign the message pair (m1,m2) under secret key sk . We use
the BB signature to sign this key under the real secret key sk . Then, we use K∗ to sign each of
the messages. As, each K∗ is only used in a single authentication, the adversary will only get BB
signatures under K∗ on m1 and on m2, thus, it will not be possible for him to use K∗ in a forgery
that involves any other messages. In some sense, K∗ is used to tie together two messages. Note
that we must also include F (K∗): since the adversary cannot forge F (K∗), BBsig(sk ,K∗) pairs, we
can conclude that he must reuse a previous m1,m2 message pair.

Thus, such an authentication would consist of BBsig(sk ,K∗), F (K∗), BBsig(K∗,m1), and

BBsig(K∗,m2), which would be implemented as (g
1

sk+K∗ , hK
∗
, uK

∗
, g

1
K∗+m1 , g

1
K∗+m2).

These temporary keys also allow us (at least intuitively) to expand beyond random messages.
We choose a random intermediate key K∗, and now sk is used to sign this random value, rather
than one of the adversary’s choice. Then K∗ is used to sign the desired message. (Note that the
security proof is actually much more complicated, as we must show that the BB signature generated
under K∗ is also unforgeable, but because it is only used to sign one message, this is somewhat
easier. We will need to add additional temporary keys before we can fully prove security, but they
will be necessary in any case as we will see below).

The resulting scheme still has two remaining problems. First, it is pretty clear that this scheme
is forgeable because the order of the messages m1,m2 is not enforced – an authenticator on m1,m2

is also an authenticator on m2,m1. Second, the resulting authentication scheme is not certification
secure: a certification query response BBsig(skA,K∗), F (K∗), BBsig(K∗, sk), and BBsig(K∗,m2),
combined with the given value F (sk) can easily be used to produce an authenticator under sk on
(skA,m2) (Note that BBsig(sk ,K∗) = BBsig(K∗, sk) and BBsig(K∗, skA) = BBsig(skA,K∗)).

It turns out that we can solve all of these problems at once. The solution is to add an additional
level to our BB signature tree by adding two more temporary keys K1,K2 for each authentication.
Now, sk will be used to BB sign K∗, which will in turn be used to BB sign K1 and K2. Finally
K1 will be used to sign m1 and K2 will be used to sign m2. In order to prevent a forger from
swapping the positions of K1,m1 and K2,m2, we add two additional values to our parameters,
u1, u2. Let F1(x) = (hx, ux1) and let F2(x) = (hx, ux2). Similarly, we add a third value u∗, define
F ∗(x) = (hx, u∗x), and include F ∗(K∗) in the authentication tag (instead of F (K∗)). The final
authentication under key sk on messages (m1,m2) will be BBsig(sk ,K∗), F ∗(K∗), BBsig(K∗,K1),
F1(K1), BBsig(K1,m1), BBsig(K∗,K2), F2(K2), and BBsig(K2,m2), which would be implemented

as (g
1

sk+K∗ , hK
∗
, u∗K

∗
, g

1
K∗+K1 , hK1 , uK1

1 , g
1

K1+m1 , g
1

K∗+K2 , hK2 , uK2
2 , g

1
K2+m2).

Note that because we are given only F1(K1), and F2(K2), the adversary will not be able to use
an authentication of (m1,m2) to forge an authentication of (m2,m1) by the BB-CDH assumption
(which is implied by SDH). Furthermore, we can actually show that the resulting scheme is certifi-
cation secure. When the adversary makes a certification query for skA, it receives the values F1(K1)
and BBsig(K1, sk) (as well as the rest). However, it cannot use this to forge a new authentication –
an authentication using BBsig(sk ,K1) would need to be accompanied by F ∗(K1), but the adversary
will only know F1(K1).

Thus our final authentication scheme to sign n messages at once is as follows:

AuthSetup(1k) generates groupsG1, G2, GT of prime order p (where |p| is proportional to k), bilinear
map e : G1 ×G2 → GT , and group elements g, u, u∗, u1, . . . , un ∈ G1 and h ∈ G2. It outputs

29

paramsA = (G1, G2, GT , e, p, g, u, u
∗, u1, . . . , un). Note that the element u is only needed to

define F ; it is not needed for creating the authentication tag.

AuthKg(paramsA) outputs a random sk ← Zp.

Auth(paramsA, sk , (m1, . . .mn)) chooses random K∗,K1, . . .Kn ← Zp. It outputs

auth = (g
1

sk+K∗ , hK
∗
, u∗K

∗
, {g

1
K∗+Ki , hKi , uKii , g

1
Ki+mi }1≤i≤n) .

VerifyAuth(paramsA, sk , (m1, . . . ,mn), auth). Parse auth as (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n). Ver-
ify that e(A∗, hskB∗) = e(g, h), and that e(B∗, u∗) = e(h,C∗). For 1 ≤ i ≤ n verify that
e(Ai, B∗Bi) = e(g, h), that e(Bi, ui) = e(h,Ci), and that e(Di, Bih

mi) = e(g, h). Accept if
and only if all verifications succeed.

C.2 Proof of Certification F-unforgeability of Authentication Scheme

Suppose we have an adversary which, can break the certification F -unforgeability property, by
outputting a forgery of the form: (F (m1), . . . , F (mn)), (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n).

If this is a valid forgery, then the verification equations hold, which implies that ∃b∗, b1, . . . bn
such that: A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
and for all i ∈ 1, . . . n, Ai = g

1
b∗+bi , Bi = hbi , Ci =

ubii , Di = g
1

bi+mi . We consider the following cases:

Case 1:

Suppose that with nonnegligible probability, the adversary produces a forgery with b∗ = K∗, where
K∗ was used in the response to a previous authentication query. We divide this into three subcases:

Case 1a: Suppose that with nonnegligible probability, the adversary produces a forgery with
b∗ = K∗, where K∗,K1, . . . ,Kn were used together in the response to a previous authentication
query, but there exists i such that for all j ∈ {1, . . . , n}, bi 6= Kj . In this case we will show that
the BB-HSDH assumption with q = n+ 1 does not hold. Our reduction proceeds as follows:

Setup: We are given the groups G1, G2, GT of order p with bilinear map e, group elements
g,X1 = gx, v ∈ G1 and h,X2 = hx ∈ G2 and the pairs {T` = g

1
x+c` , c`}1≤`≤n+1. We need to

produce a new tuple g
1
x+c , hc, vc. We make a guess i∗ for which bi will satsify the above condition.

