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Abstract. In this paper we present two new attacks on round reduced
versions of the AES. We present the first application of the related-key
boomerang attack on 7 and 9 rounds of AES-192. The 7-round attack
requires only 218 chosen plaintexts and ciphertexts and needs 267.5 en-
cryptions. We extend our attack to nine rounds of AES-192. This leaves
to a data complexity of 267 chosen plaintexts and ciphertexts using about
2143.33 encryptions to break 9 rounds of AES-192.
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1 Introduction

The Advanced Encryption Standard (AES) [8] has become one of the most used
symmetric encryption algorithm in the world. Differential cryptanalysis [6] is
one of the most powerful attacks on block ciphers like the AES. It recovers
subkey bits for the first or the last rounds, while using differential properties of
the underlying cipher. Variants of this attack such as the impossible differential
attack [2], the truncated differential attack [19], the higher order differential
attack [19], the differential-linear attack [20], the boomerang attack [24], the
amplified boomerang attack [14] and the rectangle attack [3] were introduced.

The boomerang attack [24] is a strong extension of differential cryptanalysis
to break more rounds than differential attacks can do, since the cipher is treated
as a cascade of two sub-ciphers, using short differentials in each sub-cipher. These
differentials are combined in an adaptive chosen plaintext and ciphertext attack
to exploit properties of the cipher that have a high probability.

Related-key attacks [1, 18] apply differential cryptanalysis to ciphers using
different but related keys and consider the information that can be extracted
from encryptions under these keys. Ciphers with a weak key schedule are vul-
nerable to this kind of attack. The idea of related-key differentials was presented
in [15], while two encryptions under two related-keys are used. Several combi-
nations of related-key and differential attacks were introduced in the following.
Related keys combined with the impossible attack [13], the differential-linear at-
tack [11] or the rectangle attack [4, 12, 16, 17]. Biryukov [7] propose a boomerang
attack on the AES-128 which can break up to 5 and 6 out of 10 rounds. The
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related-key boomerang attack was published first in [4], but was not used to
attack the AES.

We present the first related-key boomerang attack on 7 rounds of AES-192
using 4 related keys. Our related-key boomerang attack can also break 9 rounds
using 256 related keys. It uses less data and less time than existing attacks on
the same number of reduced rounds. Table 1 summarizes existing attacks on
AES-192 and our new attacks on 7 and 9 rounds.

Table 1. Existing attacks on round reduced AES-192

Attack # rounds # keys data / time source

Impossible Differential 7 1 292 / 2186 [22]

Square 7 1 232 / 2184 [21]

Partial Sums 7 1 19 · 232 / 2155 [10]

Partial Sums 7 1 2128 − 2119 / 2120 [10]

Related-Key Differential-Linear 7 2 222 / 2187 [25]

Related-Key Differential-Linear 7 2 270 / 2130 [25]

Related-Key Impossible 7 2 2111 / 2116 [13]

Related-Key Impossible 7 32 256 / 294 [5]

Related-Key Boomerang 7 4 218 / 267.5 Section 4

Partial Sums 8 1 2128 − 2119 / 2188 [10]

Related-Key Impossible 8 2 288 / 2183 [13]

Related-Key Rectangle 8 4 286.5 / 286.5 [12]

Related-Key Rectangle 8 2 294 / 2120 [16]

Related-Key Differential-Linear 8 2 2118 / 2165 [25]

Related-Key Impossible 8 32 2116 / 2134 [5]

Related-Key Impossible 8 32 292 / 2159 [5]

Related-Key Impossible 8 32 268.5 / 2184 [5]

Related-Key Rectangle† 9 256 286 / 2181 [4]

Related-Key Rectangle 9 64 285 / 2182 [16]

Related-Key Boomerang 9 256 267 / 2143.33 Section 5

Related-Key Rectangle 10 256 2125 / 2182 [16]

Related-Key Rectangle 10 64 2124 / 2183 [16]

† the attack with some flaws corrected by Kim et al. [16].

The paper is organized as follows: In Section 2 we give a brief description of the
AES. In Section 3 we describe the related-key boomerang attack. In Section 4,
we present a new related-key boomerang attack on 7-round of AES-192. Our
9 round attack is presented in Section 5. We conclude the paper in Section 6.
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2 Description of the AES

The AES [8] is a block cipher using data blocks of 128 bits with 128, 192 or
256-bit cipher key. A different number of rounds is used depending on the length
of the cipher key. The AES has 10, 12 and 14 rounds when a 128, 192 or 256-bit
cipher key is used respectively. The plaintexts are treated as a 4 x 4 byte matrix,
which is called state. A round applies four operations to the state:

– SubBytes (SB) is a non-linear byte-wise substitution applied on every byte
of the state matrix in parallel.

– ShiftRows (SR) is a cyclic left shift of the i-th row by i bytes, where i ∈
{0, 1, 2, 3}.

– MixColumns (MC) is a multiplication of each column by a constant 4 x 4
matrix.

– AddRoundKey (AK) is a XORing of the state and a 128-bit subkey which
is derived from the cipher key.

