
Public-Key Encryption with Efficient Amortized Updates

Nishanth Chandran∗ Rafail Ostrovsky† William E. Skeith III‡

Abstract

Searching and modifying public-key encrypted data (without having the decryption key) has
received a lot of attention in recent literature. In this paper we re-visit this important problem and
achieve much better amortized communication-complexity bounds. Our solution resolves the main
open question posed by Boneh at al., [BKOS07].

First, we consider the following much simpler to state problem (which turns out to be central for
the above): A server holds a copy of Alice’s database that has been encrypted under Alice’s public
key. Alice would like to allow other users in the system to replace a bit of their choice in the server’s
database by communicating directly with the server, despite other users not having Alice’s private
key. However, Alice requires that the server should not know which bit was modified. Additionally,
she requires that the modification protocol should have “small” communication complexity (sub-
linear in the database size). This task is referred to as private database modification, and is a central
tool in building a more general protocol for modifying and searching over public-key encrypted data
with small communication complexity. The problem was first considered by Boneh at al., [BKOS07].
The protocol of [BKOS07] to modify 1 bit of an N -bit database has communication complexity
O(
√

N). Naturally, one can ask if we can improve upon this. Unfortunately, [OS08] give evidence
to the contrary, showing that using current algebraic techniques, this is not possible to do. In this
paper, we ask the following question: what is the communication complexity when modifying L bits
of an N -bit database? Of course, one can achieve naive communication complexity of O(L

√
N)

by simply repeating the protocol of [BKOS07], L times. Our main result is a private database
modification protocol to modify L bits of an N -bit database that has communication complexity
O(
√

NL1+αpoly-log N), where 0 < α < 1 is a constant. (We remark that in contrast with recent
work of Lipmaa [Lip08] on the same topic, our database size does not grow with every update, and
stays exactly the same size.)

As sample corollaries to our main result, we obtain the following:

• First, we apply our private database modification protocol to answer the main open question
of [BKOS07]. More specifically, we construct a public key encryption scheme supporting PIR
queries that allows every message to have a non-constant number of keywords associated with
it.

• Second, we show that one can apply our techniques to obtain more efficient communication
complexity when parties wish to increment or decrement multiple cryptographic counters (for-
malized by Katz at al. [KMO01]).

We believe that “public-key encrypted” amortized database modification is an important crypto-
graphic primitive in it’s own right and will be a useful in other applications.

∗Department of Computer Science, University of California, Los Angeles. Email: nishanth@cs.ucla.edu
†Department of Computer Science and Mathematics, University of California, Los Angeles. Email: rafail@cs.ucla.edu
‡Department of Computer Science, City College, CUNY. Email: wes@cs.ccny.cuny.edu

1 Introduction

The problem of private database modification was first studied in the context of public key encryption
supporting private information retrieval (PIR) queries by Boneh et al. [BKOS07]. The private database
modification protocol of [BKOS07] requires communication complexity O(

√
N) to modify 1 bit of an

N -bit database. Furthermore Ostrovsky and Skeith showed in [OS08], that using currently known
algebraic techniques (which will not increase the database size after an update), one cannot obtain
better communication complexity to modify a single bit. Hence, we turn to the question of modifying
multiple bits of the database. Using repeated application of the protocol from [BKOS07], one can obtain
a private database modification protocol to modify L bits with communication complexity O(L

√
N).

Lipmaa, in [Lip08], also considered the question of amortizing the communication complexity of
private database modification. However, his protocol has a significant drawback. In [Lip08], the size of
the database increases with every update made and after only O(4

√
N/log4N) bits have been updated

in the database, Alice (the owner of the database) needs to download the entire database and re-send
a new encrypted database, for the protocol to have efficient communication complexity thereafter. We
shall see a little later that in applications of the private database modification protocol, this drawback
is significant.

Main Result

Our main contribution in this paper is a pair of amortized protocols that have communication complexity
O(
√

L1+αNpoly-log N) when modifying L bits of the database (where 0 < α < 1 is a constant), without
ever increasing the size of the database, regardless of the number of updates. The two protocols have
slightly different properties and play a different role in applications.

The first protocol we present gives an amortization of the communication complexity when modifying
a 0 bit into a 1 bit as well as vice-versa, where as (a somewhat simpler) second protocol gives an
amortization of the communication complexity only when modifying a 0 bit into a 1 bit. Although we
believe the amortized protocols for database modification to be of independent interest, we also describe
two results that we obtain as corollaries of our main result.

Applications

Our first application is an answer to the main open question of [BKOS07] (resolving the main drawback of
their solution.) Recall that in [BKOS07], a private database modification protocol was used to construct
a public key encryption scheme supporting PIR queries. An illustrative example of this concept is that
of web-based email. Suppose that Alice stores her email on the server of a storage provider Bob (as is
the case for a Yahoo! or Hotmail email account, for example). Bob must provide Alice with the ability
to collect, retrieve, search and delete emails but at the same time learn nothing about the contents of the
email nor the search criteria used by Alice. For example, a user might send an encrypted email to Alice
(via Bob) that is marked with the keyword “Urgent”. Bob should store this email without knowing
that a user sent an email marked as urgent. Later, Alice should have the ability to retrieve all email
messages marked with “Urgent” without Bob knowing what search criteria Alice used. The goal was
to obtain communication efficient protocols for this task. This goal was accomplished by making use
of a protocol for private database modification in order to mark emails as containing certain keywords.
However, in order to keep the communication complexity of the protocol sub-linear, the authors of
[BKOS07] put constraints on the number of keywords that could be attached to a single message. In
particular, this number was forced to be a constant. We can directly apply our batch update protocol
to remove this constraint, allowing for non-constant numbers of keywords to be associated to a single
message (which may often be the case for large messages). Note, that if we were to use a modification
protocol in which the size of the database increased with every update (such as the one in [Lip08]),
then Alice needs to frequently download her entire email and send an updated database back to Bob, so

1

that further executions of the modification protocol can have efficient communication complexity. This
defeats the entire purpose of having an email system supporting oblivious collect, retrieve, search and
delete queries. Alice could simply achieve all these queries in an oblivious manner when she downloads
the entire database. Furthermore, [Lip08] requires that message senders be aware of a certain aspect of
the state of the email database (in particular, the number of layers of encryption) before they send a
message and perform updates to the database to mark the message with keywords. This would appear
to force an interactive protocol for message sending, which seems undesirable and need not be the case
(as shown in [BKOS07]).

A second use of our main result is a protocol for amortized updates of cryptographic counters. Cryp-
tographic counters, formalized by [KMO01], allow a group of participants to increment and decrement a
public-key encrypted cryptographic representation of a hidden numeric value, stored on a server, in such
a way that the server can not observe the value of the counter. The value of the counter can then be de-
termined only by someone with a private key. Cryptographic counters can be used in several electronic
voting protocols [CF85, BY86, CFSY96, CGS97, Sch99, DJ00]. One can imagine a situation in which
parties would like to modify not one cryptographic counter but several such counters. For example,
there could be a total of N counters and every party could wish to modify at most L of them. This
could be seen in situations where every voter must vote for at most L out of N candidates and possibly
also specify a ranking of the L selected candidates. We show how to obtain a communication efficient
protocol for batch cryptographic counters (better than the batch protocol that is obtained through the
trivial repetition of existing protocols). Once again, we cannot use a modification protocol in which
the size of the database increases with every update. This is because, after every party updates the
counters (or casts his or her votes), a party holding the private key, must get the value of the counter
and send a new “updated” value to the server. Clearly, privacy of the protocol would be lost here.