The parameters for the authentication scheme are computed as follows follows: choose random
z ← Zp, random u ← G1, and random uj ← G1 for all j 6= i∗, and set ui∗ = v and u∗ = gz.
params = (G1, G2, GT , e, p, g, h, u, u

∗, u1, . . . un). Next, we set secret key sk = cn+1 and send
F (sk) = hsk , usk to the adversary.

Queries: Then we must answer the adversary’s signing and certification queries. We make
a guess λ for which query’s K∗ the adversary will attempt to reuse. Now, for signing queries
other than query λ, the adversary sends message set (m1, . . .mn). We compute Auth(params, sk ,
(m1, . . .mn)) and send the result to the adversary.

For the λth signing query, we will implicitly set K∗ = x. We set Kj = cj for all j ∈ {1, . . . , n}.
Then we can compute the authentication: Â∗ = Tn+1, B̂

∗ = X2, Ĉ
∗ = Xz

1 , {Âj = Tj , B̂j = hcj , Ĉj =

u
cj
j , D̂j = g

1
cj+mj }1≤j≤n.

30

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute
and return Auth(params, skA, (sk ,m2, . . .mn)).

Forgery: When the adversary produces a forgery, with nonegligible probability it will be of the
form F (m1), . . . , F (mn), A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
, {Ai = g

1
b∗+bi , Bi = hbi , Ci = ubii , Di =

g
1

bi+mi }1≤i≤n. with b∗ = K̂∗, where K̂∗, K̂1, . . . K̂n were used together in the response to previous
authentication query, but there exists i such that for all j, bi 6= K̂j .

With nonnegligible probability, we will have correctly guessed λ such that b∗ = K∗ for the
K∗ returned in the λth authentication query, and correctly guessed i∗. That means b∗ = x, and
Ai, Bi, Ci is a fresh HSDH triple.

Case 1b: Suppose that with nonnegligible probability, the adversary produces a forgery with
b∗ = K∗, where K∗,K1, . . . ,Kn were used together in the response to a previous authentication
query, but there exists i, j, i 6= j such that bi = Kj . In this case we will show that the BB-CDH
assumption with q = 2 does not hold. Our reduction proceeds as follows:

Setup: We are given the groups G1, G2, GT of order p with bilinear map e, group elements
g,X1 = gx, Y = gy ∈ G1 and h,X2 = hx ∈ G2, integers c1, c2 ∈ Zp, and values T1 = g

1
x+c1 and

T2 = g
1

x+c2 . We need to produce the value gxy. We first make a guesses j∗ and i∗ for which Kj and
bi will satsify the above condition. We will give the adversary parameters for the authentication
scheme as follows: we choose random z ← Zp, random u, u∗ ← G1 and random uj ← G1 for all
j 6= j∗, j 6= i∗, and we set ui∗ = Y and uj∗ = gz. params = (G1, G2, GT , e, p, g, h, u

∗, u1, . . . un).
Next, we choose a random key sk and send F (sk) = hsk , usk to the adversary.

Queries: Then we must answer the adversary’s signing and certification queries. First, we make
a guess λ for which query’s K∗ the adversary will attempt to reuse.

Now, for signing queries other than query λ, when the adversary sends message set (m1, . . .mn),
we compute Auth(params, sk , (m1, . . .mn)) and send the result to the adversary. For the λth signing
query we set K∗ = c2 − c1 +mj∗ and implicitly set Kj∗ = x+ c1 −mj∗ . (Thus, K∗ +Kj∗ = x+ c2

and Kj∗+mj∗ = x+c1.) We randomly choose Kj = zj for all j ∈ {1, . . . , n}. Then we can compute

the authentication: Â∗ = g
1

sk+c2−c1+mj∗ , B̂∗ = hsk , Ĉ∗ = u∗sk , {Âj = g
1

c2−c1+mj∗+zj , B̂j = hzj , Ĉj =

u
zj
j , D̂j = g

1
zj+mj }1≤j≤n,j 6=j∗ . {Âj∗ = T2, B̂j∗ = X2h

c1−mj∗ , Ĉj = Xz
1u

c1−mj∗
j , D̂j = T1

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute
and return Auth(params, skA, (sk ,m2, . . .mn)).

Forgery: When the adversary produces a forgery, with nonegligible probability it will be of the
form F (m1), . . . , F (mn), A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
, {Ai = g

1
b∗+bi , Bi = hbi , Ci = ubii , Di =

g
1

bi+mi }1≤i≤n. with b∗ = K∗, where K∗,K1, . . . ,Kn were used together in the response to a previous
authentication query, but there exists i, j, i 6= j such that bi = Kj .

With nonnegligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗

returned in the λth authentication query, and correctly guessed i∗, j∗. Let Mj∗ be the message that
was signed by Kj∗ in the λth authentication query. That means b∗ = K∗, and bi∗ = Kj∗ from the
λth triple, so b∗i = x+ c1 −Mj∗ , which means we have Ci∗ = u

x+c1−Mj∗
i∗ = Y x+c1−Mj∗ . Finally, we

compute and return Ci∗/Y
c1−Mj∗ = Y x = gxy.

