
Usable Optimistic Fair Exchange

Alptekin Küpçü and Anna Lysyanskaya

Brown University, Providence, RI, USA

{kupcu,anna}@cs.brown.edu

Abstract

Fairly exchanging digital content is an everyday problem. It has been shown that fair ex-
change cannot be done without a trusted third party (called the Arbiter). Yet, even with a
trusted party, it is still non-trivial to come up with an efficient solution, especially one that can
be used in a p2p file sharing system with a high volume of data exchanged.

We provide an efficient optimistic fair exchange mechanism for bartering digital files, where
receiving a payment in return to a file (buying) is also considered fair. The exchange is op-
timistic, removing the need for the Arbiter’s involvement unless a dispute occurs. While the
previous solutions employ costly cryptographic primitives for every file or block exchanged, our
protocol employs them only once per peer, therefore achieving O(n) efficiency improvement
when n blocks are exchanged between two peers. The rest of our protocol uses very efficient
cryptography, making it perfectly suitable for a p2p file sharing system where tens of peers
exchange thousands of blocks and they do not know beforehand which ones they will end up
exchanging. Therefore, our system yields to one-two orders of magnitude improvement in terms
of both computation and communication (40 seconds vs. 42 minutes, 1.6MB vs. 200MB). Thus,
for the first time, a provably secure (and privacy respecting when payments are made using
e-cash) fair exchange protocol is being used in real bartering applications (e.g., BitTorrent) [14]
without sacrificing performance.

Keywords: optimistic fair exchange, barter, peer-to-peer file sharing, BitTorrent.

1 Introduction

Fairly exchanging digital content is an everyday problem. A fair exchange scenario commonly
involves Alice and Bob. Alice has something that Bob wants, and Bob has something that Alice
wants. A fair exchange protocol guarantees that at the end either each of them obtains what (s)he
wants, or neither of them does (see [39] for more details and examples).

In this paper, we consider a general file exchange (bartering) scenario, inspired by the BitTor-
rent [22] peer-to-peer file sharing protocol. Alice has several files (BitTorrent blocks) of interest
to Bob, and Bob has several files (blocks) of interest to Alice. They do not know ahead of time
how many or which blocks they will end up exchanging. They want to perform a fair exchange:
Alice should get Bob’s file (block) if and only if Bob gets Alice’s file (block). In a signature fair
exchange [4, 3, 2], there is a verification mechanism (i.e., the public key) that enables the sender to
verifiably encrypt the signature so that the receiver can check that the encrypted signature verifies.
No such efficient verifiable encryption method is currently known for exchanging files. Therefore, a
compensation is required after the fact if one of the parties cheat. In our scenario, we are assuming

1

that Alice/Bob will be equally happy to get a payment in return to her/his file. Thus, exchanging
a file with a payment (buying) is also considered fair, as in some previous works [4, 8, 18, 36, 35].

One of the hardest points in creating a usable optimistic fair exchange protocol suitable for
p2p file sharing applications is that the peers to contact and the content to exchange are not
pre-defined. BitTorrent clients keep connecting to different peers to obtain different blocks. Fault-
tolerance issues, connectivity problems, and availability of data blocks are all factors affecting from
whom which block should be obtained. Our protocol uniquely addresses these issues by removing
the need to know what content to exchange with whom beforehand.

In a nutshell, in our protocol, Alice sends a verifiable escrow of a payment (e.g., e-coin) to Bob
first. Then, they exchange encrypted files. Afterward, Alice sends Bob an escrow of her key with
her signature on the escrow. Then, Bob sends Alice the key to his file. Finally, Alice sends Bob
the key to her file. Since Bob has a verifiable escrow of an e-coin and an escrow of a key before he
sends his key to Alice, he is protected. In the worst case, if Alice does not provide the correct key
and the key escrow contains garbage, Bob can go to the Arbiter and obtain Alice’s payment. The
escrow of the payment cannot contain garbage, because it was formed using a verifiable escrow.
After the exchange of the verifiable escrow, the rest of our protocol can be repeated as many times
as necessary to exchange multiple files (even if the number and content of the files were not known
in advance), unless there is a dispute.

We provide two versions of the protocol: In the first one (the one described briefly above)
only one party provides a verifiable escrow. This version requires the use of timeouts for dispute
resolution purposes. We provide another version that needs both parties to provide verifiable
escrows but requires no timeouts. Both versions are very efficient since they use only one (resp. two)
expensive primitives (verifiable escrow and payment) regardless of the number of files exchanged.
We stress the fact that our timeouts can be very large (e.g., one day or week) to allow for unexpected
situations in which the participants act honestly (e.g., network failure), and thus require very loose
synchronization (e.g., one hour difference), and users can freely participate in other exchanges
without waiting for the timeout.

Previous Work: It is well-known that a fair exchange protocol is impossible without a trusted
third party (TTP) [42] (called the Arbiter) that ensures that Alice cannot take advantage of Bob,
and vice versa. Without loss of generality, Alice will have to send the last message of the protocol,
and we want to protect Bob in case she chooses not to do so. Without an arbiter, gradual release
type of protocols where parties send pieces to each other in rounds can provide only weaker forms
of fairness, and are much less efficient [11, 13].

Luckily, the impossibility result [42] does not require that the Arbiter be involved in each
transaction, but simply that the Arbiter exists. If Alice and Bob are both well-behaved, there is no
need for the Arbiter to do anything (or even know an exchange took place). Micali [38], Asokan,
Schunter and Waidner [2], and Asokan, Shoup and Waidner [4, 3] investigated this optimistic fair
exchange scenario in which the Arbiter gets involved only in case of a dispute. Two such protocols
[4, 30] were analyzed in [45] (see also [7]).

Asokan, Shoup and Waidner (ASW) [4] gave the first provably secure and completely fair
optimistic exchange protocol for exchanging digital signatures. Later on, Belenkiy et al. [8] gave
a protocol for buying digital content in exchange for e-cash, building on top of the ASW protocol.
They provided an optimization for the Arbiter so that, unlike in the ASW protocol, the amount
of work that the Arbiter is required to do depends only logarithmically on the size of the file.
They also assume there is an additional TTP (which we call the Tracker) that provides a means

2

of verification that the file actually contains the right content (e.g., using hashes). Such entities
certifying hashes already exist in current BitTorrent systems [22].

Belenkiy et al. [8] used e-cash (introduced by Chaum [20]), in particular, endorsed e-cash [18]
in their constructions. The reason is that other forms of payments (signatures or electronic checks
used in [4, 36]) do not provide any privacy. In our protocols, any form of payment can be employed,
but we will also use endorsed e-cash in our sample instantiation since it is efficient and anonymous.
See Section 3.5 for more discussion on employing different payment systems.

Contributions: We present the most efficient fair exchange known to us, where the efficiency
is comparable to a simple unfair exchange if performed multiple times between the same pair of
users, even when peers do not know beforehand which blocks they will end up exchanging. Using the
best previous work (Belenkiy et al. barter protocol [8]), n pairs of blocks can be exchanged using n
transactions, each of which requires a costly step involving expensive cryptographic primitives (a
verifiable escrow and an e-coin). Our contribution is a very efficient fair exchange protocol using
which this can be done with only one (or two if we do not want to employ timeouts) step in total
that involves the same expensive primitives (verifiable escrow and payment). This is a property
that is unique to our protocol: Instead of employing the costly primitives for every file or block that
is exchanged, we employ them once per peer, even when peers do not know beforehand which blocks
they will end up exchanging. Then, exchanging multiple files/blocks between peers involves only
very efficient cryptography (i.e., symmetric- and public-key encryption, and digital signatures). In
a real setting where BitTorrent peers exchange thousands of blocks with only tens of peers, there is
one or two orders of magnitude improvement in terms of both computation and communication (40
seconds vs. 42 minutes computational overhead and 1.6MB vs. 200MB communication overhead
for a 2.8GB file —for detailed numbers, see Section 3.2). This means that, with no (i.e., neglectable)
efficiency loss, our fair exchange protocol can be used to exchange files instead of the unfair protocol
currently used by BitTorrent or similar file sharing protocols.

We stress the fact that the timeouts used for dispute resolution purposes in one of our protocols
can be very large (e.g., one day or week) to allow for unexpected situations in which the participants
act honestly (e.g., network failure), and thus require very loose synchronization (e.g., one hour
difference), and users can freely participate in other exchanges without waiting for the timeout.

We take the idea of using verifiable escrow from ASW [4], and the subprotocols of Belenkiy et
al. [8] that increase the efficiency of the Arbiter (see Appendix B). The Arbiter does absolutely
no work in our protocols, as long as no dispute occurs. Our protocols can make use of any type
of payments, but we will show an instantiation using e-cash since it also provides privacy. Our
performance evaluation numbers will use endorsed e-cash [18] as the payment mechanism. Note
that other (non-anonymous) forms of payments (e.g., electronic checks [21]) will be more efficient.

