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Abstract

As storage-outsourcing services and resource-sharingpriet have become popular, the problem
of efficiently proving the integrity of data stored at unted servers has received increased attention.
In the provable data possession (PDP) model, the clienr@cepses the data and then sends it to an
untrusted server for storage, while keeping a small amolumieta-data. The client later asks the server
to prove that the stored data has not been tampered with etede{without downloading the actual
data). However, the original PDP scheme applies only ticsg@at append-only) files.

We present a definitional framework and efficient constamgifor dynamic provable data possession
(DPDP), which extends the PDP model to support provabletepda stored data. We use a hew version
of authenticated dictionaries based on rank informatidre price of dynamic updates is a performance
change fromO(1) to O(logn) (or O(n®logn)), for a file consisting of. blocks, while maintaining
the same (or better, respectively) probability of misbédragletection. Our experiments show that this
slowdown is very low in practice (e.g., 415KB proof size afuin3 computational overhead for a 1GB
file). We also show how to apply our DPDP scheme to outsourdedystems and version control
systems (e.g., CVS).

1 Introduction

In cloud storage systems, the server (or peer) that stores the clieiatis dat necessarily trusted. Therefore,
users would like to check if their data has been tampered with or deleted vidpwetsourcing the storage
of very large files (or whole file systems) to remote servers presentsléioadl constraint: the client should
not download all stored data in order to validate it since this may be prohibititerms of bandwidth
and time, especially if the client performs this check frequently (theredatbenticated data structure
solutions [32] cannot be directly applied in this scenario).

Ateniese et al. [2] have formalized a model calfgdvable data possessigRDP). In this model, data
(often represented as a file) is preprocessed by the client, and metadata used for verification ggrpos
is produced. The file is then sent to an untrusted server for storadeharclient may delete the local
copy of the file. The client keeps some (possibly secret) information tokchewer’'s responses later.
The server proves the data has not been tampered with by respondihgliienges sent by the client.
The authors present several variations of their scheme under diffemgotographic assumptions. These
schemes provide probabilistic guarantees of possession, where thiechkeks a random subset of stored
blocks with each challenge.

However, PDP and related schemes [2, 7, 12, 31] apply only to the takaio, archival storage, i.e., a
file that is outsourced and never changes (simultaneously with our wtekiese et al. [3] present a scheme



Scheme Server Client Comm. Model Block operations Probability

comp. comp. append | modify | insert | delete | Of detection
PDP [2] o(1) o(1) o(1) RO v 1-(1-5°
Scalable PDP [3] O(1) o(1) o(1) RO T VI l1=a=-p°
DPDP | O(logn) O(logn) | O(logn) | standard| v v v v 1-(1-f)°
DPDP II O(nlogn) | O(logn) | O(logn) | standard| v v v v 1— (1 — f)Soem)

Table 1: Comparison of PDP schemes: original PDP scheme [2]; ScalaBl¢3}, our scheme based on
authenticated skip lists (DPDP 1); and our scheme based on RSA tree?(DPB star (*) indicates that
a certain operation can be performed only a limited (pre-determined) nurhberes. We denote with
the number of the blocks of the file, withthe fraction of the corrupted blocks, and witha constant, i.e.,
independent ofi. In all constructions, the storage spac®id) at the client and)(n) at the server.

with somewhat limited dynamism, which is discussed in detail in the related worksedfithile the static
model fits some application scenarios (e.g., libraries and scientific datdsétsrucial to consider the
dynamic case, where the client updates the outsourced data—by insertidiying, or deleting stored
blocks or files—while maintaining data possession guarantees. SuchmidyPRP scheme is essential in
practical cloud computing systems for file storage [13, 16], databagieagf17], and peer-to-peer storage
[14, 20].

In this paper, we provide a definitional framework and efficient contitrns fordynamic provable data
possessiofDPDP), which extends the PDP model to support provapliateson the stored data. Given a
file F' consisting ofz blocks, we define an update as either insertion of a new block (anywhirefile, not
only append), or modification of an existing block, or deletion of any bldtierefore our update operation
describes the most general form of modifications a client may wish to pedara file.

Our DPDP solution is based on a new variant of authenticated dictionahesewe useank informa-
tion to organize dictionary entries. Thus we are able to support efficieheaticated operations on files at
the block level, such as authenticateskert anddelete. We prove the security of our constructions using
standard assumptions.

We also show how to extend our construction to support data possessi@antees of a hierarchical file
system as well as file data itself. To the best of our knowledge, this is thedinstruction of a provable
storage system that enables efficient proofs of a whole file systemljrenaerification at different levels
for different users (e.g., every user can verify her own home dingcend at the same time not having
to download the whole data (as opposed to [10]). Our scheme yields ahieovutsourced versioning
system (e.g., CVS), which is evaluated in Section 8 by using traces of (éSiteries of three well-known
projects.

1.1 Contributions

The main contributions of this work are summarized as follows:

1. We introduce a formal framework fdiynamic provable data possessi@PDP);
2. We provide the first efficieritilly dynamicPDP solution;

3. We present a rank-based authenticated dictionary built over a skipTlgs. construction yields a
DPDP scheme with logarithmic computation and communication and the same detechabilaty
as the original PDP scheme (DPDP | in Table 1);

4. We give an alternative construction (Section 6) of a rank-basee@mtitthted dictionary using an RSA
tree [26]. This construction results in a DPDP scheme with improved detectbalplity but higher
server computation (see DPDP Il in Table 1);
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5. We present practical applications of our DPDP constructions to ageswiile systems and versioning
systems (e.g., CVS, with variable block size supp@f);We perform an experimental evaluation of
our skip list-based scheme.

Now, we outline the performance of our schemes. Denote withe number of blocks. Thserver
computation i.e., the time taken by the server to process an update or to compute a pre@obliack,
is O(logn) for DPDP | andO(nlogn) for DPDP II; theclient computationi.e., the time taken by the
client to verify a proof returned by the server($log n) for both schemes; theommunication complexity
i.e., the size of the proof returned by the server to the clienf)(f®gn) for both schemes; thelient
storage i.e., the size of the meta-data stored locally by the clien@(i$) for both schemes; finally, the
probability of detectioni.e., the probability of detecting server mishehaviorl is (1 — )¢ for DPDP |
andl — (1 — f)(een) for DPDP I, for fixed logarithmic communication complexity, whefés the ratio
of corrupted blocks and' is a constant, i.e., independentrof

We observe that for DPDP I, we could use a dynamic Merkle tree (e.g.2[binstead of a skip list
to achieve the same asymptotic performance. We have chosen the skip ligtidugmple implementation
and the fact that algorithms for updates in the two-party model (where cliantaccess only a logarithmic-
sized portion of the data structure) have been previously studied in detailthenticated skip lists [25] but
not for Merkle trees.

