
Cryptographic Protocol Composition
via the Authentication Tests?

Joshua D. Guttman

The MITRE Corporation

Abstract. Although cryptographic protocols are typically analyzed in
isolation, they are used in combinations. If a protocol was analyzed alone
and shown to meet some security goals, will it still meet those goals when
executed together with a second protocol? While not every choice of a
second protocol can preserve the goals, there are syntactic criteria for
the second protocol that ensure they will be preserved. Our main result
strengthens previously known criteria.

Our method has three main elements. First, a language L(Π) in classi-
cal logic describes executions of a protocol Π, and expresses its security
goals. Strand spaces provide the models for L(Π).

Second, the strand space “authentication test” principles suggest our
syntactic criterion for security goals to be preserved.

Third, certain homomorphisms among models for L(Π) preserve the
truth of formulas of the syntactic form that security goals take. This
provides a way to extract—from a counterexample to a goal that uses
both protocols—a counterexample using only the first protocol.

1 Introduction

Protocol analysis focuses largely on understanding the secrecy and authentica-
tion properties of individual, finished protocols. There is a good reason for this:
Each security goal then definitely either holds or does not hold. However, an
analysis is more reusable and of higher value, if we know which of its results will
remain true after combination with other protocols, and perhaps other kinds of
extensions to the protocol.

In practice, every protocol is used in combination with other protocols, of-
ten with the same long-term keys. Also, many protocols contain messages with
“blank slots.” Higher level protocols piggyback on them, filling the blank spots
with their own messages. We want to find out when the goals that hold of a
protocol on its own are preserved under combination with other protocols, and
when these blanks are filled in.

Two results on composition. Two existing results, both within the Dolev-
Yao model [13], are particularly relevant. We showed [17] that if two protocols
manipulate disjoint sets of ciphertexts, then combining the protocols cannot
undermine their security goals. We called this the disjoint encryption property.
? Supported by MITRE-Sponsored Research, 08-1441. Email: guttman@mitre.org.

2 October 6, 2008

A careful, asymmetric formulation of “disjoint encryption” allowed us to show
that one protocolΠ1 may produce ciphertexts—in a broad sense including digital
certificates as well as Kerberos-style tickets—consumed by another protocol Π2,
without Π2 undermining any security goal of Π1. The relation is asymmetric
because faulty production of these ciphertexts by Π1 may certainly undermine
goals of Π2.

Our result concerned only protocols that completely parse the messages they
receive to atomic values, and do not handle messages containing unstructured
blank slots. A second limitation was that it covered only protocols using atomic
keys, not keys produced (e.g.) by hashing compound messages. A recent result
by Cortier, Delaitre and Delaune [9] lifts these two limitations, but only in
the symmetric case, where neither protocol produces ciphertexts that may be
consumed by the other.

One stimulus for the present paper was to combine these two results.

Our approach. We view protocol executions—more specifically, the parts car-
ried out by the rule-abiding, regular participants, but not the adversary—as
forming objects we call skeletons [12]. A skeleton containing enough protocol
behavior to have occurred, when combined with some adversary behavior, is
called a realized skeleton. If more information about regular behavior is required
to obtain a possible execution, then the skeleton is unrealized.

In this paper, we introduce a first order language L(Π) to describe skeletons
of each protocol Π. The skeletons containing regular behaviors of Π provide a
semantics, a set of models, for formulas of L(Π). Security goals are formulas G,
of specific forms, belonging to L(Π). A skeleton A is a counterexample to a goal
G when it is realized, but it satisfies G’s negation, A |= ¬G.

When we try to show that a protocol Π2 does not undermine any security
goal of a protocol Π1, we are interested in two languages, namely L(Π1) and
L(Π1 ∪Π2). L(Π1) is a sublanguage of L(Π1 ∪Π2), so that the security goals
G1 of L(Π1) are some of the security goals of the larger language L(Π1 ∪Π2).
Likewise, the skeletons of Π1 are some of the skeletons of Π1∪Π2, namely those
in which no Π2 activity occurs.

Suppose that G1 is a goal in L(Π1), and A |= ¬G1 is a counterexample using
behavior of Π1 ∪Π2. We are seeking a syntactic condition on Π1,Π2 such that
we can always extract, from this Π1 ∪Π2-counterexample, a skeleton containing
only Π1 activity which is already a counterexample. So Π2 behavior was not
needed to build the counterexample; Π1 alone already undermined the goal G1.

In this paper, we define a syntactic relationship called strong disjointness
between protocols Π1,Π2. When two protocols are strongly disjoint, then Π2

does not undermine any goals G1 achieved byΠ1 in isolation. The authentication
test principles suggest both the definition of strong disjointness, and also the
operations on skeletons that allow us to extract a suitable Π1-counterexample
A1 given a Π1 ∪Π2-counterexample A.

In particular, there are two steps to extracting A1. One is simply a restriction
that omits non-Π1 behavior. The other is a step of generalization or removal,
in which we insert blank slots in place of all encrypted units that do not belong

October 6, 2008 3

specifically to Π1. Each of these operations preserves satisfaction for negated
security goals. Together, they yield a realized Π1 skeleton from any realized
Π1 ∪Π2 skeleton, hence together they preserve counterexamples.

This approach, which is possibly of interest in itself, is essentially model-
theoretic. Model theory characteristically combines two elements. The first con-
sists of algebraic relations (embeddings and restrictions, automorphisms, homo-
morphisms, etc.) among the structures interpreting a logic. The second is the
syntactic formulas, often focusing on formulas of particular logical forms. The
expressive power of a set of formulas is limited when those formulas do not
distinguish among certain models, i.e. the models satisfy the same formulas in
this set. Typical model-theoretic results combine these two ingredients; a simple
example is the fact that a homomorphism between two structures for first order
logic preserves satisfaction of atomic formulas.

A second stimulus for the current paper was to illustrate the power of this
model-theoretic approach to security protocols.

Structure of this paper. In Section 2, we provide an example. It is intended to
illustrate the importance of the asymmetric relation between protocols Π1,Π2.
It also illustrates the authentication tests and the intuitive disjointness property.
Section 3 provides background on messages, strands, protocols, and homomor-
phisms. It is adapted from [12, 11]. One fine point distinguishing those two papers
is that [12] worked in a framework without blank slots in protocols, while [11]
established its completeness result for a stronger framework that includes blank
slots. Section 4 summarizes the authentication tests, and the completeness result
of [11], although in a far more compact and abstract form. This reformulation is
another small contribution of the present paper. Section 5 formalizes the “mul-
tiprotocols” that we have informally written in the form Π1 ∪ Π2, and proves
some useful facts about the removal or generalization operator on skeletons.

In Section 6 we define the strong disjointness property. We prove a key result
about realized skeletons A for a multiprotocol Π1 ∪Π2 with strong disjointness.
Namely, restricting A to Π1, and then generalizing by removing all encryptions
that belong to Π2, yields a realized skeleton A1 as its extracted result. Section 7
presents the languages L(Π) for expressing security goals G, and their skeleton-
based semantics. We show that when A |= ¬G, then for the extracted result A1,
A1 |= ¬G, which is the main result of the paper.

Section 8 discusses some additional related work, particularly the Protocol
Composition Logic of [10], and mentions future work on more general forms of
protocol elaboration.

2 Example: Anonymous identities in trusted computing

We consider as an example a certificate distribution protocol for Trusted Plat-
form Modules (TPMs). It allows a machine with a TPM to retrieve a certificate
for a newly generated public key K, binding K to a made-up identity I, but
ensuring that the corresponding private key K−1 is resident within a TPM. A

4 October 6, 2008

zero-knowledge protocol would be desirable for this purpose, and although such
a protocol exists [6], called Direct Anonymous Attestation, it is neither simple
nor indeed perfectly correct [3].

The earlier protocol that we describe is a conventional, certificate-based pro-
tocol [5], in which a certifying authority called a Privacy Certificate Authority
(PCA) binds I,K, allowing K to be used as an “anonymous identity key” (AIK).
If the public part of an AIK is properly certified, then its corresponding private
part should be securely stored within some TPM. Thus, it can be used only in
accordance with certain rules, and with less risk of compromise. Second, one
should be unable to link any AIK with a particular TPM without the assistance
of the TPM itself or the certifying PCA. Thus, the AIK provides the owner of
the computer containing the TPM a guarantee of privacy or anonymity, while
providing the consumer of statements signed with it the assurance that they
were prepared within some genuine TPM.