Our additional contribution is definitional. We give a general definition of fair exchange of digital
content (not just digital signatures) provided that it can be verified using some verification algorithm
(defined in Section 2.2). Furthermore, our fairness definition covers polynomially many exchanges
between an honest party and an adversary controlling polynomially-many other participants (see
[27] for an example fair exchange protocol that is fair for a single exchange but stops being fair in
a multi-user setting). We then prove our protocol’s security based on this definition. We sum up
the most important properties of our protocols below.

Security of our protocol: Our protocols provably satisfy the following condition (waiting for
at most one timeout period if timeouts are used, or without waiting at all if no timeouts are used),
as long as at least one of the trading parties (Alice and Bob) is honest:

3

• Either Alice and Bob both get their corresponding files,

• Or Alice gets Bob’s file and Bob gets Alice’s payment (turns into a buy protocol in effect),

• Or neither of them gets anything.

Efficiency of our protocol: We have the following properties regarding efficiency:

• An honest user can reuse her e-coin for other exchanges without waiting for the completion
of the protocol.

• The overhead of our costly step – verifiable escrow and e-cash – is constant O(1), instead of
linear O(n) as in previous best results, when n files or blocks are exchanged.

Already, the Brownie Project [14] is using our protocols in their BitTorrent deployment. We dis-
cuss the efficiency of our protocols and our initial implementation results in Section 3.2. Discussion
of limitations and future work can be found in Appendix D.

2 Definitions

Barter is an exchange of two items, which are digital files in our case. We assume that the reader
is familiar with encryption and signature schemes, and hash functions. Further required definitions
and notation are given below, although partially, omitting the details not necessary for understand-
ing this paper.

2.1 Notation

An escrow is a ciphertext under the public key of some trusted third party (TTP). A verifiable
escrow [4, 19, 15] means that the recipient can verify that the contents of the ciphertext satisfy
some relation (therefore stating that the ciphertext contains the expected content). A contract
(a.k.a. label, condition, or tag) attached to such a ciphertext defines the conditions under which
the TTP should decrypt and give away the encrypted secret [46]. The label is public and it is
integrated with the ciphertext in a such way that it cannot be modified. We will use EArb(a; b)
to denote an escrow of the secret a under the Arbiter’s public key, with the contract b. Similarly,
VEArb(a; b) will denote a verifiable escrow.

Any payment protocol that can efficiently be verifiably escrowed and is secure can be used in our
protocols. Furthermore, if privacy is desired, the payments should be anonymous as in e-cash [20].
We provide an instantiation using endorsed e-cash [18] (which is an extension of compact e-cash
[17]), since it satisfies all these requirements. Endorsed e-cash splits a coin into an unendorsed
coin (denoted coin ′) and endorsement (denoted end). One can think of coin ′ as an encrypted
coin and end as the key. One can check if the endorsement end in a given verifiable escrow [19]
matches the given unendorsed coin coin ′ (without learning the endorsement end). Furthermore,
given only the unendorsed part coin ′, no other party (except the owner) can come up with a valid
endorsement end . Endorsed e-cash moreover has the ability to catch double-spenders. Hence, if
one uses two different coin ′, end pairs trying to spend the same coin twice, (s)he will be caught
(and, since her identity is revealed, can be punished). Note that if a party tries to deposit the same
coin twice (using the same coin ′, end pair), the operation can easily be denied by checking against

4

a list of past transactions. Lastly, only matching coin ′, end pairs can be linked, unendorsed coins
and endorsements prepared for different exchanges remain unlinkable.

Wherever used, KP will denote a symmetric key of a party P , generated through an encryp-
tion scheme’s key generation algorithm. We let c = EncK(f) denote that the ciphertext c is an
encryption of the plaintext f under the symmetric key K. Similarly, f = DecK(c) will denote that
the plaintext f is the decryption of the ciphertext c under the symmetric key K. Our protocol can
make use of any secure symmetric encryption scheme (see the book by Katz and Lindell [33] for
definitions and constructions).

Let pkP and skP denote public and secret keys for a party P . Then signsk (x) will denote a
signature on x under the secret key sk which can be verified using the corresponding public key
pk . Our protocol can make use of any secure public-key encryption scheme [24, 28] and any secure
signature scheme [31].

Furthermore, let Hk be a family of (universal one-way) hash functions [40], where k is the
security parameter, and let hash be a hash function uniformly choosen from the family Hk of hash
functions. Then, hx = hash(x) will denote that hx is the hash of x under the hash function hash .
We now introduce a definition we frequently use in the paper.

Definition 1. We say that a key K decrypts correctly, or is the correct key with respect to a
plaintext hash hf and a ciphertext c, if the plaintext f ′ = DecK(c) has the property hash(f ′) = hf .

Finally, a negligible probability denotes a probability that is a negligible function of the security
parameter (e.g., the key-length of an encryption scheme). A negligible function of n is a function
which is smaller than any inverse polynomial over n with n > N for sufficiently large N (e.g.,
neg(n) = 2−n). A non-negligible probability is a probability that is not negligible.

2.2 (Optimistic) Fair Exchange

In this section we will give a general definition of fair exchange. Unlike in ASW, our definitions will
not be specific to signature exchange, and we will consider polynomially-many exchanges between
an honest user and an adversary controlling polynomially-many other users. Furthermore, we
separate and clearly define the roles of all trusted parties. While providing models and definitions
for a general framework of (optimistic) fair exchange applicable to a broad range of protocols, we
will also show its extensions to our case.

Model: The model is adapted from the ASW definition [4], with clarifications and generaliza-
tions. There are three players; Alice and Bob exchanging two digital items, and the Arbiter1 for
conflict resolution. All players are assumed to be polynomial time interactive Turing machines. We
make no assumption about the underlying network capability.2 Any message that does not confirm
with the protocol specification will be discarded by the honest parties. Any input which does not
verify according to the protocol will be resolved as stated by the protocol or the protocol will be
aborted if no resolution is applicable. It is important that the Arbiter resolves conflicts on the
same exchange atomically.3 Thus, it will only interact with either Alice or Bob at any given time

1One of the TTPs in ASW.
2Clients will have a local message timeout mechanism like the TCP timeout, which is small (e.g., one minute).

The receiver deals with a message timeout exactly as it would deal with a non-verifying input.
3We present a trade-off between non-atomicity and performance of the Arbiter later on.

5

instance, until that interaction ends as specified by the protocol.4 Sensitive communication (e.g.,
exchange of decryption keys for files or endorsement of an e-coin) will be carried out over a secure
(and possibly authenticated) channel (e.g., SSL can be used to connect to the Arbiter, a secure key
exchange with no public key infrastructure can be used for the communication between Alice and
Bob).

For protocols using a timeout5, we assume that the adversary cannot prevent the honest party
from reaching the Arbiter before the timeout. If no timeouts are defined, we assume the adversary
cannot prevent the honest party from reaching the Arbiter eventually. Hence, the honest party is
assumed to be able to reach the Arbiter as defined by the protocol. Even with timeouts, this is not
an unrealistic assumption since our timeouts can be large (e.g., one day or week).

In our model, we have two additional players, namely the Tracker (also in [4, 8, 22])6 providing
verification algorithms, and the Bank dealing with monetary parts of the system.

Setup Phase: Before the fair exchange protocol is run, we assume there is a setup phase.
In this one-time pre-exchange phase, the Arbiter generates his public-private key pair (for the
(verifiable) escrow schemes) and publishes his public key(s) so that both Alice and Bob obtain it.
Optionally, the Arbiter may learn public keys of Alice and Bob in the setup phase, but our focus
is on the case where the Arbiter does not need to know anything (and learns almost nothing, see
Appendix 3.4) about Alice or Bob. The adversary cannot interfere with the setup phase.7 In the
setup phase, the Bank and the Tracker also generate their public-private key pairs and publish
their public keys.

Definition 2. Let SP denote the security parameters of the system (e.g., key lengths of the prim-
itives used). Let PP denote all the public values in the system, including SP, public keys of the
trusted parties, and possibly some public parameters. Let PPGen(SP) be the randomized proce-
dure which generates the public values given the security parameters. Then, define our PP =
(pkarb, pk bank, pk tracker, timeout ,SP, and additional parameters for primitives used).

From now on, we need to talk about multiple exchanges taking place. Alice has files f
(1)
A , .., f

(n)
A

to be exchanged with Bob, and Bob has f
(1)
B , .., f

(n)
B to be exchanged with Alice (n is a polynomial

in SP).8 In general, we can consider these files as some strings in {0, 1}∗, therefore consider
fair exchange of anything that is verifiable. Without loss of generality, the Tracker gives Alice a

verification algorithm V
f
(i)
B

for each file f
(i)
B , and Bob a verification algorithm V

f
(i)
A

for each file f
(i)
A

before the exchange takes place.9

Assume that the content to be exchanged and associated verification algorithms are output by a
generation algorithm Gen(SP) that takes the security parameters as input and outputs some content
to be exchanged, with associated verification algorithms, and possibly some public information
about the content. This procedure involves a trusted party H and the Tracker. The parties trust

4For ease of the Arbiter to find the correct exchange, a random exchange ID can be incorporated into the messages.
Since this is only a minor implementation efficiency issue, we do not want to complicate our definitions with that.

5This is not the message timeout, it is the timeout specified by the protocol, which is generally much longer (e.g.,
one day or week).