1.2 Related work

The PDP scheme by Ateniese et al. [2] provides an optimal protocol fastétie case that achieve3(1)
costs for all the complexity measures listed above. They review previotls avoprotocols fitting their
model, but find these approaches lacking: either they require expeseiver computation or communi-
cation over the entire file [9, 23], linear storage for the client [30], ondbprovide security guarantees
for data possession [29]. Note that using [2] in a dynamic scenario isurselue to replay attacks. As
observed in [8], in order to avoid replay attacks, an authenticated trgdiste that incurs logarithmic costs
must be employed and thus constant costs are not feasible in a dynanddscen

Juels and Kaliski present proofs of retrievability (PORs) [12], faayien static archival storage of large
files. Their scheme’s effectiveness rests largely on preprocedsijog the client conducts before sending a
file F' to the server: “sentinel” blocks are randomly inserted to detect corrygfitmencrypted to hide these
sentinels, and error-correcting codes are used to recover franption. As expected, the error-correcting
codes improve the error-resiliency of their system. Unfortunately, thpeeations prevent any efficient
extension to support updates, beyond simply replaé¢ingith a new file /. Furthermore, the number of
gueries a client can perform is limited, and fixed a priori. Shacham andr$\ladee an improved version
of this protocol called Compact POR [31], but their solution is also static[§der a summary of POR
schemes and related trade-offs).

Simultaneously with our work, Ateniese et al. have developed a dynamic 8lD#os called Scalable
PDP [3]. Their idea is to come up with all future challenges during setup tane gre-computed answers
as metadata (at the client, or at the server in an authenticated and enangotedr). Because of this
approach, the number of updates and challenges a client can perftmitésli and fixed a priori. Also,
one cannot perform block insertions anywhere (only append-typstioss are possible). Furthermore,
each update requires re-creating all the remaining challenges, whicbhikepratic for large files. Under
these limitations (otherwise the lower bound of [8] would be violated), theyigeeaa protocol with optimal
asymptotic complexityO(1) in all complexity measures giving the same probabilistic guarantees as our
scheme. Lastly, their work is in the random oracle model whereas oumscikseprovably secure in the
standard model (see Table 1 for full comparison).

Finally, our work is closely related to memory checking, for which lower latsuare presented in [8,
22]. Specifically, in [8] it is proved that all non-adaptive and determinigieckers have read and write
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query complexity summing up 1(logn/loglogn) (necessary for sublinear client storage), justifying the
O(logn) cost in our scheme. Note that for schemes based on cryptographiadaah(log n) lower
bound on the proof size has been shown [6, 33]. Related bound#hfer grimitives have been shown by
Blum et al. [4].

2 Model

We build on the PDP definitions from [2]. We begin by introducing a gerleRidDP scheme and then show
how the original PDP model is consistent with this definition.

Definition 1 (DPDP Scheme)in a DPDP scheme, there are two parties. Tdhent wants to off-load her
files to the untrustegerver. A complete definition of a DPDP scheme should describe the followinglfyoss
randomized) efficient procedures:

e KeyGen(1*) — {sk,pk} is a probabilistic algorithm run by thelient. It takes as input a security
parameter, and outputs a secret ka/and a public keypk. The client stores the secret and public
keys, and sends the public key to the server;

e PrepareUpdate(sk, pk, F',info, M.) — {e(F'),e(info),e(M)} is an algorithm run by thelient to pre-
pare (a part of) the file for untrusted storage. As input, it takes secrtpalic keys, (a part of) the file
F with the definitionnfo of the update to be performed (e.g., full re-write, modify blgaelete block,
add a block after block, etc.), and the previous metadaté.. The output is an “encoded” version of (a
part of) the filee(F') (e.g., by adding randomness, adding sentinels, encrypting for cotiétignetc.),
along with the informatiore(info) about the update (changed to fit the encoded version), and the new
metadatee(M ). The client sends(F'), e(info), e(M) to the server;

e PerformUpdate(pk, F;_1, M;_1,e(F),e(info),e(M)) — {F;, M;, M/, Py;/} is an algorithm run by the
server in response to an update request from the client. The input contains thie keyppk, the previous
version of the fileF;_, the metadata/;_; and the client-provided value$ F'), e(info), e(M ). Note that
the values(F), e(info), e(M) are the values produced IR®repareUpdate. The output is the new version
of the fileF; and the metadatd/;, along with the metadata to be sent to the cliéfitand its proofPy;.
The server sends!/, Py, to the client;

o VerifyUpdate(sk, pk, F', info, M., M/, Pp;/) — {accept, reject} is run by theclient to verify the server’s
behavior during the update. It takes all inputs of frepareUpdate algorithm}! plus theM/, Py sent
by the server. It outputs acceptandeé ¢an be deleted in that case) or rejection signals;

e Challenge(sk, pk, M.) — {c} is a probabilistic procedure run by thetient to create a challenge for the
server. It takes the secret and public keys, along with the latest cligatiata M, as input, and outputs
a challenge: that is then sent to the server;

e Prove(pk, F;, M;,c) — {P} is the procedure run by theerver upon receipt of a challenge from the
client. It takes as input the public key, the latest version of the file and tteelata, and the challenge
It outputs a proofP that is sent to the client;

o Verify(sk, pk, M., ¢, P) — {accept, reject} is the procedure run by theient upon receipt of the proaP
from the server. It takes as input the secret and public keys, the cleadatal/., the challenge;, and
the proof P sent by the server. An output of accept ideally means that the seitvé@as the file intact.
We will define the security requirements of a DPDP scheme later.

'However, in our modeF denotes part of some encoded version of the file and not part of thal data (though for generality
purposes we do not make it explicit).



We assume there is a hidden input and ougtightstaten all functions run by the client, argkrverstate
in all functions run by the server. Some inputs and outputs may be empty in sbemaas. For example, the
PDP scheme of [2] does not store any metadata at the client sideskAlgocan be used for storing multiple
files, possibly on different servers. All these functions can be assumtake some public parameters as
an extra input if operating in the public parameters model, although our ootistr does not require such
modifications. Apart from{accept, reject}, algorithmVerifyUpdate can also output a new client metadata
M,. In most scenarios, this new metadata will be setfas= M.

Retrieval of a (part of a) file is similar to the challenge-response protabolve, composed of
Challenge, Verify, Prove algorithms, except that along with the proof, the server also sends thesteq
(part of the) file, and the verification algorithm must use this (part of thejrfithe verification process. We
also note that a PDP scheme is consistent with the DPDP scheme definition, witthalgPrepareUpdate,
PerformUpdate andVerifyUpdate specifying an update that is a full re-write (or append).

As stated above, PDP is a restricted case of DPDP. The PDP schemehafs[#je same algorithm
definition for key generation, defines a restricted versioPr@pareUpdate that can create the metadata
for only one block at a time, and definBsove andVerify algorithms similar to our definition. It lacks an
explicit definition of Challenge (though one is very easy to inferPerformUpdate consists of performing
a full re-write or an append (so thedplay attacks can be avoided), aNdrifyUpdate is used accordingly,
i.e., it always accepts in case of a full re-write or it is run as in DPDP in ohae append. It is clear that
our definition allows a broad range of DPDP (and PDP) schemes.

We now define the security of a DPDP scheme, inspired by the securitytidefnof [2, 7]. Note that
the restriction to the PDP scheme gives a security definition for PDP schemmgmtble with the ones
in[2, 3].