Our Techniques and high-level outline of our constructions

Our starting point are the techniques from Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS04] on batch
codes. Before we explain the main ideas of our construction (and in particular why batch codes do not
apply directly) we need to give short background on batch codes.

Recall that batch codes of [IKOS04] are used for encoding an N -bit database on M different servers
such that a user could read L bits of the N -bit database, with the following properties:

• The user reads the same number of bits from every server when retrieving L bits.

• The total storage of the M servers is minimized. In other words, the size of the encoding is
minimized.

At a high level, Ishai et al., make D copies of every bit and store each copy on a different server. To
decide the server on which the rth copy of a bit should be stored, they use an expander graph for the
encoding.

We note that we cannot apply the construction of Ishai et al., in our setting: in the setting of Ishai
et al., the problem is to read a bit of the (static) database, and reading any of the D copies of the
bit gives the correct value. However, while writing a bit of the database, modifying one copy out of D
copies does not yield a correct solution and modifying all eliminates all the efficiency savings.

We provide two approaches to solving this tantalizing problem. In our first solution, we use a
different encoding of a bit of the database. We encode every bit of the database through D bits such
that the majority of the D bits decodes to the bit in the database. The D copies of the bit will again be
on M different “virtual” databases. However, now in order to modify a bit in the database, one needs
to modify a majority of the copies of the bit. Unfortunately, using an expander (as in [IKOS04]) as the
encoding does not allow us to enjoy the property that a user reads the same number of bits from every
virtual database. However, it turns out that careful use of lossless expanders for our encoding achieves
the desired saving. This requires us to prove that for every set of L bits, one can modify a majority of
each of the bits in the encoding by modifying the same (small) number of bits on each virtual database.

2

The solution that we then obtain gives us an amortization on the communication complexity when we
modify a 0 bit into a 1 as well as vice-versa.

Our second approach builds on the techniques of [IKOS04] as follows. We change the base-level
representation of bits as follows. We do not store D copies of every bit, but instead encode every bit
through a set of D bits. Through a careful choice of the encoding, we can eliminate the problems that
arise when we try to apply the techniques of [IKOS04] directly. We encode a 0 through a set of D zeroes
(i.e. all D zeroes) on the “virtual databases” and a 1 through any other set of D bits. We then change
the construction of [IKOS04] to use an explicit unbalanced expander from [GUV07]. Now, to modify
an encoding of 0 to an encoding of 1, we only need to modify any single bit of the encoding which
allows us to carry analysis similar to [IKOS04]. However, this idea prevents us from modifying a 1 bit
back into a 0, as one might need to modify all bits of an encoding. This prevents us from obtaining an
amortization on the communication complexity in this case. However, in certain applications (though
not all) just modifying bits from 0 to 1 is sufficient, by designing additional machinery on top of the
“crippled” database modification protocol. We note, however, that our second construction is strictly
weaker in its properties than the first one that uses lossless expanders.

Organization of the paper. We begin with a description of the private database modification
protocol of [BKOS07] in §2. In §3, we describe our main result, the private database modification
protocol for modifying L bits with amortized communication complexity. In §4, we show how to use the
amortized private database modification protocol to obtain a public key encryption scheme supporting
PIR queries with non-constant number of keywords associated with each message. Finally, in §5, we
show how to apply the amortized modification protocol to obtain an amortization of cryptographic
counters.

2 Background: Private Database Modification with Sub-linear Com-
munication

Consider the following problem. A server is holding a database of Alice’s, which has been encrypted
under her public key. Alice would like to allow her friends to use her public key to update a bit (of their
choice) in the database by communicating directly with the server. However, she requires the following
conditions:

1. The details of each modification are hidden from the server. That is, without the private key, each
transaction for an update is computationally indistinguishable from any another.

2. Her friends need only a “small” amount of communication (sub-linear in the database size) in
order to perform an update of a single bit.

For a database of size N , we’ll call a protocol for privately updating a single bit Update(N, 1). The
first such protocol which satisfied the above requirements was developed in [BKOS07]. The [BKOS07]
protocol made use of a homomorphic cryptosystem that allows computation of polynomials of total
degree 2 on ciphertexts (due to Boneh et al. [BGN05]). That protocol has communication complexity
O(
√

N) for updating a single bit.
If one of Alice’s friends wishes to modify L bits of the database, then he or she can simply run

Update(N, 1) L times sequentially, which will of course come at a O(L
√

N) cost in communication
complexity. Hence, if Ω(

√
N) updates are to be made at once, the total communication becomes Ω(N),

making the scheme no better than communicating a new encrypted database in its entirety.
In this work, we present an oblivious database modification protocol that amortizes the communica-

tion complexity of modifying L bits of the database. Our protocol, which we will denote by Update(N, L)
has communication complexity O(

√
NL1+α poly-log(N)), where 0 < α < 1 is a constant. We begin,

however, with a brief summary of the Update(N, 1) protocol from [BKOS07].

3

The Database Modification Protocol of [BKOS07]

The work of [BKOS07] provides a simple solution to the problem of low-communication, privacy-
preserving modification of an encrypted database. The main ingredient of the protocol was the cryp-
tosystem of [BGN05]. This cryptosystem has a set of integers as its plaintext set, and has the interesting
homomorphic property that arbitrary multivariate polynomials of total degree 2 can be computed on
ciphertext. That is, given an array of u ciphertext values, call them ci = E(ri), and a u-variate polyno-
mial f of total degree two, a party with only public information can compute some function f̃(c1, ..., cu)
(in polynomial time) such that D(f̃(c1, ..., cu)) = f(r1, ..., ru). The following paragraph outlines an
Update(N, 1) protocol with O(

√
N) communication complexity.

To begin, note that for matrices A,B, C, one can express the function AB + C as a polynomial of
total degree two in the matrix entries (provided of course that the dimensions match). Next, represent
the database as a two dimensional square matrix (adding padding if needed). In order to specify the
modification of a particular bit, send two vectors of ciphertext, A and B of length

√
N which represent

an encryption of the characteristic vectors of the coordinates of the bit in the database that is to be
updated. Treating these vectors of ciphertext as

√
N × 1 and 1 × √N matrices, respectively, we can

multiply them together and produce a
√

N×√N matrix that is an encryption of the identity element in
every position except for one: the location to be updated. Now, this matrix of ciphertext can be added
to the original database (which we’ll call C), and exactly one of the N underlying plaintext values will
be modified, yet only 2

√
N ciphertext values were transmitted. Since this computation requires nothing

more than the evaluation of a polynomial of total degree 2 on ciphertext (we just computed AB +C for
the matrices described above), it can be accomplished using the cryptosystem of [BGN05] in a black-
box way, just manipulating the homomorphic properties. Essentially, this completes the description of
Update(N, 1).

3 Private Database Modification with Batches

In this section, we describe how one can amortize the communication complexity when running a private
database modification protocol to modify L bits. In other words, let Update(N, 1) denote a protocol for
private database modification to modify 1 bit of an N -bit database and let the communication com-
plexity of Update(N, 1) be denoted by CN,1. Let Update(N,L) denote a private database modification
protocol to modify L bits of an N -bit database and let the communication complexity of Update(N, L) be
denoted by CN,L. We construct two protocols for Update(N, L), such that CN,L < LCN,1 for sufficiently
large values of L.