6ASW has the corresponding TTP in their file exchange scheme. In their signature exchange protocol, the public
key infrastructure providing the public keys can be seen as the Tracker.

7This is the standard trusted setup assumption that says Alice and Bob have the correct public key of the Arbiter.
8Note that Alice or Bob can represent multiple entities controlled by the adversary.
9Alice and Bob both trust the Tracker that whatever files that can pass this verification algorithms will be the

content they would like.

6

the Tracker in that any input accepted by that verification algorithm will be the content they want.
In other words, they are going to be happy with any content that verifies under that verification
algorithm. In particular, the content generation process is trusted. The adversary cannot generate
“junk” files and ask the Tracker to create verification algorithms for them. BitTorrent forum sites
and ratings provide a level of defense against this in practice.

Definition 3. Content and verification algorithms are secure if ∀ PPT adversaries A and ∀ aux-
iliary inputs z ∈ {0, 1}poly(SP) we have (over the randomness of the generation algorithms, the
adversary, and possibly the verification algorithms)

Pr[PP← PPGen(SP); (f
(1)
H ,V

f
(1)
H

, pub
f
(1)
H

, .., f
(n)
H ,V

f
(n)
H

, pub
f
(n)
H

)← Gen(SP);

(f
(1)
A

, .., f
(n)
A

)← A(V
f
(1)
H

, pub
f
(1)
H

, ..,V
f
(n)
H

, pub
f
(n)
H

,PP, z) :

∃i ∈ [1..n] | (V
f
(i)
H

(f
(i)
H) 6= accept ∨V

f
(i)
H

(f
(i)
A

) = accept)] = neg(SP)

The definition above models the case in which the files to be exchanged cannot be found by the
adversary by some other means10 (and hence exchanging files makes sense for the adversary), even
with the help of associated verification algorithms and public information11.

To provide evidence on the generality and applicability of our definition, we present several
example verification algorithms for various tasks. For example, a file verification can be performed

using hashes. So, each verification algorithm V
f
(i)
A

for Alice’s file f
(i)
A contains the definition of hash

function used –hash–12, and the hash value h
f
(i)
A

= hash(f
(i)
A). The ith verification algorithm com-

putes the hash of the given input according to the description of the hash function, and accepts it if
and only if the computed hash matches h

f
(i)
A

(see Appendix C for a security analysis). As another

example, consider the ASW signature exchange protocol, in which each verification algorithm con-
tains the signature scheme’s description12, the signature public key of Alice pkA

12, and the message
mi to be signed. When it receives a signature as input, the ith verification accepts the signature
if and only if it is a valid signature on message mi under the public key pkA using the signature
scheme. As yet another example, an e-coin verification algorithm can take a coin to verify, and use
the Bank’s public key while verifying the non-interactive proofs given. Such an algorithm is a part
of the specification of every e-cash scheme (e.g., see [18, 17]). Verifiable encryption schemes (e.g.,
[19]) and, in general, proof systems also specify a verification algorithm in their definitions. Such
algorithms can be used directly in a fair exchange protocol, satisfying our definition as long as they
are secure according to Definition 3.

To summarize, in the setup phase, public values are generated using PPGen(SP). The files
and the verification algorithms are generated jointly by the Tracker and some trusted content
generator (e.g., movie distributor) using the Gen(SP) procedure. In the context of BitTorrent,
this means that we trust the content generator about the content, and the Tracker about the
verification algorithms. In practice, BitTorrent forum sites and ratings on files provide this trust.

10We assume that the adversary cannot just “guess” an honest participant’s file, in which case the exchange is
trivially unfair.

11For example, if movies are being exchanged, a lot of information is publicly available about such a movie file,
such as actors, length, and release date. But these do not enable people to come up those movie files.

12possibly different for each verification algorithm

7

A “highly rated” BitTorrent user will be trusted about the content, or alternatively, comments on
the forum sites will warn against bogus content. Besides, even the public information leaked from
the generation procedure does not help the adversary. From now on, we assume the content and
the verification algorithms used are secure and trusted.

Definition 4. Fair Exchange Protocol: A fair exchange protocol is composed of three interactive
algorithms: Alice running algorithm A, Bob running algorithm B, and the Arbiter running the
trusted algorithm T . The content and verification algorithms used need to be secure according to
Definition 3. The security of the exchange is then defined in terms of completeness (when Alice
and Bob are both honest) and fairness (when either Alice or Bob is malicious).

Completeness for a (non-optimistic) fair exchange states that the interactive run of A, B and
T by honest parties results in A getting B’s files and B getting A’s files (assuming an ideal network):

Pr[(f
(1)
B , .., f

(n)
B) ← A(f

(1)
A , .., f

(n)
A ,V

f
(1)
B

, ..,V
f
(n)
B

,PP)
T (skarb)
←→ B(f

(1)
B , .., f

(n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP) →

(f
(1)
A , .., f

(n)
A)] = 1

where the notation describes that A, B and T can all communicate (in a three-way interaction)

following the protocol, and at the end A outputs f
(i)
B and B outputs f

(i)
A for all i : 1..n.

Optimistic Completeness for an optimistic fair exchange states that the interactive run of

A and B by honest parties results in A getting f
(i)
B and B getting f

(i)
A for all i : 1..n (the Arbiter’s

algorithm T is not involved, assuming an ideal network). The optimistic fair exchange protocol
algorithms still get the public values although they may not be used. In our protocols, the Arbiter
never gets involved in a transaction (does not even know such a transaction took place) unless
there is a dispute. A protocol satisfying optimistic completeness also satisfies completeness. Our
optimistic completeness definition is:

Pr[(f
(1)
B , .., f

(n)
B) ← A(f

(1)
A , .., f

(n)
A ,V

f
(1)
B

, ..,V
f
(n)
B

,PP) ↔ B(f
(1)
B , .., f

(n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP) →

(f
(1)
A , .., f

(n)
A)] = 1

Fairness states that at the end of the protocol, either Alice and Bob both get content that passes
the verification algorithms given to them, or neither Alice nor Bob gets anything that passes the
verification, in each of the n exchanges, even when one of them is malicious.13 This definition is
easy to satisfy using a (non-optimistic) fair exchange protocol since Alice and Bob can both hand
their files to the Arbiter, and then the Arbiter can send Bob’s files to Alice and Alice’s files to
Bob, if they pass respective verifications. Thus, below, we will define the more interesting case;
fairness for an optimistic fair exchange. Even though we define fairness in a symmetric way, during
the security analysis one may need to consider two cases independently since the protocol can be
asymmetric: the case where Alice is honest but Bob is malicious, and the case where Bob is honest
but Alice is malicious. It is important to note that the ASW definition of fairness applies only to
a single exchange, whereas our definition covers polynomially-many exchanges between an honest
party and other players all controlled by the adversary.

13On the contrary, completeness definition only deals with honest participants.

8

Fairness: We have an honest player H, and an adversarial player A. The honest player runs
algorithm A in exchanges where he plays the role of Alice, algorithm B in exchanges where he
plays the role of Bob, and the Arbiter runs the algorithm T , all as defined by the protocol. H has

files f
(1)
H , .., f

(n)
H to be exchanged with the adversary, and A has f

(1)
A

, .., f
(n)
A

to be exchanged with
H. The adversary is assumed to control all other players, and hence all interactions of the honest
player are with parties controlled by the adversary, which is the worst possible scenario covering
multiple exchanges.

First there is the trusted setup phase as explained above, getting the security parameters as
input, generating secure content and verification algorithms, along with some associated public
information, and giving the appropriate values to each party. Since the setup phase is trusted,
∀i : 1..nV

f
(i)
H

,V
f
(i)
A

,PP are trusted. Then parties proceed with the fairness game explained below,

the honest party outputting X and the adversary outputting Y . At the end of the game, we require
the fairness condition holds on X,Y , the verification algorithms V

f
(1)
H

,V
f
(1)
A

, ..,V
f
(n)
H

,V
f
(n)
A

, and the

public values PP with high probability against all PPT adversaries A, and all polynomially-long
auxiliary inputs.

Pr [Setup; FairnessGame: FairnessCondition] = 1 − neg(SP)

Fairness Game: There are three types of interaction in our fairness game. Type 1 interactions
are between H and A. Type 2 interactions are between H and T . Type 3 interactions are between A
and T .14 The adversary can arbitrarily interleave type 1, 2, 3 interactions, but cannot prevent type
2 interactions from happening until the timeout if timeouts are used, or eventually otherwise. The
game ends when the honest party H produces its final output (including aborts and resolutions) in
all the started protocols. Without loss of generality, in the fairness game we assume both parties

want to exchange different content in different exchanges (∀i 6= j f
(i)
H 6= f

(j)
H and f

(i)
A
6= f

(j)
A

and

∀i, j f
(i)
H 6= f

(j)
A

).15

Fairness Condition: Recall that the honest party’s output was X and the adversary’s output
was Y at the end of the fairness game. A general fairness condition would be ∀i : 1..n [∃x ∈ X :
V

f
(i)
A

(x) = accept ⇔ ∃y ∈ Y : V
f
(i)
H

(y) = accept] meaning that either H and A both get what they

want or both don’t, in each exchange.
Our protocol with payments has a very straightforward generalization of the fairness property.