An AES round function applies the SB, SR, MC and AK operation in order.
Before the first round a whitening AK operation is applied and the MC operation
is omitted in the last round because of symmetry. We concentrate on the 192-bit
version of the AES in this paper and refer to [8] for more details on the other
versions. Let Wi be a 32-bit word, then the 192-bit cipher key is represented by
W0||W1||W2|| . . . ||W5. The 192-bit key schedule algorithm works as follows:

– For i = 6 till i = 51
• If i ≡ 0 mod 6, then Wi = Wi−6 ⊕ SB(RotByte(Wi−1))⊕ Rcon(i/6),
• else Wi = Wi−6 ⊕Wi−1.

where Rcon denotes fixed constants depending on its input and RotByte repre-
sents a byte-wise left shift. The whitening key is W0||W1||W2||W3, the subkey of
round 1 is W4||W5||W6||W7, the subkey of round 2 is W8||W9||W10||W11 and so
one. The bytes coordinates of a 4 x 4 state matrix are labeled as:

x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

3 The Related-Key Boomerang Attack

We now describe the related-key boomerang attack [4] in more detail. But first,
we have to give some definitions.

Definition 1. Let P, P ′ be two bit strings of the same length. The bit-wise xor
of P and P ′, P ⊕ P ′, is called the difference of P, P ′. Let a be a known and ∗
an unknown non-zero byte difference.
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Definition 2. α→ β is called a differential if α is the plaintext difference P⊕P ′
before some non-linear operation f(·) and β is the difference after applying these
operation, i.e, f(P )⊕ f(P ′). The probability p is linked on a differential saying
that an α difference turns into a β difference with probability p. The backward
direction, i.e., α← β has probability p̂.

Two texts (P, P ′) are called a pair, while two pairs (P, P ′, O,O′) are called a
quartet. Regularly, the differential probability decreases the more rounds are in-
cluded. Therefore two short differential covering only a few rounds each will be
used instead of a long one covering the whole cipher. Related-keys are used to
exploit some weaknesses of the key schedule to enhance the probability of the
differentials being used. We call such differentials related-key differentials. We
split the related-key boomerang attack into two steps. The related-key boomerang
distinguisher step and the key recovery step. The related-key boomerang distin-
guisher is used to find all plaintexts sharing a desired difference that depends
on the choice of the related-key differential. These plaintexts are used in the key
recovery step afterwards to recover subkey bits for the initial round key.

Distinguisher Step. During the distinguisher step we treat the cipher as a
cascade of two sub-ciphers EK(P ) = E1

K(P )◦E0
K(P ), where K is the key used for

encryption and decryption. We assume that the related-key differential α → β
for E0 occurs with probability p, while the related-key differential γ → δ for
E1 occurs with probability q, where α, β, γ and δ are differences of texts. The
backward direction E0−1 and E1−1 of the related-key differential for E0 and E1

are denoted by α← β and γ ← δ and occur with probability p̂ and q̂ respectively.
The related-key boomerang distinguisher involves four different unknown but
related-keys Ka,Kb = Ka⊕∆K∗,Kc = Ka⊕∆K ′ and Kd = Ka⊕∆K∗⊕∆K ′,
where ∆K∗ and ∆K ′ are known cipher key differences. The attack works as
follows:

1. Choose a pool of s plaintexts Pi, i ∈ {1, . . . , s} uniformly at random and
compute a pool P ′i = Pi ⊕ α.

2. Ask for the encryption of Pi under Ka, i.e., Ci = EKa(Pi) and ask for the
encryption of P ′i under Kb, i.e., C ′ = EKb

(P ′i ).
3. Compute the new ciphertexts Di = Ci ⊕ δ and D′i = C ′i ⊕ δ.
4. Ask for the decryption of Di under Kc, i.e., Oi = E−1

Kc
(Di) and ask for the

decryption of D′i under Kd, i.e., O′i = E−1
Kd

(D′i).
– For each pair (Oi, O′j), i, j ∈ {1, . . . , s}

5. If Oi ⊕O′j equals α store the quartet (Pi, P ′j , Oi, O
′
j) in the set M .

A pair (Pi, P ′j), i, j ∈ {1, . . . , s} with the difference α satisfies the differential
α→ β with the probability p. The output of E0 is Ai and A′j , i.e., E0

Ka
(Pi) = Ai

and E0
Kb

(P ′j) = A′j have a certain difference β = Ai ⊕ A′j with probability p.
Using the ciphertexts Ci and C ′j we can compute the new ciphertexts Di = Ci⊕δ
and D′j = C ′j ⊕ δ. Let Bi = E1−1

Kc
(Di) and B′j = E1−1

Kd
(D′j) are the decryption

of Di and D′j with E1−1

Ki
i ∈ {c, d}. A difference δ turns into a difference γ after
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passing E1−1

Ki
with probability q̂. Since δ = Ci ⊕Di and δ = C ′j ⊕D′j we know

that γ = Ai⊕Bi and γ = A′j ⊕B′j with probability q̂2. Since we also know, that
Ai⊕A′j = β with probability p, it follows that (Ai⊕Bi)⊕(Ai⊕A′j)⊕(A′j⊕B′j) =
γ ⊕ β ⊕ γ = β = (Bi ⊕ B′j) holds with probability p · q̂2. A β difference turns
into an α difference after passing the differential E0−1

Ki
with probability p̂. Thus,

a pair of plaintexts (Pi, P ′j) with Pi ⊕ P ′j = α generates a new pair of plaintexts
(Oi, O′j) where Oi⊕O′j = α with probability p · p̂ · q̂2. A quartet containing these
two pairs is defined as:

Definition 3. A quartet (Pi, P ′j , Oi, O
′
j) which satisfies

Pi ⊕ P ′j = α = Oi ⊕O′j,
Ai ⊕A′j = β = Bi ⊕B′j,
Ai ⊕Bi = γ = A′j ⊕B′j,
Ci ⊕Di = δ = C ′j ⊕D′j,

is called a correct related-key boomerang quartet which occurs with proba-
bility Prc = p · p̂ · q̂2. A quartet (Pi, P ′j , Oi, O

′
j) which only satisfies the condition

P ⊕ P ′j = α = Oi ⊕O′j is called a false related-key boomerang quartet.