Case 1c: Suppose that with nonnegligible probability, the adversary produces a forgery with
b∗ = K∗ where K∗,K1, . . .Kn were used together in the response to a previous authentication

31

query, and for all i ∈ {1, . . . , n}, bi = Ki. Suppose further that keys K∗,K1, . . .Kn were originally
used to sign message set (M1, . . .Mn). Then since this is a forgery, there must exist at least one
index j such that mj 6= Mj . We break this into two further cases:
Case 1ci: The above forgery is such that mj 6= K∗. In this case we will show that the BB-HSDH
assumption with q = 2 does not hold. Our reduction proceeds as follows:

Setup: We are given the groups G1, G2, GT of order p with bilinear map e, group elements
g,X1 = gx, v ∈ G1 and h,X2 = hx ∈ G2 and the pairs {T` = g

1
sk+c` , c`}`=1,2. We need to produce

a new tuple g
1

sk+c , hc, vc. We make a guess j∗ for which mj will satsify the above condition. We
will give the adversary parameters for the authentication scheme as follows: we choose random
z ← Zp, random u∗ ← G1, and random uj ← G1 for all j 6= j∗, and we set uj∗ = gz and u = v.
params = (G1, G2, GT , e, p, g, h, u, u

∗, u1, . . . un). Next, we randomly choose secret key sk ← Zq
and send F (sk) = hsk , usk to the adversary.

Queries: Then we must answer the adversary’s signing and certification queries. We make a
guess λ for which query’s K∗ the adversary will attempt to reuse. For signing queries other than
query λ, when the adversary sends message set (m1, . . .mn), we compute Auth(params, sk, (m1, . . . ,
mn)) and send the result to the adversary.

For the λth signing query, we will implicitly set Kj∗ = x+c1−mj∗ . We set K∗ = c2−c1+mj∗ and
randomly choose Kj ← Zp for all j ∈ {1, . . . , n}, j 6= j∗. Then we can compute the authentication:

Â∗ = g
1

sk+c2−c1+mj∗ , B̂∗ = hc2−c1+mj∗ , Ĉ∗ = u∗c2−c1+mj∗ , {Âj = g
1

c2−c1+mj∗+Kj , B̂j = hKj , Ĉj =

u
Kj
j , D̂j = g

1
Kj+mj }1≤j≤n,j 6=j∗ , Âj∗ = Y2, B̂j∗ = X2h

c1−mj∗ , Ĉj∗ = Xz
1u

c1−mj∗
j∗ , D̂j∗ = Y1.

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute
and return Auth(params, skA, (sk ,m2, . . .mn)).

Forgery: When the adversary produces a forgery, with nonegligible probability it will be of the
form F (m1), . . . , F (mn), A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
, {Ai = g

1
b∗+bi , Bi = hbi , Ci = ubii , Di =

g
1

bi+mi }1≤i≤n. with b∗ = K̂∗, where K̂∗, K̂1, . . . K̂n were used together in the response to previous
authentication query to sign message set M1, . . .Mn, and for all i, bi = K̂i, and there exists j such
that mj 6= Mj and mj 6= K̂∗.

With nonnegligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗

returned in the λth authentication query, and correctly guessed j∗. That means bj∗ = x+ c1−mj∗ ,

and Dj∗ = g
1

bj∗+mj∗ = g
1

x+c1−Mj∗+mj∗ . Since we have said that mj∗ 6= Mj∗ and that mj∗ 6= K∗ =
c2 − c1 +Mj∗ , we are guaranteed that Dj∗ , h

c1−Mj∗+mj∗ , u
c1−Mj∗+mj∗
j∗ is a fresh HSDH triple.

Case 1cii: The above forgery is such that mj = K∗. In this case we will show that the BB-CDH
assumption does not hold for q = n+ 1. Our reduction proceeds as follows:

Setup: We are given the groups G1, G2, GT of order p with bilinear map e, group elements
g,X1 = gx, Y = gy ∈ G1 and h,X2 = hx ∈ G2, and n + 1 pairs {c`, g

1
sk+c` }1≤`≤n+1. We need

to produce the value gxy. We make a guess j∗ for which mj will satsify the above condition.
We give the adversary parameters for the authentication scheme as follows: we choose random
z ← Zp, random u ← G1 and random uj ← G1 for all j ∈ {1, . . . , n}, and we set u∗ = Xz

1 and
u = Y . params = (G1, G2, GT , e, p, g, h, u, u

∗, u1, . . . un). Next, we set secret key sk = cn+1 and
send F (sk) = hsk , usk to the adversary.

Queries: Then we must answer the adversary’s signing and certification queries. We make a
guess λ for which query’s K∗ the adversary will attempt to reuse. For signing queries other than
query λ, when the adversary sends message set (m1, . . .mn), we compute Auth(params, sk , (m1, . . . ,

32

mn)) and send the result to the adversary. For the λth signing query, we set Kj = cj for j ∈
{1, . . . , n} and implicitly set K∗ = x. Then we can compute the authentication: Â∗ = Tn+1, B̂

∗ =

X2, Ĉ
∗ = Xz

1 , {Âj = Tj , B̂j = hcj , Ĉj = u
cj
j , D̂j = g

1
cj+mj }1≤j≤n.

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute
and return Auth(params, skA, (sk ,m2, . . .mn)).

Forgery: When the adversary produces a forgery, with nonegligible probability it will be of
the form F (m1) = (hm1 , um1), . . . , F (mn) = (hmn , umn), A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
, {Ai =

g
1

b∗+bi , Bi = hbi , Ci = ubii , Di = g
1

bi+mi }1≤i≤n. with b∗ = K̂∗, where K̂∗, K̂1, . . . K̂n were used
together in the response to previous authentication query to sign message set M1, . . .Mn, and for
all i, bi = K̂i, and there exists j such that mj = K̂∗.

With nonnegligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗

returned in the λth authentication query, and correctly guessed i∗, j∗. That means mj = K∗ = x,
and so we can simply return umj = ux = Y x = gxy.