Before creating this anonymous identity credential (AIC), the issuing PCA
checks an “Endorsement Credential” signed by the TPM manufacturer. The EC
asserts—about a public encryption key EK—that its inverse EK−1 is a TPM-
resident private key. Since the AIC is transmitted encrypted with EK, the AIC
can only be decrypted and freed within that TPM. The TPM is designed to
verify that K−1 is available within this TPM, and is a suitable type of key,
before releasing the AIC. A modified version of the protocol is shown in Fig. 1.
We have omitted some details, and added a parameter x, which may be used to

x - TPM

•

{|I ˆK ˆxˆek cred|}pubk(P)- {|I ˆK ˆxˆek cred|}pubk(P)- PCA

•

� {|aic|}EK � {|aic|}EK •

�aic
•
w

ek cred = [[ekctag MFGˆEK]]sk(MFG)

aic = [[aictag I ˆK ˆx]]sk(PCA)

Fig. 1. TCG Anonymous Identity Protocol (modified)

restrict the use of the resulting AIC, for instance determining when it expires,
or limiting it to specific later protocols. In this protocol, {|m|}pubk(A) refers to m
encrypted with a public key for which A holds the decryption key, and [[m]]sk(A)

refers to m accompanied by a digitally signed hash, prepared using a signature
key held by A. The tags ekctag and aictag are distinguishing bitpatterns that
make an EC and an AIC distinguishable from other cryptographically prepared
values.

October 6, 2008 5

Security Goals of AIP. There are two main goals for the protocol, which
should hold whenever an AIC is observed, bearing the signature of an uncom-
promised PCA. The first is that there should have been a run of the PCA role
that produced this certificate, and transmitted it encrypted with some key EK.
The second is that there should have been a run of the TPM role, which received
the AIC encrypted with this same EK, and retransmitted the AIC in the clear.
These two goals are authentication goals, since they assert that uncompromised
(regular) principals executed certain actions.

This protocol does not have confidentiality goals, since none of the values
it transmits is a secret. The EC is transmitted only under encryption, to pro-
vide some protection, but nothing in the protocol depends on this public key
certificate remaining undisclosed.

AIP and other protocols. This protocol is useful only if the resulting AIC
can be used. Thus, the AIC must be consumed in other protocols, in which the
keys K,K−1 are used.

As an example, suppose that the owner of K would like to use it for writing
electronic checks against an account he holds with a bank B. He would like a
protocol to prove possession of K−1 to B, thereby obtaining a check-writing
certificate for K certified by B. This check-writing certificate would in turn
be used in a protocol to prepare individual checks for particular purchases. A
merchant would be able to associate a check with a particular individual only
with B’s collusion. It would be able to associate the check with a particular
TPM only with the collusion of both B and the PCA.

A protocol, of the kind we have described, to retrieve a check-writing certifi-
cate has two crucial characteristics:

1. the protocol must consume an AIC, to ensure that the signature key K−1 is
a genuine TPM-resident key;

2. the protocol cannot create new AICs, so that every AIC must still be gen-
erated as a result of a run of the original AIP.

The first condition implies that the Cortier-Delaitre-Delaune criterion [9] can-
not apply to the AIP and our check-writing protocol. Moreover, it provides no
guidance as to how to design successive stages in a protocol suite so as not to
undermine the guarantees achieved by their predecessors.

The second condition tells us something crucial about how to achieve pro-
tocol independence. The AIC is transformed twice in this protocol: once, it is
transformed from a state of non-existence into existence, but transmitted only
in the special form {|aic|}EK. This transformation is carried out by the PCA. Sec-
ond, the client TPM transforms the AIC by extracting it from its encryption; it
checks for the presence of K−1 before emitting aic. In order to respect condition
2, a secondary protocol must avoid exactly these transformations. It must never
create an AIC; and it must never extract an AIC from an encrypted form.

Unfortunately, the Guttman-Thayer criterion [17] does not apply because of
the unstructured blank slot x in the protocol.

6 October 6, 2008

There are two benefits of a systematic way to ensure that multiple protocols
will not interfere. One benefit is that it simplifies protocol verification. The pri-
mary protocol is verified once in isolation. A second protocol that consumes its
cryptographic outputs must be verified in combination with it; but the verifica-
tion is independent of future protocols to be added later. In particular, state-
space exploration methods for protocol verification (e.g. [18, 2]) have a smaller
job, and invariant-based proof methods (e.g. [19]) have smaller case splits.

However, a second larger benefit, in our opinion, is that a protocol com-
position criterion provides a guide for designing supplementary protocols. The
secondary protocol has specific rules it must “play by” in consuming values pro-
duced in the primary protocol, and in using keys embedded within those values.

How not to interfere with AIP. AIP depends on two central transforma-
tions. The first creates an aic, but only in the encrypted form {|aic|}EK, and only
after the endorsement credential has been checked. The second transformation
extracts aic from its encrypted form, and does so only if the private part K−1

of the certified key is actually resident in the TPM performing the decryption.
Thus, even if an adversary capturing an endorsement credential, he cannot trick
the TPM containing EK−1 into freeing aics.

If AIP were supplemented with a protocol executing either of these trans-
formations, then AIP’s guarantees might fail. For instance, if any run of a sup-
plementary protocol created any message that is also an instance of the form
aic, then a consumer of these credentials could be misled. Or suppose that any
run of a supplementary protocol—having received anything of the form aic only
within an instance of {|aic|}EK—could emit it outside this encryption. Then an
aic might become available without a TPM having checked that K−1 is resident.

Hence, to avoid interference, the secondary protocol should never transform
any of the “critical values” on which the primary protocol depends. This check
is syntactic in nature: unification can identify locations where a critical value
of the primary protocol might be created in a secondary protocol, or where a
critical value, having been received by a run of a secondary protocol, might be
retransmitted in any new form.

Crucial intuition. Thus, to ensure that a secondary protocol does not un-
dermine security goals of a primary protocol, we must design it not to trans-
form units belonging to the primary protocol. A primary unit may be an en-
cryption e with an ingredient t1 v e which some transformation will extract
from e. This was the case with the transformation carried out by the TPM
in the AIP protocol; i.e. e is {|aic|}EK and t1 is aic. Alternatively, a primary
unit may be an encryption e where the relevant transformation is to create a
value of the form e. This was the case with the transformation carried out by
the Privacy Certificate Authority when it first created the cryptographic value
aic = [[aictag I ˆK ˆx]]sk(PCA), although in this example e happens to be created
inside an encryption {|aic|}EK.

In order to formalize this idea, we will define the key strand space ideas,
including the authentication test principle.

October 6, 2008 7

3 Strands and other preliminaries

We represent the messages as an algebra A, freely generated by the two oper-
ations of tagged concatenation tagname t0ˆt1 and encryption {|t0|}t1 . Concate-
nations nil t0ˆt1 with the distinguished tag nil are written t0ˆt1 without the
tag. The operations generate A starting from from a set of atoms and from
indeterminates.

The indeterminates represent blank slots, and they may be replaced by any
message in A, like unsorted variables. The atoms are partitioned into sorts atomic
key, nonce, text, name, etc. The operators sk(a) and pubk(a) map names to
signature keys and public encryption keys respectively, and K−1 which maps an
asymmetric atomic key to its inverse, and a symmetric key to itself. Non-atomic
messages can also be used as keys, in which case they act as symmetric keys.

One message t0 may be an ingredient in another t, written t0 v t, where v
is the smallest reflexive, transitive relation on messages such that t0 v t0ˆt1,
t1 v t0ˆt1, and t0 v {|t0|}t1 . The key used in an encryption is not an ingredient,
but an aspect of how the ciphertext was prepared.1 Observe also that a 6v sk(a).

We view each message in A as an abstract syntax tree where the vertices are
of four kinds, namely atoms, indeterminates, encryptions, and concatenations.
Atoms and indeterminates are vertices that are always leaves of the tree, and
these vertices are labeled with the particular atom or indeterminate involved.
The internal vertices—concatenations and encryptions—each have two children.
In an encryption vertex, the edge leading to the first child is the plaintext edge
and the edge leading to the second child is the key edge. In a concatenation
vertex, the vertex is labeled with a tag tagname.

A path as a sequence of choices {`, r}. A path leading to a node, starting
from t1, is defined in the usual inductive way. We write @p(t1) for the node to
which p leads, starting from t1. When p does not lead to any node starting from
t1, then we write @p(t1) ↑. This is the case when p is too long, because a proper
subpath of p has reached a leaf.

The ingredient relation t0 v t means that, for some p, @p(t1) = t0, and p
does not traverse any key edge.

Definition 1. Let S be a set of encryptions. A message t0 is found only within
S in t1, written t0 �S t1, iff for every path p such that @p(t1) = t0, either (1) p
traverses a key edge or else (2) p has a proper subpath p1 such that @p1(t1) ∈ S.

Message t0 is found outside S in t1, written t0 †S t1, iff it is not the case
that t0 �S t1. ut

Thus, t0 †S t1 iff there exists a path p where @p(t1) = t0, and (1) p traverses no
key edge, and (2) p traverses no member of S before reaching t0. If t0 6v t1, then
t0 �S t1 for all sets of encryptions S. Indeed, t0 6v t1 iff t0 �∅ t1.