We will abuse the notation now and say that the verification algorithm provided by the Tracker
in the setup phase has two parts. One is the file verification denoted V

f
(i)
H

, and the other is the

payment verification denoted V
c
(i)
H

. Then, we can define our fairness condition as ∀i : 1..n [∃x ∈

X : V
f
(i)
A

(x) = accept ⇒ (∃y ∈ Y : V
f
(i)
H

(y) = accept XOR ∃y ∈ Y : V
c
(i)
H

(y) = accept)] ∧ [∃y ∈

Y : V
f
(i)
H

(y) = accept ⇒ (∃x ∈ X : V
f
(i)
A

(x) = accept XOR ∃x ∈ X : V
c
(i)
A

(x) = accept)] Our

fairness condition states that either they both parties get each other’s file, or one of them gets

14In the implementation, T may need to have a way to differentiate which one of Alice and Bob he is talking to,
which can easily be done in our protocols without learning who Alice and Bob are. When necessary, using one-way
function values whose pre-image is known by only one of the parties will suffice.

15If the honest party already has the adversary’s file, the exchange will be trivially fair due to the completeness
property. If the adversary already has the honest party’s file, then there is no hope for fairness since the adversary
can just abort the protocol but he already has the file. Similar arguments hold for exchanging the same file multiple
times.

9

the other’s file whereas the other gets his payment, or they both get nothing at each exchange.
We believe that a broad range of optimistic fair exchange protocols can adapt the definition above
using straightforward extensions whenever necessary.

Timely Resolution: Lastly, as pointed out by ASW [4], an optimistic fair exchange protocol
must provide timely resolution: Alice and Bob must be able to have disputes resolved within a
finite and limited time. In our protocol without timeouts, resolution is immediate. In our protocol
with timeouts, we guarantee resolution at the timeout (which is finite and fixed). We furthermore
show that timeouts do not render our system less usable (Alice and Bob can freely participate in
other exchanges without waiting for the timeout), and so in general we can use our more efficient
protocol with timeouts.

We now present two different barter protocols, one that employs timeouts (Section 3), and
one that does not (Section 4). Both of our protocols are O(n) times more efficient than previous
protocols [4, 3, 2, 5, 39, 8, 18], when n files or blocks are exchanged, and almost as efficient as an
unfair exchange, while still being provably fair.

3 Efficient Optimistic Barter Protocol

3.1 Barter with Timeouts

We will show a particular instantiation of our protocol, using endorsed e-cash [18] as the payment
and hashes as the file verification algorithms, and then point out how to generalize it easily, in
Section 3.5. Before the protocol begins, we assume Alice has withdrawn an e-coin from the Bank.
Every time Alice and Bob wants to exchange two files (every time before step 2 of the protocol
below), Alice generates her fresh key KA and Bob generates his fresh key KB for a symmetric
encryption scheme. Alice and Bob both have their files (fA, fB), have the encrypted versions of
their files (cA = EncKA

(fA), cB = EncKB
(fB)), have the hashes of their files and encryptions (Alice

has hfA
= hash(fA), hcA

= hash(cA), and Bob has hfB
= hash(fB), hcB

= hash(cB)). Besides, the
Tracker provides them with the respective verification algorithms: Alice gets hfB

, Bob gets hfA
.16

Everyone uses the same time zone (e.g., GMT), and the timeout is a globally known parameter17.
If anything goes wrong prior to step 5 (no resolution protocol is applicable), the protocol will be
aborted. The protocol proceeds as follows (summarized in Figure 1):

1. Alice creates a fresh public-secret key pair pkA, skA for a signature scheme. Alice sends a
fresh unendorsed e-coin coin ′ to Bob, along with a verifiable escrow v = VEArb(end ; pkA) of
the endorsement end , labeled with the signature scheme’s public key.

2. Alice sends Bob ciphertext cA of her file.18 Bob calculates hcA
= hash(cA).19

3. Bob sends Alice ciphertext cB of his file. Alice calculates hcB
= hash(cB).

16We are abusing the notation by using hash values as verification algorithms provided by the Tracker hoping that
the actual verification procedure of hashing the files and comparing the result with values given by the Tracker is
obvious.

17It can easily be a per-exchange parameter known to (or agreed by) both parties.
18Alice and Bob can use their choice of (symmetric) encryption schemes (not necessarily the same). This only

requires us to add the definition of the encryption scheme used to the messages exchanged.
19These will be Merkle hashes [37] for efficiency reasons, as discussed in Appendix B.

10

Figure 1: Our Barter Protocol with Timeouts

4. Alice sends Bob an escrow e = EArb(KA;hfA
, hfB

, hcA
, hcB

, time) and her signature s =
signskA

(e) on that escrow. The escrow e should encrypt a key and should be labeled with four
hash values hfA

, hfB
, hcA

, hcB
, and a time value. If any of the hash values do not match Bob’s

knowledge of those values, or if the time value is deviated too much from Bob’s knowledge of
the time (e.g., almost one timeout difference), then Bob aborts.20 Moreover, if the signature s
on the escrow e does not verify with the public key pkA sent in step 1 as part of the verifiable
escrow v, Bob aborts the protocol.

5. Bob sends Alice his key KB . Alice checks if the key KB decrypts the ciphertext cB correctly.
If not, Alice does not proceed with the next step, and runs AliceResolve, although she might
have to run it again just after the timeout to be able to resolve.

6. Alice sends Bob her key KA. Bob checks if the key KA decrypts the ciphertext cA correctly.
If not, he runs BobResolve; he must do so before the timeout.21

Once step 1 is completed, cheap steps 2-6 can be repeated to exchange more files, as long as
no dispute occurs. Alice and Bob need not know beforehand how many or which files/blocks to
exchange. Whenever they decide to exchange blocks (before every step 2), it is enough for them to
just obtain their hashes from the Tracker. Actually, in BitTorrent, once you ask for hash of a file,
the Tracker provides you with the hashes of all the blocks in that file already. Thus, connecting
the Tracker for each block is not necessary in real life.

Below we present the resolution protocols in case of a dispute between Alice and Bob. The
Arbiter never gets involved in a transaction unless there is a dispute.

20We do not require tight synchronization. So, for example, the time value can just contain hours, and not minutes
and seconds.

21Bob can run BobResolve immediately after a message timeout. He need not wait for a long time for Alice.

11

BobResolve Bob needs to contact the Arbiter before the timeout for resolution (current time <
time in escrow e + timeout), since otherwise the Arbiter is not going to honor his request. Assuming
Bob resolves before the timeout, he provides the Arbiter with the escrow e and signature s that he
received in step 4, and also the verifiable escrow v he received in step 1 from Alice. The escrow e
should be labeled with four hash values hfA

, hfB
, hcA

, hcB
, and a time value. The verifiable escrow

v should be labeled with a public key pkA for a signature scheme. If the labels of the escrows are
ill-formed, the Arbiter will not honor the request. The Arbiter checks the signature s using the
public key in the verifiable escrow v, and if it verifies, he asks Bob to present his correct key KB

that verifies using the VerifyKey protocol in Appendix B (i.e., it decrypts a ciphertext with hash
hcB

to a plaintext with hash hfB
). If Bob succeeds in giving the correct key, the Arbiter stores the

key KB , decrypts the escrow e and hands in the key KA from the escrow to Bob. Bob checks if
KA decrypts Alice’s file fA correctly. If not, he proves this to the Arbiter using the technique in
Appendix B and gets the endorsement end in the verifiable escrow v from the Arbiter.22 Notice
that only Bob may succeed in the BobResolve protocol with the Arbiter because any other party
will fail to provide the correct key matching hashes of Bob’s files (see Appendix C).

AliceResolve When Alice contacts the Arbiter for resolution, she asks for Bob’s key KB . If such
a key exists, then the Arbiter sends KB to her.23 KB has already been verified, so Alice does not
need to perform any further action. If such a key does not exist yet, Alice should come back after
the timeout. If, even after the timeout KB does not exist, then Alice is assured that it will never
exist, and can consider that particular trade as aborted.

3.2 Efficiency Analysis

The efficiency of Alice’s and Bob’s parts in the protocol can be further improved, although this
would require the Arbiter to perform more work. To improve Alice’s and Bob’s efficiency, Bob
sends the file unencrypted in step 5, instead of separately sending the ciphertext in step 3 and
the key in step 5, thus eliminating step 3 completely (a similar logic might also apply to steps 2
and 6). But, in that case, the Arbiter needs to keep the whole file for resolution purposes instead
of only a very short key as in the current case. Since such trusted third parties can become the
bottlenecks of the system, we prefer having the least amount of work to be done by the Arbiter,
and let users perform slightly more work instead. Moreover, if secrecy of the files is desired, they
will be encrypted anyways.