Case 2:

Suppose that with nonnegligible probability, the adversary produces a forgery with b∗ = Ki, where
Ki was returned by a previous certification query. In this case we will show that the BB-CDH
assumption does not hold for q = 2. Our reduction proceeds as follows:

Setup: We are given the groups G1, G2, GT of order p with bilinear map e, group elements
g,X1 = gx, Y = gy ∈ G1 and h,X2 = hx ∈ G2, integers c1, c2, and the values T1 = g

1
x+c1 and

T2 = g
1

x+c2 . We need to produce the value gxy. We make a guess i∗ for which Ki will satsify the
above condition. We will give the adversary parameters for the authentication scheme as follows:
we choose random z ← Zp, random u← G1 and random uj ← G1 for all j ∈ {1, . . . , n}, j 6= i∗, and
we set u∗ = Y and ui∗ = Xz. params = (G1, G2, GT , e, p, g, h, u, u

∗, u1, . . . un). Next, we set secret
key sk = c2 and send F (sk) = hsk , usk to the adversary.

Queries: We must answer the adversary’s signing and certification queries. We make a guess λ
for which certification query’s Ki∗ the adversary will attempt to reuse.

Now, for signing queries the adversary sends message set (m1, . . .mn). We compute Auth(params,
sk , (m1, . . .mn)) and send the result to the adversary.

For certification queries other than λ, the adversary sends key skA, and messages m2, . . .mn

and we compute and return Auth(params, skA, (sk ,m2, . . .mn)). For the λth certificaiton query
we will implicitly set Ki∗ = x, and we will set K∗ = c1. We randomly choose Kj ← Zp for

j ∈ {1, . . . , n}, j 6= i∗. Then we can compute the certification: Â∗ = g
1

skA+c1 , B̂∗ = hc1 , Ĉ∗ = u∗c1 ,

{Âj = g
1

c1+Kj , B̂j = hKj , Ĉj = u
Kj
j , D̂j = g

1
Kj+mj }1≤j≤n,j 6=i∗ , Âi∗ = T1, B̂i∗ = X2, Ĉi∗ = Xz

1 , D̂i∗ =
T2.

Forgery: When the adversary produces a forgery, with nonegligible probability it will be of the
form F (m1), . . . , F (mn), A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
, {Ai = g

1
b∗+bi , Bi = hbi , Ci = ubii , Di =

g
1

bi+mi }1≤i≤n. with b∗ = Ki, where Ki was returned by a previous certification query.
With nonnegligible probability, we will have correctly guessed λ such that b∗ = Ki for the Ki

returned in the λth certification query, and correctly guessed i∗. That means b∗ = Ki∗ = x, and so
we can simply return B∗ = u∗x = Y x = gxy.

33

Case 3:

Suppose that with nonnegligible probability, the adversary produces a forgery where b∗ =6= K∗ for
any K∗ returned by a previous authentication query, and where b∗ =6= Ki for any Ki returned
by a previous certification query. Let q be an upper bound on the number of authentication
or certification queries that the adversary makes. In this case we will show that the BB-HSDH
assumption does not hold for this q. Our reduction proceeds as follows:

Setup: We are given the groups G1, G2, GT of order p with bilinear map e, group elements
g,X1 = gx, v ∈ G1 and h,X2 = hx ∈ G2 and the pairs {Ti = g

1
x+c` , c`}1≤`≤q. We need to

produce a new tuple g
1
x+c , hc, vc. We will give the adversary parameters for the authentication

scheme as follows: we choose random z ← Zp, and random uj ← Gp, and we set u∗ = v and
u = gz. params = (G1, G2, GT , e, p, g, h, u, u

∗, u1, . . . un). We implicitly secret key sk = x. We send
F (sk) = X2, X

z
1 to the adversary.

Queries: Then we must answer the adversary’s signing and certification queries.
For the γth query: If it is an authentication query: The adversary sends message set (m1, . . .mn).

We will set K∗ = cγ We choose random Kj ← Zp for all j ∈ {1, . . . , n}. Then we can compute

the authentication: Â∗ = Ti, B̂
∗ = hcγ , Ĉ∗ = u∗cγ , {Âj = g

1
cγ+Kj , B̂j = hKj , Ĉj = u

Kj
j , D̂j =

g
1

Kj+mj }1≤j≤n.
If it is a certification query: The adversary sends key skA, and messages m2, . . .mn. We will

set K1 = cγ We choose random Kj ← Zp for all j ∈ {1, . . . , n}, j 6= 1, and random K∗ ← Zp. Then

we can compute the authentication: Â∗ = g
1

skA+K∗ , B̂∗ = hK
∗
, Ĉ∗ = u∗K

∗
, {Âj = g

1
K∗+Kj , B̂j =

hKj , Ĉj = u
Kj
j , D̂j = g

1
Kj+mj }2≤j≤n, Â1 = g

1
K∗+cγ , B̂1 = hcγ , Ĉ1 = u

cγ
1 , D̂1 = Tγ .

Forgery: When the adversary produces a forgery, with nonegligible probability it will be of the
form F (m1), . . . , F (mn), A∗ = g

1
sk+b∗ , B∗ = hb

∗
, C∗ = u∗b

∗
, {Ai = g

1
b∗+bi , Bi = hbi , Ci = ubii , Di =

g
1

bi+mi }i=1...n. where b∗ =6= K∗ for any K∗ returned by a previous authentication query, and where
b∗ =6= Ki for any Ki returned by a previous certification query. That means for all ` ∈ {1, . . . , q},
b∗ 6= c`, so A∗, B∗, C∗ is a fresh HSDH triple.

C.3 Proof of knowledge of an authenticator.

We need a zero-knowledge proof of knowledge of an unforgeable authenticator for messages ~m =
(m1, . . . ,mn), where the first ` values ~mh are hidden in commitments C~mh and the remaining n− `
values ~mo are publicly known. In our notation, this is:

NIZKPK[sk in Csk ; ~mh in C~mh]{(F (sk), F (~mh), auth) : VerifyAuth(paramsA, sk , ~m, auth) = 1}.