We formalize “transformation” using this notion. A role transforms a value t0
if it transmits a message t1 where t0 †S t1, when until this transmission, the role
1 v, long called the subterm relation in the strand space literature, frequently caused

terminological confusion. Possibly the word “ingredient” will be better.

8 October 6, 2008

had sent and received t0 in messages where t0 �S t1. We express two apparently
different things using the same terminology here.

– When S 6= ∅, the encryptions in S describe envelopes protecting t0. When a
message t is sent in which t0 †S t, the sender has transformed t0 by removing
it from these enveloping forms. We also sometimes speak of transforming a
member of S by removing an ingredient t0 from it.

– When S = ∅, if t0 �∅ t1 for all the previous messages t1, and if a subsequent
message t is sent in which t0 †∅ t, then the sender has created the value t0.

Homomorphisms. A homomorphism α on A is a function that maps atoms
to atoms of the same sort, and indeterminates to any message in A, where α
commutes with the operators sk(a), pubk(a), K−1, tagname t0ˆt1, and {|t0|}t1 .
So

α({|t0|}t1) = {|α(t0)|}α(t1)

α(tagname t0ˆt1) = tagname α(t0)ˆα(t1).

A homomorphism is determined by its action on atoms and indeterminates. In
the tree model of messages, to apply a homomorphism means to walk through,
copying the tree, but inserting α(a) every time an atom a is encountered, and
inserting α(x) every time that an indeterminate x is encountered.

If t1 = α(t0), then each path p within t1 is of one of two forms. If p is a path
within t0, and @p(t0) = t, then @p(t0) = α(t). Otherwise p is too long. In this
case, p = p0

_p1, where @p(t0) = x leads to an indeterminate x within t0, and
p1 is a path within α(x). Then @p1(α(x)) = @p(t1).

We use homomorphisms for many purposes, e.g. to represent unifiers. We lift
their action to larger objects that contain messages, including the local sessions
of principals, which we represent as strands, and global executions, which we
formalize as realized skeletons.

Strands and origination. We represent the behavior of a single principal in
a single run of a protocol as a strand, i.e. as a finite sequence of nodes, each of
which either transmits or receives some message. We regard transmission nodes
as positive and reception nodes as negative. For instance, in Fig. 1, the two
vertical columns of nodes connected by double arrows ⇒ are strands.

A message t0 originates at a node n1 if (1) n1 is a transmission node; (2)
t0 v msg(n1); and (3) whenever n0 ⇒+ n1, t0 6v msg(n0). Thus, t0 was transmit-
ted without having been either received or transmitted previously on the same
strand. Values assumed to originate only on one node in an execution—“uniquely
originating” values—formalize the idea of freshly chosen, unguessable values.

A looser relation than the ingredient relation v between terms and their
parts is also useful. The appears in relation � between messages is the smallest
reflexive, transitive relation on messages such that t0 � t0ˆt1, t1 � t0ˆt1, and
both t0 � {|t0|}t1 and t1 � {|t0|}t1 . Viewing the terms as abstract syntax trees,
t0 � t means that there is a path through the tree representing t that reaches a
vertex representing t0. It is permitted to traverse key edges.

October 6, 2008 9

Protocols. A protocol Π is a finite set of strands, representing the roles of
the protocol. Two of the roles of the AIP are the strands shown in Fig. 1. The
executions of a role ρ ∈ Π are obtained by replacing values appearing in ρ
by suitable values. For example, in Fig. 1, we may replace I,K, etc., by any
name, asymmetric key, etc., and we may replace x by any (possibly compound)
message. Thus, the instances of the roles ρ ∈ Π are their images α(ρ) under
homomorphisms α of the algebra A.

We impose a condition on how roles use indeterminates, which represent
the “blank slots” in which a protocol participant manipulates a value without
parsing it to atomic components. The indeterminates represent values received
from protocol peers, or passed down from higher-level protocols as parameters.
Thus, we stipulate:

If n1 lies on ρ ∈ Π, and for some indeterminate x, x� msg(n1),
then there is a negative node n0 ⇒∗ n1 such that x v msg(n0).

This ensures that an indeterminate is received as an ingredient in an incoming
message before being sent as an ingredient in an outgoing message. The initial
node on the TPM AIC role in Fig. 1 represents the indeterminate x being received
from the higher level protocol that has invoked the TPM activity.

We assume that every protocol contains a special role, called the listener role
Lsn[y] which has a single reception node in which y is received. The instances of
this role are all strands containing a single reception event, for any message; they
are used to document the fact that this value is available without any crypto-
graphic protection. For instance, the instance Lsn[K] documents that the key K
is compromised, since it is available (hence also available to the adversary) with-
out being protected by any encryption. The three roles of AIP are the listener
role together with the two shown in Fig. 1.

A principal executing a role such as the PCA’s role in AIP may be partway
through its run; for instance, it may have executed the first receive event without
“yet” having executed its second event, the transmission node.

Skeletons. A skeleton A consists of any number of (possibly partially executed)
role instances, which we represent as a finite set of nodes, nodes(A), annotated
with three additional kinds of information:

1. A partial ordering �A on nodes(A);
2. A finite set uniqueA of nonces and atomic keys assumed uniquely originating

in A;
3. A finite set nonA of atomic keys assumed non-compromised in A.

We stipulate that nodes(A) is compatible with the strand behavior, and the
ordering, in the sense that n1 ∈ nodes(A) and n0 ⇒ n1 implies n0 ∈ nodes(A) and
n0 �A n1. We also stipulate that if a ∈ uniqueA, then a originates at most once
in nodes(A). If a ∈ nonA, then we assume that a originates nowhere in nodes(A),
though it or its inverse may have been used to prepare some cryptographic value
appearing in nodes(A).

10 October 6, 2008

A skeleton is realized if the behavior it describes can occur without any
additional activity of the regular participants. In particular, A is realized if, for
every reception node n, the adversary can construct msg(n) using as inputs:

1. all messages msg(m) where m ≺A n and m is a transmission node;
2. any atomic values a such that a 6∈ (nonA∪uniqueA), or such that a ∈ uniqueA

but a originates nowhere in A

using the adversary strands given in Definition 2.

Definition 2. A penetrator strand has trace of one of the following forms:
Ma: 〈+a〉 where a is atomic Mg: 〈+g〉 where g is an indeterminate
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉

A skeleton A is a skeleton over a particular protocol Π if every strand with
nodes in nodes(A) is an instance of some role of Π.

If α is a homomorphism on A, we can sometimes regard it as a function on
skeletons by applying α to the messages on all nodes of A, as well as to the sets
uniqueA and nonA. Naturally, α must respect the clauses for uniqueA and nonA
in the definition of skeleton; i.e. α cannot identify K ∈ nonA with any atom that
originates in A, or identify a ∈ uniqueA with another atom if this would give α(a)
two originating nodes in the resulting skeleton. We write α(A) for the resulting
skeleton, when this is defined, and regard α as a homomorphism on skeletons.
In [12] we use a compatible although more inclusive notion of homomorphism.

4 Authentication tests

The authentication test idea is that when certain transformations have been
observed, they represent a kind of test that can be explained or “solved” in only
a few ways.

Definition 3. A cut in a skeleton A is a partition of nodes(A) into two sets L,U
such that (1) U is non-empty, and (2) if m ∈ L and n ∈ U , then n 6�A m. ut

Suppose either c = {|t0|}t1 is an encrypted message, or c = a is an atom where
c ∈ uniqueA originates uniquely on some regular node, and suppose that S is a
set of encrypted messages such that c †S msg(n) for some n ∈ nodes(A). Letting

U = {n ∈ nodes(A) : ∃m.m �A n ∧ c †S msg(m)},

and L = nodes(A) \ U , it follows that L,U is a cut in A. This cut separates all
the nodes where c has never previously been found outside S from those nodes
in which this is no longer true.

The authentication test principle states that there are only three ways that
this can happen, i.e. that in a realized skeleton, one of three kinds of action
must account for c “escaping” from the protection afforded to it by the set of
encryptions S:

October 6, 2008 11

1. some regular transmission node sends c outside S; or
2. c = {|t0|}t1 and the encryption key t1 to construct c from t0 was compromised

prior to c’s escape, as may be documented with a listener node; or else
3. a decryption key K−1 was compromised prior to c’s escape—as may like-

wise be documented in a listener node that receives K−1—and it allows the
adversary to extract c from some member {|t|}K of S.

In fact, all the protocol analysis possible within this simple Dolev-Yao model is
a systematic exploration of these cases [11].

Definition 4. Let A be a skeleton. A critical value for A is either an encrypted
message c = {|t0|}t1 , or else an atom c ∈ uniqueA where c originates on some
regular node n0 ∈ nodes(A). Let S be a set of encrypted messages.

