
Under consideration for publication in Math. Struct. in Comp. Science

The computational SLR: a logic for reasoning about
computational indistinguishability
Yu Zhang

Laboratory for Computer Science, Institute of Software, Chinese Academy of Sciences

P. O. Box 8718, Beijing 100190, China

yzhang@ios.ac.cn

Received 2 December 2009

Computational indistinguishability is a notion in complexity-theoretic cryptography and is used to
define many security criteria. However, in traditional cryptography, proving computational
indistinguishability is usually informal and becomes error-prone when cryptographic constructions
are complex. This paper presents a formal proof system based on an extension of Hofmann’s SLR
language, which can capture probabilistic polynomial-time computations through typing and is
sufficient for expressing cryptographic constructions. We in particular define rules that justify
directly the computational indistinguishability between programs and prove that these rules are
sound with respect to the set-theoretic semantics, hence the standard definition of security. We also
show that it is applicable in cryptography by verifying, in our proof system, Goldreich and Micali’s
construction of pseudorandom generator, and the equivalence between next-bit unpredictability and
pseudorandomness.

1. Introduction

Research on the verification of cryptographic protocols in recent years has switched its focus
from the symbolic model to the computational model — a more realistic model where criteria for
the underlying cryptography are considered. Computational indistinguishability is an important
notion in cryptography and the computational model of protocols, which is particularly used to
define many security criteria. However, proving computational indistinguishability in traditional
cryptography is usually done in a paper-and-pencil, semi-formal way. It is often error-prone
and becomes unreliable when the cryptographic constructions are complex. This paper aims at
designing a formal system that can help us to verify cryptographic proofs. Our ultimate goal will
be fully or partially automating the verification.

Noticing that computational indistinguishability can be seen as a special notion of equiva-
lence between programs, we make use of techniques from the theory of programming languages,
but this requires in the first place a proper language for expressing cryptographic constructions
and adversaries. In particular, we shall consider only “feasible” adversaries, precisely, proba-
bilistic programs that terminate within polynomial time. While such a complexity restriction
can be easily formulated using the model of Turing-machines, it is by no mean a good model
for formal verification. At this point, our attention is drawn to Hofmann’s SLR system (Hof98;

Yu Zhang 2

Hof00), a functional programming language that implements Bellantoni and Cook’s safe re-
cursion (BC92). The very nice property about SLR is the characterization of polynomial-time
computations through typing. The probabilistic extension of SLR has been studied by Mitchell
et al. (MMS98), where functions of the proper type capture the computations that terminate in
polynomial time on a probabilistic Turing machine.

Our system is based on the probabilistic extension of SLR, and we develop an equational
proof system with rules justifying the computational indistinguishability between programs. We
prove that these rules are sound with respect to the set-theoretic semantics of the language, hence
coincide with the traditional definition of computational indistinguishability. Reasoning about
cryptographic constructions in the proof system is purely syntactic, without explicit analysis on
the probability of program output and the complexity bound of adversaries.

The rest of the paper is organized as follows: Section 2 introduces the computational SLR — a
probabilistic extension of Hofmann’s SLR, together with an adapted definition of computational
indistinguishability based on the language. In Section 3 we develop the equational proof system
and prove the soundness of its rules. Cryptographic examples using the proof system are given
in Section 4 to illustrate its usability in cryptography. Section 5 summarizes related work and
Section 6 concludes the paper.

2. The computational SLR

We start by defining a language for expressing cryptographic constructions and adversaries, as
well as the computational indistinguishability between programs. Due to the complexity consid-
eration, the language should offer a mechanism to capture the class of probabilistic polynomial-
time computations. Bellantoni and Cook have proposed a recursion model other than the model
of Turing-machines, which is called safe recursion and defines exactly functions that are com-
putable in polynomial-time on a Turing-machine (BC92). This is an intrinsic, purely syntactic
mechanism: variables are divided into safe variables and normal variables, and safe variables
must be instantiated by values that are computed using only safe variables; recursion must take
place on normal variables and intermediate recursion results are never sent to safe variables.
When higher-order functions are concerned, it is also required that step functions must be linear,
i.e., intermediate recursive results can be used only once in each step.

Hofmann later developed a functional language called SLR to implement the safe recur-
sion (Hof98; Hof00). In particular, he introduces a type system with modality to distinguish be-
tween normal variables and safe variables, and linearity to distinguish between normal functions
and linear functions. He proves that well-typed functions of a proper type are exactly polynomial-
time computable functions. Hofmann’s original SLR system has a polymorphic type system, but
it is not necessary in cryptography, so in this section we first introduce a non-polymorphic ver-
sion of Hofmann’s SLR system, then extend it to express cryptographic constructions. We shall
adapt the traditional definition of the computational indistinguishability in our language.

2.1. The non-polymorphic SLR for bitstrings

Types are defined by:

τ, τ ′, . . . ::= Bits | τ × τ ′ | τ ⊗ τ ′ | �τ → τ ′ | τ → τ ′ | τ (τ ′.

The computational SLR 3

τ <: τ

τ <: τ ′ τ ′ <: τ”

τ <: τ”

τ <: τ ′ σ <: σ′

τ × σ <: τ ′ × σ′
τ <: τ ′ σ <: σ′

τ ⊗ σ <: τ ′ ⊗ σ′

τ ′ <: τ σ <: σ′ a′ ≤ a

τ
a−→ σ <: τ ′

a′
−−→ σ′

τ <: τ ′

Bits→ τ <: Bits(τ ′

Fig. 1. Sub-typing rules for SLR

Bits is the base type for bitstrings, and all other types are from Hofmann’s language: τ × τ ′

are cartesian product types, and τ ⊗ τ ′ are tensor product types as in linear λ-calculus. There
are three sorts of functions: �τ → τ ′ are modal functions with no restriction on the use of
arguments; τ → τ ′ are non-modal functions where arguments must be safe values; τ (τ ′

are linear functions where arguments can be used only once. SLR uses aspects to represent these
function spaces: τ a−→ τ ′ is a function type with aspect a, which is either m = (modal, nonlinear)
for �τ → τ ′, or n = (nonmodal, nonlinear) for τ → τ ′, or l = (nonmodal, linear) for τ (τ ′.
The aspects are ordered: m ≤ n ≤ l. They are also used to tag variables in typing contexts.

The type system also inherits the sub-typing from SLR and we write τ <: τ ′ if τ is a sub-type
of τ ′. The sub-typing rules are listed in Figure 1. Note that the last rule, from which we can have
Bits→ τ <: Bits(τ , states that bitstrings can be duplicated without violating linearity.

Expressions of SLR are defined by the following grammar:

e1, e2, . . . ::= x atomic variables
| nil empty bitstring
| B0 | B1 bits
| caseτ case distinction
| recτ safe recursor
| λx.e abstraction
| e1e2 application
| 〈e1, e2〉 product
| proj1e | proj2e product projection
| e1 ⊗ e2 tensor product
| let x⊗ y = e1 in e2 tensor projection

B0 and B1 are two constants for constructing bitstrings: if u is a bitstring, B0u (or B1u) is the new
bitstring with a bit 0 (or 1) added at the left end of u. We often use B to denote the bit constructor
when its value is irrelevant. Note that in this language we work on real bitstrings, not the number
that they represent. For instance, 0 and 00 are two different objects in our language, so the two
constants B0 and B1 are semantically different from the two successors S0 and S1 in Hofmann’s
system. caseτ is the constant for case distinction: caseτ (n, 〈e, f0, f1〉) tests the bitstring n and
returns e if n is an empty bitstring, f0(n′) if the first bit of n is 0 and the rest is n′, and f1(n′) if
the first bit of n is 1. recτ is the constant for recursion on bitstrings: recτ (e, f, n) returns e if n
is empty, and f(n, recτ (e, f, n′)) otherwise, where n′ is the part of the bitstring n with its first
bit cut off.