Figure 1 displays the structure of the related-key boomerang distinguisher step.
Any attacker who applies a related-key boomerang distinguisher does not know

Fig. 1. The related-key boomerang distinguisher
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the internal states Ai, A′j , Bi, B
′
j , since he can only apply a chosen plaintext

and ciphertext attack on the cipher. The set M which is the output of the
related-key boomerang distinguisher, therefore contains correct and false related-
key boomerang quartets. It is impossible to form another distinguisher which
separates the correct and the false related-key boomerang quartets, since the
interior differences β and γ cannot be computed.

Key Recovery Step. The second step of the related-key boomerang attack is
the key recovery step. From now on, an attacker operates on the set M that was
stored by the related-key boomerang distinguisher. Let ka, kb, kc and kd be some
key bits of the last round keys derived from the cipher keys Ka,Kb,Kc and Kd.
Let dk(C) be the one round partially decryption of C under the key bits k. The
key bits are related as kb = ka ⊕∆k∗, kc = ka ⊕∆k′ and kd = ka ⊕∆k∗ ⊕∆k′,
where ∆k∗ and ∆k′ are differences of the last round key bits. These differences
are derived from the cipher key difference ∆K∗ and ∆K ′. The key recovery step
works as follows:

- For each key-bit combination of ka
1. Initialize a counter for each key-bit combination with zero.
- For all quartets (P, P ′, O,O′) stored in M

2. Ask for the encryption of P, P ′, O,O′ under Ka,Kb,Kc and Kd re-
spectively and obtain the ciphertext quartet C,C ′, D,D′. Decrypt
the ciphertexts C,C ′, D,D′ under ka, kb, kc, kd, i.e., C̄ = dka

(C), C̄ ′ =
dkb

(C ′), D̄ = dkc
(D) and D̄′ = dkd

(D′).
3. Test whether the differences C̄ ⊕ D̄ and C̄ ′ ⊕ D̄′ have a desired

difference an attacker would expect depending on the related-key
differential being used. Increase a counter for the used key-bits if the
difference is fulfilled in both pairs.

4. Output the key-bits ka with the highest counter as the correct one.

Four cases can be distinct in Step 3, since M contains correct and false related-
key boomerang quartets and the key-bit combination ka can either be correct
or false. A correct related-key boomerang quartet encrypted with the correct
key bits will have the desired difference needed to pass the test in Step 3 with
probability 1. Hence, the counter for the correct key bits is increased. The three
other cases are: a correct related-key boomerang quartet is used with false key
bits (PrcKf

), a false related-key boomerang quartet is used with the correct
key-bits (PrfKc

) or a false related-key boomerang quartet is used with a false
key-bit combination (PrfKf

). We assume that the cipher acts like a random
permutation. In these cases we assume that

PrcKf
= PrfKc

= PrfKf
=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted
for a certain key bit combination is Prfilter. The related-key differentials have
to be chosen such that the counter of the correct key bits is significantly higher
than the counter of each false key bit combination. If the differentials have a high
probability the key recovery step outputs the correct key-bits in Step 4 with a
high probability much faster than exhaustive search.
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4 Related-Key Boomerang Attack on 7-Round AES-192

In this section we mount a key recovery attack on 7-round AES-192 using 4
related keys. The cipher is represented as E = E1 ◦ E0. E0 is a differential
containing rounds 1 to 4 and including the whitening key addition as well as
the key addition of round 4. E1 is a differential covering rounds 5 to 7. After
applying the related-key boomerang distinguisher for E1 ◦E0 using the related-
key differentials E0 and E1 we apply it to recover 8 key-bits of the seventh
round-keys. We assumed, that the S-Box acts like a random permutation. Thus,
all S-Box output differences will have the same probability for a given input
difference. The notation used in our attack will be defined as:
– Ka,Kb,Kc,Kd unknown cipher keys (192 bit).
– Kai,Kbi,Kci,Kdi unknown round keys of round i, where i ∈ {0, 1, 2, . . . , 12}

(128 bit).
– ∆K∗, ∆K ′ known cipher key differences (192 bit).
– ∆K∗i , ∆K

′
i known subkey differences of round i (128 bit).

– Pi, P
′
j , Oi, O

′
j plaintexts.

– Ci, C
′
j , Di, D

′
j ciphertexts.

– E0
Ki

(·) 4-round AES-192 encryption from round 1 to 4 under key Ki, where
i ∈ {a, b, c, d}.

– E1−1

Ki
(·) 3-round AES-192 decryption from round 7 to 5 under key Ki, where

i ∈ {a, b, c, d}.
– a is a known non-zero byte difference.
– b is an output difference of S-Box for the input difference a.
– c, d are unknown non-zero byte differences.
– ∗ is a variable unknown non-zero byte differences.

The Structure of the Keys. In our attack we use four related but unknown
keys Ka,Kb,Kc and Kd. Let Ka be the unknown key an attacker would like to
recover. The relation that is required for the attack is:

Kb = Ka ⊕∆K∗

Kc = Ka ⊕∆K ′

Kd = Ka ⊕∆K∗ ⊕∆K ′

∆K∗ is the cipher key difference used for the first related-key differential E0 and
∆K ′ is the cipher key difference used for the second related-key differential E1.
An attacker only knows the differences ∆K∗ and ∆K ′ but does not know the
keys. He chooses the cipher key differences as:

∆K∗ =
a a

and ∆K ′ =
a a

Using the key schedule algorithm of AES-192 we can use the cipher key differ-
ences ∆K∗ and ∆K ′ to derive the round key differences ∆K∗0 , . . . ,∆K

∗
8 and

∆K ′0, . . . ,∆K
′
8 respectively.1 These values are shown in Figure 2 and 3.