Cut(c, S,A), the test cut for c, S in A, is the cut L,U (if one exists) such that
c is a critical value and

U = {n ∈ nodes(A) : ∃m.m �A n ∧ c †S msg(m)}.

S is the escape set of Cut(c, S,A). ut

Lemma 5. If c is a critical value for A, and ∃n ∈ nodes(A) . c †S msg(n), then:

1. (L,U) = Cut(c, S,A) is defined;
2. U has �A-minimal nodes; and
3. If n1 is �A-minimal in U , then c †S msg(n1), but for all m ≺A n1, c �S

msg(m).

A test cut is solved when there is an explanation for how c escaped from S:

Definition 6. L,U = Cut(c, S,A) is solved iff, for every �A-minimal member
n1 of U , either:

1. n1 is a transmission node; or
2. there is a listener node m = Lsn[t] with m ≺A n1, and either

(a) c = {|t0|}t, or else
(b) for some {|t0|}t1 ∈ S, t is the corresponding decryption key t = t−1

1 .

The solutions for Cut(c, S,A) are the �A-minimal transmission nodes in U
together with the listeners satisfying the conditions for m. A is saturated if
Cut(c, S,A) is solved whenever defined, for every c, S. ut

We summarize the two main facts about saturated skeletons:

Theorem 1. 1. Every realized A has a realized saturated extension A′, where:
(a) nodes(A) ⊆ nodes(A′), and every m ∈ (nodes(A′)\nodes(A)) is a listener

node;
(b) �A = �A′ ∩(nodes(A)× nodes(A));
(c) uniqueA = uniqueA′ and nonA = nonA′ .

2. If A is saturated, then A is realized.

12 October 6, 2008

Clause 1 expresses the soundness of the authentication tests [11, Props. 2,3], and
clause 2 expresses the completeness of the authentication tests [11, Prop. 5]. We
call A′ a saturated extension of A if it satisfies the properties given in clause 1.

A useful fact, for our present purposes, is that the escape set S may be
restricted to “relevant” encryptions, where encryptions are relevant if they are
ingredients in the skeleton:

Lemma 7. Suppose S′ includes all encryptions that are ingredients of messages
in A, i.e. for all encryptions e and all n ∈ nodes(A), e v msg(n) implies e ∈ S′.
Then:

1. Cut(c, S,A) = Cut(c, S ∩ S′,A), or else both are undefined, and
2. A is saturated iff all well-defined cuts of the form Cut(c, S∩S′,A) are solved.

5 Multiprotocols

In our context, we are interested in an initially given protocol, the primary
protocol Π1, as well as a protocol Π which includes it. We have written Π in
the form Π1 ∪Π2, but this is slightly misleading. We really want to distinguish
the behaviors of Π1 from those behaviors of Π that are definitely not behaviors
of Π1.

Definition 8. 1. (Π,Π1) is a multiprotocol if Π,Π1 are protocols, and every
role of Π1 is a role of Π.

2. A node nj is primary if the strand segment n0 ⇒ . . . ⇒ nj leading to nj

is identical with an initial segment of some α(ρ1) for ρ1 ∈ Π1. That is, the
directed term ±ti on ni has the same direction as the ith node mi of ρ1, and
ti = α(msg(mi)), for each i ≤ j. A node n2 is secondary if it lies on some
instance of some ρ ∈ Π, but it is not primary.

3. E(Π1) is the set of primary encryptions:

E(Π1) = {α(e1) : ∃n1, ρ1 . e1 v msg(n1) ∧ n1 lies on ρ1 ∧ ρ1 ∈ Π1},

i.e. instances α(e1) of an ingredient of a node lying on a ρ1 ∈ Π1. Any non-
primary encryption e2 6∈ E(Π1) is a secondary encryption. ut

E(Π1) 6= {e : ∃n1, ρ1, α . e v msg(n1) ∧ n1 lies on α(ρ1) ∧ ρ1 ∈ Π1}, since the
latter will contain all encryptions, at least if Π1 has any role with an indetermi-
nate as ingredient. This is the näıve generalization of the definition used in [17],
and the crucial change to make the definition useful for protocols with indeter-
minates (blank slots) is to use E(Π1) instead. E(Π1) contains the instances of
encryptions that are syntactically present as ingredients in the roles of Π1. Al-
though changing the definition is not hard, proving that this provides a correct
definition requires work.

We sometimes refer to the secondary nodes of (Π,Π1) as a secondary protocol
Π2, but this is not really correct. For instance, Π1 contains the listener role, so

October 6, 2008 13

listener nodes are primary, not secondary, and Π2, which has no listener nodes,
does not satisfy our definition of protocols.

When analyzing (Π,Π1), we want to know whether all realized skeletons ofΠ
satisfy the goals achieved by all realized skeletons of Π1. Naturally, the analysis
may be iterated: An enclosing protocol Π may be a subprotocol of some new
Π ′; thus, (Π ′,Π) is a multiprotocol that should not undermine the goals of Π.

Secondary encryptions never originate on primary nodes, and that is why, in
the definition of protocol, we required each indeterminate to be received on a
role ρ ∈ Π before any other appearance:

Lemma 9. Let e2 be a secondary encryption, such that e2 � msg(n), where
n = α(n1) for some n1 lying on ρ1 ∈ Π1. For some negative m, m ⇒∗ n and
e2 v msg(m), so e2 does not originate on n.

Proof. Let t1 = msg(n1) and t = msg(n) = α(t1). By the definition of applying
a homomorphism, for every path p to any encryption e in t, either @p(t1) is also
an encryption e1, or else p = p1

_p2, where @p1(t1) = x is an indeterminate, and
@p2(t1) leads to e within α(x). In the first case, e = α(e1), so this case does not
apply to the secondary encryption e2. Thus, each location at which e2 appears
is of the form p = p1

_p2 where @p1(t1) = x is an indeterminate.
Since n1 is positive, then there is a negative n0 such that n0 ⇒+ n1 and

x v msg(n0). Since:

e2 v α(msg(n0)) and α(n0) ⇒+ n,

we may take m = α(n0). ut

In constructing a Π1-skeleton from a Π-skeleton that is a counterexample A, we
will use two operations:

1. Restricting A by discarding its secondary nodes, and
2. Removing encryptions that do not belong to Π1, by undoing homomor-

phisms, so to speak.

We turn now to removals, the second of these, and will return to restrictions in
the next section.

Removing eliminable encryptions. An encryption e is ineliminable if e ∈

{α(e1) : ∃e1, n1, ρ . e1 � msg(n1) ∧ n1 lies on ρ1 ∈ Π1},

that is, when e is an instance of some encryption that appears syntactically
within any role of Π1. An eliminable encryption e is an encryption that is not
ineliminable. Thus, the eliminable encryptions are those that are not an instance
of any encryption syntactically appearing in a primary role. Eliminable encryp-
tions do not overlap primary encryptions, although there may also be encryptions
that are neither eliminable nor primary. The ineliminable but non-primary en-
cryptions are used as compound keys in creating primary encryptions, or perhaps
are nested within these compound keys.

14 October 6, 2008

When eliminable encryptions appear in A |̀Π1, we would like to remove them,
in the sense of considering a preimage of A |̀Π1 under a homomorphism, such
that eliminable encryptions no longer appear in this preimage. That is, we would
like to remove the eliminable encryptions by moving from A |̀Π1 = α(A0) to A0,
which may be properly chosen to contain no eliminable encryptions.

Suppose that a homomorphism α = [xi 7→ ei]i∈I maps the indeterminates
xi to encryptions ei and leaves every other indeterminate y and every atom a
unchanged. We regard α as a recipe for removing appearances of the ei from t1,
obtaining some result t0 where the following conditions hold:

1. t1 = α(t0);
2. no xi appear in t1, i.e. xi 6� t1; and
3. no ei appears in t0, i.e. ei 6� t0.

Given t1, for every choice of {ei}i∈I , we may select new indeterminates {xi}i∈I

such that this can succeed. However, when some of the eis may appear within
others, there may be more than one result t0 compatible with the conditions.
For instance, if ei � ej , one may choose whether to remove an occurrence of ej

from t1, or whether instead to remove an embedded occurrence of ei. In either
case, this may eliminate both ei and ej from the result.

We stipulate that the removal should always opt to excise the larger message,
i.e. ej in the example given. Let us say that p is a distinguishing path for t0, t1 if
the topmost vertices of @p(t0) and @p(t1) do not have the same type and label,
but for each proper subpath p′ of p, the topmost vertices of @p′(t0) and @p′(t1)
do have the same type and label. Let Dist(t0, t1) be the set of all distinguishing
paths for t0, t1.