Typing assertions of expressions are of the form Γ ` t : τ , where Γ is a typing context that
assigns types as well as aspects to variables. A context is typically written as a list of bindings

Yu Zhang 4

T-VAR
Γ, x :a τ ` x : τ

Γ ` e : τ τ <: τ ′

T-SUB
Γ ` e : τ ′

Γ, x :a τ ` e : τ ′

T-ABS
Γ ` λx . e : τ

a−→ τ ′

Γ,∆1 ` e1 : τ
a−→ τ ′ Γ,∆2 ` e2 : τ Γ nonlinear x :a

′
σ ∈ Γ,∆2 implies a′ ≤ a

T-APP
Γ,∆1,∆2 ` e1e2 : τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2
T-PAIR

Γ ` 〈e1, e2〉 : τ1 × τ2

Γ ` e : τ1 × τ2 i ∈ {1, 2}
T-PROJ

Γ ` proji(e) : τi

Γ,∆1 ` e1 : τ1 Γ,∆2 ` e2 : τ2 Γ nonlinear
T-TENSOR

Γ,∆1,∆2 ` e1 ⊗ e2 : τ1 ⊗ τ2

Γ,∆1, x :l τ1, y :l τ2 ` e : τ Γ,∆2 ` e′ : τ1 ⊗ τ2 Γ nonlinear
T-LET

Γ,∆1,∆2 ` let x⊗ y = e′ in e : τ

T-NIL
Γ ` nil : Bits

i ∈ {1, 2}
T-BIT

Γ ` Bi : Bits(Bits

T-REC
Γ ` recτ : τ (�(�Bits→ τ (τ)→ �Bits→ τ

T-CASE
Γ ` caseτ : Bits((τ × (Bits(τ)× (Bits(τ))(τ

Fig. 2. Typing rules of SLR

x1 :a1 τ1, . . . , xn :an τn, where a1, . . . an are aspects of {m, n, l}. Typing rules are given in
Figure 2.

2.2. The computational SLR

The probabilistic extension of SLR is studied by Mitchell et al. by adding a random bit ora-
cle to simulate the oracle tape in probabilistic Turing-machines (MMS98). However, OSLR is a
functional language with side-effects, which means that the value of a program depends on the
evaluation strategy (call-by-name or call-by-value), which makes it difficult to deal with substi-
tution when we build a logic upon the language. Hence we adopt a different syntax from Moggi’s
computational λ-calculus (Mog91), a pure functional language where probabilistic computations
are captured by monadic types. We call the language computational SLR and often abbreviate it
as CSLR.

Types in CSLR are extended with a unary type constructor:

τ ::= . . . | Tτ.

It comes from Moggi’s language: a type Tτ is called a monadic type (or a computation type), for
computations that return (if they terminate correctly) values of type τ . In our case, a computation
always terminates and can be probabilistic, hence it will return one of a set of values, each with

The computational SLR 5

T-RAND
Γ ` rand : TBits

Γ ` e : τ
T-VAL

Γ ` val(e) : Tτ

Γ,∆1 ` e1 : Tτ1 Γ,∆2, x :a τ1 ` e2 : Tτ2 Γ nonlinear x :a
′
σ ∈ Γ,∆1 implies a′ ≤ a

T-BIND
Γ,∆1,∆2 ` bind x = e1 in e2 : Tτ2

Fig. 3. Additional typing rules of the computational SLR

a certain probability. The sub-typing system is then extended with the rule:

τ <: τ ′

Tτ <: Tτ ′
.

Expressions of the computational SLR are extended with three constructions for probabilistic
computations:

e1, e2, . . . ::= . . . SLR terms
| rand oracle bit
| val(e) deterministic computation
| bind x = e1 in e2 sequential computation

The constant rand returns a random bit 0 or 1, each with the probability 1
2 . val(e) is the trivial

(deterministic) computation which returns e with the probability 1. bind x = e1 in e2 is the
sequential computation which first computes e1, binds the value to x, then computes e2. We
sometimes abbreviate the program of the form bind x1 = e1 in . . . bind xn = en in e as
bind (x1 = e1, . . . , xn = en) in e. The order of some bindings must be carefully kept in the
abbreviated form.

Typing rules for these extra constants and constructions are given in Figure 3. Note that when
defining a purely deterministic program in CSLR, it is not sufficient to state that its type does not
have monadic components. For instance, the function λxBits . (λyTBits . x)rand has type Bits(
Bits, but it still contains probabilistic computations. Instead, we must show that the program can
be defined and typed in (non-probabilistic) SLR, and in that case, we say it is SLR-definable and
SLR-typable.

As in many standard typed λ-calculi, we can define a reduction system for the computational
SLR, and prove that every closed term has a canonical form. In particular, the canonical form of
type Bits is:

b ::= nil | B0b | B1b.

If u is a closed term of type Bits, we write |u| for its length. We define the length of a bitstring
on its canonical form b:

|nil| = 0, |Bib| = |b|+ 1 (i = 0, 1).

2.3. A set-theoretic semantics

We write B for the set of bitstrings, with a special element ε denoting the empty bitstring. When
u, v are bitstrings, we write u·v for their concatenation. IfA,B are sets, we writeA×B andA→

Yu Zhang 6

B for their cartesian product and function space. To interpret the probabilistic computations, we
adopt the probabilistic monad defined in (RP02): if A is set, we writeDA : A→ [0, 1] for the set
of probability mass functions over A. The original monad in (RP02) is defined using measures
instead of mass functions, and is of type (2A → [0,∞]) → [0,∞], where 2A denotes the set of
all subsets of A, so that it can also represent computing probabilities over infinite data structure,
not just discrete probabilities. But for the sake of simplicity, in this paper we work on mass
functions instead of measures. Note that the monad is not the one defined in (MMS98), which is
used to keep track of the bits read from the oracle tape rather than reasoning about probabilities.

When d is a mass function of DA and a ∈ A, we also write Pr[a ← d] for the probability
d(a). If there are finitely many elements in d ∈ DA, we can write d as {(a1, p1), . . . , (an, pn)},
where ai ∈ A and pi = d(ai).

The detailed definition of the set-theoretic semantics is given in Figure 4. The set-theoretic
model does not distinguish between the normal products and tensor products, neither between
the three sorts of function spaces.

The very nice property of SLR is the characterization of polynomial-time computations (the
class PTIME) through typing:

Theorem 1 (Hofmann (Hof00)). The set-theoretic interpretations of closed terms of type�Bits→
Bits in SLR define exactly polynomial-time computable functions.

It is worth mentioning that tensor products and linear functions in SLR, which leads to a rela-
tively complex type-checking that is likely not an easy job for cryptographers, are not necessary
for capturing PTIME computations when we do not consider high-order recusions, which can
often ease the programming in SLR. In practice, a simpler language without high-order recusion
(consequently no need for tensor products and linear functions) is probably enough for crypto-
graphic use, but we keep the language as it is for a comprehensive system.

Mitchell et al. have extended Hofmann’s result to the probabilistic version of SLR with a
random bit oracle, showing that terms of the same type in their language define exactly the
functions that can be computed by a probabilistic Turing machine in polynomial time (the class
PPT). Although our language is slightly different from their language OSLR (which does not
have computation types), the categorical model that they use to prove the complexity result can
be also used to interpret CSLR. In particular, if we follow the traditional encoding of call-by-
value λ-calculus into Moggi’s computational language, function types τ a−→ τ ′ in OSLR will be
encoded as τ a−→ Tτ ′ in CSLR, hence OSLR functions that correspond to PPT computations are
actually CSLR functions of type�Bits→ TBits. This permits us to reuse the result of (MMS98),
adapted for CSLR:

Theorem 2 (Mitchell et al. (MMS98)). The set-theoretic interpretations of closed terms of type
�Bits→ TBits in CSLR define exactly functions that can be computed by a probabilistic Turing
machine in polynomial time.