We consider a concrete instantiation of our protocol using endorsed e-cash [18], Camenisch-
Shoup verifiable escrow [19], AES encryption [25], DSS signatures [41], and RSA-OAEP public key
encryption for (non-verifiable) escrow [10]. Our protocol has only neglectable overhead over just
doing an unfair exchange. Sending the ciphertexts in steps 2 and 3 just corresponds to sending the

22The Arbiter can abort this trade forgetting the KB in such a case. This is not necessary according to our
definition (and can even be considered unfair), but it can be used as a way to punish cheating Alice even more. In the
worst case, if non-atomicity of the Arbiter is allowed for efficiency reasons, Alice can obtain KB before Bob proves
KA to be incorrect, effectively turning our protocol into a buy protocol.

23If the Arbiter is allowed to be non-atomical for efficiency reasons, then he needs to ask Alice for her key KA,
verifying it using the VerifyKey protocol in Appendix B before giving her KB. This represents a tradeoff between the
atomicity and efficiency of the Arbiter, which can be resolved arbitrarily, although it can also be used as a tougher
punishment for cheaters.

12

files in any (even unfair) exchange.24 The keys sent in steps 5 and 6 are extremely short messages
(16 bytes each for 128-bit AES keys). For a fair exchange, step 4 is still very cheap since the
only primitives used are an ordinary (non-verifiable) escrow (just a public key encryption), and a
signature (A DSS signature created using a 1024-bit key is about 40 bytes, while an RSA-OAEP
encryption with a 1024-bit key is about 128 bytes).

Assuming IO and CPU can be overlapped, encryption of files will not add any time. Fur-
thermore, signatures and escrows take only a few milliseconds. The most time consuming step is
sending the blocks themselves, which has to be done in any case (and encryption does not increase
size). The only real overhead is the first step, where the verifiable escrow (and endorsed e-cash, if
used) is costly (see below).

Our protocol, in addition to guaranteeing fair barter efficiently, is optimized for multi-barter
situations. One such situation is a file sharing scenario as in BitTorrent [22, 8]. The peers Alice and
Bob are expected to have a long-term barter relationship. Hence, step 1 needs to be carried
out only once per peer, and remaining cheap steps 2-6 would be repeated for each
block, whereas previous protocols required a costly step like step 1 to be performed
for each block. This greatly amortizes the costly step 1 in our protocol, when multiple blocks
(or files) are exchanged, even when the files/blocks to be exchanged are not pre-defined
(they need to be defined only before each execution of step 2).

To give some numbers, consider an average BitTorrent file of size 2.8GB made up of about
2, 500 blocks [32]. Using previous optimistic fair exchange protocols, this requires 2, 500 costly
steps (one per block). Our C++ implementation using endorsed e-cash [18] and Camenisch-Shoup
verifiable escrow [19] takes about 1 seconds of computation for step 1 (most of which is the verifiable
escrow) on an average computer (2GHz). This corresponds to 2500 × 1seconds = 42 minutes of
computation overhead. Considering a BitTorrent client that connects to about 40 peers, using our
protocol, this overhead becomes just 40 seconds, which is neglectable when exchanging such a
big amount of data (this cost will be dominated by the file transfer times). Our network overhead
is similarly neglectable (around 40KB per peer, almost all of which is the one-time cost of step
1, about half of it being endorsed e-cash). This corresponds to about 2500 × 2 × 40KB = 200
MB total overhead using previous schemes, and only 40× 40KB1.6 MB total overhead using our
scheme (for a 2.8GB file).

As for the Arbiter, he checks a signature, sometimes decrypts a (verifiable) escrow, and performs
the VerifyKey protocol of Belenkiy et al. [8] (see Appendix B). The signature check and ordinary
escrow decryption takes only milliseconds, the verifiable escrow decryption, when necessary, can
take a few hundred milliseconds. The bottleneck is the data that the Arbiter needs to download
for the VerifyKey protocol, which is about 22chunks × 16KB = 352KB [8]. An important point
to note is that the amount of data the Arbiter’s needs to download is independent of the size of the
file that is being exchanged.25

Without considering distributed denial of service (DDoS) attacks, let us provide some numbers
for evaluation. To have an idea, consider a p2p system of 1, 700, 000 users, exchanging 2.8GB files
on the average [32]. Exchanging two such files means exchanging 5.6GB of data. If 1% of all users
are malicious, this can correspond to 17, 000 exchanges requiring an arbiter at a given time (where

24We can in general assume that the I/O and CPU can be pipelined so that the encryption will not add more time
to uploading the files.

25Merkle proofs are logarithmic in number of the blocks in the file, but are much smaller in size than the data
blocks themselves in practice.

13

one user is honest and the other is malicious. If both of them are malicious, this number reduces
to half of it). We said, in case of a dispute, a peer should upload 352KB of data to the Arbiter.
Assume that the same upload speed is used when trading files and contacting the Arbiter. If we
assume the worst case scenario where the Arbiter can handle only one user at a time and every
user is active at all times, this requires having 2 arbiters; with 10% malicious user ratio, we need
11 arbiters. Under the very realistic assumption that an arbiter can handle 25 users at a time (e.g.,
assuming 25 times as fast download speed of the Arbiter as the upload speed of the users [23]),
we will need 1 arbiter in this system (even with 10% malicious user ratio). Some more efficiency
evaluation, limitations and possible solutions are discussed in Appendix D.

3.3 Security Analysis

In this section, we assume that we are given a one-way function, a universal one-way hash function,
a chosen plaintext secure encryption scheme, a chosen plaintext secure verifiable escrow scheme, a
chosen ciphertext secure escrow scheme, an unforgeable signature scheme, and an e-cash scheme
which is unforgeable, anonymous and unlinkable. For precise definitions of security of these primi-
tives, please see the references [29, 31, 41, 40, 37, 33, 25, 19, 18, 8]. In particular, we can use the
instantiation in Section 3.2.

Theorem 1. Our efficient barter protocol with timeouts as given in Section 3 is a secure optimistic
fair exchange protocol according to Definition 4 in Section 2.2.

Proof. It is obvious that our protocol satisfies the optimistic completeness (and therefore the com-
pleteness) property. We prove the fairness of our protocol over the fairness game defined in Sec-
tion 2.2. Remember that our fairness condition states that either both parties obtain the other
party’s file, or one party obtains the other party’s file while the other party obtains the e-coin
(effectively turning into a buy protocol), or no party obtains anything.

An honest party will always use independent keys for each ciphertext (s)he sends. Furthermore,
endorsed e-cash [18] forces the users to use independent (coin ′, end) pairs in different exchanges by
using randomness contributed by both parties involved in the exchange. Our goal is that even if
the adversary corrupts all other parties in the system (except the TTPs), he cannot obtain more
than the union of what each of these individual corrupted parties was supposed to obtain from an
honest trade with the honest user.

Security of the Resolution Protocols:
We first prove the security of our resolution protocols, as long as one of the participants is

honest. Afterward, for the rest of the proofs, we will assume those are secure and do not worry
about them.

Claim 1. If BobResolve and AliceResolve protocols are executed in the ith exchange, ith exchange
will be fair on its own.

Proof. BobResolve : When an honest Bob contacts the Arbiter, he provides the correct key KB

and obtain the decryption of the escrow e from the Arbiter. If this escrow contained the correct key
KA, then we are done. Otherwise, Bob can prove so (as in Appendix B) and then the Arbiter hands
out the endorsement end to Bob. This endorsement is valid due to the security of the verifiable
escrow scheme (it can be shown by a reduction). Therefore, an honest Bob will obtain either the
correct key or the endorsement of Alice.

14

If a dishonest Bob contacts the Arbiter, he cannot provide an incorrect key to the Arbiter and
make him accept. This can easily be shown by reduction to the security of universal one-way hash
functions [40] (see Appendix C) or the VerifyKey protocol of Belenkiy et al. [8] (Appendix B). If
dishonest Bob provided the Arbiter his correct key KB and obtained honest Alice’s correct key
KA, the only way he can be unfair against an honest Alice is to obtain her coin end in addition.
But, Bob cannot obtain end because he either has to forge Alice’s signature on another escrow e′

of some junk key K ′
A which does not decrypt correctly, or he could break our assumption on the

hash functions by providing some ciphertext with description hcA
which does not give a plaintext

with description hfA
when decrypted using Alice’s key KA in the escrow e. So, a dishonest Bob

cannot obtain the endorsement of an honest Alice. Furthermore, he can obtain Alice’s correct key
KA only if he deposits his correct key KB .

AliceResolve : In this protocol, Alice contacts the Arbiter and asks for Bob’s key. If Bob
deposited his key KB to the Arbiter, then Alice obtains it. From BobResolve, we know that if
a key KB exists, it is correct. In case Alice was dishonest and obtained this key KB from the
Arbiter, we know that honest Bob has already received either the correct key or e-coin of Alice
using BobResolve. In case where Alice was honest but Bob was dishonest, we know he could not
obtain both the correct key and endorsement of Alice.

Hence, we can conclude that the resolution protocols do not help the adversary to win the game,
and so if the adversary wants to be unfair in the ith exchange, he will not execute a resolution pro-
tocol for that exchange. Next we split the analysis of our main protocol into two cases: the case
where the honest party plays the role of Alice, and the case where he plays the role of Bob.