Definition 10. Let the set I be finite, let {xi}i∈I be an I-indexed family of inde-
terminates, and let {ei}i∈I be an I-indexed family of encryptions, both without
repetitions. Let α = [xi 7→ ei]i∈I be the homomorphism that is the identity for
all indeterminates y 6∈ {xi}i∈I , and for all atoms, while mapping each x1 to ei.
Then α is a removal for a message t1 if, for all i ∈ I, xi 6� t1.

The result of the removal α for t1 is the term t0 such that:

1. ∀i ∈ I . ei 6� t0; and
2. ∀p ∈ Dist(t0, t1), ∃i ∈ I .@p(t1) = ei, and @p(t0) = xi.

α is an eliminative removal if each ei is eliminable. ut

Algorithmically, to determine t0 given t1, {ei}i∈I and {xi}i∈I , where the xis do
not appear in t1, we walk the abstract syntax tree for t1. We copy structure,
except that as soon as we encounter any subtree equal to any ei, we insert xi

instead.
In favorable cases, the relations � and † are preserved by message removal:

Lemma 11. Let α = [xi 7→ ei]i∈I be a removal for t1 with result t0:

1. c �S t0 implies α(c) �α(S) α(t0), when ∀i ∈ I, α(c) �α(S) ei.
2. c †S t0 implies α(c) †α(S) α(t0), when ∀i ∈ I, ∀t ∈ S, ei 6� t.

October 6, 2008 15

Proof. 1. Suppose that p ∈ [`, r]∗ is a path in α(t0) leading to α(c) without
traversing a key edge. By the definition of homomorphism, p is of one of two
forms:
(a) p is a path within t0. Since c �S t0, p traverses some t ∈ S within t0.

Thus, p traverses α(t) within α(t0).
(b) p = p1

_p2 where p1 leads within t0 to x, and p2 leads within e to α(c).
Then since α(c) �α(S) e, p2 traverses some member of α(S).

2. Let p be a path within t0 leading to c without traversing either a key edge
or a member of S before its end. Suppose that p = p1

_p2, where p1 leads
within t0 to some value t 6∈ S; is it possible that α(t) ∈ α(S)? Equivalently,
is there some t′ ∈ S, such that α(t′) = α(t)?
If so, then t and t′ differ only for paths that in one lead to xi and in the
other lead to ei. By the definition of removal, we know that ei 6� t. Likewise,
by the assumption that ei does not appear in any member of S, we know
that ei 6� t′. Thus, t′ = t 6∈ S, contradicting the choice of t′. ut

We may lift removals to strands and to Π1-skeletons; α is a (skeleton) removal
for A1 if it is a (message) removal for msg(n) for each node n ∈ nodes(A). If the
ei are eliminable encryptions, then we call this an eliminative removal. If A were
a Π-skeleton but not a Π1-skeleton, then the result of the eliminative removal
α might include strands that are not instances of any role.

Lemma 12. The result of an eliminative removal on a primary node is a pri-
mary node for the same role. I.e. let nj be a primary node, and let α be an
eliminative removal for the messages lying on n0 ⇒ . . . ⇒ nj, an instance of
some role ρ. Then the result of the removal m0 ⇒ . . .⇒ mj consists of primary
nodes for an instance of ρ.

In particular, if c1 is a primary encryption c1 = α(e1), then the result of the
removal c0 is a primary encryption of the form c0 = α′(e1).

Proof. By induction on the j-tuple of sets

〈Dist(msg(mi),msg(ni)) 〉i≤j

of minimal-length paths at which corresponding nodes mi and ni differ. We
order these tuples pointwise, using the inclusion partial order on the sets of
distinguishing paths.

Fix m0 ⇒ . . .⇒ mj , and assume that the lemma holds for all n′0 ⇒ . . .⇒ n′j
that differ from m0 ⇒ . . .⇒ mj with smaller distinguishing tuple. In particular,
〈Dist(msg(mi),msg(ni)) 〉i≤j = 〈∅, . . . , ∅〉, then n0 ⇒ . . . ⇒ nj is primary by
assumption.

Since mj is primary, there is a β and ρ1 ∈ Π1 such that the mi are the
successive nodes of an initial segment of β(ρ1). We assume that the xi do not
appear in ρ1, perhaps because they are chosen distinct from all indeterminates
appearing in all roles of Π.

If p is a path to some secondary e2 in msg(ni), then p = p1
_p2, where

p1 reaches some indeterminate y within ρ1 ↓ i, and p2 reaches e2 within β(y).

16 October 6, 2008

Choosing z not appearing in the nodes 〈ni〉i, 〈mi〉i, or roles of Π, [z 7→ e2] is
a removal for β(y). Let β′ differ from β only in that β′(y) is the result of the
removal [z 7→ e2] for β(y). Then β′(ρ1 ↓ i) is a primary node by definition.
Moreover, β′(ρ1 ↓ i) differs from mi at a smaller set of paths than does ni. ut

Skeletons being finite structures containing messages of finite size, for every
skeleton, there is a finite set of eliminable encryptions appearing anywhere in
it. Hence, there are full eliminative removals that remove all of them. For a full
eliminative removal for a skeleton A, we take the finite set

{ei}i∈I = {e : ∃n ∈ nodes(A) . e� msg(n) ∧ e is eliminable}.

Primary cuts are those created by the behavior of the primary protocol:

Definition 13. Cut(c, S,A) is a primary cut if

1. Cut(c, S,A) is well-defined;
2. if c is an atom, then c originates on a primary node;
3. if c is an encryption, then c ∈ E(Π1); and
4. S ⊆ E(Π1). ut

Lemma 14. Let α be a full eliminative removal for A1, with result A0, and α
be a removal for S1 with result S0. If Cut(c0, S0,A0) = L0, U0 is a primary cut,
then (1) Cut(α(c0), S1,A1) = L1, U1 is a primary cut; and α(U0) ⊆ U1.

Proof. 1. Since Cut(c0, S0,A0) is well-defined, there is a minimal n0 ∈ U0

where c0 †S0 msg(n0). Since α is a removal for S1 with result S0, we
may apply Lemma 11, Clause 2, inferring that α(c0) †S1 α(msg(n0)). Thus,
Cut(α(c0), S1,A1) = L1, U1 is well-defined. The remaining conditions are
immediate.

2. If n ∈ U0, then there is a minimal n0 ∈ U0 with n0 �A0 n. Thus, α(n0) �A1

α(n). As we have just seen, α(c0) †S1 α(msg(n0)), so α(n0) ∈ U1. Hence
α(n) ∈ U1. ut

6 Strong disjointness

The key notion—for ensuring that a multiprotocol does not interfere with the
goals of its primary protocol—concerns how the secondary nodes transform en-
cryptions. To create an encryption is one way to transform it, or another way is
to remove some ingredient—such as a smaller encryption or a nonce or key—from
inside it.

Definition 15. 1. Suppose that e ∈ E(Π1). If e originates on any secondary
transmission node n2, then n2 is an encryption creation conflict.

2. Suppose that e ∈ E(Π1), and t1 v e v msg(n2), where n2 is a secondary
reception node. Suppose n2 ⇒+ n′2, where n′2 is a transmission node, and
t1 v msg(n′2). Node n′2 is an extraction conflict if for some set S ⊆ E(Π1):

(∀m. m⇒+ n′2 ⊃ t1 �S msg(m)) ∧ t1 †S msg(n′2).

October 6, 2008 17

3. Π,Π1 has strongly disjoint encryption (s.d.e.) iff it has neither encryption
creation conflicts nor extraction conflicts. ut

Strong disjointness, as defined here, may not appear entirely syntactic, because
its definition talks about all strands of the protocols Π and Π1. However, it may
be checked in a syntactic way using the definitions of the finitely many roles of Π
and Π1. To check whether there is an encryption creation conflict, we consider
each encryption e1 that is an ingredient in any node of a role ρ1 ∈ Π1. Suppose
that e1 unifies with some encryption e2 that is an ingredient in a transmission
node m′, with most general unifier α, where α(msg(m′)) is a secondary node.
Then there should be a node m such that

m⇒+ m′ and α(e2) v (α(msg(m))).

If this is always the case, then there are no encryption creation conflicts. The
use of unification to check extraction conflicts is more elaborate but similar.

Our main theorems—Thm. 2 here and Thm. 3 in Section 7—show that
s.d.e. suffices to be able to extract a realized Π1-skeleton from a realized Π-
skeleton, and that these Π1-skeletons witness for the fact that Π does not un-
dermine security goals achieved by Π1.

Lemma 16. Let Π,Π1 have s.d.e., with A a Π-skeleton, and let Cut(c, S,A) =
L,U be primary. Solutions for Cut(c, S,A) are primary nodes.

Proof. A solution is either a listener node m—which is primary—or else a �A-
minimal transmission node m1 ∈ U . So suppose m1 is secondary.