2.4. Computational indistinguishability

We say that a closed SLR-term p (of type �Bits → Bits) is length-sensitive if for every two
bitstrings u1, u2 of the same length, i.e. |u1| = |u2|, it holds that |p(u1)| = |p(u2)|. When a

The computational SLR 7

Interpretation of types:

JBitsK = B

Jτ × τ ′K = JτK× Jτ ′K

Jτ ⊗ τ ′K = JτK× Jτ ′K
r
τ

a−→ τ ′
z

= JτK→ Jτ ′K

JTτK = DJτK

Interpretation of terms:

JxKρ = ρ(x)

JnilKρ = ε

JBiKρ = λv . (i · v), i = 0, 1

Jrecτ Kρ = function f such that for all v ∈ JτK, u ∈ JBitsK,
h ∈ JBitsK→ JτK→ JτK,
f(v, h, ε) = v and
f(v, h, i · u) = h(u, f(v, h, u))

Jcaseτ Kρ = function f such that for all v ∈ JτK, u ∈ JBitsK
hi ∈ JBitsK→ JτK (i = 0, 1),
f(v, h0, h1, ε) = u and
f(v, h0, h1, i · u) = hi(u)

Jλx . eKρ = λv . JeKρ[x 7→ v]

Je1e2Kρ = Je1K(Je2Kρ)

J〈e1, e2〉Kρ = Je1 ⊗ e2Kρ = (Je1Kρ, Je2Kρ)

JprojieKρ = vi, where JeKρ = (v1, v2)

Jlet x⊗ y = e1 in e2Kρ = Je2Kρ[x 7→ v1, y 7→ v2] where Je1Kρ = (v1, v2)

JrandKρ = {(0, 1
2
), (1, 1

2
)}

Jval(e)Kρ = {(JeKρ, 1)}
Jbind x = e1 in e2Kρ = λv .

P
v′∈JτK Je2Kρ[x 7→ v′](v)× Je1Kρ(v′)

where τ is the type of the variable x (or Tτ is the type of e1).

Fig. 4. The set-theoretic semantics for the computational SLR

term p is length-sensitive, we write |p| for the underlying length measure function, i.e., |p|(n) =
|p(u)|, where |u| = n. If p and q are two length-sensitive SLR-functions, we write |p| < |q|
for the fact that for all bitstring u, |p(u)| < |q(u)|, and similar for |p| > |q|, |p| = |q|, etc. A
length-sensitive function is said positive if for every bitstring u, |p(u)| > |u|.

We say that a closed CSLR-term p (of type �Bits → τ) is numerical if its value depends
only on the length of its argument, i.e., Jp(u1)K = Jp(u2)K if |u1| = |u2|. Note that we do
not introduce the standard numerical functions in the language, so the numerical and length-
sensitive SLR-functions will be used to represent the usual polynomials of numerals, and we
often abbreviate them as polynomials. A numerical polynomial is canonical if it returns empty
bitstring or bitstrings containing bit 1 only.

Intuitively, two probabilistic functions are computationally indistinguishable, if the probability

Yu Zhang 8

that any feasible adversary can distinguish them becomes negligible when they take sufficiently
large arguments. We adapt the definition of the computational indistinguishability of (Gol01,
Definition 3.2.2) in the setting of CSLR.

Definition 1 (Computational indistinguishability). Two CSLR terms f1 and f2, both of type
�Bits→ τ , are computationally indistinguishable (written as f1 ' f2) if for every term A such
that ` A : �Bits → τ → TBits, every positive polynomial p (SLR-typable of �Bits → Bits),
there exists n ∈ N such that for every bitstring w with |w| ≥ n,

|Pr[ε← JA(w, f1(w))K]−Pr[ε← JA(w, f2(w))K]| < 1
|p(w)|

,

where ε denotes the empty bitstring.

Here w is usually considered as the security parameter in a cryptographic context.
Note that the above definition is a more general than that of (Gol01). Here we consider pro-

grams that can return values of an arbitrary type, while in the definition of (Gol01), computational
indistinguishability is only defined for distributions of bitstrings. One may argue that for reason-
ing about crypto-systems, higher-order types are not necessary, but the general definition turns
out to be very helpful for formalizing game-based proofs in our recent investigation.

2.5. Examples of PPT functions

Before moving on to develop the logic for reasoning about programs in CSLR, we define some
useful PPT functions that will be frequently used in cryptographic constructions.

— The random bitstring generation rsrsrs:

rsrsrs def= λx : Bits . rec(val(nil), hrsrsrs , x),

where hrsrsrs is defined by

hrsrsrs
def= λm . λr . bind (b = rand, u = r) in

case(b, 〈val(nil), λx.val(B0u), λx.val(B1u)〉).

rsrsrs receives a bitstring and returns a uniformly random bitstring of the same length. It can be
checked that ` hrsrsrs : �Bits→ TBits(TBits, hence ` rsrsrs : �Bits→ TBits.
If e is a closed program of type TBits and all possible results of e are of the same length, we
write |e| for the length of its result bitstrings. Clearly, for any bitstring u, the result bitstrings
of rsrsrs(u) are of the same length and it can be easily checked that |rsrsrs(u)| = |u|.

— The string concatenation concconcconc:

concconcconc def= λx . λy . rec(y, hconcconcconc , x),

where hconcconcconc is defined by

hconcconcconc
def= λm . λr . case(m, 〈r, λx.B0r, λx.B1r〉).

hconcconcconc is a purely deterministic, well-typed SLR-function of type �Bits → TBits(TBits,
hence ` concconcconc : �Bits → Bits (Bits. Note that concconcconc can also be defined as a SLR-term
of type Bits (�Bits → Bits, i.e., it recurs on only one of its argument but it does not

The computational SLR 9

matter which one, so we do not distinguish the two forms but only require that one of the two
arguments of concconcconc must be normal (modal). We often abbreviate concconcconc(u, v) as u•v.

— Head function hdhdhd :

hdhdhd def= λx . case(x, 〈nil, λy.0, λy.1〉)
Tail function tltltl :

tltltl def= λx . case(x, 〈nil, λy.y, λy.y〉)
Both hdhdhd and tltltl are SLR-definable and SLR-typable of type Bits(Bits.

— Split function splitsplitsplit :

splitsplitsplit def= λx . λn . rec(nil⊗ x, hsplitsplitsplit , n),

where

hsplitsplitsplit
def= λm . λr . let v1 ⊗ v2 = r in

case(v2, 〈v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y〉).

splitsplitsplit(x, n) splits the bitstring x into two bitstrings, among which the first one is of the length
|n| if |n| ≤ |x| or x otherwise. It can be checked that splitsplitsplit is SLR-definable and SLR-typable
of type Bits(�Bits→ Bits⊗Bits. With splitsplitsplit we can define the prefix and suffix functions:

prefprefpref def= λx . λn . let u1 ⊗ u2 = splitsplitsplit(x, n) in u1,

suffsuffsuff def= λx . λn . let u1 ⊗ u2 = splitsplitsplit(x, n) in u2.

Both of the two functions are SLR-definable of type Bits(�Bits→ Bits.
— Cut function cutcutcut :

cutcutcut def= λx . λn .prefprefpref (x,suffsuffsuff (x, n)).

cutcutcut(x, n) cuts the right part of length |n| of the bitstring x. We shall often abbreviate it as
x− n. cutcutcut is SLR-definable of type Bits(�Bits→ Bits.

3. The proof system

We present in this section an equational proof system on top of CSLR, through which one can
justify the computational indistinguishability between CSLR programs at the syntactic level.