We use Groth-Sahai witness indistinguishable proofs as a building block. We create a concatenation
of proofs: π = πauth ◦ πsk ◦ πm1 ◦ · · · ◦ πm` :

πauth ← NIPKGS [hsk in C ′(1)
sk ;usk in C ′(2)

sk ;hm1 in C ′(1)
m1

;um1 in C ′(2)
m1

; . . . ;hm` in C ′(1)
m`

;um` in C ′(2)
m`

]

{F (sk), F (m1), . . . , F (m`), A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n) : e(u, hsk) = e(usk , h)∧
e(A∗, hskB∗) = e(g, h) ∧ e(u∗, B∗) = e(C∗, h) ∧ {e(u, hmi) = e(umi , h,)}1≤i≤`∧
{e(Ai, B∗Bi) = e(g, h) ∧ e(ui, Bi,) = e(Ci, h) ∧ e(Di, Bih

mi) = e(g, h)}1≤i≤n }.

34

Proofs πsk , πmi are proofs that two commitments contain the same value. Let x = sk ,mi, re-
spectively. Then the two proofs are of the form πx ← NIPKGS [x in C (1)

x ;x′ in C ′(1)
x]{(x, x′, hθ) :

e(x/x′, hθ) = 1 ∧ e(g, hθ) = e(g, h)}.
Groth and Sahai [GS08] show that witness indistinguishable proofs like πsk and πmi are also

zero knowledge. A simulator that knows the simulation trapdoor sim for the GS proof system can
simulate the two conditions by setting θ to 0 and 1 respectively. In this way he can fake the proofs
for arbitrary commitments.

Note that if πsk , πmi are zero-knowledge, then the composite proof π will be zero knowledge:
The simulator first picks sk ′ and ~mh at random and uses them to generate an authentication tag. It
uses the authentication tag as a witness for the witness indistinguishable proof πauth and then fakes
the proofs that the commitments C ′sk , and C ′mi are to the same values as the original commitments
Csk and Cmi .

D Proof that Groth-Sahai Proofs Are Randomizable

Correctness. Suppose an honest prover gets as input commitments {cm} and {dn}, and a valid
proof {πi} and {ψj}. The prover rerandomizes it and sends the verifier the new commitments {c′m}
and {d′n}, the new proof {π′i} and {ψ′i}, and the original pairing product equation.

The verifier computes c′q ← µ1(aq) ·
∏M
m=1 c

′αq,m
m and d′q ← µ2(bq) ·

∏N
n=1 d

′βq,n
n . Because the

prover is honest, we know that for all q : c′q = µ1(aq)·
∏M
m=1 c

′αq,m
m = µ1(aq)·

∏M
m=1

(
cm
∏I
i=1 u

sm,i
i

)αq,m
=
(
µ1(aq) ·

∏M
m=1 c

αq,m
m

)
·
(∏M

m=1

∏I
i=1 u

sm,iαq,m
i

)
= cq ·

∏I
i=1 u

ŝq,i
i . Similarly, for all q : d′q =

dq ·
∏J
j=1 v

ẑq,j
j .

Before the prover fully randomizes the {π′i} and {ψ′j}, we have that

π′i = πi ·
Q∏
q=1

(d′q)
ŝq,i ψ′j = ψj ·

Q∏
q=1

(cq)ẑq,j .

Due to the results of Groth and Sahai, we know that if a prover starts with a valid proof {πi}
and {ψj} and multiplies each πi by

∏J
j=1 v

ti,j
j and each ψj by

∏I
i=1 u

PH
h=1 thηh,i,j

i

∏I
i=1 u

ti,j
i the result

is still a valid proof. Therefore, all we need to show is that if the prover skips this multiplication
step, that the verification formula

∏Q
q=1E(c′q, d

′
q) = µT (t) ·

∏I
i=1E(ui, π′i) ·

∏J
j=1E(ψ′j , vj). holds.

35

Q∏
q=1

E(c′q, d
′
q) =

Q∏
q=1

E(cq
I∏
i=1

u
ŝq,i
i , dq

J∏
j=1

v
ẑq,j
j)

=
[Q∏
q=1

E(cq, dq)
]
·
[Q∏
q=1

E(cq,
J∏
j=1

v
ẑq,j
j)

]
·
[Q∏
q=1

E(
I∏
i=1

u
ŝq,i
i , dq)

]
·
[Q∏
q=1

E(
I∏
i=1

u
ŝq,i
i ,

J∏
j=1

v
ẑq,j
j)

]

=
[Q∏
q=1

E(cq, dq)
]
·
[J∏
j=1

Q∏
q=1

E(cq, v
ẑq,j
j)

]
·
[I∏
i=1

Q∏
q=1

E(uŝq,ii , dq)
]
·
[I∏
i=1

Q∏
q=1

E(uŝq,ii ,
J∏
j=1

v
ẑq,j
j)

]

=
[Q∏
q=1

E(cq, dq)
]
·
[J∏
j=1

E(
Q∏
q=1

c
ẑq,j
q , vj)

]
·
[I∏
i=1

E(ui,
Q∏
q=1

d
ŝq,i
q)

]
·
[I∏
i=1

E(ui,
Q∏
q=1

J∏
j=1

v
ẑq,j ŝq,i
j)

]

=
[
µT (t) ·

I∏
i=1

E(ui, πi) ·
J∏
j=1

E(ψj , vj)
]
·
[J∏
j=1

E(
Q∏
q=1

c
ẑq,j
q , vj)

]
·
[I∏
i=1

E(ui,
Q∏
q=1

(dq
J∏
j=1

v
ẑq,j
j)ŝq,i)

]

= µT (t) ·
[I∏
i=1

E(ui, πi)
I∏
i=1

E(ui,
Q∏
q=1

(dq
J∏
j=1

v
ẑq,j
j)ŝq,i)

]
·
[J∏
j=1

E(ψj , vj)
J∏
j=1

E(
Q∏
q=1

c
ẑq,j
q , vj)

]

= µT (t) ·
[I∏
i=1

E(ui, πi
Q∏
q=1

d
′ŝq,i
q)

]
·
[J∏
j=1

E(ψj
Q∏
q=1

c
ẑq,j
q , vj)

]

= µT (t) ·
I∏
i=1

E(ui, π′i) ·
J∏
j=1

E(ψ′j , vj)

Thus we see that the verification equation holds.

Malleability. The same argument used for correctness also shows that when commitments are
considered part of the instance, the instance can be mauled by randomizing these commitments.