If c is an atom, then since it originates uniquely, and on a primary node,
there are nodes m0 ⇒+ m1, where c v msg(m0). By Lemma 5, c is found only
within S in all the nodes preceding m1 on the same strand, but c †S msg(m1),
so m1 is an extraction conflict.

If c is an encryption, then it is a primary encryption by the definition of a
primary cut. If c originates on m1, then m1 is an encryption creation conflict.
Thus, there are nodes m0 ⇒+ m1, where c v msg(m0). By Lemma 5, c is
found only within S in all the nodes preceding m1 on the same strand, but
c †S msg(m1), so m1 is an extraction conflict. ut

Lemma 17. Let Π,Π1 have s.d.e., with A a saturated Π-skeleton. Suppose
Cut(c, S,A) = L,U is primary. If for some m ∈ L and secondary encryption
e2, e2 v msg(m), then either c �S e2 or else Cut(c, S,A) = L,U has a listener
solution.

Proof. If c 6v e2, the conclusion is immediate, so assume that c v e2. Suppose
that c †S e2.

First, suppose that c is an atom. Then by the definition of primary cut, c
originates on a primary node n0. However, by Lemma 9, e2 does not originate
on n0. Also, e2 is not an ingredient in the message of any earlier node, since it
contains c. Thus, e2 is not an ingredient in msg(n0). Hence, letting S′ = {e ∈
S : e2 6v e}, in fact c �S′

msg(n0).

18 October 6, 2008

Since m ∈ U ′, where Cut(c, S′,A) = L′, U ′, there exists a �A-minimal n1 �A
m in U ′. If n1 has a listener solution, then because S′ ⊂ S, so does Cut(c, S,A) =
L,U .

So suppose that n1 is a transmission node. By Lemma 16, n1 is a primary
node. In particular, by Lemma 9, e2 does not originate on n1. Moreover, since
c †S

′
e2, e2 is not an ingredient in any earlier node on the strand of n1. Therefore,

e2 6v msg(n1). Hence, in fact, c †S msg(n1). contradicting the assumption that
n1 �A m ∈ L.

Second, suppose that c is an encryption. If the earliest n0 �A m such that
c v msg(n0) is a reception node, then since A is saturated, Cut(c, ∅,A) is solved,
and there is a listener solution preceding n0. This is also a listener solution for
Cut(c, S,A). Alternatively, suppose that n0 is a transmission node on which c
originates. From this point, the argument follows the same form as when c is an
atom. ut

Restricting to protocol Π1. When a Π-skeleton A is a counterexample to a
goal of Π1, we are interested in the subskeleton of A which omits all secondary
nodes.

Definition 18. If A is a Π-skeleton, then its Π1 restriction, A |̀ Π1, is the
subskeleton A1 of A such that:

1. m ∈ nodes(A1) iff m ∈ nodes(A) and m is primary.
2. m �A1 n iff m �A n and m,n ∈ nodes(A1).
3. uniqueA1

= uniqueA and nonA1 = nonA. ut

Definition 8 declares a node primary if the strand segment leading to it is iden-
tical with an initial segment of an instance of a role ρ1 ∈ Π1; it does not matter
what “would come later.”

Theorem 2. Let Π,Π1 have strong disjoint encryption, and let A be a realized
Π-skeleton. If A0 is the result of a full eliminative removal α applied to A |̀Π1,
then A0 is a realized Π1-skeleton.

Proof. We first prove that the theorem holds in case A is saturated. By Thm 1,
it suffices to show that A0 is also saturated. Let A1 = A |̀ Π1. Since A1 is a
Π1-skeleton, the result A0 of the removal α is a Π1-skeleton.

Supposing Cut(c0, S0,A0) = L0, U0 is well-defined, we would like to show
that it is solved. Since in A0 no secondary encryptions whatever appear, by
Lemma 7, we may assume that S0 is chosen to be primary. Since c0 †S0 n1 for
some n1 ∈ nodes(A0), c0 v msg(n1). Hence if c0 is an encryption, it is a primary
encryption. So Cut(c0, S0,A0) is a primary cut.

Let α(c0) = c, α(S0) = S. Cut(c, S,A1) = L,U is well defined by Lemmas 5,
11. The other clauses for a primary cut are clearly satisfied. Thus, Cut(c, S,A1)
is primary.

By the definition, Cut(c, S,A) is also a primary cut, and since by assump-
tion A is realized, Thm. 1 implies it is solved. Moreover, Lemma 16 implies

October 6, 2008 19

that all of its solutions lie on primary nodes, so Cut(c, S,A1) is also solved; let
Cut(c, S,A1) = L1, U1.

Let n0 ∈ U0 be �A0-minimal. By Lemma 14, α(n0) ∈ U1, although it may
not be minimal. However, let n1 �A1 α(n0) be �A1-minimal in U1. If n1 is solved
with a listener node m, then its result under the removal solves n0 ∈ U0.

So suppose that n1 ∈ U1 is minimal, and solved only by a primary trans-
mission node m1. The node m1 lies on some strand • ⇒∗ m1, and the result of
applying the removal α is some strand • ⇒∗ m0 in A0. Is the latter a solution
for Cut(c0, S0,A0) = L0, U0?

First, observe that for any node • prior to m0, c0 is found only within S0.
Otherwise, Lemma 11 Clause 2 would imply that c appears outside S prior to
m1, so that it would not be a solution. By Lemma 11 Clause 1, we may infer
that c0 is found outside S0 in msg(m1), unless c �S ei for one of the removed,
secondary ei. However, in this case, by Lemma 17, Cut(c, S,A) has a listener
solution, returning us to an earlier case.

Finally, suppose that A is realized. Then, by Thm 1, A has a realized satu-
rated extension A′ that differs only in what listener strands it contains. Apply
the preceding to obtain a realized Π1 skeleton A′

0. The desired A0 is the sub-
skeleton of A′

0 that discards listener nodes from A′
0 when they are in A′ but not

in A. ut

Our last job is to show that A1 is a Π1-counterexample to any Π1-security goal
to which A is a counterexample. But for that, we need a definite notion of what
a security goal is.

7 A language L(Π) to describe skeletons of Π

Given a protocol Π, we define a first order vocabulary for talking about the
skeletons over Π.

Definition 19. L(Π) consists of:

Variables Var ranging over nonces (e.g. N,Na), atomic keys (e.g. K), atoms
(e.g. a), messages (e.g. x, y), as well as variables ranging over nodes (e.g.
m,n, n1). We treat the sorts in the manner of order-sorted algebra [15];

Predicate symbols equality u = v, falsehood false (no arguments), and:
– Non(v), Unq(v), and UnqAt(n, v), meaning respectively that v is assumed

non-compromised, that v is assumed uniquely originating, and that v is
assumed uniquely originating and moreover originates at node n;

– Pos(n) and Neg(n), meaning respectively that node n is positive, i.e. a
transmission node, or negative, i.e. a reception node;

– n0 ⇒ n1 and n0 ≺ n1, meaning respectively that n0 immediately pre-
cedes n1 on the same strand, and that n0 precedes n1 in the partial
ordering ≺A;

20 October 6, 2008

– One role predicate for each node on each role inΠ. For each role of length
k, there are k predicates. The arguments to the ith role predicate consist
of one node variable m, together with one variable for each parameter
to the role that has appeared in any of the first i messages. ut

Thus, every protocol has a role predicate Lsn1(m,x), meaning that m is the first
node on a listener strand, on which message x has been received. In the case of
the AIP TPM role, there are four role predicates, of which the first two are:

– aip tpm1(m,x), meaning that m is a reception node not preceded by any
other on its strand, and the message received is on node m is just the pa-
rameter x, as dictated by the definition of the AIP TPM role;

– aip tpm2(m,x, i, ks, f, e, ke), meaning thatm lies on the second position on its
strand after a node m′ such that aip tpm1(m′, x), and m transmits message:

{|iˆkˆxˆ[[ekctag f ˆe]]ks|}ke.

These predicates are certainly not independent, given the valid formula:

aip tpm2(m2, x, i, k, f, e, p) ⊃ ∃m1 .m1 ⇒ m2 ∧ aip tpm1(m1, x).

If Π1 is a subprotocol of Π in the sense that every role of Π1 is a role of Π, then
L(Π1) is a sublanguage of L(Π).

Two ingredients are conspicuously missing from L(Π). Normally, one would
expect this sort of language to have function symbols for the message construc-
tors, encryption and concatenation. One would also expect a function which,
given a node, would return the message sent or received on that node. We have
omitted them for two reasons. First, we would like to make L(Π) as insensitive
to the notational specifics of the protocol Π as possible, so that it describes the
goals of the protocol without excessive reliance on choices about the syntax of
messages. Second, we want to focus the security goals on the roles and their
parameters. Assertions about compound messages embedded within parameters
would provide artificial ways to construct counterexamples to our protocol inde-
pendence theorem.