The proof system contains two sets of rules: the first set (Figure 5) are rules for justifying
semantic equivalence between CSLR programs (we write e1 ≡ e2 if e1, e2 are semantically
equivalent), and the second set (Figure 6) are rules for justifying computational indistinguisha-
bility.

The first set are standard rules in typed λ-calculi, with axioms (monad laws) for proba-
bilistic computations. Rules in the second set are similar as in the logic of Impagliazzo and
Kapron (IK06) (which we shall refer to as the IK-logic in the sequel), where they also define an
equational proof system for the computational indistinguishability based on their own arithmetic
model. But we do not have the EDIT rule for managing bitstrings, as appears internally in their
logic, because there is no primitive operations in CSLR for editing bitstrings except the two bit
constructors B0, B1. Many bitstring operations are defined as CSLR functions and we introduce
a series of lemmas (see 3.2), which can be used in proofs in the same way as system rules. By

Yu Zhang 10

Axioms:

AX-REFL
e ≡ e

AX-REC-NIL
rec(e1, e2, nil) ≡ e1

AX-REC
rec(e1, e2, Be) ≡ e2(e, rec(e1, e2, e))

x 6∈ FV (e′)
AX-CASE

case(e, e′, λx.e′, λx.e′) ≡ e′

AX-CASE-NIL
case(nil, 〈e′, e0, e1〉) ≡ e′

i = 0, 1
AX-CASE-i

case(Bie, 〈e′, e0, e1〉) ≡ ei e

y 6∈ FV (e)
AX-α

λx.e ≡ λy.e[y/x]

AX-β
(λx.e)e′ ≡ e[e′/x]

x 6∈ FV (e)
AX-η

λx.ex ≡ e
i = 1, 2

AX-PROJ-i
proji〈e1, e2〉 ≡ ei

AX-PAIR
〈proj1e, proj2e〉 ≡ e

AX-LET
let x1 ⊗ x2 = e1 ⊗ e2 in e ≡ e[e1/x1, e2/x2]

AX-TENSOR
(let x1 ⊗ x2 = e in x1)⊗ (let x1 ⊗ x2 = e in x2) ≡ e

AX-RAND
bind b = rand in e ≡ bind b = rand in case(b, 〈e′, λx.e[0/b], λx.e[1/b]〉)

y 6∈ FV (e′)
AX-BIND-α

bind x = e in e′ ≡ bind y = e in e′

x 6∈ FV (e′)
AX-BIND-η

bind x = e in e′ ≡ e′

AX-BIND-1
bind x = val(e1) in e2 ≡ e2[e1/x]

AX-BIND-2
bind x = e in val(x) ≡ e

AX-BIND-3
bind x = (bind y = e1 in e2) in e3 ≡ bind y = e1 in bind x = e2 in e3

Inference rules:

e ≡ e′
SYM

e′ ≡ e

e ≡ e′ e′ ≡ e′′
TRANS

e ≡ e′′
ei ≡ e′i (i = 1, 2, 3)

REC
rec(e1, e2, e3) ≡ rec(e′1, e

′
2, e

′
3)

ei ≡ e′i (i = 1, 2, 3, 4)
CASE

case(e1, 〈e2, e3, e4〉) ≡ case(e′1, 〈e′2, e′3, e′4〉)

e ≡ e′
ABS

λx.e ≡ λxe′

e1 ≡ e′1 e2 ≡ e′2
APP

e1e2 ≡ e′1e′2

e ≡ e′ i = 1, 2
PROJ-i

projie ≡ projie
′

e1 ≡ e′1 e2 ≡ e′2
PAIR

〈e1, e2〉 ≡ 〈e′1, e′2〉

e1 ≡ e′1 e2 ≡ e′2
TENSOR

e1 ⊗ e2 ≡ e′1 ⊗ e′2

e1 ≡ e′1 e2 ≡ e′2
LET

let x⊗ y = e1 in e2 ≡ let x⊗ y = e′1 in e
′
2

e ≡ e′
VAL

val(e) ≡ val(e′)

e1 ≡ e′1 e2 ≡ e′2
BIND

bind x = e1 in e2 ≡ bind x = e′1 in e
′
2

Fig. 5. Rules for semantic equivalence

The computational SLR 11

` ei : �Bits→ τ (i = 1, 2) e1 ≡ e2
EQUIV

e1 ' e2
` ei : �Bits→ τ (i = 1, 2, 3) e1 ' e2 e2 ' e3

TRANS-INDIST
e1 ' e3

x :n Bits, y :n τ ` e : τ ′ ` ei : �Bits→ τ (i = 1, 2) e1 ' e2
SUB

λx . e[e1(x)/y] ' λx . e[e2(x)/y]

x :n Bits, n :n Bits ` e : τ λn.e[u/x] is numerical for all bitstring u
λx . e[i(x)/n] ' λx . e[B1i(x)/n] for all canonical polynomial i such that |i| < |p|

H-IND
λx . e[nil/n] ' λx . e[p(x)/n]

Fig. 6. Rules for computational indistinguishability

doing so we avoid the complexity analysis regarding bitstring operations that appears in the IK-
logic, since all bitstring operations in CSLR are guaranteed to be polynomial-time computable
by the typing system.

The H-IND rule comes from the frequently used hybrid technique in cryptography: if two
complex programs can be transformed into a “small” (polynomial) number of hybrids (relatively
simpler programs), where the extreme hybrids are exactly the original programs, then proving
the computational indistinguishability of the two original programs can be reduced to proving
the computational indistinguishability between neighboring hybrids. The H-IND in our system
is slightly different from that in the IK-logic since we do not have the general primitive that
returns uniformly a number which is smaller than a polynomial, but the underlying support from
the hybrid technique remains there.

We remark that the rule TRANS-INDIST is safe and will not break the complexity constraint,
because the number of times of applying a rule in a proof is irrelvant to the security parameter of
the programs under testing.

3.1. Soundness of the proof system

To show that the CSLR proof system is sound with respect to the set-theoretic semantics, we
prove the soundness of the two sets of rules.

Theorem 3 (Soundness of program equivalence rules). If Γ ` e1 : τ , Γ ` e2 : τ , and e1 ≡ e2
is provable in the CSLR proof system, then Je1Kρ = Je2Kρ, where ρ ∈ JΓK.

Proof. Most rules for semantic equivalence are standard in typed λ-calculus. The probabilistic
monad certifies the axioms for computations.

Theorem 4 (Soundness of computational indistinguishablity rules). If Γ ` e1 : �Bits →
TBits, Γ ` e2 : �Bits→ TBits, and e1 ' e2 is provable in the CSLR proof system, then e1 and
e2 are computationally indistinguishable.

Proof. We prove that rules in Figure 6 are sound. The soundness of the rule EQUIV is obvious.

Yu Zhang 12

For the rule TRANS-INDIST , let A be an arbitrary (well-typed hence computable in polyno-
mial time) adversary and q be an arbitrary positive polynomial, then we can easily define another
polynomial q′ such that for all bitstring u, |q′(u)| = 2|q(u)| (e.g., q′ def= λx . q(x)•q(x), and
clearly it is well typed). Because e1 ' e2, according Definition 1, there exists some n ∈ N and
for any bitstring w such that |w| ≥ n,

|Pr[ε← JA(w, e1(w))K]−Pr[ε← JA(w, e2(w))K]| < 1
|q′(w)|

.

Also because e2 ' e3, there exists another n′ ∈ N and for any bitstring w such that |w| ≥ n′,

|Pr[ε← JA(w, e2(w))K]−Pr[ε← JA(w, e3(w))K]| < 1
|q′(w)|

.