Extractability. The Groth-Sahai extractor works by using the trapdoor to “decrypt” the com-
mitments. Recall that a commitment is of the form c = Commit(x, (r1, . . . , rI)) = x ·

∏I
i=1 u

ri
i for

an arbitrary vector (r1, . . . , rI). When we rerandomize c, we compute

c′ ← c ·
I∏
i=1

usii = x ·
I∏
i=1

urii ·
I∏
i=1

usii = x ·
I∏
i=1

uri+sii .

Thus, we still have a commitment to x.

Randomness. First we consider the randomization of commitments. As we saw above, each new
commitment is set to c′ ← x ·

∏I
i=1 u

ri+si
i . The randomness of c′ depends on how the si are chosen.

If the si are chosen at random, then c′ is a randomly chosen commitment for x. If the si are not
chosen at random (especially if they are all set to 0!), then we have no such guarantees.

Now we argue about the randomization of proofs. When the prover computes π′i ← πi ·∏Q
q=1(d′q)

ŝq,i and ψ′j ← ψj ·
∏Q
q=1(cq)ẑq,j , the result is a valid proof (as we demonstrated above).

Then the prover multiplies the {π′i} and {ψ′i} by a certain factor. Groth and Sahai show that the
result is a randomly chosen proof from the space of all valid proofs, given that the commitments

36

and pairing product equation are fixed. Since, as we showed above, the commitments are com-
pletely rerandomized, the result is a randomly chosen proof given a fixed solution {xm}, {yn} to a
particular pairing product equation.

E 2PC Protocol for Creating a NIZKPK of an Authenticator

Our construction of delegatable credentials is secure for any 2PC protocol that securely generates a
NIZKPK of an authenticator. In this section we provide an efficient instantiation of such a protocol.
However, we do not know how to built an efficient protocol that does not use either the simulation
or the extraction trapdoor in the proof of security. As this is not covered by the standard definition
of secure 2PC we first define trapdoor-secure two-party computation. We then argue that our
delegatable credential system remain secure if the 2PC protocol is replaced by a trapdoor-secure
two-party protocol. We then describe and prove the concrete protocol that we propose.

E.1 Trapdoor-Secure Two-Party Computation

In a two-party protocol, we have A interacting with B; they both receive the same public input
p; A has private input a and B has private input b. This is written A(p, a) ↔ B(p, b). Recall the
standard definition for what it means for A(p, a)↔ B(p, b) to securely compute a function f(p, a, b)
(see, for example, Lindell and Pinkas [LP07]).

In this paper, the protocols take advantage of the fact that there are appropriately gener-
ated public parameters params, which is one of the public inputs to the parties. The notion
of A((params, p), a) ↔ B((params, p), b) securely computing the function f(params, p, a, b) for
params ← Setup(1k) is a generalization of the standard secure 2PC notion to the common pa-
rameters model.

Let Trapdoor be any function (not necessarily efficiently computable). We want to weaken the
notion of security of 2PC in the common parameters model by requiring that security is preserved
only when the simulator has additional information about params, namely Trapdoor(params).
This is captured as follows: A((params, p), a) ↔ B((params, p), b) Trapdoor(·)-securely compute
the function f(params, p, a, b) for params ← Setup(1k) if A′((params,Trapdoor(params), p), a) ↔
B′((params,Trapdoor(params), p), b) securely compute the same f , whereA′ andB′ ignore Trapdoor(
params) and run A and B respectively.

Lemma 2 If AuthSetup,AuthKg,Auth,VerifyAuth is an F-unforgeable certification-secure authen-
tication scheme, and if H is a collision resistant hash function, and if PKSetup,PKProve,PKVerify
is a randomizable, perfectly extractable, composable zero knowledge non-interactive proof of know-
ledge system with simulation setup SimSetup and extraction setup ExtSetup, and if the two party
protocol is trapdoor secure for the simulation trapdoors generated by SimSetup and ExtSetup, then
the construction in Section 3.2 constitutes a secure anonymous delegatable credential scheme.

Proof. In our reduction we only use the 2PC simulator in situations in which the trapdoors are
available. The proof of security of the delegatable credential system thus carries through without
changes. �

37

E.2 An efficient two-party computation protocol for computing a NIZKPK of
an authentication tag

An efficient two-party computation protocol for computing a non-interactive zero-knowledge proof
of knowledge (NIZKPK) of an authentication tag is a protocol between a user and a issuer.
The user’s private input is the vector ~mh of committed messages that are to be authenticated
and opening vector open ~mh

. The issuer’s private input is secret key sk and opensk . Both par-
ties agree on the public input: the public parameters paramsDC for the proof system and the
authentication scheme, the commitments C ~mh , the public messages ~mo, and Csk . The com-
mitments are double commitments as described in Appendix C.3. We also define a commit-
ment to a vector of messages to be the list of commitments to its elements. The user’s out-
put of the protocol is a proof π ← NIZKPK[sk in Csk ; ~mh in Commit(~mh,~0)]{(F (sk), F (~mh), auth) :
VerifyAuth(paramsA, sk , ~mh, ~mo,
auth) = 1} as described in Appendix C.3. The issuer only learns about success or failure of
the protocol and outputs nothing. If (~mh, open ~mh

), or (sk , opensk) are inconsistend with C ~mh ,Csk

respectively, the functionality reports failure; otherwise it returns a correctly formed random proof
π.