However, if we wanted to reason axiomatically about protocols, we would
need to work within an expanded language with message constructors and a
function to extract the message sent or received on a node. Goals would continue
to be expressed in the sublanguage L(Π1).

Semantics. The semantics for L(Π1) are a straightforward classical semantics,
given the requirement that each structure form a skeleton for the protocol Π.
This requirement builds the permissible behaviors of Π directly into the seman-
tics without requiring an explicit axiomatization.

Definition 20. Let L(Π) be the language for Π, and A be a skeleton for Π.
An assignment σ for A is a function from variables of L(Π1) to messages, as

well as to nodes. Two assignments σ, σ′ are similar up to v, written σ ∼v σ
′, if

for every variable v′, different from v, σ(v′) = σ′(v′).
Satisfaction A, σ |= Φ is defined inductively:

October 6, 2008 21

A, σ |= Φ ∧ Ψ iff A, σ |= Φ and A, σ |= Ψ ;
A, σ |= Φ ∨ Ψ iff A, σ |= Φ or A, σ |= Ψ ;
A, σ |= ¬Φ iff A, σ 6|= Φ;
A, σ |= ∀v . Φ iff for every σ′, if σ ∼v σ

′, then A, σ′ |= Φ;
A, σ |= ∃v . Φ iff for some σ′, σ ∼v σ

′ and A, σ′ |= Φ;
A, σ |= u = v iff σ(u) = σ(v);
A, σ |= Non(v) iff σ(v) ∈ nonA;
A, σ |= Unq(v) iff σ(v) ∈ uniqueA;
A, σ |= UnqAt(m, v) iff σ(m) ∈ nodes(A), and

σ(v) ∈ uniqueA, and σ(v) originates at node σ(m);
A, σ |= Pos(m) iff σ(m) ∈ nodes(A), and σ(m) is a transmission node;
A, σ |= Neg(m) iff σ(m) ∈ nodes(A), and σ(m) is a reception node;
A, σ |= m⇒ n iff m,n ∈ nodes(A), and σ(m) ⇒ σ(n);
A, σ |= m ≺ n iff σ(m) ≺A σ(n);

A, σ |= RoleRhoJ(m, v1, . . . , vk) iff

σ(m) ∈ nodes(A), and σ(m) is the jth node on its strand, and the suc-
cessive transmissions and receptions on nodes n⇒∗ m are identical with
the respective transmissions and receptions on the first j nodes of role
ρ, instantiated with the values σ(v1), . . . , σ(vk).

We write A |= Φ when A, σ |= Φ for all σ. ut

When n is a variable over nodes, although σ(n) 6∈ nodes(A) is permitted, in that
case, whenever φ(n) is an atomic formula, A, σ 6|= φ(n).

In the satisfaction definition, the only noteworthy clause is the last, which
stipulates that only the nodes preceding σ(m) on its strand are relevant to
whether it satisfies RoleRhoJ(m, v1, . . . , vk). In protocols where there are two
different roles ρ, ρ′ that differ only after their first j nodes—typically, because
they represent different choices at a branch point after the jth node [16, 14]—the
two predicates RoleRhoJ and RoleRho′J are equivalent.

When one has a notion of homomorphism for a class of structures, one would
expect (unnegated) atomic formulas to be preserved under homomorphisms.
Moreover, the homomorphisms we use in this paper are bijections between the
nodes of A and those of α(A), and they do not enrich the ordering on nodes.

Lemma 21. 1. If A, σ |= φ and φ is an atomic formula, then α(A), α◦σ |= φ.
2. If α(A), α ◦ σ |= φ, and φ is of any of the forms:

m = n, Pos(n), Neg(n), m ≺ n, and m⇒ n,
with m,n variables over nodes, then A, σ |= φ.

3. If α is injective, and α(A), α ◦ σ |= φ, and φ is of any of the forms:
x = y, Non(v), Unq(v), and UnqAt(m, v),

then A, σ |= φ.
4. If α is an eliminative removal, and α(A), α◦σ |= φ, and φ is a role predicate,

then A, σ |= φ.

22 October 6, 2008

Proof. 1. By cases on the definition. 2. By the injectiveness of the skeleton ho-
momorphism α on nodes. 3. By injectiveness and the definition of skeleton ho-
momorphisms α. 4. By Lemma 12. ut

What is a security goal? A security goal is either an authentication or a
confidentiality property. An authentication goal requires a peer to have executed
some behavior. If the authentication goal is a goal of Π1 this behavior should be
a strand belonging to Π1. The peer’s behavior may have expected values for all
parameters, or else for just some of the parameters, in which case the remaining
parameters may freely take any value. A realized A is a counterexample when A
does not contain any such behavior.

A confidentiality goal requires some desired secret t not to be shared as a
parameter of another strand. In the usual case, this other strand is a listener
strand Lsn[t], in which case the goal ensures that t can never be transmitted in
plaintext, without being protected by encryption. A realized A is a counterexam-
ple to this if it contains a listener strand Lsn[t] of the form t→ •. More generally,
a realized A is a counterexample to a confidentiality goal if it contains a strand
of the prohibited kind, with the given parameter t. We consider here only “full
disclosure” goals, rather than “partial information” goals, in which the adver-
sary learns that the regular behavior is compatible with some values of t, but
not others. Much is known about the relation between full disclosure goals and
partial information goals, e.g. [4, 8].

A security goal also has assumptions. These assumptions may concern unique
origination of some values. They may concern long-term keys that are uncom-
promised, and thus non-originating. Finally, the assumptions may concern which
roles have been instantiated, e.g. asserting that something must be true if a re-
sponder strand has occurred. Alternatively, we may assume that part of a role
has been instantiated, e.g. asserting that something must be true if the first
two nodes on a responder strand have occurred. The languages L(Π) have been
designed to express these properties.

Definition 22. 1. A security hypothesis is an atomic formula of L(Π).
2. An authentication conclusion is a conjunction Ψ of atomic formulas of L(Π).
3. Suppose that G0 is Φ ⊃ ∃v0 . . . vj . (Ψ1 ∨ . . . ∨ Ψk), where Φ is a conjunction

of security hypotheses and each Ψi is an authentication conclusion. If k = 0,
this is the empty disjunction false. Suppose that, for every variable n over
nodes occurring free in G0, one of the hypotheses in Φ is a role predicate
RoleRhoJ(n, u, . . . , w).
Then G, the universal closure of G0, is a security goal of Π. G is an authen-
tication goal if k > 0 and a confidentiality goal if k = 0.

4. A counterexample to G is a realized Π-skeleton A such that A 6|= G. Π
enforces G if G has no counterexamples. ut

For a protocol to enforce goal G, we require only that A |= G hold for realized
A. Nevertheless, satisfaction is defined for all skeletons A, and this eases stating
the invariants we need in proving Thm. 3.

October 6, 2008 23

Main result. Our main theorem now depends only a further lemma, which
says that being a counterexample to a Π1-security goal is preserved under our
two operations. This lemma does not assume Π,Π1 strongly disjoint.

Lemma 23. Let Π,Π1 be a multiprotocol, with G1 ∈ L(Π1) a security goal for
Π1. Let B be a Π-skeleton, with B |= ¬G1.

1. B |̀Π1 |= ¬G1;
2. If A results from B by an eliminative removal γ, then A |= ¬G1.

Proof. Let G1 = ∀v0, . . . , vj . Φ0 ∧ . . . ∧ Φk ⊃ ∃u0, . . . , u`(Ψ0 ∨ . . . ∨ Ψi). Let
B, σ |= Φ0 ∧ . . .∧Φk, where there is no τ differing from σ only on u0, . . . , u` such
that B, τ |= Ψ0 ∨ . . . ∨ Ψi. So, for every such τ ,

B, τ |= Φ0 ∧ . . . ∧ Φk ∧ ¬Ψ0 ∧ . . . ∧ ¬Ψi.

We must show that all of the Φs remain true, while all of the Ψs remain false.

1. In this case, any atomic formula that does not mention a variable over nodes
will have its truth value unchanged.

Suppose that one of the Φs is a role predicate RoleRhoJ(n, u, . . . , w). Since
G1 is a security goal of L(Π1), RoleRhoJ concerns a primary role, and since
the atomic formula is satisfied in B, σ(n) is a primary node. Therefore, σ(n) ∈
nodes(B |̀Π1), as are the predecessors of n on the same strand. Thus, B |̀Π1 |=
RoleRhoJ(n, u, . . . , w).

If Φ is another atomic formula that contains a node variable n, then by the
definition of security goal, there is a Φ′ in which n is also the node variable.
Thus, as we have just observed, it is a primary node σ(n) ∈ nodes(B |̀Π1). From
the definitions of restriction and satisfaction, we can see that all of the formulas
m = n, UnqAt(n, v), Pos(n), Neg(n), m ≺ n, and m ⇒ n are preserved under
restriction when the relevant nodes belong to the restricted skeleton.