Without losing generality, we suppose that n ≥ n′, then for every bitstring w such that |w| ≥ n,

|Pr[ε← JA(w, e1(w))K]−Pr[ε← JA(w, e3(w))K]|
≤ |Pr[ε← JA(w, e1(w))K]−Pr[ε← JA(w, e2(w))K]|

+ |Pr[ε← JA(w, e2(w))K]−Pr[ε← JA(w, e3(w))K]|

<
1

|q′(w)|
+

1
|q′(w)|

=
1

|q(w)|
.

Since p is arbitrary, according to Definition 1, e1 ' e3.
To prove the soundness of the rule SUB , we assume that there exists an adversary which can

computationally distinguish the two terms in the conclusion part, and show that one can also
build another adversary which computationally distinguishes the two terms in the premise part.
More precisely, for some polynomial p and any integer n, there exists some bitstring w such that
|w| ≥ n and

|Pr[ε← JA(w, f1(w))K]−Pr[ε← JA(w, f2(w))K]| ≥ 1
|p(w)|

,

where fi = λx.e[ei(w)/y] (i = 1, 2) are the two programs in the conclusion part of the rule SUB .
We then construct another adversary A′:

A′ def= λz . λz′ .A(z, e[z/x, z′/y]),

where z is not free in A and e. According to the set-theoretic semantics,

JA′(w, ei(w))K = JA(w, e[w/x, ei(w)/y])K = JA(w, (λx.e[ei(x)/y])w)K, (i = 1, 2)

hence

|Pr[ε← JA′(w, e1(w))K]−Pr[ε← JA′(w, e2(w))K]| ≥ 1
|p(w)|

,

which is a contradiction of the premise e1 ' e2.
The soundness of the rule H-IND can be proved in a similar way as that of TRANS-INDIST.

Let A be an arbitrary well-typed adversary and q be an arbitrary positive polynomial. Define
another polynomial: q′ def= λx . rec(nil, λm.λr.q′(x) • r, p(x)). Clearly, for all bitstrings u,
|q′(u)| = |q(u)| · |p(u)|. Because λx.e[i(x)/n] ' λx.e[Bi(x)/n] for all canonical numeral i
such that |i| < |p|, we can find a sufficiently large number m ∈ N such that for all bitstring w

The computational SLR 13

whose length is larger than m,

|Pr[ε← JA(w, e[nil/n])K]−Pr[ε← JA(w, e[1/n])K]| < 1
|q′(w)|

.

|Pr[ε← JA(w, e[p(w)− 1/n])K]−Pr[ε← JA(w, e[p(w)/n])K]| < 1
|q′(w)|

.

Therefore,

|Pr[ε← JA(w, e[nil/n])K]−Pr[ε← JA(w, e[p(w)/n])K]|
≤ |Pr[ε← JA(w, e[nil/n])K]−Pr[ε← JA(w, e[1/n])K]|

+

+ |Pr[ε← JA(w, e[p(w)− 1/n])K]−Pr[ε← JA(w, e[p(w)/n])K]|

<
1

|q′(w)|
+ . . .+

1
|q′(w)|

=
|p(w)|
|q′(w)|

=
1

|q(w)|
,

and according to Definition 1, λx.e[nil/n] ' λx.e[p(x)/n].

3.2. Useful lemmas for proving cryptographic constructions

We introduce in this section some useful lemmas that will be frequently used in reasoning about
cryptographic constructions. Most of the lemmas are about the indistinguishable programs using
random bitstring generation. Note that these lemmas are not internal rules of the proof system,
but we shall name and use them as if they are.

A large part of proofs can be done in the CSLR proof system. In the paper we only give a few
of them as examples — others are left as exercises for interested readers.

Lemma 1. For every bitstring u, the functions λx.splitsplitsplit(u, x), λx.prefprefpref (u, x), λx.suffsuffsuff (u, x) and
λx.u− x are numerical polynomials.

Proof. We prove only the the function splitsplitsplit(u) — proofs for all others are similar.
We need to prove that, for all bitstrings n,m such that |n| = |m|, Jsplitsplitsplit(u, n)K = Jsplitsplitsplit(u,m)K,

or splitsplitsplit(u, n) ≡ splitsplitsplit(u,m) according to Theorem 3. The proof is an induction on the length
of the argument n. The case where |n| = 0 is clear. When |n| > 0, suppose that n ≡ Bn′ and
m ≡ Bm′, then

splitsplitsplit(u, Bn′) ≡ let v1 ⊗ v2 = splitsplitsplit(u, n′) in

case(v2, 〈v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y〉)
≡ let v1 ⊗ v2 = splitsplitsplit(u,m′) in

case(v2, 〈v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y〉)
≡ splitsplitsplit(u, Bm′)

Lemma 2 (HEAD-TAIL). For all bitstrings b and u such that |b| = 1,

hdhdhd(b•u) ≡ b, tltltl(b•u) ≡ u

Yu Zhang 14

Proof. Both can be easily deduced from their definitions.

Lemma 3 (SPLIT-1). For all bitstrings u, u′, there exist bitstrings u1, u2 such that splitsplitsplit(u, u′) ≡
u1 ⊗ u2 and |u1|+ |u2| = |u|. If |u′| ≤ |u|, then |u1| = |u′|.

Proof. We prove by the induction on u′. Obviously, the lemma holds when u′ = nil. Consider
the induction step:

splitsplitsplit(u, Bu′) ≡ rec(nil⊗ u, hsplitsplitsplit , Bu
′)

≡ let v1 ⊗ v2 = splitsplitsplit(u, u′) in

case(v2, v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v1•1)⊗ y)

≡ case(u2, u1 ⊗ u2, λy.(u1•0)⊗ y, λy.(u1•1)⊗ y)

(by the induction hypothesis, we suppose splitsplitsplit(u, u′) ≡ u1 ⊗ u2)

By induction hypothesis, |u2| = |u|−|u1| = |u|−|u′|. If |u′| = |u|, then |u2| = 0, i.e. u2 ≡ nil,
and |u1| = |u|, hence

splitsplitsplit(u, Bu′) ≡ case(nil, u1 ⊗ nil, λy.(u1•0)⊗ y, λy.(u1•1)⊗ y) ≡ u1 ⊗ nil,

and |u1| + |nil| = |u|. If |u′| < |u|, then |u2| = |u| − |u′| > 0, so there exists a bitstring u′2
such that u2 ≡ Bu′2, hence

splitsplitsplit(u, Bu′) ≡ case(Bu′2, u1 ⊗ nil, λy.(u1•0)⊗ y, λy.(u1•1)⊗ y) ≡ (u1•B)⊗ u′2,

and |u1•B|+ |u′2| = |u1|+ 1 + |u2| − 1 = |u|. Also |u1•B| = |u1|+ 1 = |u′|+ 1 = |Bu′|, since
|Bu′| ≤ |u|.

Lemma 4 (SPLIT-2). For all bitstrings u and u′ sch that |u′| ≥ |u|,

splitsplitsplit(u, nil) ≡ nil⊗ u, splitsplitsplit(u, u′) ≡ u⊗ nil.

Proof. Firstly, for every bitstring u,

splitsplitsplit(u, nil) ≡ rec(nil⊗ u, hsplitsplitsplit , nil) ≡ nil⊗ u.

Because

splitsplitsplit(u, B0u
′) ≡ rec(nil⊗ u, hsplitsplitsplit , B0u

′)

≡ let v1 ⊗ v2 = splitsplitsplit(u, u′) in

case(v2, v1 ⊗ v2, λy.(v1•0)⊗ y, λy.(v2•1)⊗ y)

≡ rec(nil⊗ u, hsplitsplitsplit , B1u
′)

≡ splitsplitsplit(u, B1u
′),

it holds that for every bitstring u1, u2 such that |u1| = |u2|, splitsplitsplit(u, u1) ≡ splitsplitsplit(u, u2).
For every bitstrings u and u′ such that |u′| = |u|, splitsplitsplit(u, u′) ≡ u1 ⊗ u2 and |u1| = |u′| by

Lemma 3, then |u2| = |u| − |u1| = 0, hence u2 ≡ nil, i.e., splitsplitsplit(u, u′) ≡ u1 ⊗ nil.