Definition 2 (Security of DPDP) We say that a DPDP scheme is secure if for any probabilistic polynomial
time (PPT) adversary who can win the following data possession game withegligible probability, there
exists an extractor that can extract (at least) the challenged parts ofith@fresetting and challenging the
adversary polynomially many times.

DATA POssesSSIONGAME: Played between the challenger who plays the role of the client and the
adversary who acts as a server.

1. KEYGEN: The challenger run&eyGen(1*) — {sk, pk} and sends the public ke to the adversary;

2. ACF QUERIES The adversary is very powerful. The adversary can mount adagiiogen file (ACF)
gueries as follows. The adversary specifies a messaged the related informatioinfo specifying
what kind of update to perform (see Definition 1) and sends these to tHergfex. The challenger
runs PrepareUpdate on these inputs and sends the resultéid’), e(info),e(M) to the adversary.
Then the adversary replies with’/, Py;; which are verified by the challenger using the algorithm
VerifyUpdate. The result of the verification is told to the adversary. The adversanyfagther
request challenges, return proofs, and be told about the verificatsultse The adversary can repeat
the interaction defined above polynomially-many times;

3. SETUP: Finally, the adversary decides on messadé&sand related informatiorinfo; for all i =
1,..., R of adversary’s choice of polynomially-large (in the security paramgjeR > 1. The ACF
interaction is performed again, with the firstfo] specifying a full re-write (this corresponds to the
first time the client sends a file to the server). The challenger updateschaisneetadata only for the
verifying updates (hence, non-verifying updates are considered hawvitaken place—data has not
changed);

4. CHALLENGE: Call the final version of the filé", which is created according to the verifying updates
the adversary requested in the previous step. The challenger holdstést maetadatal/. sent by
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the adversary and verified as accepting. Now the challenger createalieiege using the algorithm
Challenge(sk, pk, M.) — {c} and sends it to the adversary. The adversary returns a proff
Verify(sk, pk, M., ¢, P) accepts, then the adversary wins. The challenger has the ability to reset th
adversary to the beginning of the challenge phase and repeat this st@mpoally-many times for
the purpose of extraction. Overall, the goal is to extract (at least) thdexiged parts ofF' from the
adversary’s responses which are accepting.

Note that our definition coincides with extractor definitionpinofs of knowledgeor an adversary that
answers a non-negligible fraction of the challenges, a polynomial-time &xtnaeist exist. Furthermore,
this definition can be applied to the POR case [7, 12, 31], in which by repetitenchallenge-response
process, the extractor can extract the whole file with the help of erroeatong codes. The probability of
catching a cheating server is analyzed in Section 5.

Finally, if a DPDP scheme is to be truly publicly verifiable, Merify algorithm should not make use of
the secret key. Since that is the case for our construction (see Segtioa dan derive a public verifiability
protocol usable for official arbitration purposes; this work is currentigier development.

3 Rank-based authenticated skip lists

In order to implement our first DPDP construction, we use a modified authédicskip list data struc-
ture [11]. This new data structure, which we caliaak-based authenticated skip list based on authen-
ticated skip lists but indexes data in a different way. Note that we could hased the construction on
any authenticated search data structure, e.g., Merkle tree [18] insté&lwduld perfectly work for the
static case. But in the dynamic case, we would need an authenticated ckdrbky and unfortunately no
algorithms have been previously presented for rebalancing a Merklevhiée efficiently maintaining and
updating authentication information (except for the three-party model, #53), [Yet, such algorithms have
been extensively studied for the case of the authenticated skip list dattustr[25]. Before presenting the
new data structure, we briefly introduce authenticated skip lists.

The authenticated skip list is a skip list [27] (see Figure 1) with the diffexéhat every node above
the bottom level (which has two pointers, namegy(v) anddwn(v)) also stores a labef(v) that is a
cryptographic hash and is computed using some collision-resistant hrattofui (e.g., SHA-1 in practice)
as a function off (rgt(v)) and f(dwn(v)). Using this data structure, one can answer queries like “does 21
belong to the set represented with this skip list?” and also provide a prddhehgiven answer is correct.
To be able to verify the proofs to these answers, the client must alwéythedabelf (s) of the top leftmost
node of the skip list (hode; in Figure 1). We callf (s) thebasis(or root), and it corresponds to the client’s
metadata in our DPDP constructio{ = f(s)). In our construction, the leaves of the skip list represent
the blocks of the file. When the client asks for a block, the server neestntb that block, along with a
proof that the block is intact.

We can use an authenticated skip list to check the integrity of the file blockgeVéw, this data structure
does not support efficient verification of the indices of the blocks, Wwhie used as query and update
parameters in our DPDP scenario. The updates we want to support DRRIP scenario are insertions
of a new block after theé-th block and deletion or modification of thieh block (there is no search key in
our case, in contrast to [11], which basically implements an authenticatedngict)o If we use indices of
blocks as search keys in an authenticated dictionary, we have the follprobéem. Suppose we have a
file consisting of 100 blocksn, mo, ..., m1go and we want to insert a block after tdé-th block. This
means that the indices of all the bloeks, m4o, . . ., m190o Should be incremented, and therefore an update
becomes extremely inefficient. To overcome this difficulty, we define a nehwitigscheme that takes into
account rank information.
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Figure 1. Example of rank-based skip list.

3.1 Authenticating ranks

Let F' be a file consisting of. blocksmy, mo, ..., m,. We store at thé-th bottom-level node of the skip
list a representatioff (m;) of blockm,; (we will define7 (m;) later). Blockm,; will be stored elsewhere by
the untrusted server. Each nodef the skip list stores the number of nodes at the bottom level that can be
reached fromy. We call this value theank of v and denote it withr(v). In Figure 1, we show the ranks of
the nodes of a skip list. An insertion, deletion, or modification of a file blockcas$f only the nodes of the
skip list along a search path. We can recompute bottom-up the ranks ofehtedfnodes in constant time
per node.

The top leftmost node of a skip list will be referred to asstert node For exampleyws is the start node
of the skip list in Figure 1. For a node denote withlow(v) andhigh(v) the indices of the leftmost and
rightmost nodes at the bottom level reachable frgmespectively. Clearly, for the start nodef the skip
list, we haver(s) = n, low(s) = 1 andhigh(s) = nbe the nodes that can be reached frotyy following
the right or the down pointer respectively. Using the ranks stored abitiesnwe can reach tligh node of
the bottom level by traversing a path that begins at the start node, asgofmwthe current node assume
we knowlow(v) andhigh(v). Letw = rgt(v) andz = dwn(v). We set

high(w) = high(v),

low(w) = high(v) —r(w)+1,
high(z) = low(v)+r(z)—1,
low(z) = low(v).

If i € [low(w), high(w)], we follow the right pointer and set = w, else we follow the down pointer and
setv = z. We continue until we reach thieth bottom node. Note that we do not have to stdgh andlow.
We compute them on the fly using the ranks.