1 These related keys are also used in [12].
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∆K∗0
a a

∆K∗1 ∆K∗2
a

∆K∗3
a a

∆K∗4
a a

b b

∆K∗5
a a

b b b b

∆K∗6
a a

c c c c
b b

∆K∗7

d d
c c c
b b b

Fig. 2. Round key differences derived from ∆K∗

∆K′0
a

∆K′1
a a a

∆K′2
a a

∆K′3
a a

∆K′4
a a

∆K′5

∆K′6
a

∆K′7
a a

Fig. 3. Round key differences derived from ∆K′

The difference b can be one of 27−1 values, because of the symmetry of the XOR
operation and the fact that an a difference can be one of 28 − 1 differences. If
two texts forming an a difference passing the S-Box only one of 27−1 differences
can occur.

The Related-Key Differential E0 for rounds 1 − 4. The input difference
α of E0 has a non-zero difference in bytes 8 and 12. These differences are of
value a with the probability 2−16. This is the probability that two randomly
chosen non-zero bytes are of value a. The whitening key addition AK0 generates
a zero difference in each byte of the state matrix. These zero differences remain
until AK2 is applied, since ∆K∗1 has only zero differences and does not alter the
differences in the state matrix. AK2 generates an a difference in byte 0, which
is transformed into a non-zero difference after SB3. MC3 creates a non-zero
difference in bytes 0,1,2 and 3, while AK3 inserts an a difference in bytes 8 and
12. After applying SR4 we just have one non-zero byte in column 0 and 1 and
two non-zero bytes in column 2 and 3. Four non-zero bytes remain after MC4

in column 0 and 1 with probability one, while we do not know which bytes of
column 2 and 3 are non-zero. These bytes are labeled with ?. Then AK4 places
an a difference in byte 12. We call βout the difference obtaining after passing
the related-key differential E0. The probability of the differential E0, i.e., the
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transformation of an α difference into a βout difference is given by

Pr(α→ βout) = 2−16.

The related-key differential E0 is shown in Figure 4.

α

∗ ∗
AK0,...,AK2−→

a
SB3,SR3,MC3−→

∗
∗
∗
∗

AK3−→
∗ a a
∗
∗
∗

SB4,SR4−→
∗ ∗ ∗

∗
∗
∗

MC4−→
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

AK4−→

βout

∗ ∗ ? ∗
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

Fig. 4. The related-key differential E0

The Related-Key Differential E1−1

for rounds 7−5. The input difference
δ consists of a non-zero difference in byte 0 and two a differences in bytes 8 and
12. This differences vanish after AK−1

7 , since ∆K ′7 has two a differences in bytes
8 and 12 while the other bytes of ∆K ′7 have a zero difference. Only the non-
zero difference in byte 0 remains. SB−1

7 generates an a difference in byte 0 with
probability 2−8 since we assume that the S-Box acts like a random permutation.
If this occurs the text difference after SB−1

7 is equal to the subkey difference
∆K ′6. Hence, all bytes have a zero difference after applying AK−1

6 . All bytes will
also have a zero difference after AK−1

5 , since ∆K ′5 has a zero difference in each
byte. We call the text difference after applying E1−1

γ which consists of 16 zero
bytes. The probability of E1−1

is Pr(γ ← δ) = 2−8. The related-key differential
E1−1

is shown in Figure 5.

δ

∗ a a
AK−1

7−→
∗

SR−1
7 ,SB−1

7−→
a AK

−1
6 ,MC

−1
6 ,SR

−1
6 ,SB

−1
6 ,

AK−1
5 ,MC−1

5 ,SR−1
5 ,SB−1

5−→

γ

Fig. 5. The related-key differential E1−1

The Related-Key Differential E0−1

for rounds 4 − 1. For the following
steps we need that the output difference βout of the related-key differential E0 is
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equal to the input difference βin for the related-key differential E0−1
. Note that

βin and βout are not only equal in the same positions of non-zero differences but
are also equal in each byte. We will shown how to construct such a case. From
the boomerang condition inside the cipher for two differences γ1 and γ2 we know
that

βout ⊕ γ1 ⊕ γ2 = βin

holds with some probability. Since γ1 and γ2 are equal in each byte, we simply
write γ. Thus the above condition reduces to :

βout ⊕ γ ⊕ γ = βout = βin (1)

Using the differentials above, the differences βin and βout are equal with prob-
ability one. Note that these difference occur only with some probability, which
will be described more detailed later.