We first begin with the description of our security game for privacy. We assume a semi-honest
adversary A that runs in probabilistic polynomial time (PPT). Informally, a semi-honest adversarial
server should not have any knowledge about which L bits a user modified in the database and also what
values these bits were modified to.

The security game for privacy is defined through the two experiments (0 and 1) below. Let Wb

denote the probability with which A outputs 1 in Experiment b for b = 0, 1.

1. In both experiments,

(a) The challenger picks the public key of the encryption scheme pk and sends it to A.
(b) A sends an N -bit string denoting the database to the challenger.
(c) The challenger encrypts these N bits using pk and sends it to A.
(d) A picks a set S ⊆ [N] of size L. For every index in S, A denotes the value to which the bit in

the index must be modified to. The challenger runs Update(N,L) with A using S as input.
This step may be repeated polynomially many times.

(e) A picks 2 sets S0 and S1 ⊆ [N], such that |S0| = |S1| = L. Also, for every index in S0 and S1,
A denotes the value to which the bit in the index must be modified to (A may also specify
that this bit not be changed).

4

2. In Experiment b, the challenger runs Update(N, L) with A using Sb as input.

3. A outputs a bit 0 or 1.

Definition 1 We say that Update(N, L) is L-private, if for all semi-honest PPT adversaries A, we
have |W0 −W1| is negligible.

Theorem 1 [BKOS07] Update(N, 1), described in §2, is 1-private.

Let Update∗(N, 1) denote a private database modification protocol in which a user runs the
modification protocol but does not modify any bit of the database. Theorem 1 also implies that A
cannot distinguish an execution of Update∗(N, 1) from an execution of Update(N, 1).

We first begin with some background on expanders in §3.1. In §3.2, we describe our first solu-
tion and in §3.3, we describe our second solution.

3.1 Expander graphs

Expanders are graphs that are sparse but highly connected. Expanders have had several applications
in computer science (see for example the survey of [HLW06]).

Definition 2 A bipartite multi-graph with N = 2n left vertices and M = 2m right vertices, where every
left vertex has degree D = 2d, can be specified by a function Γ : [N]× [D] → [M], where Γ(u, r) denotes
the rth neighbor of vertex u ∈ [N]. For a set S ⊆ [N], we write Γ(S) to denote the set of neighbors of
S. That is, Γ(S) = {Γ(x, y) : x ∈ S, y ∈ [D]}. Let |Γ(S)| denote the size of the set Γ(S).

Definition 3 A bipartite graph Γ : [N] × [D] → [M] is a (L,A) expander, if for every set S ⊆ [N],
with |S| = L, we have |Γ(S)| ≥ A · L. Γ is a (≤ Lmax, A) expander if it is a (L,A) expander for every
L ≤ Lmax.

An expander is unbalanced if M << N .

Definition 4 A (≤ Lmax, A) expander Γ : [N] × [D] → [M] is a (Lmax, ε) lossless expander if A =
(1− ε)D.

We refer the reader to [CRVW02, HLW06, TSUZ07, GUV07] for further details on lossless expanders.

3.2 Protocol using unbalanced lossless expanders

Our solution, uses techniques from the work of Ishai et al. [IKOS04] on batch codes and their applica-
tions. Ishai et al. considered the problem of encoding an N -bit database on M different servers such
that a user could read L bits of the N -bit database, with the following properties:

• Equalizing the number of bits that the user reads from each server.

• Minimizing the total storage of the M servers. In other words, minimizing the size of the encoding.

The idea in Ishai et al. is as follows. Make D copies of every bit in the N -bit database. The
parameters D and M are picked such that Γ : [N] × [D] → [M] is a (≤ Lmax, A) expander for some
A > 1. Now, the ND bits are distributed among the M servers according to the expander graph. In
other words, the rth copy of bit i ∈ [N] of the database is stored in database Γ(i, r). Now one can show
that to read any L bits of the N -bit database (with L ≤ Lmax), one only needs to read at most 1 bit
from each of the M servers. So, by reading 1 bit from each of the M servers, the first property above
can be satisfied. The bound on the total storage of the M servers is obtained through the expansion
property of Γ, thus satisfying the second property above.

5

Note that [IKOS04], do not consider the problem of modifying bits of a database. The encoding in
[IKOS04] works because in order to read a bit from the N -bit database, one only needs to read any
copy of that bit. The encoding does not directly apply in our setting as modifying 1 bit out of the D
bits that encode a bit does not result in a correct modification.

At a high level, our protocol for private database modification to modify Lmax bits of an N -bit
database is as follows. We encode every bit of the database through D bits. The majority value of
these D bits decodes to the original bit in the database. The resulting ND bits from the encoding
are distributed into M “virtual” databases according to a (Lmax, ε) lossless expander graph Γ. Let the
number of bits in each of the M virtual databases be denoted by a1, a2, · · · , aM .

We will then show that to modify a majority of each of the bits in any set of Lmax bits of the N -bit
database, one only needs to modify at most 1 bit from each of the M virtual databases. One can modify
1 bit from each of the M virtual databases using Update(ai, 1) for all 1 ≤ i ≤ M . The bound on the
communication complexity of the protocol will be obtained through the lossless expansion property of
Γ.

While reading a bit from the N -bit database, one reads all D bits that encode this bit from the M
virtual databases and takes the majority value. We first describe how to create the virtual databases.

Creating virtual databases

Consider a (Lmax, ε) lossless expander Γ : [N] × [D] → [M] as defined in §3.1. Let L = 2l and
Lmax = 2lmax .

Every node u ∈ [N] represents a bit in the database and the D = 2d neighbors of the node u are the
encoded bits of u. For bit u ∈ [N], the rth bit of the encoding of u is present in database Γ(u, r). To
read the value of bit u ∈ [N], one reads all D bits of the encoding of u and takes the majority of these
values as the value of u. Hence, note that to modify bit u, one has to modify a majority of the bits that
encode u. Below, we show that this can be done by modifying at most 1 bit in every virtual database.

Note that for all sets S ⊆ [N] with |S| = L ≤ Lmax, we have Γ(S) ≥ (1 − ε)LD. To modify bits
from a set S, we show that there is a strategy to modify at least (1− ε)D bits of the encodings of all
the bits in S by modifying at most 1 bit in each of the virtual databases.

Lemma 3.1 Let Γ be a lossless expander as above. Then for every subset S ⊆ [N] where |S| = L ≤
Lmax, the number of nodes v ∈ [M] that have exactly one neighbor in S (v is then called a unique
neighbor node with respect to S) is at least (1− ε)LD.

Proof: Suppose there exists a set S ⊆ [N] where |S| = L ≤ Lmax, such that the number of nodes
v ∈ [M] that have exactly one neighbor in S is less than (1 − ε)LD. This means, that at least εLD
nodes in [M] have two or more neighbors in S. This means that Γ(S) < εLD+LD−2εLD = LD(1− ε)
which is a contradiction to the property of expansion of lossless expanders. Hence, the lemma. ¤

Lemma 3.2 Fix any set S ⊆ [N] where |S| = L ≤ Lmax. Let gS(v) for all v ∈ [M], be a function such
that gS(v) = NIL or gS(v) = u such that u ∈ S and there exists r ∈ [D] such that Γ(u, r) = v. In other
words, gS(v) is either NIL or a neighbor of v in S. Let hS(u) = |g−1

S (u)| for all u ∈ S. That is, hS(u)
is the number of v ∈ [M] such that gS(v) = u. There exists polynomial time computable function gS(·),
such that hS(u) ≥ (1− ε)D for all u ∈ S.