Consider now a (false) security conclusion Ψ . Since Ψ is a conjunction, for
some conjunct ψ of Ψ , B, τ |= ¬ψ. If ψ does not mention a node variable, its
falsehood is certainly preserved. Suppose it mentions a node variable n, and
suppose first that σ(n) ∈ nodes(B |̀Π1) is primary. If B |̀Π1, τ |= ψ, then this fact
would be preserved under the embedding of B |̀Π1 into B (Lemma 21, Clause 1).
If instead σ(n) is secondary, then σ(n) 6∈ nodes(B |̀ Π1), so that we certainly
have B |̀Π1, τ |= ¬ψ. An atomic formula is true only if the nodes it mentions are
present in the skeleton.

2. Let τ ′ be the result of the eliminative removal γ to τ ; i.e. τ ′(x) is the result
of the removal γ on τ(x), for each variable x.

If any of the Ψs were satisfied by some A, τ ′, then Lemma 21 Clause 1 would
imply that it is satisfied by B, τ . For the Φs, we use the remaining clauses of
Lemma 21. ut

Theorem 3. Let Π,Π1 have strongly disjoint encryption, and let G1 ∈ L(Π1)
be a security goal. If for some realized Π-skeleton, A |= ¬G1, then for some
realized Π1-skeleton A1, A1 |= ¬G1.

24 October 6, 2008

8 Conclusion

In this paper, we have established a result about composition of protocols, using
a new, model-theoretic approach. It is model-theoretic because it combines rea-
soning about the logical form of formulas—in Section 7, about the security goals
G—with operations on the structures that furnish models of these formulas. In
our case, these structures are the skeletons and especially realized skeletons, and
the operations on them are homomorphisms and removals, as used in Sections 5
and 6. The authentication tests are crucial, because they give us a criterion for
when a skeleton is realized, and this criterion suggests the definition of strong
disjointness (Def. 15).

Thm. 3 is useful, apart from any interest of the model-theoretic method used
to establish it. First, it simplifies establishing that two protocols combine to
provide a protocol achieving some desired goals. If strong disjointness holds, any
goals of the joint protocol that are only about the primary protocol may be
verified without reference to the secondary protocol. Goals that involve the sec-
ondary protocol must be verified using the whole joint protocol, unless of course
the relation is symmetric. If the joint protocol can be regarded as a strongly
disjoint multiprotocol in both of two ways, with each of the two subprotocols as
primary protocol, then goals about each one may be verified without reference
to the other. This is the Cortier-Delaitre-Delaune case [9]. Unfortunately, their
proof method appears not to extend to the asymmetric case.

There is a second reason why our composition result is useful. It can also be
read as a prescription—or at least a heuristic—for protocol design. Protocols can
be built from subprotocols that provide some of the intermediate cryptographic
values that they require. Our addition of protocols for a payment process on
top of the TCG authenticated identity protocol is an example of this process. In
this context, Thm. 3 gives the constraints that a protocol designer must adhere
to, in enriching an existing framework of protocols. His new operations must be
strongly disjoint from the existing protocols, regarded as a primary protocol.

Related work. Probably the outstanding work on protocol derivation and
composition is a group of articles by Datta, Derek, Mitchell, and Pavlovic; for
our purposes the central member of the group is [10]. In this paper the authors
explore a variety of protocols that have common ingredients, and show how they
can be viewed within a sort of family tree, related by a number of operations on
protocols.

Our notion of composition corresponds directly to their parallel composition,
but their sequential composition also fits within our context without any real
additional work. They do have other operations: Refinement is an operation
that enriches the message structure of a protocol to obtain another protocol.
Transformation is an operation that moves information from one message in a
protocol to a different message, either to reduce the number of messages or to
provide a tighter binding among the protocol parameters.

Although they have defined a very rich palette of operations, their main
results about them are restricted to parallel and sequential composition. [10,

October 6, 2008 25

Thm. 4.4] concerns parallel composition and [10, Thm. 4.8] concerns sequential
composition. In each case, the theorem applies to a particular proof of a partic-
ular security goal G1 about a protocol Π1. This proof relies on some set Γ of
invariant formulas that Π1 preserves. Thm. 4.4 states that if a secondary proto-
col Π2 respects Γ , then G1 holds of the parallel composition Π1 ∪Π2. Thm 4.8
is a more elaborate but comparable result for sequential composition.

By contrast, our result is more uniform. It makes an assertion about all
security goals, rather than a single proof of a single goal. The strong disjointness
property ensures that a secondary protocol will respect all usable invariants
of the primary protocol. Thus, one need not check through the details of many
proofs to find what invariants to re-establish. A syntactic property, checked once,
suffices permanently.

Universal composability [7] appears to be a related property, although ex-
pressed in a very different underlying model. Universal composability is typi-
cally realized by randomly choosing a tag to be inserted in all the messages of
a protocol, this tag being chosen at implementation time. Thus, the symmetric
disjointness of any two protocols is ensured with overwhelming probability. An
additional consequence of the model is that random values generated within the
protocol must not be used as keys in the protocol run.

Andova, Cremers, et al. [1] also develop an approach to protocol composition
which supports sequential as well as parallel composition. They suggest use of
tags or of distinct sets of keys as implementation strategies, as in our [17], and
independently propose a definition [1, Def. 25] akin to the symmetric definition
of [9].

Future work. A question with strong interest is whether there is a theorem
akin to our Thm. 3 which applies to the refinement and transformation opera-
tions [10]. We believe that at least for a specific, limited definition of refinement,
the answer should be affirmative. Such a result would be extremely useful for
guiding protocol design.

Acknowledgments. I am grateful to Javier Thayer for conversations. A per-
sonal communication of Stephanie Delaune explained that extending [9] to the
asymmetric case appeared infeasible.

References

1. S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes, and
S. Radomirović. Sufficient conditions for composing security protocols. Infor-
mation and Computation, 2007.

2. Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim, David von Oheimb,
Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Viganò, and Lau-
rent Vigneron. The avispa tool for the automated validation of internet security
protocols and applications. In Kousha Etessami and Sriram K. Rajamani, editors,
CAV, volume 3576 of Lecture Notes in Computer Science, pages 281–285. Springer,
2005.

26 October 6, 2008

3. Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the ap-
plied pi-calculus and automated verification of the Direct Anonymous Attestation
protocol. In IEEE Symposium on Security and Privacy, 2008.

4. Michael Backes and Birgit Pfitzmann. Relating cryptographic and symbolic key
secrecy. In Proceedings, 26th IEEE Symposium on Security and Privacy, May 2005.
Extended version, http://eprint.iacr.org/2004/300.

5. Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and Graeme Proudler.
Trusted Computing Platforms: TCPA Technology in Context. Prentice Hall PTR,
Upper Saddle River, NJ, 2003.

6. Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In
ACM Conference on Communications and Computer Security (CCS), 2004. Full
version available at http://eprint.iacr.org/2004/205.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Report 2000/067, Internation Association for Crryptographic Research,
October 2001. Extended Abstract appeared in proceedings of the 42nd Symposium
on Foundations of Computer Science (FOCS), 2001.

8. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Proceedings, Theory of
Cryptography Conference (TCC), March 2006.

9. Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely composing
security protocols. In V. Arvind and Sanjiva Prasad, editors, Proceedings of the
27th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’07), Lecture Notes in Computer Science, New Delhi, India, De-
cember 2007. Springer.

10. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

11. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Completeness of
the authentication tests. In J. Biskup and J. Lopez, editors, European Symposium
on Research in Computer Security (ESORICS), number 4734 in LNCS, pages 106–
121. Springer-Verlag, September 2007.

12. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for
shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538. Springer,
March 2007. Extended version at URL:http://eprint.iacr.org/2006/435.

13. Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

14. Sibylle Fröschle. Adding branching to the strand space model. In Proceedings of
EXPRESS’08, Electronic Notes in Theoretical Computer Science. Elsevier, 2008.
To appear.

15. Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217–273, 1992.

16. Joshua D. Guttman, Jonathan C. Herzog, John D. Ramsdell, and Brian T. Snif-
fen. Programming cryptographic protocols. In Rocco De Nicola and Davide San-
giorgi, editors, Trust in Global Computing, number 3705 in LNCS, pages 116–145.
Springer, 2005.

17. Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint
encryption. In Proceedings, 13th Computer Security Foundations Workshop. IEEE
Computer Society Press, July 2000.

October 6, 2008 27

18. Gavin Lowe. Casper: A compiler for the analysis of security protocols. In 10th
Computer Security Foundations Workshop Proceedings, pages 18–30. IEEE Com-
puter Society Press, 1997.

19. Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 1998. Also Report 443, Cambridge University
Computer Lab.