Let A,A′, B,B′ be the internal state after SR4 when encrypting P, P ′, O,O′

under Ka,Kb,Kc,Kd respectively. We use the same notation as in Figure 1.
Since MC is linear γ can be expressed as

γ = Ka4 ⊕MC4(A)⊕Kc4 ⊕MC4(B) =

∆K′4︷ ︸︸ ︷
Ka4 ⊕Kc4⊕MC4(A⊕B) (2)

and as

γ = Kb4 ⊕MC4(A′)⊕Kd4 ⊕MC4(B′) =

∆K′4︷ ︸︸ ︷
Kb4 ⊕Kd4⊕MC4(A′ ⊕B′). (3)

Equation (2) and (3) can be combined, which leaves A ⊕ A′ = B ⊕ B′. In
other words, the MC4 operation can be undone with the probability 1 due
to the boomerang condition (1).This means that we know exactly that after
MC−1

4 only the bytes 0,7,8,10,12 and 13 are non-zero, while all other bytes
are zero. SB−1

4 then transforms a non-zero difference into an a difference with
probability 2−8. Regarding bytes 8 and 12 we have the probability 2−16 of doing
so. The resulting a differences in bytes 8 and 12 are canceled out by AK−1

3 . After
that MC−1

3 generates a non-zero with a fixed position from four non-zero bytes
with probability 2−24. We have only one a difference after SB−1

3 in byte 0 with
probability 2−24 · 2−8 = 2−32. This a difference is canceled out by AK−1

2 . We
call α the difference that is the output of the related-key differential E0−1

. α has
an a difference in the bytes 8 and 12. The differential E0−1

has the probability
Pr(α← βin) = 2−16 · 2−32 = 2−48 and is shown in Figure 6.

The Attack. The attack first applies a related-key boomerang distinguisher to
obtain all correct and false boomerang quartets which are stored in M . A key-
search is then applied on M to find 1 byte of the seventh round keys. Let ka7

be an 8-bit subkey in the position of byte 0 of the seventh round key Ka7. Let
d7ki7(X), i ∈ {a, b, c, d} be the seventh round partially decryption of X under
the 8-bit subkey ki. The attack is as follows:
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βin

∗ ∗ ? ∗
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

AK−1
4−→
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

MC−1
4−→
∗ ∗ ∗

∗
∗
∗

SR−1
4 ,SB−1

4−→
∗ a a
∗
∗
∗

AK−1
3−→
∗
∗
∗
∗

MC−1
3 ,SR−1

3 ,SB−1
3−→

a
AK−1

2 ,...,AK−1
0−→

α′

a a

Fig. 6. The related-key differential E0−1

1. Choose 249.5 structures S1, S2, . . . , S249.5 of 216 plaintexts Pi, i ∈ {1, 2, . . . , 216},
where all bytes are fixed except for bytes 8 and 12. Ask for encryption of Pi under
Ka to obtain the ciphertexts Ci, i.e., Ci = EKa

(Pi).

2. Compute 249.5 structures S′1, S
′
2, . . . , S

′
249.5 of 216 plaintexts P ′i = Pi. Ask for

encryption of the P ′i under Kb, where Kb = Ka⊕∆K∗ to obtain the ciphertexts
C ′i, i.e., C ′i = EKb

(P ′i ).

3. Compute 249.5 structures S∗1 , S
∗
2 , . . . , S

∗
249.5 of 216 ciphertexts Di, i.e, Di =

Ci ⊕ δ where δ is a fixed difference with any non-zero byte difference in byte 0
and two a differences in bytes 8 and 12. Ask for decryption of Di under Kc to
obtain the plaintexts Oi, i.e., Oi = E−1

Kc
(Di).

4. Compute 249.5 structures S′∗1 , S
′∗
2 , . . . , S

′∗
249.5 of 216 ciphertexts D′i, i.e., D′i =

C ′i⊕ δ where δ is as in Step 3. Ask for decryption of D′i under Kd to obtain the
plaintexts O′i, i.e., O′i = E−1

Kd
(D′i).

5. Store only those quartets (Pi, P ′j , Oi, O
′
j), i, j ∈ {1, 2, . . . , 216} in the set M

where Oi⊕O′j have an a difference in bytes 8 and 12, while the remaining byte
differences are zero.

6. For each 8-bit key ka7 compute kb7 = ka7, kc7 = ka7 and kd7 = ka7.

For each quartet passing the test in Step 5:

6.1. Ask for encryption of (Oi, O′j) under Kc,Kd to obtain (Di, D
′
j) and

compute (Ci, C ′j) respectively.

6.2. Partially decrypt a ciphertext quartet (Ci, C ′j , Di, D
′
j), i.e., C̄i = d7ka7(Ci),

C̄ ′j = d7kb7(C ′j), D̄i = d7kc7(Di) and D̄′j = d7kd7(O′j).

6.3. Increase the counter for the used 8-bit subkey ka7 by one if C̄i⊕D̄i and
C̄ ′j ⊕ D̄′j have an a-difference in byte 0.

7. Output the 8-bit subkey ka7 which counts at least two quartets as the correct
one.

Analysis of the Attack. Two pools of 216 plaintexts can be combined to
approximately (216)2 = 232 quartets. Using 249.5 structures we obtain #PP ≈
249.5 · 232 = 281.5 quartets in total. A correct related-key boomerang quartet
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occurs with probability

Prc = Pr(α→ βout) · (Pr(γ ← δ))2 · Pr(α← βin)
= 2−16 · (2−8)2 · 2−48 = 2−80,

since all related-key differential conditions are fulfilled. A random permutation
of a difference Oi⊕O′j has 14 zero byte difference with probability Prf = 2−112.
Thus, after Step 5 we have about #C = #PP · Prc = 281.5 · 2−80 = 21.5 correct
and #F = #PP · Prf = 281.5 · 2−112 = 2−30.5 false related-key boomerang
quartets. The data and time complexity of Step 6 to 7 is negligible compared to
the other steps before, since we expect to have only 21.5 quartets stored.