Proof: We shall construct gS(·) as follows:

1. Let S′ = S. A node u ∈ S′ is satisfied if hS(u) ≥ (1− ε)D.

2. For every node v ∈ [M], let gS(v) = u if u is the only neighbor of v in S′. Let H denote the set
of nodes in S′ that are satisfied.

3. Set S′ = S −H. If S is not empty, repeat Step 2, otherwise halt, setting gS(v), for all unassigned
nodes v, to NIL.

6

We will prove that at every iteration of the algorithm, a constant number of the nodes in S′ are
satisfied. This means the algorithm will halt in time O(log L). In this case, every node u ∈ S is satisfied
and hence hS(u) ≥ (1− ε)D for all u ∈ S.

Let |S′| = L′. We will show that |H| ≥ L′
εD+1 . Let |H| = h. Let l be the number of unique neighbor

nodes with respect to S′ in [M]. We have that l ≥ (1− ε)L′D (By Lemma 3.1).
Now, consider a satisfied node u ∈ S′. The number of unique neighbor nodes with respect to S′ in

[M] that have their unique neighbor as u can be at most D. This is because the degree of every node
in U is at most D.

Consider a node u ∈ S′ that is not satisfied. The number of unique neighbor nodes with respect to
S′ in [M] that have their unique neighbor as u can be at most (1 − ε)D − 1. Otherwise, u would be
satisfied. (This is because at no stage of the algorithm did we assign gS(v) to be u when v was also a
neighbor of a node u′ ∈ S that was not already satisfied.)

Hence we have l ≤ hD + (L − h)((1 − ε)D − 1). Since l ≥ (1 − ε)L′D, we have that
hD + (L− h)((1− ε)D − 1) ≥ (1− ε)L′D, which means h ≥ L′

εD+1 . ¤

We note that the above proof is similar in flavor to the proof of error correction in linear time
encodable/decodable expander codes (Refer [SS96, CRVW02] for further details.)

Our protocol uses the specific lossless expander explicit construction from [GUV07]. We state
the theorem below.

Theorem 2 [GUV07] For all constants α > 0, every N ∈ N, Lmax ≤ N , and ε > 0, there is an explicit
(≤ Lmax, (1 − ε)D) expander Γ : [N] × [D] → [M] with degree D = O((log N)(log Lmax)/ε)1+1/α and
M ≤ D2 · L1+α

max. Moreover D is a power of 2.

Protocol Description

We now describe the private database modification protocol Update(N, Lmax).

1. Create M smaller databases according to lossless expander Γ from Theorem 2 and encode the bits
of the database into the M smaller databases as described earlier. Let size of database v ∈ [M]
be denoted by av.

2. To modify a set S ⊆ [N] of bits of the database with |S| = Lmax, create hS(v) as described in
Lemma 3.2.

3. Run Update(av, 1) to modify bit hS(v) in database v for all databases v ∈ [M]. If hS(v) = NIL,
then run Update∗(av, 1) with database v.

Protocol Correctness, Privacy and Communication Complexity

The correctness of the protocol Update(N,Lmax) follows trivially from Lemma 3.2 and from Theorem
1.

Theorem 3 Update(N, Lmax) is Lmax-private.

Proof: Lemma 3.2 shows that the number of bits we modify in each of the M virtual databases is
independent of the subset of Lmax bits we wished to modify in the original database. In particular,
in each virtual database, we either modify 1 bit by running Update(av, 1) or do not modify any bits
by running Update∗(av, 1). Now, by Theorem 1, Update(av, 1) is 1-private. Hence, no adversary
can distinguish between the case when we run Update(av, 1) and modify a bit and when we run
Update∗(av, 1). Hence, it follows that Update(N, Lmax) is Lmax-private. ¤

We now analyze the communication complexity. Note that if av is the number of bits in the

7

vth smaller database, then the communication complexity of Update(N,Lmax), CN,Lmax =
∑M

i=1 Cai,1. If
we use the private database modification protocol to modify 1 bit from Boneh et al. [BKOS07], we have
Cai,1 = O(

√
ai). We also have

∑M
i=1 ai = ND. Hence by Cauchy-Schwartz inequality, it follows that

CN,Lmax = O(
√

NDM). Setting the parameters according to Theorem 2, we get the communication
complexity to be O(

√
NMD) = O(D3/2

√
NL1+α

max), where D is poly-log in N and 0 < α < 1 is a
constant. This is an improvement upon the repeated application of the protocol of [BKOS07], when
Lmax is Ω(poly-log N).

Maintaining consistencies over different values of Lmax

Note that if we run Update(N,Lmax) when we wish to modify L bits in the database with L < Lmax,
then the communication complexity is not optimal as the communication complexity depends only
on Lmax and not on L. For example, if we have Lmax = O(

√
N), then running Update(N,Lmax)

when we want to modify L = O(4
√

N) bits, will not be optimal. Update(N,Lmax) will then have
communication complexity O(D3/2 3

√
N4+4α), which is more than the communication complexity when

running Update(N, 1), O(4
√

N) times.
Now, if we use different lossless expanders for the encoding depending on the number of bits we

wish to modify, then the encoding of each bit of the original database will not be consistent. More
specifically, since the degree of the graphs are different in different cases, we may not modify “enough”
copies of a particular bit.

To overcome this difficulty, we pick W = O((log N)2/ε)1+1/α copies of every bit and store them.
Now, for all values of Lmax ≤ N , the corresponding value of D is ≤ W . When we wish to modify Lmax

bits of the original database, we use the corresponding lossless expander with degree D. We repeat this
protocol dW

D e times using a different set of D copies of every bit in each iteration. Now, since in each
execution we modify at least (1− ε)D copies of a bit, in total we will modify at least (1− ε)W copies
of every bit that we modify and hence the decoding of majority still works. Furthermore, we increase
the communication complexity by only a factor of dW

D e, which is still poly-log in N .

3.3 Protocol using unbalanced expanders

In this section, we outline a second protocol that also obtains an amortization on the communication
complexity when modifying Lmax bits of an N -bit database.

This solution is also based on the work of Ishai et al. [IKOS04] on batch codes. We modify our
encoding of every bit of the database. We again use D bits to represent a single bit in the N -bit
database and will store the ND bits in M virtual databases. Now a set of D 0’s in the M virtual
databases decode into a 0 in the N -bit database and any other set of D bits decode into a 1 in the
N -bit database.

Now, note that in order to modify a 0 bit into a 1, the user only needs to modify at most 1 out of the
D bits that encode the bit. Following work from Ishai et al. [IKOS04], it follows that one can modify 1
copy of each bit in a set of Lmax bits of the N -bit database by modifying at most 1 bit in each of the
M virtual databases. Again using the explicit unbalanced expander from Guruswami et al. [GUV07],
one can obtain the same communication complexity as in the protocol described in §3.2. Here, we note
that we do not require the expander to be lossless, but only that it is unbalanced.