In order to authenticate skip lists with ranks, we extend the hashing schéimedda [11]. We consider
a skip list that stores data items at the bottom-level nodes. In our applicatometley associated with the
i-th blockm; stores itemz(v) = 7 (m;). Letl(v) be the level (height) of nodein the skip list {((v) = 0
for the nodes at the bottom level).

Let || denote concatenation. We extend a hash fundtitmsupport multiple arguments by defining

My, ... wk) = h(h(z)]].. - [[h(zr)) -
We are now ready to define our new hashing scheme:

Definition 3 (Hashing scheme with ranks) Given a collision resistant hash functiénthe labelf(v) of a
nodev of a rank-based authenticated skip list is defined as follows.
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Case0: v = null

Casel: [(v) >0
f) = h(l(v),(v), f(dwn(v)), f(rgt(v)));
Case2: l(v) =0
f(w) = h(l(v),r(v), z(v), f(rgt(v))) -
Before inserting any block (i.e., if initially the skip list was empty), the basis, i.e.|ahelf(s) of the top

leftmost nodes of the skip list, can easily be computed by hashing the sentinel values ofifhiessk—the
file consists of only two “fictitious” blocks— block and block+oc.

nodev || vs V4 UK w3 Wa ws wWeg wy
l(v) 0 0 0 2 2 3 3 4
q(v) 0 1 1 1 1 5 1 1
g) || 0 | T(ma) | T(ms) | f(v1) | f(ve) | flvr) | f(vs) | f(ve)

Table 2: Proof for thé-th block of the fileF’ stored in the skip list of Figure 1.

3.2 Queries

Suppose now the filé" and a skip list on the file have been stored at the untrusted server. Thievediets
to verify the integrity of blocki and therefore issues quesyRank(i) to the server. The server executes
Algorithm 1, described below, to compufe(i) and a proof forZ (i) (for convenience we USg (i) to

denote7 (m;)).
Let vy, ..., v, be the path from the start nods,, to the node associated with blotky;. The reverse
pathvy, ..., vy is called theverification pathof blocki. For each node;, j = 1, ..., k, we define boolean

d(vj) and valueg;(v;) andg(v;) as follows, where we conventionally s€hull) = 0:

)

d(v;) = rgt  j=1orj>1andvj_; = rgt(v))
’ dwn j > 1andvj_; = dwn(v;)

r(rgt(v) ifj=1
1 if 7 >1 andl(vj) =0

q(vj) = r(dwn(v;)) if 7 > 1,1(vj) > 0andd(v;) = rgt
r(rgt(v;))  if j > 1,1(v;) > 0 andd(v;) = dwn
flret(vy)) i =1
) if 7 >1andi(v;) =0

9(vj) = f(dwn(v;)) if 5 > 1,1(vj) > 0andd(v;) = rgt
flrgt(v;))  if j > 1,1(v;) > 0 andd(v;) = dwn

The proof for block: with data7 (i) is the sequencél(i) = (A(v1),...,A(vg)) where A(v) =
(I(v),q(v),d(v),g(v)). So the proof consists of tuples associated with the nodes of the verifigatibn
Booleand(v) indicates whether the previous node is to the right or belowor nodes above the bottom
level, g(v) andg(v) are the rank and label of the successov dfiat is not on the path. The profi(5) for
the skip list of Figure 1 is shown in Table 2. Due to the properties of skip ligispaf has expected size
O(logn) with high probability (whp).



Algorithm 1: (7, 1) = atRank(i)
1: Letwy,vs,..., v, be the verification path for block
2: return representatiol of block: and proofll = (A(v), A(v2), ..., A(vg)) for T;

3.3 \Verification

After receiving from the server the representatibrof block i and a proofll for it, the client executes
Algorithm 2 to verify the proof using the stored metadata

Algorithm 2: {accept, reject} = verify(i, M., T,1I)
1: LetIl = (Ay,..., Ag), whered; = (I;,q;,d;,g;)forj=1,... k;
2: )\OZO,pOZL’)/O:T,fO:O,
3:forj=1,...,kdo

4 A=l pj=pj-1+ a5 05 =dy;
5. if ¢; = rgtthen

6: ¥i = h(Njs pjsvi-1,95)

T &G =&-1

8 else{d; = dwn}

o Vi = h(Aj; 0559575 -1);
10: § =&i-1+ a5

11:  endif

12: end for

13: if ~, # M, then

14: return reject;

15: elseif p — & # 4 then

16:  return reject;

17: else{~, = M. andp;, — &, = i}
18: return accept;

19: end if

Algorithm 2 iteratively computes tupl€s\;, p;, d;,;) for each node; on the verification path plus a
sequence of integets. If the returned block representati@nand prooflI are correct, at each iteration of
the for-loop, the algorithm computes the following values associated withewaf the verification path:

e integer); = [(v;), i.e., the level ofv;;

e integerp; = r(v;), i.e., the rank ob;;

¢ booleany;, which indicates whether the previous nage; is to the right or below;;
e hash valuey; = f(v;), i.e., the label ob;;

e integer¢;, which is equal to the sum of the ranks of all the nodes that are to the figie @aodes of
the path seen so far, but are not on the path.

Lemma 1 If 7 is the correct representation of blo¢land sequencH of lengthk is the correct proof fofl,
then the following properties hold for the values computed in iteratiohthe for-loop of Algorithm 2:

1. Valuepy, is equal to the number of nodes at the bottom level of the skip list, i.e., theenurobblocks
of the file;

2. Valueg, is equal ton — 4; and

3. Valuey; is equal to the label of the start node of the skip list.



nodewv || vy V3 o Vs w w3 Wy ws we wy
l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
fw) | T | T(ms) | T(ma) | T(m3) | f(vz) | fvr) | flve) | f(vr) | flvs) | fvo)

Table 3: The proofl’(5) as produced by Algorithm 4 for the update “insert a new block with datter
block 5 at level 1.

3.4 Updates

The possible updates in our DPDP scheme are insertions of a new black gften block:, deletion of a
block 7, and modification of a block

To perform an update, the client issues first quetiRank(i) (for an insertion or modification) or
atRank(i — 1) (for a deletion), which returns the representatibrof block i or i — 1 and its proofII’.
Also, for an insertion, the client decides the height of the tower of the skimdisociated with the new
block. Next, the client verifies prodfi’ and computes what would be the label of the start node of the
skip list after the update, using a variation of the technique of [25]. Fintdfyclient asks the server to
perform the update on the skip list by sending to the server the paramétaesupdate (for an insertion,
the parameters include the tower height).

We outline in Algorithm 3 the update algorithm performed by the sefwaf¢rmUpdate) and in Algo-
rithm 4 the update algorithm performed by the cliertrUpdate). Input parameterg’ andIl’ of verUpdate
are provided by the server, as computedhbsformUpdate.

Since updates affect only nodes along a verification path, these algoritimis expected)(logn)
time whp and the expected size of the proof returneddsformUpdate is O(log n) whp.