A false combination of quartets and key bits is counted in Step 6.3 with the
probability Prfilter = 2−16. This is the probability that an active byte with an
unknown non-zero difference has an a difference after SB−1

7 .
At least #CKc = 21.5 correct related-key boomerang quartets and addition-

ally #FKc = #F · Prfilter = 2−30.5 · 2−16 = 2−46.5 false related-key boomerang
quartets are counted with the correct key bits. About #CKc + #FKc = 21.5 +
2−46.5 ≈ 3 quartets are counted in Step 6.3 for the correct key bits.

About #CKf = #C · Prfilter = 21.5 · 2−16 = 2−14.5 correct related-key
boomerang quartets and #FKf = #F · Prfilter = 2−30.5 · 2−16 = 2−46.5 false
related-key boomerang quartets are counted with the false key bits, which are
approximately #CKf + #FKf = 2−14.5 + 2−46.5 = 2−14.5 counts for each false
key bit combination.

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false key bit
combination is larger than 1 is Y ∼ Poisson(µ = 2−14.5), Pr(Y ≥ 2) ≈ 0.
Therefore the probability that our attack outputs false key bits as the correct
one is very low. We expect to have a count of 22 quartets for the correct key
bits. The probability that the number of quartets counted for the correct key
bits is larger than 1 is Z ∼ Poisson(µ = 3), Pr(Z ≥ 2) ≈ 0.8.

The data complexity of this attack is determined by Steps 1, 2, 3 and 4
which is about 218 = 22 · 216 adaptive chosen plaintexts and ciphertexts for each
structure. We do not have to compute all structures simultaneously, thus we
keep only four structures in memory, which reduces the memory requirements
of our attack. The time complexity is about 267.5 = 249.5 · 22 · 216 seven round
AES-192 encryptions. Our attack has a success rate of 0.8.

5 Related-Key Boomerang Attack on 9-Round AES-192

Our related-key boomerang attack can be extend to attack 9 rounds of AES-
192 using 256 related keys. The data complexity is of 267 chosen plaintexts and
ciphertexts and the time complexity is about 2143.33 nine round AES encryptions.
We describe the 9 round attack in Appendix A.
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6 Conclusion

In this paper we improved attacks on 7 and 9 round reduced versions of AES-
192. This is the first application of the related-key boomerang attack on the
AES. Our 7 round attack has a data complexity of 218 chosen plaintexts and
ciphertexts. Its time complexity is of 267.5 seven round AES-192 encryptions.
We also presented a 9 round related-key boomerang attack which needs only 267

chosen plaintexts and ciphertexts and has a time complexity of 2143.33 nine round
encryptions. Our attacks are the best attacks on seven and nine rounds of AES-
192 in terms of data and time complexity known so far. The AES remains still
unbroken but we have shown that up to 7 rounds practical attacks are available
yet.
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A Related-Key Boomerang Attack on 9-Round AES-192

The Structure of the Keys. In our attack we use four related but unknown
keys Ka,Kb,Kc and Kd.2 The relation that is required for the attack is:

Kb = Ka ⊕∆K∗

Kc = Ka ⊕∆K ′

Kd = Ka ⊕∆K∗ ⊕∆K ′

cipher key differences as:

∆K∗ = a a and ∆K ′ =
a a

b b

Using the key schedule algorithm of AES-192 he can use the cipher key differ-
ences ∆K∗ and ∆K ′ to derive the round key differences ∆K∗0 , . . . ,∆K

∗
8 and

∆K ′0, . . . ,∆K
′
8 respectively. These values are shown in Figure 7 and 8.

∆K∗0

a a

∆K∗1

a a

∆K∗2 ∆K∗3

a

∆K∗4

a a

∆K∗5

a a a a

∆K∗6
b b b b
a a

∆K∗7
b b b
a a a

c c

∆K∗8
b b

a a

c c c c

∆K∗9
b b

a
d d d d
c c

Fig. 7. Round key differences derived from ∆K∗

The Related-Key Differential E0. The related-key differential E0 for rounds
1− 5 is described as follows. The input difference α of E0 has a non-zero differ-
ence in bytes 1,2,6,7,8, 10,11 and 12. Byte 9 has an a difference. The non-zero
difference After SR1 all non-zero bytes are in column 2 and 3. A column with
four non-zero bytes ist transformed into a column having an a difference with
fixed position after MixColumns with probability 2−32. This occurs for two of
such columns with probability 2−64. The two a differences in bytes 9 and 12 are
canceled out by the key addition AK1. Thus each byte of the state matrix has a
zero difference until AK3 creates an a difference in byte 1, which is transformed
to a non-zero difference by SB4 and to four non-zero bytes by MC4. The state
matrix has an a difference in byte 9 and non-zero differences in bytes 11,12,13,14.
2 The key differences are the same as used in [16].
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∆K′0
a a

b b

∆K′1

b b

∆K′2
a

∆K′3
a a

b

∆K′4
a a

∆K′5
a a

∆K′6
a a

∆K′7 ∆K′8
a

∆K′9
a a

Fig. 8. Round key differences derived from ∆K′

The difference which occurs after AK5 is called βout, where all bytes are non-zero
except for bytes 4 and 7 which are unknown. The probability of the differential
E0, i.e., the transformation of an α difference into a βout difference is given by

Pr(α→ βout) = 2−64.

The related-key differential E0 is shown in Figure 9.