Case 1: Honest Alice vs dishonest Bob:

Claim 2. Suppose Bob succeeds in obtaining honest Alice’s e-coin with non-negligible probability.
Then we can construct an adversary AC breaking the e-cash scheme with non-negligible probability
by playing the fairness game with Bob.

Proof. AC is given a challenge coin ′ and her goal is to output an endorsement end . 26 She guesses
an index i that Bob will succeed in being unfair, and replaces the coin ′(i) by the given coin ′. Since
AC does not know the end (i), she puts garbage into the verifiable escrow v(i), and sends it to Bob.
She fakes the verifiability by using the simulator for the verifiable escrow [4, 19].27 For all the other
interactions, AC acts exactly as an honest Alice would. Since AC is honest, the verifiable escrow v(i)

will never be decrypted by the Arbiter (shown in Claim 1), and by the security of verifiable escrow,
the adversary cannot obtain the endorsement by decrypting it, nor can the adversary distinguish
it from a verifiable escrow of a valid endorsement (can be shown by a straightforward reduction to
CPA-security of the verifiable escrow scheme, since the verifiable escrow v will never be decrypted
because Alice is honest). At some point, Bob outputs an endorsement end (j) with non-negligible
probability. The probability that i = j is non-negligible by definition (the total number of barters
n is a polynomial in SP as defined in Section 2.2). If the indices match (i = j), AC outputs the

26A detailed proof will give AC two oracles, one for coin ′ creation, and one for end creation. Then, AC will play
a CCA-security like game with the e-cash scheme. The challenge coin ′ will be the one used in the i

th exchange, on
which AC cannot query the endorsement oracle.

27The verifiable escrow simulator can require simulating the public parameters too, but this is allowed and is
indistinguishable from real public parameters due to the security of the verifiable escrow scheme.

15

end (i). Therefore, AC breaks the endorsed e-cash [18] with non-negligible probability, by endorsing
an unendorsed coin coin ′ without the endorsement end .

Claim 3. Suppose Bob, without calling BobResolve, succeeds in obtaining one of honest Alice’s

files f
(j)
A with non-negligible probability before step 6 of jth exchange for some j (Alice will perform

step 6 only if she obtained the correct key K
(j)
B from Bob). Then we can construct an adversary

AE which breaks the encryption scheme Alice uses with non-negligible probability.

Proof. AE generates her files using the setup phase. Then she guesses an index i that Bob will
succeed in being unfair, and sends two files to the challenger of the encryption scheme. AE is
given back a challenge ciphertext cA and her goal is to decide which file she sent was encrypted.

She replaces the c
(i)
A by cA. For the rest of the interaction, AE behaves as an honest Alice. AE

does not know the key K
(i)
A , but she can fake the escrow e(i) by encrypting junk in it. Due to

the security of the escrow scheme, Bob cannot distinguish it from an honest escrow (can be shown
by a straightforward reduction to CCA-security of the escrow scheme). At the end, Bob returns

a plaintext f
(j)
A . If the guessed i was correct (i = j), then AE returns f

(i)
A and wins with the

same probability as Bob does. Since AE interacts with Bob only polynomially many times, the
event i = j has non-negligible probability, and since Bob has non-negligible probability of obtaining
Alice’s file, then AE has non-negligible probability of breaking the encryption scheme used.

Case 2: Honest Bob vs dishonest Alice:
The argument is symmetric to Claim 3. The symmetric version of AE can easily be recon-

structed as BE in this scenario, indistinguishable from an honest Bob. Hence, if Alice obtains
Bob’s file before step 5, BE breaks Bob’s encryption scheme. After step 5, Alice already has
Bob’s file, and can choose not to send her key in step 6. But, the security of BobResolve guarantees
that Bob can obtain Alice’s key or e-coin in exchange to his file from the Arbiter (shown in Claim 1).

Combining these results, fairness for the honest party is guaranteed in all the exchanges, re-
gardless of him playing the role of Alice or Bob.

3.4 Privacy Analysis

None of the exchanged material contains information to identify Alice or Bob (not even Alice’s
signature, since it is a temporary -just for the exchange-, not permanent). Moreover, even an
adversary performing multiple exchanges with the same honest party cannot link those exchanges
together using the protocol messages since the honest party uses fresh keys every time and endorsed
e-cash is unlinkable (IP address linking or similar means might be possible, but our protocol does
not create any additional means of identification and linking). Furthermore, the Arbiter does not
necessarily know who he is talking to, apart from the fact that the resolution is on a particular
exchange (possibly identified by a random exchange ID). The Arbiter may be able to find out
whether he is talking to Alice or Bob, but not who Alice or Bob is. Anonymous communication
techniques such as onion routing [26] can be used when necessary. Lastly, e-cash [18] is anonymous,
and thus even when Bob deposits the e-coin, no one can know it was Alice’s e-coin (unless she
double-spends).

16

3.5 Generalized Version

We have shown an instance of our protocol which uses hashes for verification, and endorsed e-cash
for payment. In general, our protocols can employ any secure verification algorithm (see
Definition 3) provided by the Tracker, instead of the hashes. Similarly, our protocols can easily
make use of other payment methods (see [1] for a compilation) or signatures instead of e-cash,
but then privacy of the participants will not be preserved. The modification is straightforward,
and involves just replacing the verifiable escrow of the e-coin with a verifiable escrow of any other
form of payment.

4 Efficient Barter without Timeouts

We provide another protocol which does not make use of timeouts. In this case, both parties give
e-coins to each other as a warranty. A similar setup applies here, where Bob is also required to have
withdrawn an e-coin. Furthermore, Bob also generates a public-private key pair for his signature
scheme. Details that were explained in our previous protocol will be omitted here.

1. a. Alice sends her unendorsed coin coin ′
A, along with the verifiable escrow vA = VEArb(endA; pkA)

of the endorsement to Bob.
b. Bob sends his unendorsed coin coin ′

B , along with his verifiable escrow vB = VEArb(endB ; pkB)
of his endorsement to Alice.

2. a. Alice sends cA to Bob. Bob computes hcA
= hash(cA).

b. Bob sends cB to Alice. Alice computes hcB
= hash(cB).

3. a. Alice picks a random value r from the domain of a one-way function g, and computes
g(r). Alice sends her escrow eA = EArb(KA;hfA

, hfB
, hcA

, hcB
, g(r)) and her signature sA =

signskA
(eA) on her escrow to Bob. Bob aborts the protocol if the signature sA does not verify

under pkA in vA or the hash values do not match Bob’s knowledge of those values.
b. Bob sends his escrow eB = EArb(KB ;hfA

, hfB
, hcA

, hcB
, g(r)) and his signature sB =

signskB
(eB) on his escrow to Alice. Alice calls AliceAbort below if the signature sB does not

verify under pkB in vB , or the hash values or g(r) do not match Alice’s knowledge of those
values.

4. a. Alice sends her key KA to Bob.
b. Bob sends his key KB to Alice.

The escrows in step 3 are a bit different than the previous protocol. First, there is no time
value attached, since no timeouts are used. Furthermore, both escrows need to contain a value g(r)
where g is a one-way function, and only Alice knows r. This is achieved by requiring Alice to pick
a random r in step 3.a, and then put g(r) in the label of the escrow. After receiving Alice’s escrow
eA, Bob also incorporates g(r) into the label of his escrow eB .28

The new AliceResolve and BobResolve algorithms are both very similar to the BobResolve in
our barter protocol with timeouts (of course, both parties use the escrows and signatures received
from the other party, AliceResolve gets KB by giving KA, and there are no timeouts), and they
should be run if the key Alice or Bob receives at step 4 is not correct, respectively.

28This is showing how the Arbiter can distinguish Alice and Bob using one-way functions, as discussed in previous
footnotes. Other possible measures having the same effect can also be taken.

17

The logic behind getting rid of the timeouts is similar to the idea in ASW [4]. If Alice wants to
abort the protocol (because something was wrong with the message she received in step 3.b, or she
did not receive any response, she can do so by contacting the Arbiter using the AliceAbort protocol
below. She no longer needs to wait until after the timeout . After receiving (or not receiving) Alice’s
message at step 3.a, Bob can simply abort locally if anything is wrong.

AliceAbort Alice contacts the Arbiter, handing him her escrow eA, her signature sA on that
escrow, and her verifiable escrow vA that contains the public key pkA for the signature. The
Arbiter checks the signature first. If it verifies, he requires Alice to give a value r so that g(r)
matches the one-way function value in the label of the escrow eA (therefore Bob cannot succeed
in this protocol). Then, the rest proceeds similar to the AliceResolve in our previous protocol.
Alice asks the Arbiter for Bob’s key KB . If such a key exists (because Bob resolved before Alice
aborted), then the Arbiter sends KB to Alice. KB has already been verified, so Alice does not
need to perform any further action. If such a key does not exist yet though, the Arbiter considers
that particular trade as aborted, and will perform no further resolutions regarding this particular
barter.29 (Remember, Alice needed to come back after the timeout in our previous protocol.)