Again, in order to use the protocol with different values of Lmax, we store more copies of each bit
and use the same solution as described earlier in §3.2.

An important remark: Suppose, we know the contents of the database, and wish to modify L
bits that are all 0 into 1s. Then both protocols (described in §3.2 and §3.3) can be used to achieve an
amortization of the communication complexity as described earlier. Now, suppose we know the contents
of the database (including that of the encoding) and wish to modify L bits, that maybe either 0 or 1.
Then, only the protocol in §3.2 gives us an amortization on the communication complexity. This is
because of the following reason. In the solution described in §3.2, each bit is encoded through D bits

8

and the majority of the D bits decode to the bit in the N -bit database. Now, irrespective of whether
we are changing a 0 bit into a 1, or vice-versa, we always need to only modify at most a majority of the
D copies of the bit. Hence, the protocol in §3.2 works. However, if we were to use the protocol in §3.3,
then modifying a bit that is 1 into a 0 would require the modification of all D copies. This is because
a 0 bit is encoded as D 0s and a 1 bit by all other strings. In order to ensure correctness, if a 1 bit is
encoded by a string of D 1s, then we would have to modify all the D bits of the encoding to modify
this bit to 0. Since, we do not want to reveal which bit of the database we are modifying, we would
then have to modify all D bits in the encoding for all the L bits that we want to modify. This ends up
having the same communication complexity as running Update(N, 1) sequentially L times. Hence, the
protocol in §3.2 is strictly more powerful than the one described in §3.3.

4 Applications of Batch Protocols for Database Modification to
[BKOS07]

The protocol of [BKOS07] applies to a scenario that models a somewhat ideal internet-based email
service: all email messages are encrypted under the user’s public key, yet the user can still perform the
common tasks of searching for and retrieving messages via keywords, erasing messages, etc., without
revealing any information to the service provider about the messages nor the keywords being searched
for. Furthermore, this can be done with “small” (i.e. sub-linear) communication.

The protocols will typically involve a message sender, receiver, and a storage provider. We’ll use
the following notational conventions to represent the various parties:

X – refers to a message sending party

Y – refers to the message receiving party (owner of the private key)

S – refers to the server/storage provider

The protocol of [BKOS07] accomplished the basic task outlined above, but in order to maintain
sub-linear communication complexity as well as to preserve the correctness of the protocol, several
limitations were enforced. The most prominent conditions needed were as follows:

1. The number of messages associated to a single keyword must be bounded by a constant.

2. The number of keywords in use at any given time must be proportional to the number of messages.

3. The number of keywords associated to a particular message must be bounded by a constant.

We still enforce conditions 1 and 2 (which apply for the same technical reasons regarding correct-
ness) however using batch protocols for private database modification, we show how to relax the third
condition and allow non-constant numbers of keywords to be associated with a single message. Clearly
the protocol of [BKOS07] cannot have this capability for a keyword set of size Ω(

√
N): The expected

number of bits one is required to update would similarly be Ω(
√

N), and
√

N executions of Update(N, 1)
from [BKOS07] will yield Ω(N) communication complexity for sending this single message, violating
the requirement of maintaining sub-linear communication.

Protocol Description

The details of the protocol are fairly straightforward. Let K, E ,D represent the key generation, encryp-
tion and decryption algorithms, respectively, of a public key cryptosystem that allows for the evaluation
of polynomials of total degree 2 on ciphertext (e.g., [BGN05]). Adopting the notation of [BKOS07],
we’ll denote the maximum number of keywords that can be associated to a single message by θ. The
protocol of [BKOS07] requires that this value in fact be constant. We will make no such assumption
on θ and demonstrate a protocol that satisfies the same definitions of correctness and of privacy. Some

9

additional background and definitions from [BKOS07] can be found in Appendix A.1. The work of
[BKOS07] presents a public key storage with keyword search that is (N,λ, θ)-correct, where N is the
number of messages in the email database, as well as the maximum number of distinct keywords that
may be in use at any given time, and λ, θ are constants with θ representing the maximum number of
keywords that may be attached to a single message (even if the message is of non-constant size). Below,
we extend this protocol to maintain communication efficiency in the case of non-constant θ. In order
to simplify the description, we will present the protocol at a high level and refer the reader to the work
of [BKOS07] for details when needed. The protocol consists of the following three algorithms.

KeyGen(s) — Run the key generation algorithm K of the underlying cryptosystem to produce a public
and private pair of keys.

SendX ,S(M, W) — Sender X wants to send message M marked with the set of keywords W to Y via
S. X encrypts M and the keywords and then proceeds as in [BKOS07] in order to update the
keyword-message association structure. However, rather than repeatedly applying Update(N, 1),
X will use the Update(N, θ) protocol described in §3.2 to efficiently perform the updates as a
batch. Note that in order to mark a message as having a only single keyword, X is required to
update Ω(log2 N) bits of the Bloom filter structure that holds the keyword-message associations.

RetrieveY,S(w) — Y wishes to retrieve all messages associated with the keyword w and optionally erase
them from the server. This protocol consists of steps similar to [BKOS07] in order to decrypt
the locations of matching messages and subsequently download and decrypt. However in the case
where message erasure is also performed, we will have Y execute Update(N, θ) from §3.2 with S,
as opposed to repeated usage of Update(N, 1) (as found in [BKOS07]) which allows us to handle
non-constant numbers of keywords to be associated with a single message.

Theorem 4.1 The Public-Key Storage with Keyword Search from the preceding construction is (n, λ, θ)-
correct according to definition A.8.

Proof: This follows in much the same way as that of [BKOS07]. However, there is a need for one
remark on this subject. Recall that in [BKOS07] it was required that only a constant number of
messages were associated to a particular keyword, since fixed-length buffers were needed to represent
sets. As mentioned, we have adopted this same requirement for much the same reason. However, we
would like to note that in a practical implementation of our protocol this may be harder to achieve since
the increased number of keywords per message will naturally lead to more messages being associated
with a particular keyword. That is, if θ is large, it will generally not be possible to have every message
associated to θ keywords without exceeding λ messages associated to some particular keyword. None
the less, we emphasize that our protocol conforms to the very same definitions for correctness as that
of [BKOS07]; it is just that the antecedent will perhaps not come as easily. ¤

Theorem 4.2 Assuming CPA-security of the underlying cryptosystem, the Public Key Storage with
Keyword Search from the above construction is sender-private according to definition A.9 as well as
receiver-private according to definition A.10.

Proof: This follows almost immediately from Theorem 1, Theorem 3 and the analogous theorem
from [BKOS07]. ¤

5 Application of Batch Protocols for Database Modification to Cryp-
tographic Counters

Cryptographic counters, formalized by Katz et al. [KMO01], allow a group of participants to increment
and decrement a cryptographic representation of a hidden numeric value privately. The value of the
counter can then be determined by a specific party only.