Corollary 1 (PREF). For all bitstrings u and u′ such that |u′| ≥ |u|,

prefprefpref (u, nil) ≡ nil, prefprefpref (u, u′) ≡ u.

The computational SLR 15

Proof. The proof is omitted.

Corollary 2 (SUFF). For all bitstrings u and u′ such that |u′| ≥ |u|,

suffsuffsuff (u, nil) ≡ u, suffsuffsuff (u, u′) ≡ nil.

Proof. Similar as in Corollary 1.

Lemma 5 (CUT). For all bitstrings u and u′ such that |u′| ≥ |u|,

u− nil ≡ u, u− u′ ≡ nil.

Proof. The proof is omitted.

Lemma 6 (RS-EQUIV). For every bitstrings u and v such that |u| = |v|, rsrsrs(u) ≡ rsrsrs(v).

Proof. The proof is omitted.

Lemma 7 (RS-CONCAT). For all bitstrings u and v,

bind (x = rsrsrs(u), y = rsrsrs(v)) in val(x•y) ≡ rsrsrs(u•v).

Proof. We prove by induction on the length of u. When |u| = 0, i.e., u ≡ nil,

bind (x = rsrsrs(nil), y = rsrsrs(v)) in val(x•y)

≡ bind y = rsrsrs(v) in val(nil•y) ≡ rsrsrs(v) ≡ rsrsrs(nil•v).

For the induction step, suppose that u ≡ Bu′ and by induction

bind (x = rsrsrs(u′), y = rsrsrs(v)) in val(x•y) ≡ rsrsrs(u′•v),

then

bind (x = rsrsrs(Bu′), y = rsrsrs(v)) in val(x•y)

≡ bind (x = bind (x′ = rsrsrs(u′), b = rand) in val(b•x′), y = rsrsrs(v)) in val(x•y)

≡ bind (x′ = rsrsrs(u′), b = rand, y = rsrsrs(v)) in val(b•x′•y)

≡ bind b = rand in bind z = rsrsrs(u′•v) in val(b•z)
≡ rsrsrs(B(u′•v))

≡ rsrsrs((Bu′)•v) (because |B(u′•v)| = |(Bu′)•v|).

Lemma 8 (RS-COMMUT). For all bitstrings u and v,

bind (x = rsrsrs(u), y = rsrsrs(v)) in val(x•y) ≡ bind (x = rsrsrs(u), y = rsrsrs(v)) in val(y•x)

Proof. The proof is omitted.

Lemma 9 (RS-HEAD). bind x = rsrsrs(Bu) in val(hdhdhd(x)) ≡ rand.

Proof. The proof is omitted.

Lemma 10 (RS-TAIL). bind x = rsrsrs(Bu) in val(tltltl(x)) ≡ rsrsrs(u).

Yu Zhang 16

Proof. The proof is omitted.

Lemma 11 (RS-SPLIT). For all bitstrings u and v such that |u| ≥ |v|,

bind x = rsrsrs(u) in val(prefprefpref (x, v)) ≡ rsrsrs(prefprefpref (u, v)),

bind x = rsrsrs(u) in val(suffsuffsuff (x, v)) ≡ rsrsrs(suffsuffsuff (u, v)).

Proof. The proof is omitted.

Lemma 12 (RS-CUT). For all bitstrings u and u′ such that |u′| ≤ |u|,

bind x = rsrsrs(u) in val(x− u′) ≡ rsrsrs(u− u′).

Proof. The proof is omitted.

Lemma 13 (RS-NEXT-BIT). For all bitstrings u and i such that |i| < |u|,

rsrsrs(prefprefpref (u, Bi)) ≡ rsrsrs(Bprefprefpref (u, i)).

Proof. The proof is omitted.

4. Cryptographic examples

In this section we give two cryptographic examples to illustrate the usability of the CSLR proof
system in cryptography, by doing the security proofs in the proof system.

4.1. Pseudorandom generators

The first example verifies the correctness of Goldreich and Micali’s construction of pseudoran-
dom generator (Gol01). This example also appears in (IK06), but their proof has a subtle flaw
(see Section 5 for explanation).

We first reformulate in CSLR the standard definition of pseudorandom generator (Gol01, Def-
inition 3.3.1).

Definition 2 (Pseudorandom Generator). A pseudorandom generator (PRG for short) is a
length-sensitive SLR term ` g : �Bits→ Bits such that |g(s)| > |s| for every bitstring s, and

λx . bind u = rsrsrs(x) in val(g(u)) ' λx .rsrsrs(g(x)).

If g is a pseudorandom generator, we call |g| its expansion factor.
We recall the construction of Goldreich and Micali (Gol01) (reformulated in CSLR): Suppose

that g1 is a PRG with the expansion factor |g1|(x) = x+ 1, i.e.,

λx . bind u = rsrsrs(x) in val(g1(x)) ' λx .rsrsrs(Bx).

Let B(x) be the function returning the first bit of g1(x), and R(x) returning the rest bits:

B
def= λx .hdhdhd(g1(x)), R

def= λx . tltltl(g1(x)).

Clearly, both B and R are well typed functions (of the same type �Bits→ Bits). We then define
a SLR-function G:

G
def= λu . λn . rec(nil, λm . λr . r•B(R′(u,m)), n),

The computational SLR 17

where the function R′ is defined as:

R′
def= λu . λn . rec(u, λm . λr .R(prefprefpref (r, u)), n).

It can also be checked that both G and R′ are well typed SLR-terms (of type �Bits→ �Bits→
Bits).

We first prove the following property about the function G:

Lemma 14. For every bitstring n,

λx . bind u = rsrsrs(x) in val(G(u, Bn)) ' λx . bind (b = rand, u = rsrsrs(x)) in val(b•G(u, n)).

Proof. Because R def= λx . tltltl(g1(x)), we can conclude that for every bitstring u, |R(u)| = |u|
since |g1(u)| = |u|+ 1. We then show that for any bitstrings u and n, R′(u, n) ≡ R|n|(u). This
can be done by induction on |n|: when |n| = 0, i.e., n = nil,

R′(u, nil) ≡ rec(u, λm . λr .R(prefprefpref (r, u)), nil) ≡ u;

when n = Bn′ for some bitstring n′, i.e., |n| = |n′|+ 1,

R′(u, Bn′) ≡ rec(u, λm . λr .R(prefprefpref (r, u)), Bn′)
≡ R(prefprefpref (R′(u, n′), u))
≡ R(prefprefpref (R|n

′|(u), u))
≡ R(R|n

′|(u)) (because |R|n′|(u)| = |R|n′|−1(u)| = · · · = |u|)
≡ R|n′|+1(u) = R|n|(u).

We next show that for every bitstrings u and n, G(u, Bn) ≡ B(u)•G(R(u), n). This is also
proved by induction on |n|: when |n| = 0, i.e., n = nil,

G(u, Bnil) ≡ rec(nil, λm.λr.r•B(R′(u,m)), Bnil)

≡ G(u, nil)•B(R′(u, nil))

(because G(u, nil) ≡ rec(nil, λm . λr . r•B(R′(u,m)), nil) ≡ nil)

≡ B(u) ≡ B(u)•G(u, nil);

when n ≡ Bn′,

G(u, BBn′) ≡ rec(nil, λm.λr.r•B(R′(u,m)), BBn′)

≡ G(u, Bn′)•B(R′(u, Bn′))

≡ B(u)•G(R(u), n′)•B(R|n
′|+1(u))

≡ B(u)•G(R(u), n′)•B(R′(R(u), n′)).