4.1 Analysis of Barter without Timeouts

The advantage of this protocol is that there is no need for timeouts. Alice can safely abort the
protocol (using AliceAbort) without waiting in case Bob tries to cheat in step 3.b. Bob can
simply abort unilaterally if Alice tries to cheat in step 3.a. Since it is very similar to our protocol
with timeouts, we are not presenting a detailed analysis for this protocol. Alice performs almost
exactly the same moves as in our previous protocol, and hence all the proofs there can be applied
here, extendable to both Alice and Bob, with minor modifications due to minor differences in the
resolution protocols.

Theorem 2. Our efficient barter protocol without timeouts in Section 4 is a secure optimistic fair
exchange protocol due to the Definition 4 in Section 2.2.

Proof. Omitted due to extreme similarity with the proof of our protocol with timeouts. The proof
of AliceResolve is now the symmetric version of BobResolve before. The proof of AliceAbort is very
similar. Furthermore, the corresponding adversaries AC , AE, BC , and BE are very straightforward
to construct.

The privacy analysis of this protocol is the same as our protocol with timeouts. Besides, the
generalization above also applies to this protocol.

Theorem 3. Our efficient barter protocol without timeouts preserves the privacy of the honest
participants even when Arbiter resolution is required.

Proof. Same as the proof for our protocol with timeouts.

29Similar footnotes as before applies. If, for example, we do not want to rely on the security of the Belenkiy et al.
VerifyKey protocol here, Alice can prove that Bob’s key was incorrect -if that is the case- and get his e-coin from
the Arbiter. If Bob already resolved, he must have taken Alice’s correct key or e-coin. Hence, the exchange is fair,
becoming e-coin to e-coin exchange in such a case.

18

Regarding efficiency, again, step 1 has to be completed only once per peer, and then
multiple files can be exchanged by carrying out steps 2-4 as long as both parties are
honest, amortizing the cost of the coin and verifiable escrow exchange in step 1. We believe,
in many situations, our more efficient protocol with timeouts will be sufficiently useful. Yet, to
provide options, we chose to present another efficient barter protocol that does not require the use
of timeouts. Our protocol without timeouts requires two costly operations (step 1) instead of one
in our protocol with timeouts. As in our protocol with timeouts, this cost is independent of the
number of files exchanged, and becomes negligible when multiple or large files are exchanged. The
cost of step 1 will be doubled for both parties, yet for the rest of the protocol the cost will stay the
same. The Arbiter’s cost will be doubled though, due to the need to perform two costly resolutions
(AliceResolve is as costly as BobResolve now). Nevertheless, using similar numbers as in Section
3.2, if our arbiter can handle 25 users at a time, we still need only 1 arbiter.

5 Conclusion

There already are many scenarios where peers trade content [22, 32]. These systems unfortunately
rely on the honesty of the peers for providing fairness, partly because of the high cost incurred by
the previous fair exchange protocols [2, 3, 4, 5, 8, 18, 39]. Our protocols uniquely limit the use of
the costly primitives (verifiable escrow and e-cash) to once (or twice) per peer, as opposed to per
file/block. We have shown in Section 3.2 that there are one or two orders of magnitude efficiency
gains over previous protocols. Besides, most of the existing systems already rely on similar trusted
parties [2, 3, 4, 5, 8, 17, 18, 20, 22, 32, 39, 42]. Therefore, for the first time, by using our protocols,
such bartering systems will experience almost no performance loss, while the benefit of providing
fairness guarantees will be very noticeable indeed (e.g., see [8] for how the use of fair exchange
can solve the free-riding problem of BitTorrent). Already, the Brownie Project [14] is adopting our
protocols in their BitTorrent deployment.

As a guideline, we suggest that systems which expect long-term barter relationships and are not
willing to use timeouts use our protocol without timeouts, but systems that will conduct mainly
short-term barters and can tolerate timeouts use our protocol with timeouts.

References

[1] N. Asokan, PA Janson, M. Steiner, and M. Waidner. The state of the art in electronic payment
systems IEEE Computer, 30:28–35, 1997.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange. CCS, 1997.

[3] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.
IEEE Security and Privacy, 1998.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communications, 18(4):591–610, Apr. 2000.

[5] G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures. CCS,
1999.

19

[6] G. Avoine, and S. Vaudenay. Optimistic Fair Exchange Based on Publicly Verifiable Secret
Sharing. ACISP, 2004.

[7] M. Backes, A. Datta, A. Derek, JC. Mitchell, and M. Turuani. Compositional analysis of
contract-signing protocols. Theoretical Computer Science, 367(1-2):33-56, 2006.

[8] M. Belenkiy, M. Chase, C.C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, and E. Rachlin.
Making P2P Accountable without Losing Privacy. WPES, 2007.

[9] M. Belenkiy, M. Chase, C.C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya. Incentivizing
Outsourced Computation. NetEcon, 2008.

[10] M. Bellare, and P. Rogaway. Optimal Asymmetric Encryption. EUROCRYPT, 1994.

[11] M. Ben-Or, O. Goldreich, S. Micali, and R.L. Rivest. A fair protocol for signing contracts.
IEEE Transactions on Information Theory, 36(1):40–46, 1990.

[12] G.R. Blakley. Safeguarding cryptographic keys. National Computer Conference, 1979.

[13] D. Boneh, and M. Naor. Timed commitments. CRYPTO, 2000.

[14] Brownie Project. http://cs.brown.edu/research/brownie.

[15] J. Camenisch, and I. Damg̊ard. Verifiable Encryption, Group Encryption, and Their Applica-
tions to Group Signatures and Signature Sharing Schemes. Asiacrypt, 2000.

[16] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya and M. Meyerovich. How to
Win the Clonewars: Efficient Periodic N-times Anonymous Authentication. CCS, 2006.

[17] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. Eurocrypt, 2005.

[18] J. Camenisch, A. Lysyanskaya, and M. Meyerovich. Endorsed e-cash. IEEE Security and
Privacy, 2007.

[19] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. CRYPTO, 2003.

[20] D. Chaum. Bling signatures for untraceable payments. CRYPTO, 1982.

[21] D. Chaum, B. den Boer, E. van Heyst, S. Mjolsnes, and A. Steenbeek. Efficient offline electronic
checks. EUROCRYPT, 1990.

[22] B. Cohen. Incentives build robustness in bittorrent. IPTPS, 2003.

[23] L. Cohen. Testimony of Larry Cohen, President of Communications Workers of America. May,
2007.

[24] R. Cramer, and V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against
Adaptive Chosen Ciphertext Attack. CRYPTO, 1998.

[25] J. Daemen, and V. Rijmen. The Design of Rijndael: AES–the Advanced Encryption Standard.
Springer books, 2002.

20

[26] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
USENIX Security, 2004.

[27] Y. Dodis, P.J. Lee, and D.H. Yum. Optimistic Fair Exchange in a Multi-user Setting. PKC,
2007.

[28] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing,
2000.

[29] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP Is Secure under the RSA
Assumption. Journal of Cryptology, 17(2):81–104, 2004.

[30] JA. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing.
CRYPTO, 1999.

[31] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attack. SIAM Journal on Computing, 1988.

[32] A. Iosup, P. Garbacki, J. Pouwelse, and D.H.J. Epema. Correlating Topology and Path Char-
acteristics of Overlay Networks and the Internet. GP2PC, 2006.

[33] J. Katz, and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC
Press, 2007.

[34] A. Küpçü, and A. Lysyanskaya. Framework for Analyzing Optimistic Fair Exchange Protocols
with Distributed Arbiters. Cryptology ePrint Archive, Report 2009/069, 2009.

[35] Y. Lindell. Legally Enforceable Fairness in Secure Two-Party Computation. CT-RSA, 2008.

[36] O. Markowitch, and S. Saeednia. Optimistic fair exchange with transparent signature recovery.
FC, 2001.

[37] R. Merkle. A digital signature based on a conventional encryption function. CRYPTO, 1987.

[38] S. Micali. Simultaneous Electronic Transactions. U.S. Patent, No. 5,666,420, 1997.

[39] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. PODC, 2003.

[40] M. Naor, and M. Yung. Universal one-way hash functions and their cryptographic applications.
STOC, 1989.

[41] NIST. Digital Signature Standard (DSS). FIPS, PUB 186-2, 2000.

[42] H. Pagnia and F.C. Gärtner. On the impossibility of fair exchange without a trusted third
party. Technical Report, TUD-BS-1999-02, 1999.

[43] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. EURO-
CRYPT, 1999.

[44] A. Shamir. How to Share a Secret. ACM Communications, 1979.

[45] V. Shmatikov, and JC. Mitchell. Finite-state analysis of two contract signing protocols. The-
oretical Computer Science, 283(2):419–450, 2002.

21

[46] V. Shoup, and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.
EUROCRYPT, 1998.

A ASW Fair Exchange in More Detail

We present the ASW protocol for fair signature exchange without timeouts, as a reference. The
protocol in its basic sense (without conflict resolution details) is:

1. Alice sends Bob a non-verifiable escrow of her signature, with a label defining how Bob’s
signature should look like. Bob checks if the definition is the correct definition.