α

∗ ∗
∗ a ∗
∗ ∗
∗ ∗

AK0,SB1,SR1,MC1−→ a a AK1,...,AK3−→ a SB4,SR4,MC4−→
∗
∗
∗
∗

AK4−→
∗

a ∗
∗
∗

SB5,SR5,MC5,AK5−→

βout

∗ ? ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ? ∗ ∗

Fig. 9. The related-key differential E0

The Related-Key Differential E1−1

. From the bottom up direction of the
related-key boomerang distinguisher the related-key differential E1−1

is used
for Rounds 9 − 6 with the round-key differences of ∆K ′. The input difference
δ consists of a non-zero difference in byte 0 and two a differences in bytes 8
and 12. These differences vanish after AK−1

9 , since ∆K ′9 has two a differences
in bytes 8 and 12 while the other bytes of ∆K ′9 are zero. Only the non-zero
difference in byte 0 remains. SB−1

9 generates an a difference in byte 0 with
probability 2−8. If this occurs the text difference after SB−1

9 is equal to the
subkey difference ∆K ′8. Hence, all bytes have a zero difference after applying
AK−1

8 . Passing AK−1
6 the state matrix has two a differences in bytes 8, 12. We

call γ the text difference remaining after SB−1
6 . This text difference has eight
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non-zero difference in bytes 1,2, 6,7,8,11,12 and 13. The probability of E1−1
is

Pr(γ ← δ) = 2−8. The related-key differential E1−1
is shown in Figure 10.

δ

∗ a a
AK−1

9−→
∗

SR−1
9 ,SB−1

9−→
a

AK−1
8 ,...,AK−1

6−→
a a

MC−1
6 ,...,SB−1

6−→

γ

∗ ∗
∗ ∗
∗ ∗
∗ ∗

Fig. 10. The related-key differential E1−1

The Related-Key Differential E0−1

. As in the 7-round attack on AES-192
we need that the output difference βout of the related-key differential E0 is equal
to the input difference βin for the related-key differential E0−1

. If this holds the
MixColumns Operation of round 5 can be undone with probability one. For a
detailed description we refer to the analysis of our 7 round attack.

To achieve that βout equals βin the differences γ1 and γ2 have to be equal. This
happens with probability 2−56 since an a difference can be one of 27 − 1 values
after an S-Box transformation and MixColumns is a linear operation. If this
occurs we know from the boomerang condition that βout ⊕ γ1 ⊕ γ2 = βout = βin

holds with some probability and MC5 can be undone with probability one. This
means that we know that a non-zero byte difference occurs after MC−1

5 only the
bytes 3, 5, 6, 9 and 12, while the other bytes are zero. SB−1

5 then transforms
a non-zero difference in byte 9 into an a difference with probability 2−8. Four
non-zero bytes remain after AK−1

4 in the third column. With probability 2−24

MC−1
4 generates a non-zero difference in byte 13 while the remaining bytes are

zero. After the next S-Box operation we have an a difference with probability
2−8. The further steps operate such that the output difference of E0−1

has non-
zero differences in bytes 1,2,6,7,8,11,12,13 and an a difference in byte 9. We call
this difference α. The differential E0−1

has the probability Pr(α← βin) = 2−40

and is shown in Figure 11.

βin

∗ ? ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ? ∗ ∗

AK−1
5 ,MC−1

5−→
∗

∗ ∗
∗
∗

SR−1
5−→

∗
∗ ∗
∗
∗

SB−1
5−→

∗
a ∗
∗
∗

AK−1
4−→

∗
∗
∗
∗

MC−1
4−→ ∗

SR−1
4 ,SB−1

4−→ a AK−1
3 ,...,AK−1

1−→ a a MC−1
1 ,SR−1

1 ,SB−1
1−→

∗ ∗
∗ ∗
∗ ∗
∗ ∗

AK−1
0−→

α

∗ ∗
∗ a ∗
∗ ∗
∗ ∗

Fig. 11. The related-key differential E0−1
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The Attack.

1. Choose 249.5 structures S1, S2, . . . , S249.5 of 264 plaintexts Pi, i ∈ {1, 2, . . . , 264}
where the bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed. Ask for encryption of Pi under
Ka to obtain the ciphertexts Ci, i.e., Ci = EKa

(Pi).
2. Compute 249.5 structures S′1, S

′
2, . . . , S

′
249.5 of 264 plaintexts P ′i = Pi⊕Θ, where

Θ is a 16 byte value of which byte 9 is a and all the other bytes are zero. Ask for
encryption of P ′i under Kb, where Kb = Ka ⊕∆K∗ to obtain the ciphertexts
C ′i, i.e., C ′i = EKb

(P ′i ).
3. For each possible value of b compute ∆K̃ ′

3.1. Compute 249.5 structures S∗1 , S
∗
2 , . . . , S

∗
249.5 of 264 ciphertexts Di, i.e, Di =

Ci ⊕ δ where δ is a 128-bit value of which byte 0 is non-zero and bytes 8
and 12 have value a the other bytes are zero. Ask for decryption of Di under
Kc = Ka ⊕∆K̃ ′ to obtain the plaintexts Oi, i.e., Oi = E−1

Kc
(Di).

3.2. Compute 249.5 structures S′∗1 , S
′∗
2 , . . . , S

′∗
249.5 of 264 ciphertexts D′i, i.e, D′i =

C ′i ⊕ δ where δ is as in Step 3.1. Ask for decryption of D′i under Kd =
Ka ⊕∆K∗ ⊕∆K̃ ′ to obtain the plaintexts O′i, i.e., O′i = E−1

Kd
(Di).