10

More formally, there are a set of R parties, {P1, P2, · · · , PR}. These parties wish to increment and
decrement the value of a specific counter C which is stored by a party T , assumed to be semi-honest.
After they have incremented/decremented the counter C, T must reveal the value of the counter to
a specific party denoted by P . T is semi-honest and is trusted not to collude with P . At the same
time, parties wish only the output of the counter to be revealed to P . One can implement this protocol
in the following way. Let P pick a public/private key pair (pkP , skP) of an additively homomorphic
encryption scheme over Zn with n larger than the maximum value of the counter. Let Pi hold input xi.
Let E(pk, m) denote the encryption of message m with public key pk. Now, Pi sends E(pkP , xi) to T .
Using the additive homomorphic property, T computes E(pkP ,ΣR

i=1xi) and sends the result to P who
can then compute ΣR

i=1xi.
Now, suppose there are N such counters C1, C2, · · · , CN that the parties wish to update. Further-

more, assume that each user updates no more than L of these N counters. No user Pi wishes to reveal to
anyone, which of the counters he/she modified. An example of this situation would be a voting protocol
which has several candidates (N candidates). Voters have to select L out of these N candidates and
rank them. Candidates are then selected according to a weighted sum of their votes.

Now, let xi[1], · · · , xi[N] denote the inputs (or weighted votes) held by Pi (only at most L out of these
values are non-zero). Using the solution described above, Pi can send E(pkP , xi[1]), · · · , E(pkP , xi[N]) to
T . Using the additive homomorphic property, T can compute E(pkP , ΣR

i=1xi[1]), · · · , E(pkP , ΣR
i=1xi[N])

and send the result to P . However, this protocol has communication complexity O(N) for every user
Pi.

Let a cryptographic counter protocol between a user and server T , where there are N counters
and every party modifies at most L out of the N counters, be denoted by Counter(N, L). Let the
protocol to transfer an encrypted value of the final counter value from the server T and user P be
denoted by Transfer(x, y), where x and y are inputs of T and P respectively. The privacy game for
Counter(N, L) with respect to server T and the privacy game for Transfer(x, y) with respect to party
P and server T is given in Appendix A.2. We do not focus on the other security requirements such
as universal verifiability and robustness ([KMO01]). Universal verifiability informally means that any
party (including third parties) can be convinced that all votes were cast correctly and that the tally
was made correctly. Robustness informally means that the final output can be computed even in the
presence of a few faulty parties.

We now describe below two solutions for Counter(N, L) that have communication complexity
O(poly-log N

√
L1+αN).

5.1 Protocol using Lossless Unbalanced Expanders

This protocol, uses the private database modification protocol for modifying L bits of an N -bit database
from §3.2. We first note that the additively homomorphic encryption scheme of [BGN05] can be used to
encrypt messages from a polynomially large message space (of size n). Choose n such that n is greater
than the maximum value of the counter. Now, since the encryption scheme of [BGN05] is additively
homomorphic, we can use this scheme in order to encrypt the value of the counter. Every user Pi can
update the counter by sending an encryption of their input xi to T .

Now, we describe below how we can amortize the communication complexity of this protocol. We
use the (≤ Lmax, (1 − ε)D) expander Γ from Theorem 2. The protocol requires the number of parties
R to be less than 1

2ε . The protocol Counter(N, L) is described below.

1. Encode every counter through D different counters. To decode, the simple majority value of all
values held in these D counters is the value of the counter. Initially these D counters all hold an
encryption of 0 under P ’s public key according to the encryption scheme of [BGN05].

2. Now, using the protocol from §3.2, each party Pi modifies (1− ε) copies of each of the L counters
that he/she wishes to update.

11

Transfer(x, y): For each counter, T runs an efficient two-party computation [Yao82, Gol04, IKOS08]
with P in order to compute the simple majority value present in these counters and returns the value
to P . T ’s input x is all the D encrypted values of a counter and P ’s input y is the secret key of the
homomorphic encryption scheme.

Protocol correctness, security and communication complexity

We have R < 1
2ε . We note that since each party modifies at least (1− ε)D copies of every counter, after

the first modification to a counter, at least (1−ε)D copies of every counter hold the correct value. Now,
after the second modification to the counter at least (1 − 2ε)D copies of the counter hold the correct
value and so on. Since R < 1

2ε , after all parties have modified the counters, a majority of the counters
still hold the correct value of the counter and hence when evaluating the simple majority of the value
held in the counter (via the two-party computation protocol between P and T), the output obtained
will be correct.

Theorem 4 Counter(N, L) is L-private with respect to T according to the definition given in §A.2.

Proof: This theorem follows from Theorem 3, that guarantees that T cannot tell which of the L
counters were modified. ¤

Theorem 5 Transfer(x, y) is private with respect to P and T according to the definition given in §A.2.

Proof: This theorem follows from the security of the two-party computation protocol (that guarantees
that P learns only the output value of the counter) and that T does not learn the value of the counter.
¤

The communication complexity of Counter(N,L) for every user is the same as that in §3.2, that
is O(

√
NL1+αpoly-log N) for some constant 0 < α < 1. Since, the server can run an efficient two-party

computation protocol with P , with inputs of size O(poly-log N) to compute the majority value of each
counter, the communication complexity of Transfer(x, y) is O(NpolyD) which is O(Npoly-log N).

5.2 Protocol using Unbalanced Expanders

This protocol, uses the private database modification protocol for modifying L bits of an N -bit database
from §3.3. Counter(N, L) is describe below.

1. Encode every counter as D different counters. To decode, compute the sum of all these counters
to obtain the value of the counter. Initially these D counters all hold an encryption of 0 under
P ’s public key according to [BGN05].

2. Using the protocol from §3.3, each party Pi modifies any 1 copy of each of the L counters.

Transfer(x, y): For each counter, the server (using the additive homomorphism property of [BGN05])
computes the decoding of the counter and returns the encrypted value of the counter to P .

Protocol correctness, security and communication complexity

The correctness and privacy of the protocol trivially follows from the correctness and privacy of the
private database modification protocol from §3.3. The communication complexity of each user is the
same as that in §3.3.

12

References

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC’05, pages 325–341, 2005.

[BKOS07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith. Public key encryp-
tion that allows PIR queries. In CRYPTO’07, pages 50–67, 2007.

[Blo70] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13:422–426, 1970.

[BSW06] John Bethencourt, Dawn Song, and Brent Waters. New techniques for private stream
searching. Technical Report CMU-CS-06-106, Carnegie Mellon University, March 2006.

[BY86] Josh C Benaloh and Moti Yung. Distributing the power of a government to enhance the pri-
vacy of voters. In PODC ’86: Proceedings of the fifth annual ACM symposium on Principles
of distributed computing, pages 52–62. ACM, 1986.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure
election scheme. Symposium on Foundations of Computer Science, pages 372–382, 1985.

[CFSY96] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. Multi-autority
secret-ballot elections with linear work. In EUROCRYPT’96, pages 72–83, 1996.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In EUROCRYPT’97, pages 103–118, 1997.

[CRVW02] Michael R. Capalbo, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Randomness
conductors and constant-degree lossless expanders. In IEEE Conference on Computational
Complexity, page 15, 2002.

[DJ00] Ivan Damgard and Mads Jurik. Efficient protocols based on probabilistic encryption using
composite degree residue classes, 2000.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, New York, NY, USA, 2004.

[GUV07] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. In IEEE Conference on Compu-
tational Complexity, pages 96–108, 2007.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43:439–561, 2006.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their
applications. In STOC’04, pages 262–271, 2004.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with con-
stant computational overhead. In STOC’08, pages 433–442, 2008.

[KMO01] Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and applica-
tions to electronic voting. In EUROCRYPT’01, pages 78–92, 2001.

[Lip08] Helger Lipmaa. Private branching programs: On communication-efficient cryptocomputing.
Cryptology ePrint Archive, Report 2008/107, 2008. http://eprint.iacr.org/2008/107.