2. Bob sends Alice a verifiable escrow of his signature, with the label defining how Alice’s
signature should look like and also attaching the escrow he obtained in step 1. Alice verifies
the verifiable escrow. She furthermore checks if the label is formed correctly. If anything goes
wrong at this step or a message timeout occurs, she aborts the protocols and runs AliceAbort
with the Arbiter.

3. Alice sends Bob her signature. Bob verifies this signature, and stops and runs BobResolve if
it does not verify or a message timeout occurs.

4. Bob sends Alice his signature. If the signature does not verify, Alice runs AliceResolve.

The AliceAbort, BobResolve and AliceResolve protocols have a similar logic as ours. AliceAbort
tells the Arbiter to consider that trade as aborted and not to honor any further resolution request
on that particular trade. BobResolve gets Alice’s signature by providing Bob’s signature, and
similarly, AliceResolve gets Bob’s signature by providing Alice’s signature. ASW provide a more
complicated protocol for exchanging an electronic check for a digital file, building on top of their
signature exchange protocol. The details of both protocols can be found in [4].

B Subprotocols

We use two subprotocols from Belenkiy et al. [8] that make the interaction with the Arbiter efficient.
One protocol is used to prove that a key is not correct, while the other is used to prove that the
key is in fact correct. For efficiency, Merkle hashes [37] are used in these subprotocols (see Belenkiy
et al. [8] for more information on the protocols and the use of Merkle hashes).

Proving a key is not correct: Showing that a key K does not decrypt a ciphertext c with
hash hc to a plaintext f with hash hf can be done efficiently, as Belenkiy et al. suggests. Carol, to
prove the key is not correct, gives the Arbiter a part ci of data which does not decrypt correctly.
The Arbiter can check if the given part ci matches the Merkle tree hash of the ciphertext, and
DecK(ci) does not match the hash of the plaintext, using the proof provided by Carol.

Proving a key is correct: Using a challenge-response protocol (Belenkiy et al. VerifyKey
protocol), one can prove that a key is correct. The Arbiter asks for proofs of the key decrypting
correctly on random chunks. If Bob can reply correctly to all chunks providing valid proofs for
Merkle hashes, the the Arbiter accepts Bob’s key. If Bob corrupts 1/m fraction of the file, and
the Arbiter verifies k random parts, then the Arbiter will catch Bob with a probability of at least
1− (1− 1

m
)k [8].

The security of both algorithms relies on the security of the universal one-way hash functions
as described in appendix C.

22

Algorithm B.1: VerifyKey from Belenkiy et al. [8]

Arbiter’s Input: Two Merkle hashes hf and hc, key K
Bob’s Input: Ciphertext c = c0..cn, key K
Step 1: Arbiter’s challenge

The arbiter sends Bob a set of random indices I.
Step 2: Bob’s response

Bob replies with ci, cproofi, fproofi for every i ∈ I, where cproofi proves that ci is in the
Merkle tree corresponding to hc, and fproofi proves that fi = DecK(ci) is in the Merkle
tree corresponding to hf .

Step 3: Verification

The arbiter accepts the key if Bob responds with valid ci, cproofi, fproofi for every i ∈ I,
and rejects otherwise.

C Universal One-Way Hash Functions (UOWHF)

Let Hk be a family of hash functions, where k is the security parameter. We assume that the
following experiment has negligible probability of success for any polynomial-time adversary A, for
sufficiently large k: We have a file f and a hash function hash ← Hk uniformly chosen from the
family. Given that file f and the hash function’s description hash (which effectively also means
giving hash(f)) as input, A returns a c,K pair, where hash(DecK(c)) = hash(f) but DecK(c) 6=
f . Remember that A cannot control the file’s hash, due to the trusted content and verification
algorithm generation process, hence he needs to find a targeted collision.

This requirement is equivalent to the security of Universal One Way Hash Functions (UOWHF)
[40]. We first reduce our assumption to the UOWHF assumption. Specifically, let A be a polynomial-
time adversary succeeding in the above attack with non-negligible probability. We can construct an
adversary B which finds a collision in our UOWHF as follows: When B is given (f, hash), he runs
A on (f, hash) to obtain (c,K). B then checks if DecK(c) = f , in which case it fails. Otherwise,
if DecK(c) 6= f but hash(DecK(c)) = hash(f), then B outputs DecK(c) as the collision. As easily
seen, B has the same success probability as A, and has polynomial runtime complexity.

The reverse reduction is also possible. Let B succeed in attacking UOWHF with non-negligible
probability. A, when given (f, hash) as the challenge, runs B on (f, hash) to get c′ with hash(c′) =
hash(f) and c′ 6= f . A then picks a random key K, and returns (c = EncK(c′),K) as the an-
swer. Obviously, hash(c′ = DecK(c)) = hash(f) but c′ = DecK(c) 6= f . Hence, our assumption is
equivalent to the UOWHF target collision-resistance assumption.

Our discussion above applies in our trusted content setting, where the content and verification
algorithm generation process is trusted. If we allow the adversary to generate his own content
(thus content generation is not trusted), he can as well generate bogus content. Yet, if we are in
a semi-trusted setting where the adversary is allowed to generate his own content as long as it
is not bogus (e.g., he can generate a movie file that really is showing the movie), then we need
to use collision-resistant hash functions for security. The reasoning is that the content may be
generated after the hash function is chosen by the Tracker. This will not affect the practice, since
all widely-used hash functions are assumed to be collision-resistant.

23

D Limitations and Future Work

One limitation of our work is the need for the exchanging parties to trust the Arbiter. Alice trusts
the Arbiter not to give away both her e-coin and the key to her file. Even though giving away
the key only makes the exchange unfair, giving away the coin may result in even an honest Alice
becoming a double-spender.30 One possible way to reduce this need for the trust would be using
several arbiters, who do not necessarily know each other. Alice and Bob can mutually agree on
a specific arbiter, the Arbiter, before the protocol begins. Since, there is no registration with the
Arbiter in our protocol, any arbiter can accomplish the job.

Fortunately, if a proof of dishonesty is requested, neither the Arbiter, nor Bob, nor anyone else
can frame an honest Alice.31 The Arbiter may be asked to prove Alice’s guilt by presenting a
verifiable escrow, a non-verifiable escrow and a signature on it, along with the proofs that Bob’s
key decrypts correctly yet Alice’s key in the (non-verifiable) escrow does not. Due to the security of
these primitives, no one can frame an honest Alice. Of course, this requires the Arbiter to store all
past resolutions, and Alice’s privacy has already been invaded by the double-spending detection.
In order to prevent a malicious Alice from framing the Arbiter by intentionally double-spending,
we can require either Alice’s or the Arbiter’s signature when a coin is being deposited. We leave
the issue of efficiently reducing the need to trust the Arbiter or verifying the Arbiter’s behavior
without violating Alice’s privacy as a future work.

As for the bottleneck that can be caused by the central Arbiter, Avoine et al. [6] show how
to employ secret sharing techniques [44, 12] to distribute the shares of the secrets among arbiters.
This will decrease the amount of job each arbiter needs to perform, yet it will reduce the efficiency
of our resolution protocols. As argued in [34], the same techniques can be applied to our protocol
with timeouts. In another work, Belenkiy et al. [9] show how to outsource computation, which
can be used as a means to distribute the work of our trusted parties. The Brownie Project [14] is
analyzing this strategy to distribute the arbiter and the bank in their BitTorrent deployment.

As in many deployments, it is possible to mount a distributed denial of service (DDoS) attack
on the arbiters by continuously performing fake barters and resolving with an arbiter. We leave the
protection against such attacks (by means like blacklisting IP addresses) to system and network
security researchers. Alternative strategies of reducing the arbiters’ load were already discussed
above.

Another limitation is that Bob does not need to do any work to be able to send a response to
Alice in our protocol with timeouts, so he can just send junk. Hence, Bob can mount a distributed
denial of service attack against Alice. Yet, he still needs to upload a large file (and can be required
to upload first), wasting considerable amount of resources (time and bandwidth). Moreover, Alice
will not be trading with Bob once he cheats. We leave the issue of analyzing the extent of such
attacks, catching such an attacker, and proving such an attack occurred as an open problem. This
attack is not possible when our protocol without timeouts is used, since both parties need to do
equal amount of work.

In terms of the storage load associated with the trusted parties, the techniques from [16] can
be applied. Using those techniques, the Bank can have a limited storage, as opposed to a groving
storage. For example, if every e-coin is valid for a limited but long time (e.g., one month), then
the bank needs to keep track of only the transactions that happened in the past period, instead of

30This does not result in Alice losing money, but losing her anonymity.
31Of course, this requires yet another trusted entity, called the Judge.

24

all past transactions. Note that the Arbiter also only needs to have a short-term memory of past
resolutions.

Lastly, our fairness definition states that a file and a payment can be fairly traded, as in previous
works [4, 8, 18, 36, 35]. The economics of this system, deciding on how much a file is worth fairly,
is outside the scope of this paper. The participants can somehow agree on the price before our
protocol begins (variable pricing), or alternatively a system can set the price that will apply to all
participants (fixed pricing). In Belenkiy et al. [8], the authors assume each block in the BitTorrent
system are worth one e-coin. We leave this pricing issue as an interesting application-dependent
open problem.

25