3.3. Store only those quartets (Pi, P ′j , Oi, O
′
j) where Oi ⊕ O′j have a zero byte

differences in bytes 0, 3, 4, 5, 10, 14, 15 and an a difference in byte 9.
3.4. Guess an 8-bit subkey k̄a9 of Ka9 in the positions of byte 0 and compute

k̄b9, k̄c9, k̄d9 respectively.
3.4.1. Partially decrypt each quartet (Ci, C ′j , Di, D

′
j) remaining after Step 3.3

under k̄a9, k̄b9, k̄c9, k̄d9 respectively.
3.4.2. Check if dk̄a9

(Ci) ⊕ dk̄c9
(Di) and dk̄b9

(C ′i) ⊕ dk̄d9
(D′i) have an a-

difference after SB−1
9 in byte 0. Record (k̄a9) and all the qualified

quartets and then go to Step 3.5.
3.5. Guess a 32-bit subkey k′a0 of Ka0 in the positions of bytes 2,7,8,13 and

compute k′b0 = k′c0 = k′d0 = k′a0 (∆K∗0 and ∆K ′0 are zero in these four
bytes)

3.5.1. Partially encrypt each quartet (Pi, P ′j , Oi, O
′
j) remaining after Step 3.4.2

under k′a0, k
′
b0, k

′
c0, k

′
d0 respectively.

3.5.2. Check if ek′a0
(Pi)⊕ek′b0(P ′j) and ek′c0(Oi)⊕ek′d0

(O′j) have an a difference

in byte 9. Record (k̄a9, k
′
a0) and all the qualified quartets and then go

to Step 3.6.
3.6. Guess a 32-bit subkey k∗a0 of Ka0 in the positions of bytes 1,6,11,12 and

compute k∗b0 = k∗a0 ⊕M1, with the 32-bit value M1 = (a, 0, 0, 0), compute
k∗c0 = k∗a0 ⊕ M2, with the 32-bit value M2 = (0, 0, b, a) and compute
k∗d0 = k∗a0 ⊕M1 ⊕M2.

3.6.1. Partially encrypt each quartet (Pi, P ′j , Oi, O
′
j) remaining after Step 3.5.2

under k∗a0, k
∗
b0, k

∗
c0, k

∗
d0 respectively.

3.6.2. Check if ek∗a0
(Pi)⊕ek∗b0(P ′j) and ek∗c0(Oi)⊕ek∗d0

(O′j) have an a difference
in byte 13. If there exist more than 2 boomerang quartets passing this
test, record (k̄a9, k

′
a0, k

∗
a0) and all the qualified quartets and then go to

Step 4. Otherwise, repeat Step 3.6 with another guessed key. If all the
possible keys are tested, then repeat Step 3.5 with another guessed key.
If all the possible keys are tested, then repeat Step 3.4 with another
guessed key.
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4. For a suggested (k̄a9, k
′
a0, k

∗
a0), do an exhaustive search for the remaining 120

cipher key bits using trial encryption. If a 192-bit cipher key is suggested, output
it as the cipher key. Otherwise, go to Step 3 with another guess of b.

Analysis of the Attack. Two pools of 264 plaintexts can be combined to
approximately

(
264
)2 = 2128 quartets. Each quartet of structures Si, S′i, S

∗
i , S

′∗,
i ∈ {1, 2, . . . , 249.5} can be analyzed separately. The data complexity of Step
1, 2, 3.1 and 3.2 is 22 · 264 = 266 chosen plaintexts, while the time complexity
is about 264 encryptions for Step 1 and 2 and about 27 · 264 = 271 for Step
3.1 and 3.2, since Step 3 runs at most 27 times. The data complexity of Step
3.3 is 22 · 264 = 266 plaintexts, since we have a 64-bit filtering condition which
leaves 2128 · 2−64 = 264 quartets stored in this step. Step 3.4.1 takes about
(1/9) · (1/16) · 27 · 28 · 22 · 264 = 273.83 nine round encryptions. The number of
remaining quartets after Step 3.4.2 are 264 · 2−14 = 250, since we have a 7-bit
filtering on both pairs of a quartet. The time complexity of Step 3.5.1 is about
(1/9) · (4/16) · 27 · 232 · 28 · 22 · 250 = 293.83 nine round encryptions. Due to
the 32-bit filtering on both pairs we obtain about 250 · 2−64 = 2−14 quartets
after Step 3.5.2. The time complexity of Step 3.6.1 is negligible, while about
2−14 · 2−64 = 2−78 quartets remain after this step.

Using 249.5 structures we obtain #PP ≈ 249.5 ·2128 = 2187.5 quartets in total.
A correct related-key boomerang quartet occurs with probability

Prc = Pr(α→ βout) · (Pr(γ ← δ))2 · Pr(βout = βin) · Pr(α← βin)
= 2−64 · (2−8)2 · 2−56 · 2−40 = 2−176,

since all related-key differential conditions are fulfilled. About 249.5·2−78 = 2−28.5

false related-key boomerang quartets remain Step 3.6.2 and are counted with the
false key bits.

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false key bit
combination is larger than 1 is Y ∼ Poisson(µ = 2−28.5), Pr(Y ≥ 2) ≈ 0.
Therefore the probability that our attack outputs false key bits as the correct
one is very low. We expect to have a count of 3 quartets for the correct key bits.
The probability that the number of quartets counted for the correct key bits is
larger than 1 is Z ∼ Poisson(µ = 3), Pr(Z ≥ 2) ≈ 0.8.

The data complexity is about 267 = 23 · 264 adaptive chosen plaintexts and
ciphertexts and the time complexity is about 2143.33 = 249.5 · 293.83 nine round
AES-192 encryptions. Our attack has a success rate of 0.8.