Algorithm 3: (7’,1l') = performUpdate(i, 7, upd)
1: if upd is a deletiorthen

2: setj=i—1;

3: else{upd is an insertion or modificatign
4:  setj =i,

5: end if
6
7
8

. set(7’,1') = atRank(j);
. if upd is an insertiorthen
. insert element in the skip after the-th element;
9: else ifupd is a modificatiorthen
10: replace with7 thei-th element of the skip list;
11: else{upd is a deletion
12:  delete the-th element of the skip list;
13: end if
14: update the labels, levels and ranks of the affected nodes;
15: return (77,11');

To give some intuition of how Algorithm 4 produces prddf(:), the reader can verify that Table 3
corresponds tal’(5), the proof that the client produces from Table 2 in order to verify theateptinsert
a new block with data/” after block 5 at level 1 of the skip list of Figure 1". This update causes the
creation of two new nodes in the skip list, namely the node that holds the dathefd@-th block,ws,
and nodew (5-th line of Table 3) that needs to be inserted in the skip list at level 1. Natefthy) =
h(0||1||7,0]|1||7 (data(vy1))) is computed as defined in Definition 3 and that the ranks along the search
path are increased due to the addition of one more block.
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Algorithm 4 :

{accept, reject} = verUpdate(i, M., 7 ,upd, 7', II")
1: if upd is a deletiorthen
2: setj=i—1;
3: else{upd is an insertion or modificatign
4 setj =i
5. end if

6: if verify(j, M., 7', 1I') = reject then

7

8

9

0

1

:return reject;

. else{verify(j, M., 7',1I') = accept}

: fromi, 7, 7', andIl’, compute and store the updated lah&| of the start node;
10:  return accept;

11: end if

4 DPDP scheme construction

In this section, we present our DPDP | construction. First, we desctibalgorithms for the procedures
introduced in Definition 1. Next, we develop compact representativethéoblocks to improve efficiency
(blockless verification). In the followingy is the current number of blocks of the file. The logarithmic
complexity for most of the operations are due to well-known results abadlbéaticated skip lists [11, 26].
Most of the material of this section also applies to the DPDP Il scheme prdsar8ection 6.

4.1 Core construction

The server maintains the file and the metadata, consisting of an authenticgtdidtskith ranks storing

the blocks. Thus, in this preliminary construction, we hdvyé) = b for each block. The client keeps a
single hash value, calldehsis which is the label of the start node of the skip list. We implement the DPDP
algorithms as follows.

o KeyGen(1¥) — {sk, pk}: Our scheme does not require any keys to be generated. So, thislprese
output is empty, and hence none of the other procedures make useekéyss

e PrepareUpdate(sk, pk, F',info, M.) — {e(F),e(info),e(M)}: This is a dummy procedure that outputs
the file ' and informatiorinfo it receives as input}/, ande() ) are empty (not used);

e PerformUpdate(pk, F;_1, M;_1,e(F),e(info),e(M)) — {F;, M;, M, Py }: InputsF; 1, M;_; are the
previously stored file and metadata on the server (empty if this is the firstan), e(info), e(M ), which
are output byPrepareUpdate, are sent by the client(1/) being empty). The procedure updates the file
according tee(info), outputtingF;, runs the skip list update procedure on the previous skiglist; (or
builds the skip list from scratch if this is the first run), outputs the resultifng &8¢ as M;, the new basis
as M/, and the proof returned by the skip list updaterag . This corresponds to calling Algorithm 3
on inputs a block indey, the new dat& (in case of an insertion or a modification) and the type of the
updateupd (all this information is included ir(info)). Note that the indey and the type of the update
upd is taken frome(info) and the new datd is e(F). Finally, Algorithm 3 outputs\f/ and Py, = II(j),
which are output byerformUpdate. The expected runtime 9 (log n) whp;

o VerifyUpdate(sk, pk, F, info, M., M/, Py;;) —  {accept, reject}: Client metadatal/. is the label of
the start node of the previous skip list (empty for the first time), wheldas empty. The client runs
Algorithm 4 using the index of the update).., previous dat&", the update typapd, the new dat&”’
of the update and the prodfy;; sent by the server as input (most of the inputs are includedaj If the
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procedure accepts, the client séfs = M/ (new and correct metadata has been computed). The client
may now delete the new block from its local storage. This procedure is et da# of Algorithm 4. It
runs in expected timé (log n) whp;

e Challenge(sk, pk, M.) — {c}: This procedure does not need any input apart from knowing the euafb
blocks in the file ©). It might additionally take a paramet€rwhich is the number of blocks to challenge.
The procedure creatésrandom block IDs betweeh . . ., n. This set ofC random block IDs are sent to
the server and is denoted withThe runtime isO(C);

e Prove(pk, F;, M;,c) — {P}: This procedure uses the last version of the fijand the skip listV;, and
the challenge: sent by the client. It runs the skip list prover to create a proof on the ciggteblocks.

Namely, letiq, io, . .., ic be the indices of the challenged blocksove calls Algorithm 1C times (with
argumentsy, is, . . ., i) and sends baok' proofs. All these”' proofs form the outpuP. The runtime is
O(C'logn) whp;

e Verify(sk, pk, M., ¢, P) — {accept, reject}: This function takes the last basl4. the client has as input,
the challenge sent to the server, and the prddireceived from the server. It then runs Algorithm 2 using
as inputs the indices in the metadatd/,, the dataZ” and the proof sent by the server (note tfhaand
the proof are contained iR). This outputs a new basis. If this basis match&£shen the client accepts.
Since this is performed for all the indicesdnthis procedure take@(C'log n) expected time whp.

The above construction requires the client to download all the challerigekstfor the verification. A more
efficient method for representing blocks is discussed in the next section.

4.2 Blockless verification

We can improve the efficiency of the core construction by employing homdritoiggs, as in [2]. However,
the tags described here are simpler and more efficient to compute. Note ithabisible to use other
homomorphic tags like BLS signatures [5] as in Compact POR [31].

We represent a blodkwith itstag 7 (b). Tags are small in size compared to data blocks, which provides
two main advantages. First, the skip list can be kept in memory. Second drdteéewnloading the blocks,
the client can just download the tags. The integrity of the tags themselvedeastgabby the skip list, while
the tags protect the integrity of the blocks.

In order to use tags, we modify oleyGen algorithm to outpupk = (IV, g), whereN = pq is a product
of two primes andgy is an element of high order ii},. The public keypk is sent to the server; there is no
secret key.

The tag7 (b) of a blockb is defined by

T(b) =¢° mod N.

The skip list now stores the tags of the blocks at the bottom-level nodesefdhe the proofs provided by
the server certify the tags instead of the blocks themselves. Note that in$tst@ding the tags explicitly,
the server can alternatively compute them as needed from the public #elyeahlocks.

The Prove procedure computes a proof for the tags of the challenged blagkél < iy,...,ic <n
denote the challenged indices, whéres the number of challenged blocks ands the total number of
blocks). The server also sends a combined blbtk= chzl ajm;;, wherea; are random values sent by
the client as part of the challenge. The size of this combined block is rotigélgize of a single block.
Thus, we have a much smaller overhead than for serdibtpcks. Also, theVerify algorithm computes the
value

c
T =[] 7(mi)* mod N,

J=1
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and accepts if” = ¢™ mod N and the skip list proof verifies.