1. The user proves that she knows ~mh and open ~mh
for C ~mh . The issuer aborts if the proof fails.

2. The issuer does a proof of knowledge of sk and opensk for Csk . The user aborts if the proof
fails.

3. The issuer chooses random K∗,K1, . . .Kn ← Zp. He computes a partial authentication tag

auth ′ = (g
1

sk+K∗ , hK
∗
, u∗K

∗
, {g

1
K∗+Ki , hKi , uKii }1≤i≤n).

4. Then the issuer computes a fresh commitment C ′sk to sk and creates a NIZKPK π′ for a
partial authenticator auth ′:

π2 ← NIZKPKGS [hsk in C ′(1)
sk ;usk in C ′(2)

sk ;Bi in GSCommit(Bi, 0)]

{(F (sk), (A∗, B∗, C∗, {Ai, Bi, Ci}1≤i≤n, {Di}`+1≤i≤n), hθ) :

e(usk/usk ′ , hθ) = 1 ∧ e(g, hθ) = e(g, h) ∧ e(hsk , u) = e(h, usk)∧
e(A∗, hskB∗) = e(g, h) ∧ e(B∗, u∗) = e(h,C∗)∧
{e(Ai, B∗Bi) = e(g, h) ∧ e(Bi, ui) = e(h,Ci)}1≤i≤n∧
{e(Di, Bih

mi) = e(g, h)}`+1≤i≤n}.

Note that all authenticator values use random commitments, except for the Bi values, which
are committed using 0 openings. This means that Bi = hKi can be learned from the proof.

5. The issuer sends π′ to the user.

6. The user checks the proof and aborts if the verification fails. Otherwise, she runs ` instances
of an efficient two-party computation protocol with the issuer. On public input Cmi and secret
input mi by the user and Ki by the issuer (1 ≤ i ≤ `) the protocol computes the missing

Di = g
1

Ki+mi . The output is obtained only by the user. We give an efficient implementation
of this 2PC protocol using additively homomorphic encryption in Section 3.3.

38

7. The user checks that the Di were computed for the correct Ki using the Bi from the proof π′,
computes commitments C (1)

mi = GSCommit(hmi , 0), C (2)
mi = GSCommit(umi , 0) and fresh com-

mitments C ′(1)
mi ,C

′(2)
mi for each mi and computes the proof π′′ ← NIPKGS [hm1 in C ′(1)

m1
;um1 in

C ′(2)
m1

; . . . ;hm` in C ′(1)
m`

;um` in C ′(2)
m`

);Bi in GSCommit(Bi, 0)]{(F (~mh) = ({F (mi)}1≤i≤`), {Bi,
Di}1≤i≤`) : {e(Di, Bih

mi) = e(g, h) ∧ e(hmi , u) = e(h, umi)}1≤i≤`} , as well as the zero-
knowledge proofs of equality of committed values in C (1)

mi and C ′(1)
mi , πm1 , . . . πm` .

8. Finally the user computes π = π′ ◦ π′′ ◦ πm1 ◦ . . . ◦ πm` and randomizes the combined proof
with opening values opensk = 0 and open ~mh

= 0, and all other openings chosen at random.
The resulting proof π′ is the user’s output.

Theorem 4 The above construction is a secure two-party computation for the parameters and the
trapdoor generated by ExtSetup and SimSetup if the underlying proof system and the homomorphic
encryption scheme are secure.

Proof. We assume the existance of a secure two party protocol for computing g1/(sk+m), i.e.,
g1/(Ki+mi). We need to do a simulation for both ExtSetup and SimSetup.
ExtSetup: A simulator that simulates a dishonest user Ũ proceeds as follows:

• The simulator runs Ũ as a blackbox. He uses the extractor of the proof of knowledge to obtain
~m and open ~m. If they are consistent with C~m he sends them to the ideal functionality. He
aborts otherwise.

• Next, the simulator uses the zero-knowledge simulator to simulate his own proof of knowledge.

The ideal functionality returns a NIZKPK π of an authenticator.

• The simulator uses the trapdoor to extract the authenticator. He uses a subset of the values
to build proof π′.

• Next the simulator uses the simulator of the 2PC subprotocol for weak BB signatures to finish
the simulation. Note that an honest issuer never outputs anything, even in case of protocol
failure.

• The simulator outputs whatever Ũ outputs.

As the simulation of the environment for Ũ up to the 2PC subprotocol is perfect, Ũ will behave
exactly in the same way as in the real world. The simulatability of the 2PC subprotocol complets
the proof.

A simulator that simulates a dishonest issuer Ĩ proceeds as follows:

• The simulator runs Ĩ as a black box. The simulator uses the zero-knowledge simulator to
simulate the proof of knowledge.

• The simulator uses the extractor of the proof of knowledge. If they are inconsistent with C~m,
he aborts.

• Now the malicious issuer provides additional values, that the simulator checks in the same
way as the user would.

39

• Then it runs the simulator of the 2PC with the issuer. If the checks or the 2PC fail, he sends
⊥ to the ideal functionality to force the ideal user to abort. If they pass, he sends ~m and
open ~m to the ideal functionality.

• The simulator outputs whatever Ĩ outputs.

The simulator aborts, when an honest user would abort, and both the ideal world user as well as
the real world user output a random proof. This completes the proof for the extraction parameters.
SimSetup: A simulator that simulates a dishonest user Ũ proceeds as follows:

• The simulator runs Ũ as a blackbox. He uses the extractor of the proof of knowledge to
obtain ~m and open ~m. If the values are consistent with C~m, he sends ~m and open ~m to the
ideal functionality; otherwise he aborts.

• Next, the simulator uses the zero-knowledge simulator to simulate his own proof of knowledge.

The ideal functionality returns a NIZKPK π of an authenticator.

• Now, however, we cannot use the returned proof π for the simulation. Luckily, the simulation
trapdoor allows us to fake the proof of equality between the commitments Csk and C ′sk , and
the simulator can use a new random key sk ′ to compute the partial authenticator auth ′ and
the corresponding proof.

• The rest of the proof proceeds as for ExtSetup.

The simulation for the dishonest issuer Ĩ is the same as for ExtSetup.

E.3 Security of protocol for computing g1/(sk+m):

We show that the protocol presented in Section 3.3 is secure. We first simulate a malicious user.
Recall that we must define a simulator S which gets as input parameters params, commitment C
to the message to be signed, and a signature σ on that message under secret key sk from the ideal
functionality, and must impersonate an honest issuer without knowing sk . Consider the following
simulator:

1. S honestly generates a key pair (skhom , pkhom)← Keygen(1k). It computes e1 = Enc(pkhom , 0).
It sends pkhom , e1 to the adversary.