[OS05] Rafail Ostrovsky and William E. Skeith. Private searching on streaming data. In
CRYPTO’05, pages 223–240, 2005.

13

[OS08] Rafail Ostrovsky and William E. Skeith. Communication complexity in algebraic two-party
protocols. In CRYPTO’08, pages 379–396, 2008.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its application
to electronic. In CRYPTO’99, pages 148–164, 1999.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, 1996.

[TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, unbal-
anced expanders, and extractors. Combinatorica, 27(2):213–240, 2007.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS’82,
pages 160–164, 1982.

A Appendix

A.1 Background from [BKOS07]

For completeness, we provide some basic background from [BKOS07]. In particular, we briefly describe

• Probabilistic methods for oblivious buffer-writing

• Bloom filters and extensions

• Basic definitions of correctness and privacy

A.1.1 Oblivious Buffer-Writing

Tools like homomorphic encryption allow a party with only public information to modify encrypted
data in a meaningful way, even though the underlying data itself remains unreadable. Now consider
the problem of multiple users repeatedly writing data into an encrypted buffer in this way. One natural
problem is that since the buffer is encrypted, one party may not be aware of what parts of the buffer are
empty and what parts are available without some synchronization. Furthermore, such synchronization
may reveal information that the parties would prefer to be kept secret. The work of [OS05] proposes
a way for parties to write into a reasonably sized buffer (O(N log N), where N is the total size of
information written) in a way that requires no synchronization amongst the writers, allows the writers
to remain completely oblivious as to the existing buffer contents, yet still ensures that with overwhelming
probability exactly the data written will be recoverable from the buffer. We’ll outline the probabilistic
methods from [OS05] and state the required lemmas without proof.

Essentially, the method of [OS05] is to simply write documents into the buffer at uniformly random
locations, and employ a few probabilistic methods to overcome the difficulties that arise when documents
collide (which is inevitable, given that the buffer size should remain close to the total size of written
documents). It is assumed that nothing is recoverable from a collision of documents in the buffer
(although with additional work, this is not necessarily the case; see [BSW06] for details). Given this
strong assumption, clearly collisions must somehow be avoided. To remedy this problem, multiple copies
of each document are placed at uniformly random locations in the buffer. As this number of copies
grows, the probability of all copies of a document being unrecoverable diminishes exponentially. This
idea is formalized as follows.

Color-survival game: Let m, γ ∈ Z+, and suppose we have m different colors, call them {colori}m
i=1,

and γ balls of each color. We throw the γm balls uniformly at random into 2γm bins, call them
{binj}2γm

j=1 . We say that a ball “survives” in binj , if no other ball (of any color) lands in binj . We say
that colori “survives” if at least one ball of color colori survives. We say that the game succeeds if all
m colors survive, otherwise we say that it fails.

14

Lemma A.1 The probability that the color-survival game fails is negligible in γ.

Again, refer to [OS05] for proof of this lemma. Another slightly more subtle problem that arises
from collisions in the buffer is that they must be detected in the first place. Otherwise, it may be the
case that the result of multiple writes to the same buffer location appears to be a valid document, even
though this fabricated document was never written by any user. One simple approach from [OS05]
to address this issue is to append a “collision detection string” to each document. These strings are
randomly sampled from a distribution that has the property that sums of one or more such strings do
not belong to the distribution with overwhelming probability. One solution from [OS05] for addition
modulo 2 is given here.

Lemma A.2 Let {ei}3
i=1 be the three unit vectors in Z3

2, i.e., (ei)j = δij. Let n be an odd integer,
n > 1. For v ∈ Z3

2, denote by Tn(v) the number of n-element sequences {vj}n
j=1 in the ei’s, such that∑n

j=1 vj = v. Then,

Tn((1, 1, 1)) =
3n − 3

4

It readily follows from this lemma that if one concatenates strings of randomly chosen ei, then with
overwhelming probability in the length of the concatenation, the sum of such strings (modulo 2) will
not result in another, which yields an effective method for detecting collisions.

A.1.2 Bloom Filters

Bloom filters [Blo70] provide a way to probabilistically encode set membership using a small amount of
space, even when the universe set is large, for example {0, 1}∗. The basic idea is as follows:

Let A = {ai}l
i=1 be a finite subset of {0, 1}∗. We will represent set membership information for A by

a single element T ∈ {0, 1}m for some m ∈ Z+. First, we choose an independent set of hash functions
{hi}k

i=1, where each function hi : {0, 1}∗ −→ [m]. We’ll define T = {ti}m
i=1 by

ti =
{

1 if ∃j ∈ [k], j′ ∈ [l] such that hj(aj′) = i
0 otherwise

That is, the ith component of T is set to 1 ⇐⇒ i ∈ ⋃
j∈[k] hj(A). Now to test the validity of a

statement like “a ∈ A”, one simply verifies that thi(a) = 1,∀i ∈ [k]. If this does not hold, then certainly
a 6∈ A. If the statement does hold, then there is still some probability that a 6∈ A, however this can be
shown to be negligible in k when m and k are proportional. For details see [BKOS07, Blo70].

This work will use a variation of a Bloom filter, as we require more functionality. We would like our
Bloom filters to not just store whether or not a certain element is in a set, but also to store some values
v ∈ V which are associated to the elements in the set (and to preserve those associations).

Definition A.3 Let V be a finite set. A (k, m)-Bloom Filter with Storage is a collection {hi}k
i=1 of

functions, with hi : {0, 1}∗ −→ [m] for all i, together with a collection of sets, {Bj}m
j=1, where Bj ⊆ V .

If a ∈ {0, 1}∗ and v ∈ V , then to insert a pair (a, v) into this structure, v is added to Bhi(a) for all
i ∈ [k]. Then, to determine whether or not a ∈ S, one examines all of the sets Bhi(a) and returns true
if all are non-empty. The set of values associated with a ∈ S is simply

⋂
i∈[k] Bhi(a).

Note: every inserted value is assumed to have at least one associated value.
For our purposes, communication is at a premium, so we’d like to know the amount of space that

a (k, m)-Bloom Filter with Storage requires. The work of [BKOS07] proves the following claim, using
uniform randomness to model the behavior of the hash functions (for the purposes of probabilistic
analysis of correctness).

15

Claim A.4 Let ({hi}k
i=1, {Bj}m

j=1) be a (k,m)-Bloom filter with storage as described in Definition A.3.
Suppose the filter has been initialized to store some set S of size n and associated values. Suppose also
that m = dcnke where c > 1 is a constant. Denote the (binary) relation of element-value associations by
R(·, ·). Then, for any a ∈ {0, 1}∗, the following statements hold true with probability 1− neg(k), where
the probability is over the uniform randomness used to model the hi:

1. (a ∈ S) ⇐⇒ (Bhi(a) 6= ∅ ∀i ∈ [k])

2.
⋂

i∈[k] Bhi(a) = {v | R(a, v) = 1}

Note that the Bj are modelled abstractly as sets, but in practice, there must be some physical
structure to store the information that they contain. For our applications, just as in the protocol of
[BKOS07], we would like to obliviously update such a structure, which leads us to use fixed-length buffers
to represent the Bj . Dynamic structures (e.g., linked lists) cannot be effectively used, as their change
in size would reveal information about the updates made. The work of [BKOS07] proves the following
claim, which analyzes the storage required for using fixed length buffers to store the sets Bj . Naturally,
some uniformity will be required regarding the number of values associated to a particular element
a ∈ S.