The Challenge procedure can also be made more efficient by using the ideas in [2]. iRsttad of
sending random values separately, the client can simply send a random key to a pseudo-randotioh
that will generate those values. Second, a key to a pseudo-randomitpdon can be sent to select the
indices of the challenged blocks < i; < n (5 = 1,...,C). The definitions of these pseudo-random
families can be put into the public key. See [2] for more details on this challerapgedure. We can now
outline our main result (for the proof of security see Section 5):

Theorem 1 Assume the existence of a collision-resistant hash function and that therdgcagsumption
holds. The dynamic provable data possession scheme presented ictios §DPDP 1) has the following
properties, where: is the current number of blocks of the filg,is the fraction of tampered blocks, and
C = O(1) is the number of blocks challenged in a query:

The scheme is secure according to Definition 2;
The probability of detecting a tampered block is (1 — f)¢;

The expected update time($log ) at both the server and the client whp;

A w0 b

The expected query time at the server, the expected verification tithe elient and the expected
communication complexity are ea€tlog n) whp;

5. The client space i©(1) and the expected server spac€ig:) whp.

Note that the above results hold in expectation and with high probability due tpréperties of skip
lists [27].

5 Security

In this section we prove the security of our DPDP scheme. While our pededfs specifically to the DPDP |
scheme, it also applies to the DPDP Il scheme discussed in the next seciitm®d) the only difference
between the two schemes is the authenticated structure used for proteciimgghi¢y of the tags.

We begin with the following lemma, which follows from the two-party authenticakdplIsst construc-
tion (Theorem 1 of [25]) and our discussion in Section 3.

Lemma 2 Assuming the existence of a collision-resistant hash function, the prooé&aged using our
rank-based authenticated skip list guarantees the integrity of its leayes) with non-negligible proba-

bility.
To prove security, we are also using flaetoring assumptian

Definition 4 (Factoring assumption) For all PPT adversariesi and large-enough numbéY = pq which
is a product of two primeg andgq, the probability thatd can outpuip or ¢ givenN is negligible in the size
of p andg.

Theorem 2 (Security of DPDP protocol) The DPDP protocol is secure in the standard model according to
Definition 2, assuming the existence of a collision-resistant hash functibthahthe factoring assumption
holds.
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Proof: The challenger is given a hash functibpand an integelN = pq but notp or ¢. The challenger then

samples a high-order elementHe interacts with the adversary in the data possession game honestly, using

the given hash function, and creates and updates the tags whileNisisghe modulus anglas the base.
Suppose now the challenger challengé®locks, namely the blocks with indicés, io, ..., ic. We

recall that in response to each challenge, the proof contains:

1. The tagsl;,, T;,, . .., T;, for each blocki, s, . . . , ic, along with the respective skip list proofs that
correspond to each tag, , 75, . . . , T;.;

2. A*weighted” sum of the fornb, = a;,, bi, + aip,bi, + ... + a4y bi, Wherea;,, (j =1,...,C) are
random numbers known by the challenger.

According to Definition 2, the DPDP scheme is secure if, whenever thecadiifh succeeds with non-
negligible probabilty (i.e., the adversary wins the data possession gamefallenger can extract the actual
blocks (which we denote with;,, m;,, ..., m;.) in polynomially-many interactions with the adversary.
We extract the actual blocks by means of the “weighted” sums sent by Weesady as follows. Suppose
the challenger challenges the adversary for a polynomial number of tindegedsC' verifying responses.

Thenif 51, .59, ..., Sc are the weigthed sums sent each time, we have the following equations:

ST = ambil + a¢12b¢2 + ...+ ailcbic

Sy = aimbil + ambig + ...+ aizcbic

Sc = aimbil + aiczbiQ + ...+ aiccbic
wherea;,, a;,,, ..., a;, for j = 1,...,C are different sets of random numbers sent each time with the
challenge anad;,, b;,, ..., bjc are the blocks that the adversary claims to possess. By solving this system
of linear equations we extract the blocks, b;,,...,b;,c. We recall that the actual blocks are denoted
with m;,, mi,, ..., mic. Since all the responses verified we have that foja# 1, ..., C the following

statements are true:

1.7, = g% mod N, whp. Otherwise the adversary can break the collision resistance cfdar
by Lemma 2;

a;.

2. T, "' T, ...T, 7 = g% mod N, which by the linear system equations can be written as

TIITLE LT = (gh )M (ghe) i L (g%)*5¢ mod N . (1)

Lo

Suppose now there is a subset of challenged blekDs, . . ., br} C {bi,, bi,, ..., bic} suchthab; # m;

forall j = 1,...,k, i.e., we extract some blocks that are not the actual blocks.alety, ..., a, and
T1,T5,...,Ty be the random numbers and the tags respectively that correspond toespuoase (i.e., to
some linear equation of the system) for blogks, b, . . ., b }. Equation 1 can be written as

TPTgE . T = (g7) " (g7)" . (6"9)"¢ mod N, )

since for the remaining blockg = m; and7; = g™ mod N is the correct tag with high probability, and
therefore the expressions referring to them are cancelled out. Nolgftion 2 to be satisfied, we have

ga1m1+a2m2+...+akmk — ga1b1+a2b2+...+akbk mOd N,
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while a;my + asms + ... + apmy # a1b; + asbs + ... + arb. This means that the adversary can find
A # B such thay? = g% mod N, which means thatl — B = k¢(N) and therefored — B can be used
to factorV, by using Miller's Lemma [19].

Therefore, the exracted blocks must be the correct ones. Othethésadversary can either break the
collision resistance of the function used, or facddor O

Concerning the probability of detection, the client probeklocks by calling theChallenge procedure.
Clearly, if the server tampers with a block other than those probed, therseilnot be caught. Assume
now that the server tampers withblocks. If the total number of blocks ig the probability that at least one
of the probed blocks matches at least one of the tampered blotks {§n — t)/n)“, since choosing’ of
n — t non-tampered blocks has probabili. — t) /n)°.

6 Rank-based RSA trees

We now describe how we can use ideas from [26] to implement the DPDRéhse (see Table 1), which
has a higher probability of detection, maintains logarithmic communication complexitiyas increased
update time.

In [26], a dynamic authenticated data structure caR&HR treds presented that achieves constant ex-
pected query time (i.e., time to construct the proof), constant proof sid€) @if log n) expected amortized
update time, for a givef < ¢ < 1. We can add rank information to the RSA tree by explicitly storing ranks
atthe internal nodes. Using this data structure allows the server to af$isemn ) challenges withD (log n)
communication cost since the proof for a block tag 64s) size.