2. S receives e2 from the adversary.

3. S acts as the verifier for the proof that e2 was computed correctly. He runs the proof of
knowledge extraction algorithm and extracts r1 (note that this might include rewinding the
adversary, but not farther than the beginning of this step). Finally it computes σ∗ = σ1/r1

ands sends it to the adversary.

Now we show that this S does a successful simulation: Consider the following series of games:

• In the first game, sk , pk ,m, open, state,C are generated as in the definition of the protocol,
and then the adversary A2(state) interacts with the real world party as defined above.

40

• In the second game, sk , pk ,m, open, state,C are generated the same way, but now A2(state)
interacts with a S ′, which behaves as the real protocol for steps 1 and 2, but then behaves as
S for step 3. The only difference then is that this simulator extracts r1 from the proof, and
uses r1 and σ to form σ∗. Note that if the proof is sound, then this σ∗ will be identical to
that produced in the previous game. Thus this is indistinguishable from the previous game
by the extraction property of the ZK proof system.

• In the last game, sk , pk ,m, open, state,C are generated the same way, and then A2(state)
interacts with S. This differs from the second game only in that the initial encryption e1

is generated by encrypting 0. Thus, this is indistinguishable from the second game by the
security of the encryption scheme.

Since the first game is indistinguishable from the third, the probability that the adversary A2 can
output 1 in each game can differ only negligibly. Thus, the simulation is successful.

Next, we consider a malicious signer. Recall that we must define a simulator S which gets as
input parameters params, the public key pk of the signer, and a commitment C to the message
to be signed, and must impersonate an honest user without knowing the message contained in the
commitment m. Consider the following simulator:

1. S receives pkhom , e1 from the adversary.

2. S chooses a random value t← [0, 2kp2]. It computes e2 = e1⊕ Enc(pkhom , t), and sends e2 to
the adversary.

3. S uses the simulator for the zero knowledge proof to interact with the adversary. (details?)

4. S receives σ∗ from the adversary and checks it is a valid signature on m′ = t mod p.

Now we show that this S does a successful simulation: Consider the following series of games:

• In the first game, pk ,m, open, state,C are generated as in the real protocol, and then the
adversary A2(state) interacts with an honest user as defined above.

• In the second game, sk , pk ,m, open, state,C are generated the same way, but now A2(state)
interacts with a S ′, which behaves as in the real protocol for steps 1 and 2, but then behaves
as S for step 3. The only difference then is that here we use the zero-knowledge simulator to
do the interactive proof. Thus this is indistinguishable from the previous game by the zero
knowledge property of the ZK proof system.

• In the last game, sk , pk ,m, open, state,C are generated the same way, and then A2(state)
interacts with S. This differs from the second game only in that e2 is generated by computing
e1 ⊕ enc(t) rather than by computing e2 = ((e1 ⊕ enc(m)) ∗ r1) ⊕ Enc(r2p). As t is chosen
from [0, 2kp] and e1 encrypts a value from Zp, the value encrypted in e1 ⊕ enc(t) will be
distributed statistically close to the uniform distribution over [0, 2kp]. Similarly, the value
encrypted in e2 = ((e1 ⊕ enc(m)) ∗ r1)⊕ Enc(r2p) will be distributed statistically close to the
uniform distribution over [0, 2kp] and hence this game is indistinguishable from the previous
one.

41

Since the first game is indistinguishable from the third, the probability that the adversary A2

can output 1 in each game can differ only negligibly. �

The following theorem states that it is possible to replace the standard 2PC protocol with the
trapdoor secure protocol described above without compromising security.

E.4 Efficient Implementation using Pallier Encryption

We show how the two party computation protocol for computing g(sk+m) that was presented in
Appendix E.2 can be implemented efficiently using the Pallier encryption scheme.

For simplicity of this exposition, we assume that there as an RSA modulus n available such
that neither the prover or the verifier know its factors. Moreover assume further that g and h from
Z∗n are available such that logg h is unknown and that g ∈ 〈h〉. (Alternatively the prover and the
verifier can generate their own modules and then use in the protocol, e.g., as proposed by Bangerter
et al. [BCM05].)

Assume that the commitment of the recipient’s secret key be comm = µ1(g)m
∏
usii . We will

use the Paillier encryption scheme. The user and the issuer run the following protocol:

1. The issuer generates an n RSA modulus of size at least 23kp2, where k is our security param-
eter. Further let h = n + 1 and g be an element of order φ(n) modulo n2. Next, the issuer
computes e1 = hn/2+skgr mod n2 for a random r ∈ Zφ(n) and c = gskhr

′
mod n for a random

r ∈ Zφn.

Now the signer and the recipient run the following protocol with each other:

PK{(sk , r, r′) : e1/hn/2 = hskgr (mod n2) ∧ c = gskhr
′

(mod n) ∧ sk ∈ [−p2160, p2160]}

2. The user chooses r1 ← Zp and r2 ← {0, . . . 2kp} and computes

e2 = (e1/hn/2))r1h(n/2+m)r1+r2pgr̄ mod n2

as well as the commitment c′ = gmhr̄ mod n, with r̄ chosen randomly from [0, n2k].

3. The issuer and the user perform an interactive zero-knowledge proof in which the user shows
that e2 has been computed correctly using the message in C , and that r1, r2 are in the
appropriate ranges:

PK{(m, r1, r2, si,m
′, u, r̄) : e2/hn/2 = (e1/hn/2)r1hm

′
(hp)r2gr̄ (mod n2)∧c′ = gmhr̄ (mod n)

∧ 1 = c′r1(1/g)m
′
hu ∧ comm = µ1(g)m

∏
usii ∧ m, r1 ∈ [−p2160, p2160]}

4. The issuer decrypts x = Dec(e2)− n/2, computes σ∗ = g1/x and sends it to the user.

5. The user computes σ = σ∗r1 and verifies that it is a correct signature on m.

We see that issuer and the user have both to perform about 10 exponentiations (in differ-
ent groups). The security of the PK protocol follows straight forward from known works such
as [CS03]).

42