Because

G(R(u), Bn′) ≡ rec(nil, λm.λr.r•B(R′(u,m)), Bn′

≡ G(R(u), n′)•B(R′(R(u), n′)),

it holds that

B(u)•G(R(u), n′)•B(R′(R(u), n′)) ≡ B(u)•G(R(u), Bn′),

hence G(u, Bn) ≡ B(u)•G(R(u), n).

Yu Zhang 18

We next prove the computational indistinguishability between the two programs in the asser-
tion:

λx . bind u = rsrsrs(x) in val(G(u, Bn))

≡ λx . bind u = rsrsrs(x) in val(B(u)•G(R(u), n))

≡ λx . bind u = rsrsrs(x) in val(hdhdhd(g1(u))•G(tltltl(g1(u)), n))

' λx . bind u = rsrsrs(Bx) in val(hdhdhd(u)•G(tltltl(u), n))

(by the rule SUB and because λx.bind u = rsrsrs(x) in val(g1(u)) ' λx.rsrsrs(Bx))

≡ λx . bind (b = rand, u = rsrsrs(x)) in val(hdhdhd(b•u)•G(tltltl(b•u), n))

(by the rule RS-CONCAT)

≡ λx . bind (b = rand, u = rsrsrs(x)) in val(b•G(u, n)).

We next prove that, given a polynomial p, one can use G to construct easily a PRG with the
expansion factor |p|, and the proof is done in the CSLR proof system.

Proposition 1. For every well typed (length-sensitive) polynomial ` p : �Bits→ Bits,

λx . bind u = rsrsrs(x) in val(G(u, p(u))) ' λx .rsrsrs(p(x))

Proof. The proof follows the traditional hybrid technique, but is reformulated using rules of
the CSLR proof system. We define first a hybrid function H:

H
def= λu1 . λu2 . λn . (u2 − n)•G(u1, n).

H is well typed in SLR with the following assertion:

` H : �Bits→ Bits(�Bits→ Bits.

Firstly,

λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(H(u1, u2, nil))
≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val((u2 − nil)•G(u1, nil))
≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(u2•G(u1, nil))

(by the rule CUT)
≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(u2)

(because G(u1, nil) ≡ nil)
≡ λx .rsrsrs(p(x)).

Next, for all bitstrings u1, u2, n such that |u2| = |n|,

H(u1, u2, n) ≡ (u2 − n)•G(u1, n) ≡ nil•G(u1, n) ≡ G(u1, n),

hence,

λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(H(u1, u2, p(x)))
≡ λx . bind u1 = rsrsrs(x) in bind u2 = rsrsrs(p(x)) in val(G(u1, p(x)))
≡ λx . bind u1 = rsrsrs(x) in val(G(u1, p(u1))).

The computational SLR 19

Because for every numeral i such that |i(x)| < |p(x)| for any bitstring x,

λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, Bi(x)))
≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val((u2 − Bi(x))•G(u1, Bi(x)))
' λx . bind (b = rand, u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val((u2 − Bi(x))•b•G(u1, i(x)))

(by Lemma 14 and the rule SUB)
≡ λx . bind (b = rand, u1 = rsrsrs(x), u2 = rsrsrs(p(x)− Bi(x))) in val(u2•b•G(u1, i(x)))

(by the rule RS-CUT , as |Bi(x)| = |i(x)|+ 1 ≤ |p(x)| = |u2|)
≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs((p(x)− Bi(x))•1)) in val(u2•G(u1, i(x)))

(by the rule RS-CONCAT)
≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x)− i(x))) in val(u2•G(u1, i(x)))

(because |(p(x)− Bi(x))•1| = |p(x)− i(x)| − 1 + 1 = |p(x)− i(x)|)
≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val((u2 − i(x))•G(u1, i(x)))

(by the rule RS-CUT)
≡ λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, i(x)))

by the rule H-IND ,

λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, p(x)))
' λx . bind (u1 = rsrsrs(x), u2 = rsrsrs(p(x))) in val(H(u1, u2, nil)),

i.e., λx . bind u = rsrsrs(x) in val(G(u, p(x))) ' λx .rsrsrs(p(x)) .

Theorem 5. The CSLR term λx .G(x, p(x)) is a pseudorandom generator with the expansion
factor |p|.

Proof. Obvious from Proposition 1 and Definition 2.

4.2. Relating pseudorandomness and next-bit unpredictability

The second example is the equivalence between pseudorandomness and next-bit unpredictabil-
ity (Gol01). The notion of next-bit unpredictability can be reformulated in CSLR: a positive
polynomial f such that ` f : �Bits→ Bits is next-bit unpredictable if for all canonical numeral
i such that |i| < |f |,

λx . bind u = rsrsrs(x) in
val(prefprefpref (f(u), B1i(x)))

' λx . bind u = rsrsrs(x) in bind b = rand in

val(prefprefpref (f(u), i(x))•b) .

Lemma 15. Pseudorandomness implies next-bit unpredictability: if a positive polynomial f is a
pseudorandom generator, then it is next-bit unpredictable.

Proof. Because f is a pseudorandom generator,

λx.bind u = rsrsrs(x) in val(f(u)) ' λx.rsrsrs(f(x)).

Yu Zhang 20

Hence,

λx . bind u = rsrsrs(x) in val(prefprefpref (f(u), B1i))
' λx . bind u = rsrsrs(f(x)) in val(prefprefpref (u, B1i)) (because f is a pseudorandom generator)
≡ λx .rsrsrs(prefprefpref (f(x), B1i)) (by rule RS-SPLIT)
≡ λx .rsrsrs(B1prefprefpref (f(x), i)) (by rule RS-NEXT-BIT)
≡ λx . bind (b = rand, u = rsrsrs(prefprefpref (f(x), i))) in val(b•u) (by definition of rsrsrs)
≡ λx . bind (b = rand, u = rsrsrs(prefprefpref (f(x), i))) in val(u•b) (by rule RS-COMMUT)
≡ λx . bind (b = rand, u = rsrsrs(x)) in val(prefprefpref (f(u), i)•b) (by rule RS-SPLIT)

Lemma 16. Next-bit unpredictability implies pseudorandomness: if a positive polynomial f is
next-bit unpredictable, then it is a pseudorandom generator with expansion |f |.

Proof. The proof uses the hybrid technique. We define a hybrid function:

H
def= λx.λy.λz.prefprefpref (f(x), z)•suffsuffsuff (y, z).

It can be easily proved that, for all bitstrings u, v such that |v| = |f(u)|, H(u, v, nil) ≡ v and
H(u, v, f(u)) ≡ f(u), hence

λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in
val(H(u, v, nil))

≡ rsrsrs(f(x))

λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in
val(H(u, v, f(x)))

≡ λx . bind u = rsrsrs(x) in val(f(u)).

We then prove the hybrid step: for all canonical polynomial i such that |i| < |f |,

λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(H(u, v, B1i))
≡ λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(prefprefpref (f(u), B1i)•suffsuffsuff (v, B1i))
' λx . bind (u = rsrsrs(x), b = rand, v = rsrsrs(f(x))) in val(prefprefpref (f(u), i)•b•suffsuffsuff (v, B1i))

(because f is next-bit unpredictable)
≡ λx . bind (u = rsrsrs(x), b = rand, v = rsrsrs(suffsuffsuff (f(x), B1i))) in val(prefprefpref (f(u), i)•b•v)

(by the rule RS-SPLIT)
≡ λx . bind (u = rsrsrs(x), v = rsrsrs(1•suffsuffsuff (f(x), B1i))) in val(prefprefpref (f(u), i)•v)

(by the rule RS-CONCAT)
≡ λx . bind (u = rsrsrs(x), v = rsrsrs(suffsuffsuff (f(x), i))) in val(prefprefpref (f(u), i)•v)

(by the rule RS-EQUIV since |1•suffsuffsuff (f(x), B1i)| = |suffsuffsuff (f(x), i)|)
≡ λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(prefprefpref (f(u), i)•suffsuffsuff (v, i))

(by the rule RS-SPLIT)
≡ λx . bind (u = rsrsrs(x), v = rsrsrs(f(x))) in val(H(u, v, i)).