The reason for sending additional challenges is the fact that the plibbatof detection increases with
numberC of challenges, sincg = 1 — (1 — f)“, wheref is the fraction of tampered blocks. Therefore,
by using an RSA tree with ranks to implement DPDP, we obtain the same complexisyiragas DPDP I,
except for the update time, which increases fi@fiog n) to O(n° log n) (expected amortized), and achieve
an improved probability of detection equaltte- (1 — f)$(een),

We now describe how we can use the tree structure from [26] to suggktinformation. In [26], an
¢ is chosen between 0 and 1 and a tree strugtisrbuilt that hasO(1/¢) levels, each node having degree
O(n¢). However, there is no notion of order in [26]. To introduce a notion dieowe assume that the
elements lie at the leaves of the tree and we view it as a B-tree with lower bouthe dlegre¢ = 3n°/4
and therefore upper bound equalto= 3n°/2, which are both viewed as constants. Therefore we can use
known B-tree algorithms to do the updates with the difference that we rebeilteb whenever the number
of the blocks of the file increases fromto 2n or decreases fromto n/4. When we rebuild, we set the new
constants for the degree of the tree. By the properties of the B-treeqadlddie at the same level), we can
prove that it is not possible to change the number of the levels of the treest@ehew rebuilt takes place.
To see that, suppose our file initially consistsmdblocks. Suppose now, for contradiction that the number
of the levels of the tree changes before a new rebuilt takes place. Noterba rebuilt takes place when
at least3n /4 operations (insertions/deletions) take place. We distinguish two cases:

1. If the number of the levels of the tree increases, that means that the nummbthe added blocks
is at least»' ¢ — n. Since there is no rebuilt it should be the case that 3n/4 and therefore that
n't€ —n < 3n/4, which is a contradiction for large;

2. If the number of the levels of the tree decreases, that means that themuaitthe deleted blocks
is at leastr — n'~¢. Since there is no rebuilt it should be the case that 3n/4, and therefore that
n —n'~¢ < 3n/4, which is again a contradiction for large

2The use of such a tree is dictated by the specific cryptographic primité us

15



Therefore before a big change happens in the tree, we can rebuiltsifty the same and by changing
the node degree) the tree and amortize. This is important, because the RS#ucture works for trees
that do not change their depth during updates, since the constantcprapfexity comes from the fact that
the depth is not a function of the elements in the structure (unlike B-treds} dlways maintained to be a
constant.

Using the above provably secure authenticated data structure bas2€]da fecure the tags (where
security is based on thetrong RSA assumptipnrwe obtain the following result:

Theorem 3 Assume the strong RSA assumption and the factoring assumption holdyrigmeid provable
data possession scheme presented in this section (DPDP IlI) has the fgjlpvaperties, where: is the
current number of blocks of the fil¢,is the fraction of tampered blocks, aads a given constant such that
O<e<1:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is
1— (1 _ f)Q(logn);

3. The update time i©(n¢logn) (expected amortized) at the server andl) (expected) at the client;

4. The expected query time at the server, the expected verification tbme eient and the worst-case
communication complexity are ea€hlogn);

5. The client space i©(1) and the server space 3(n).

Note that sendin@ (log n) challenges in [2, 3] or DPDP | would increase the communication complex-
ity from O(1) to O(log n) and fromO(log 1) to O(log? n), respectively.

7 Extensions and applications

Our DPDP scheme supports a variety of distributed data outsourcing apigca/here the data is subject
to dynamic updates. In this section, we describe extensions of our bagimseahat employ additional
layers of rank-based authenticated dictionaries to store hierarchiplitatwn-specific metadata for use in
networked storage and version control.

7.1 Variable-sized blocks

We now show how we can augment our hashing scheme to support vasiaddeblocks (e.g., when we
want to update a byte of a certain block). Recall that our ranking schesigna each internal nodea
rankr(u) equivalent to the number of bottom-level nodes (data blocks) reachabtetlfre subtree rooted
atu; these nodes (blocks) are conventionally assigned a rank equaWte support variable-sized blocks
by defining the rank of a node at the bottom level to be the size of its assbbiatek (i.e., in bytes). Each
internal node, in turn, is assigned a rank equivalent to the amount of lB&ehable from it. Queries and
proofs proceed the same as before, except that ranks and intessatsaaed with the search path refer to
byte offsets, not block indices, with updates phrased as, e.g., “inséittes at byte offset”. Such an
update would require changing only the block containing the data at byte in@milarly, modifications
and deletions affect only those blocks spanned by the range of byei$isg in the update.
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7.2 Directory hierarchies

We can also extend our DPDP scheme for use in storage systems condistingje files within a direc-
tory hierarchy. The key idea is to place the start node of each file'slvas&d authenticated structure (from
our single-file scheme) at the bottom node of a parent dictionary used tdilmagames to files. Using
key-based authenticated dictionaries [25], we can chain our prodfggdate operations through the entire
directory hierarchy, where each directory is represented as amégttied dictionary storing its files and
subdirectories. Thus, we can use these authenticated dictionaries ired masner, with the start node of
the topmost dictionary representing the root of the file system(as depictéglire2(a)).

This extension provides added flexibility for multi-user environments. Censigdystem administrator
who employs an untrusted storage provider. The administrator can keapttienticated structure’s meta-
data corresponding to the topmost directory, and use it to periodicallk ¢hedntegrity of the whole file
system. Each user can keep the label of the start node of the dictiorraegmanding to her home direc-
tory, and use it to independently check the integrity of her home file systemyaime, without need for
cooperation from the administrator.

Since the start node of the authenticated structure of the directory lgrgrthe bottom-level node
of another authenticated structure at a higher level in the hierarchgy Upgels of the hierarchy must be
updated with each update to the lower levels. Still, the proof complexity staywedldow: For example,
for the rank-based authenticated skip list case, i§ the maximum number of leaves in each skip list and
the depth of the directory structuredsthen proofs on the whole file system have expeciédlog n) size
and computation time whp.

‘ Skiplist at level 0 ‘

\ it | \ = | ‘tot‘JIs/‘
T

Skiplist at level 1 Skiplist at level 1
| Skiplist at level 0 | o] [omic] [menc] Lo )[ev ] .. . [ResomE]
T T T T : ~

‘ bin/ ‘ ‘ etc/ ‘ -root/ nas —W ‘ Skiplist at level 2 ‘ avg # of entries per directory: f

L 1 1 1
‘ Skiplist at level 1 ‘ ‘ Skiplist at level 1 ‘ [ mainc,i | [ mainc2 |+« [ maincy ‘} avg # of versions per file: v

I

‘ fst;b ‘ ‘ mt‘ab ‘ ‘pas;wd‘ ‘ use‘rll H usérZ/ H usér3/ ‘- . -‘ use‘rK/ ‘ ‘ Skiplist at level 3 ‘ avg depth of directory

:

hierarchy: d
‘ Skiplist at level 2 ‘ @ @ @
Legend Skiplist | <R ~ Legend ‘
@ @ e @ root leaf avg # of blocks per file: n root leaf

(a) A file system skip list with blocks as leaves, directo- (b) A version control file system. Notice the additional

ries and files as roots of nested skip lists. level of skiplists for holding versions of a file. To elim-
inate redundancy at the version level, persistent authen-
ticated skip lists could be used [1]: the complexity of
these proofs will then b&(log n + log v + dlog f).

Figure 2: Applications of our DPDP system.