Claim A.5 Let ({hi}k
i=1, {Bj}m

j=1) be a (k,m)-Bloom filter with storage as described in Definition A.3.
Suppose the filter has been initialized to store some set S of size n and associated values. Again,
suppose that m = dcnke where c > 1 is a constant, and denote the relation of element-value associations
by R(·, ·). Let λ > 0 be any constant. If for every a ∈ S we have that |{v |R(a, v) = 1}| ≤ λ then

Pr
[

max
j∈[m]

{|Bj |} > σ
]

< neg(σ)

Again, the probability is over the uniform randomness used to model the hi.

Combining these results with those of §A.1.1, we see that we can obliviously update an encrypted
Bloom filter with storage, just using homomorphic encryption. Updates can be performed by many
different, independent users holding only public information. Also, note that these users need not know
anything about the current contents of the encrypted data structure. Finally, given our work in §2, we
can furthermore accomplish this with sub-linear communication. These are the basic ingredients used
by [BKOS07] to create a public key encryption scheme that supports PIR queries by keywords.

A.1.3 Some Definitions from [BKOS07]

In the following definitions, these notational conventions are employed:

• X – refers to a message sending party

• Y – refers to the message receiving party (owner of the private key)

• S – refers to the server/storage provider

Definition A.6 A Public Key Storage with Keyword Search consists of the following probabilistic
polynomial time algorithms and protocols:

• KeyGen(1s): Outputs public and private keys, Apublic and Aprivate of length s.

• SendX ,S(M, K,Apublic) This is either a non-interactive or interactive two-party protocol that allows
X to send the message M to a server S, encrypted under some public key Apublic, and also
associates M with each keyword in the set K. The values M, K are private inputs that only the
message-sending party X holds.

16

• RetrieveY,S(w, Aprivate): This is a two party protocol between a user Y and a server S that retrieves
all messages associated with the keyword w for the user Y. The inputs w, Aprivate are private inputs
held only by Y. This protocol also removes the retrieved messages from the server and properly
maintains the keyword references.

Correctness is defined as follows:

Definition A.7 Let Y be a user, X be a message sender and let S be a server/storage provider. Let
Apublic, Aprivate ←− KeyGen(1s). Fix a finite sequence of messages and keyword sets:

{(Mi,Ki)}m
i=1 .

Suppose that, for all i ∈ [m], the protocol SendX ,S(Mi, Ki, Apublic) is executed by X and S. Denote by
Rw the set of messages that Y receives after the execution of RetrieveY,S(w, Aprivate). Then, a Public
Key Storage with Keyword Search is said to be correct on the sequence {(Mi,Ki)}m

i=1 if

Pr
[
Rw = {Mi | w ∈ Ki}

]
> 1− neg(1s)

for every w, where the probability is taken over all internal randomness used in the protocols Send and
Retrieve. A Public Key Storage with Keyword Search is said to be correct if it is correct on all such
finite sequences.

Definition A.8 A Public Key Storage with Keyword Search is said to be (n, λ, θ)-correct if whenever
{(Mi,Ki)}m

i=1 is a sequence such that

• m ≤ n

• |Ki| < θ, for every i ∈ [m], and

• for every w ∈ ⋃
i∈[m] Ki, at most λ messages are associated with w

then, it is correct on {(Mi,Ki)}m
i=1 in the sense of Definition A.7.

Finally, privacy for the sender and receiver are defined in the following ways:

Definition A.9 We define Sender-Privacy in terms of the following game between an adversary A and
a challenger C. A will play the role of the storage provider and C will play the role of a message sender.
The game consists of the following steps:

1. KeyGen(1s) is executed by C who sends the output Apublic to A.

2. A asks queries of the form (M,K) where M is a message string and K is a set of keywords, and
C answers by executing the protocol Send(M, K,Apublic) with A.

3. A now chooses two pairs (M0,K0), (M1,K1) and sends this to C, where both the messages and
keyword sets are of equal size, the latter being measured by set cardinality.

4. C picks a bit b ∈ {0, 1} at random and executes the protocol Send(Mb,Kb, Apublic) with A.

5. A may ask more queries of the form (M, K) and C responds by executing Send(M, K, Apublic) with
A.

6. A outputs a bit b′ ∈ {0, 1}.

17

We define the adversary’s advantage as

AdvA(1s) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.

We say that a Public-Key Storage with Keyword Search is CPA-Sender-Private if, for all A ∈ PPT, we
have that AdvA(1s) is a negligible function.1

For the message receiver, privacy is defined as

Definition A.10 We define Receiver-Privacy in terms of the following game between an adversary A
and a challenger C. A will again play the role of the storage provider, and C will play the role of a
message receiver. The game consists of the following steps:

1. KeyGen(1s) is executed by C who sends the output Apublic to A.

2. A asks queries of the form w, where w is a keyword, and C answers by executing the protocol
RetrieveC,A(w,Aprivate) with A.

3. A now chooses two keywords w0, w1 and sends both to C.
4. C picks a bit b ∈ {0, 1} at random and executes the protocol RetrieveC,A(wb, Aprivate) with A.

5. A may ask more keyword queries w and C responds by executing RetrieveC,A(w, Aprivate) with A.

6. A outputs a bit b′ ∈ {0, 1}.
We define the adversary’s advantage as

AdvA(1s) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.

We say that a Public Key Storage with Keyword Search is CPA-Receiver-Private if, for all A ∈ PPT,
we have that AdvA(1s) is a negligible function.

A.2 Privacy game for batch cryptographic counters

The privacy for batch cryptographic counters with respect to server T (modified from [KMO01]) is given
through the following two experiments 0 and 1.

Let the batch cryptographic counter protocol with N counters, where every party modifies at most
L counters, be denoted by Counter(N,L). Let Wb denote the probability with which A outputs 1 in
Experiment b for b = 0, 1.

1. In both experiments,

(a) The challenger picks the public key of the encryption scheme pk and sends it to A. A plays
the role of the server T here.

(b) A sends N values denoting the initial values of the N cryptographic counters to the challenger.

(c) The challenger encrypts these N values using pk and sends it to A.

(d) A picks a set S ⊆ [N] of size L. For every index in S, A denotes the value by which the
counter in the index must be incremented or decremented. The challenger runs Counter(N, L)
with A using S as input. This step may be repeated polynomially many times.

1“PPT” stands for Probabilistic Polynomial Time. We use the notation A ∈ PPT to denote that A is a probabilistic
polynomial-time algorithm.

18

(e) A picks 2 sets S0 and S1 ⊆ [N], such that |S0| = |S1| = L. Also, for every index in S0 and S1,
A denotes the value by which the counter in the index must be incremented or decremented
(A may also specify that this counter not be changed).

2. In Experiment b, the challenger runs Counter(N,L) with A using Sb as input.

3. A outputs a bit 0 or 1.

Definition 5 We say that Counter(N,L) is L-private with respect to server T (run by A), if for all
semi-honest PPT adversaries A, we have |W0 −W1| is negligible.

The privacy of Transfer(x, y) with respect to party P and server T is defined via standard definitions
of two-party computation which guarantees that P does not learn anything other than the final value
of the counter and that T does not learn anything.

19