Hence, by the rule H-IND ,

λx . bind u = rsrsrs(x) in val(f(u)) ≡ λx .rsrsrs(f(x)),

i.e., f is a pseudorandom generator with expansion |f |.

Theorem 6. A positive polynomial is a pseudorandom generator if and only if it is next-bit
unpredictable.

The computational SLR 21

Proof. The two directions are proved respectively in the above two lemmas.

5. Related work

Many researchers in cryptography have realized that the increasing complexity of cryptographic
proofs is now an obstacle that cannot be ignored and formal techniques must be introduced to
write and check cryptographic proofs. Some proof systems similar to ours have been proposed
in recent years.

The PPC (probabilistic polynomial-time process calculus) system designed by Mitchell et
al. (MRST06) is based on a variant of CCS with bound replication and messages that are com-
putable in probabilistic polynomial-time. An equational proof system is also given in their system
to prove the observational equivalence between processes, and the soundness is established upon
a form of probabilistic bisimulation. Interestingly, they mention that terms (or messages) in their
language can be those of OSLR (the probabilistic extension of SLR), but we are not clear how
much expressitivity PPC achieves by adding the process part. It is probably more natural for
modeling protocols, but no such examples are given in their paper.

Impagliazzo and Kapron have proposed two logic systems for reasoning about cryptographic
constructions (IK06). Their first logic is based on a non-standard arithmetic model, which they
prove captures probabilistic polynomial-time computations. While it is a complex and general
system, they define a simpler logic on top of the first one, with rules justifying computational
indistinguishability. The language in their second logic is very close to a functional language but
is unfortunately not precisely defined, and in fact, this leads to a subtle flaw in their proofs using
the logic: the SUB rule in their logic requires that the substitute programs must be closed terms,
but this is not respected in their proofs. In particular, the hybrid proofs often have a program
of the form let i ← p(nnn) in e, where e has a free variable x and it is often substituted by
indistinguishable programs, but, for instance, if the two programs also have a bound variable i
receiving a random number:

let i← p(nnn) in e1 ' let i← p(nnn) in e2,

according to the rule SUB we can only deduce

let i← p(nnn) in e[let i← p(nnn) in e1/x] ' let i← p(nnn) in e[let i← p(nnn) in e2/x],

but never

let i← p(nnn) in e[e1/x] ' let i← p(nnn) in e[e2/x].

However, the latter is used in many proofs in (IK06). Furthermore, they claim that by introducing
rules justifying directly the computational indistinguishability between programs, they avoid ex-
plicit reasoning about the probability, but the rule UNIV contains a premise in their base logic (in
the arithmetic model) and proving it might still involve reasoning about the probability. Mean-
while, our approach completely removes explicit reasoning about probability and complexity by
using a type system based on safe recursion.

Both the proof systems in PPC and the IK-logic have not been automated. Meanwhile, Nowak
has proposed a framework for formal verification of cryptographic primitives and it has been
implemented in the proof-assistant Coq (Now08). It is in fact a formalization of the game-based

Yu Zhang 22

security proofs, an approach advocated by several researchers in cryptography (BR04; Sho04),
where proofs are done by generating a sequence of games and transformations between games
must be proved computationally sound. In Nowak’s formalization, games are modeled directly as
probabilistic distributions and the correctness of game transformations are verified in the proof-
assistant, but the complexity-theoretic issues are not considered. A more sophisticated system is
the CertiCrypt tool developed by Barthe et al. (BGZ09). Games are formalized as programs in an
imperative language and transformations are proved using the relational Hoare logic. CertiCrypt
is also implemented in Coq and is used to verify some interesting examples, e.g., the semantic
security of OAEP. Another system designed by Backes et al. is based on a functional language
with references and events and is implemented in Isabelle/HOL, but no cryptographic examples
are given (BBU08).

Blanchet’s CryptoVerif is another automated tool supporting game-based cryptographic proofs,
but not based on any existing theorem provers (Bla06). Unlike previously mentioned work, Cryp-
toVerif aims at generating the sequence of games based on a collection of predefined transfor-
mations, instead of verifying the computational soundness of transformations defined by users.

6. Conclusion

We present an equational proof system that can be used to prove the computational indistin-
guishability between programs, and have proved that rules in the system are sound with respect
to the set-theoretic semantics, hence the standard notion of security. We also show that the system
is applicable in cryptography by using it to verify a cryptographic construction of pseudorandom
generator.

Unlike the related work mentioned in the previous section, where they either define a language
from scratch or do not give a precise language definition, our language is extended from Hof-
mann’s SLR, which has a very solid mathematical support based on Bellantoni and Cook’s safe
recursion and a nice mechanism for the characterization of polynomial-time computations. In
particular, we do not need any explicit bound to impose the polynomial-time restraint, which al-
lows us to remove completely computations of polynomials when reasoning about cryptographic
constructions. This is the main advantage of using implicit complexity mechanism to build such
a logic system.

Examples given in the paper are experimental and we are working on proving more realistic
cryptographic constructions. Our recent work shows that game-based cryptographic proofs can
be formalized and verified in the CSLR proof system, thanks to the general version of compu-
tational indistinguishability that we have defined in Definition 1. Furthermore, as higher-order
functions are already native in the language, we expect that the system can be used to verify
cryptographic protocols in the computational model.

Acknowledgement

I appreciate very much the inspiring communications with Jean Goubault-Larrecq. Also thank
Gilles Barthe, Yuxin Deng, David Nowak, Aleksy Schubert and the TLCA reviewers for their
discussions and feedbacks which help to improve the paper.

The computational SLR 23

References

M. Backes, M. Berg, and D. Unruh. A formal language for cryptographic pseudocode. In 4th Workshop on
Formal and Computational Cryptography (FCC 2008), 2008.

Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of the polytime func-
tions. Computational Complexity, 2:97–110, 1992.

G. Barthe, B. Grégoire, and S. Zanella. Formal certification of code-based cryptographic proofs. In 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’2009), pages
90–101, 2009.

Bruno Blanchet. A computationally sound mechanized prover for security protocols. In IEEE Symposium
on Security and Privacy (S&P’06), pages 140–154, 2006.

M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. Cryp-
tology ePrint Archive, Report 2004/331, 2004.

Oded Goldreich. The Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
Martin Hofmann. A mixed modal/linear lambda calculus with applications to bellantoni-cook safe recur-

sion. In Proceedings of the International Workshop of Computer Science Logic (CSL’97), volume 1414
of LNCS, pages 275–294. Springer, 1998.

Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of Pure and Applied Logic,
104(1-3):113–166, 2000.

Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about cryptographic constructions. Jour-
nal of Computer and System Sciences, 72(2):286–320, 2006.

John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of bounded oracle
computation and probabilistic polynomial time. In 39th Annual Symposium on Foundations of Computer
Science (FOCS’98), pages 725–733, 1998.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.
John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilistic polynomial-time

process calculus for the analysis of cryptographic protocols. Theoretical Computer Science, 353(1-
3):118–164, 2006.

David Nowak. A framework for game-based security proofs. In 9th International Conference of Information
and Communications Security (ICICS 2007), volume 4861 of LNCS, pages 319–333. Springer, 2008.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability distributions. In
29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’02), pages 154–
165, 2002.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004.