7.3 \Version control

We can build on our extensions further to efficiently support a versiosystem (e.g., a CVS repository,
or versioning filesystem). Such a system can be supported by additigeaadditional layer of key-based
authenticated dictionaries [25], keyed by revision number, between thiendides for each file’s directory
and its data, chaining proofs as in previous extensions. (See FigyroRém illustration.) As before, the

17



client needs only to store the topmost basis; thus we can support a wegssystem for a single file with
only O(1) storage at the client an@(logn + log v) proof complexity, where is the number of the file
versions. For a versioning system spanning multiple directories, betthe number of versions aadbe
the depth of the directory hierarchy. The proof complexity for the vemsgfile system has expected size
O(d(logn + logv)).

The server may implement its method of block storage independently from thendiy structures
used to authenticate data; it does not need to physically duplicate eachabldata that appears in each
new version. However, as described, this extension requires the additeo new rank-based dictionary
representing file data for each new revision added (since this dictionptgded at the leaf of each file’'s
version dictionary). In order to be more space-efficient, we coulghasmstentauthenticated dictionaries [1]
along with our rank mechanism. These structures handle updates by addimgnew nodes along the
update path, while preserving old internal nodes corresponding t@opeeversions of the structure, thus
avoiding unneeded replication of nodes.

8 Performance evaluation

We evaluate the performance of our DPDP | scheme (Section 4.2) in termsnofignication and compu-
tational overhead, in order to determine priee of dynamisnover static PDP. For ease of comparison, our
evaluation uses the same scenario as in PDP [2], where a server wigitegd@ossession of a 1GB file.
As observed in [2], detecting H% fraction of incorrect data with 99% confidence requires challenging a
constant number of 460 blocks; we use the same number of challengesxfparison.

8.1 Proof size

The expected size of proofs of possession for a 1GB file under eliffédriock sizes is illustrated in Fig-
ure 3(a). Here, a DPDP proof consists of responses to 460 authedt&lap list queries, combined with a
single verification block\ = Y.a;m;, which grows linearly with the block size. The size of this blagk

is the same as that used by the PDP scheme ir? [@hd is thus represented by the line labeled PDP. The
distance between this line and those for our DPDP | scheme represemtsnomunication overhead—the
price of dynamism—which comes from the skip list query responses (illudtiatEable 2). Each response
contains on average5 logn rows, so the total size decreases exponentially (but slowly) with inciggasin
block size, providing near-constant overhead except at very sinak bizes.

8.2 Server computation

Next, we measure the computational overhead incurred by the servevireiang challenges. Figure 3(b)
presents the results of these experiments (averaged from 5 trials), wdrielperformed on an AMD Athlon

X2 3800+ system with 2GHz CPU and 2GB of RAM. As above, we compute the rizgpeired by our
scheme for a 1GB file under varying block sizes, providing 99% condigleAs shown, our performance

is dominated by computing/ and increases linearly with the block size; note that static PDP [2] must
also compute thid/ in response to the challenge. Thus the computational price of dynamism—timte spe
traversing the skip list and building proofs—while logarithmic in the number ofkspis extremely low

in practice: even for a 1GB file with a million blocks of size 1KB, computing theopfor 460 challenged
blocks (achieving 99% confidence) requires less than 40ms in total (dsasmiams with larger blocks).
We found in other experiments that even when the server is not I/O baendahen computing/ from

3The authors present multiple versions of their scheme. The versionuwithe knowledge of exponent assumption and the
random oracle actually sends thi$; other versions only compute it.
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Figure 3: (a) Size of proofs of possession on a 1GB file, for 99%alitity of detecting misbehavior. (b)
Computation time required by the server in response to a challenge for a [£GBifih 99% probability of
detecting misbehavior.

memory) the computational cost was nearly the same. Note that any outsstocage system proving the
knowledge of the challenged blocks must reach those blocks and tteepefp the 1/0 cost, and therefore
such a small overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that minimizes total commumicasiband compu-
tation overhead for a 1GB file: a block size of 16KB is best for 99% cenfie, resulting in a proof size of
415KB, and computational overhead of 30ms. They also show that thegiritynamism is a small amount
of overhead compared to the existing PDP scheme.

8.3 \Version control

Finally, we evaluate an application that suits our scheme’s ability to efficientigleand prove updates to
versioned, hierarchical resources. Public CVS repositories offeseful benchmark to assess the perfor-
mance of the version control system we describe in Section 7. Using QMSiteries for the Rsync [28],
Samba [28] and Tcl [24] projects, we retrieved the sequence of upfiata the RCS source of each file in
each repository’s main branch. RCS updates come in two types: “indares at linen” or “deletem lines
starting at linen”. Note that other partially-dynamic schemes (i.e., Scalable PDP [3]) cdramutle these
types of updates. For this evaluation, we consider a scenario whetiegjaad proofs descend a search
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path through hierarchical authenticated dictionaries correspondingd@n)do the directory structure, his-
tory of versions for each file, and finally to the source-controlled linesach file. We use variable-sized
data blocks, but for simplicity, assume a@vescheme where each line of a file is assigned its own block;
a smarter block-allocation scheme that collects contiguous lines during spuaidd yield fewer blocks,
resulting in less overhead.

Rsync Samba Tcl
dates of activity| 1996-2007| 1996-2004| 1998-2008
# of files 371 1538 1757
#of commits| 11413 27534 24054
# of updates| 159027 275254 367105
Total lines| 238052 589829 1212729
Total KBytes| 8331 KB | 18525 KB | 44585 KB
Avg. # updates/commit  13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7
Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425KB 395 KB 426 KB
Proof size per commit 13 KB 9KB 15 KB
Proof time per commif  1.2ms 0.9ms 1.3ms

Table 4: Authenticated CVS server characteristics.

Table 4 presents performance characteristics of three public CVSt@msunder our scheme; while
we have not implemented an authenticated CVS system, we report the seerax required for proofs of
possession for each repository. Here, “commits” refer to individuagb€keckins, each of which establish
a new version, adding a new leaf to the version dictionary for that filecldtgs” describe the number of
inserts or deletes required for each commit. Total statistics sum the numbego{iilocks) and kilobytes
required to store all inserted lines across all versions, even after g#weydeen removed from the file by
later deletions.

We use these figures to evaluate the performance of a proof of passassler the DPDP | scheme:
as described in Section 7, the cost of authenticating different versidiiesowithin a directory hierarchy
requires time and space complexity corresponding to the depth of the skipeliatdhy, and the width of
each skip list encountered during tReove procedure.

As in the previous evaluation, “Proof size, 99%" in Table 4 refers to the sfza response to 460
challenges over an entire repository (all directories, files, and vexsidrhis figure shows that clients of
an untrusted CVS server—even those storing none of the versiormdces locally—can query the server
to prove possession of the repository using just a small fraction (1% tcob%e bandwidth required to
download the entire repository. “Proof size and tiper commit refer to a proof sent by the server to
prove that a single commit (made up of, on average, about a dozen sipdaie performed successfully,
representing the typical use case. These commit proofs are very sKBIt¢A5KB) and fast to compute
(around 1ms), rendering them practical even though they are redoire@ch commit. Our experiments
show that our DPDP scheme is efficient and practical for use in distrilayelitations.
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