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Abstract. Authentication protocols are indispensable in wireless sensor
networks. Commonly they are based on asymmetric cryptographic algo-
rithms. In this paper we investigate all categories of finite fields suitable
for elliptic curve cryptography on the ATmega128 microcontroller: Fp,
F2d , and Fpd . It turns out that binary fields enable the most efficient
implementations.
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1 Introduction

Elliptic curves are very attractive for cryptosystems implemented on constrained
devices, because of their short key lengths, small system parameters, and high
performance. Elliptic curve cryptosystems can be used for authentication, digital
signatures, and public-key encryption [18]. In particular, authentication schemes
based on elliptic curves enable public-key authentication on low-cost devices like
RFIDs [7] or wireless sensor nodes [25].

Recently a lot of authors studied the efficiency of elliptic curve cryptosystems
on microcontrollers which are used in wireless sensor motes. They focus on the
TI MSP430 and the ATmega128 developed by Atmel. Gura et al. first reported
the efficiency of elliptic curve cryptosystems defined over prime fields on the
ATmega128 in [16]. They used curves published in the recommendations of SEC
[8]. The execution time of one ECDSA signature generation is 810 ms at 8
MHz. Work by Uhsadel and Scott [22, 26] further improves speed results on the
ATmega128.

Malan refers in [20] to an ECC implementation based on binary fields on the
ATmega128 microcontroller. It was implemented using a C++ and Java library.
The running times were quite slow, a complete point multiplication was executed
in 34 seconds. Shi and Yan showed in [24], that a sophisticated implementation
of the inversion algorithm enables an improvement for binary curves. Their run
times for a scalar multiplication was 12.2 seconds. In 2005 Blaß and Zitterbart
implemented finite fields of characteristic two on the ATmega128 [6] clocked at
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7MHz, too. The elements of the finite field of degree 113 were represented by
normal bases and the multiplication of a fixed base point took about 6.7 seconds.
In 2008 Szczechowiak et al. and Seo et al. reported new speed records for elliptic
curve realizations concerning binary fields [25, 23]. While Szczechowiak consumes
2.16 seconds for a scalar multiplication on a binary Koblitz curve, Shi and Yan
applied the Frobenius endomorphism and they were able to decrease the run
time to 1.13 seconds.

In this paper we will study the efficiency of optimal extension fields, prime
fields as well as binary fields for the ATmega128. We will show, that the run times
for a multiplication in GF(2167) takes less than 1 ms, if the memory accesses are
decreased as much as possible. Furthermore we will take side channel attacks into
account and measure the run times of elliptic curve scalar multiplication resistant
to simple side channel attacks for several finite fields of different characteristic. It
turns out, that binary fields are the optimal choice for elliptic curve cryptography
if the Montgomery-Ladder can be used.

2 The Target Platform — ATmega128 Microcontroller

Depending on the requirements for computing power and peripheral interfaces,
different types of microcontrollers are embedded into sensor nodes. The used
microcontroller architectures range from low-cost 8-bit to advanced 32-bit plat-
forms. For our work we employed the ATmega128 [3], a high-performance low-
power 8-bit microcontroller provided by the Atmel corporation. The ATmega128
is a derivative of the AVR family which is based on a modern highly structured
RISC design. The different AVR microcontrollers are equipped with various pe-
ripheral units and memory sizes. They are widely available and low-priced. Be-
side the MSP430 from Texas Instruments and ARM implementations from dif-
ferent manufacturers, AVR microcontrollers are very popular in sensor network
environments.

The ATmega128 offers 133 powerful instructions, where most of them are
single clock cycle instructions. This allows nearly a maximum throughput of 16
MIPS at 16 MHz. There are two different memory spaces for data and code, so
AVR controllers implement a Harvard architecture. The AVR pipeline is very
simple and has got only two stages, one for fetching the instruction and another
one for the execution. One of the most interesting features is the large register set
of 32×8-bit general purpose working registers. The physical memory is split up
in three parts. The program memory is a 128 kB in system programmable flash
memory. The data memory is a 4 kB internal SRAM which is expandable with
external memory up to 64 kB. Additionally there is a internal EEPROM of 4
kB which isn’t directly addressable but offers an interface using special function
registers.

There are many development tools available for the Atmel AVR family. Atmel
offers the free AVR Studio development environment including an assembler.
Furthermore there are many third party suppliers. For an up to date list see [2].
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3 Efficient Finite Fields for ATMega128

There are three categories of finite fields, which have been proposed in the liter-
ature suitable for elliptic curve cryptosystems. We will investigate their advan-
tages in terms of speed for our target platform.

3.1 Prime fields

Finite fields Fp of large characteristic p ∼ 2160 are usually used in software solu-
tions. Efficient long integer libraries like GMP [14] or MIRACL [1] enable very
fast implementations on common PC platforms. In addition, modern smart cards
are equipped with coprocessors to accelerate modulo arithmetic with respect to
long moduli. Recently, Gneysu et al. reported in [15], that prime fields can be im-
plemented on modern FPGA-boards very efficiently, such that the performance
of FPGA- and PC-realizations are quite similar.

In previous articles Scott, Uhsadel and Gura [16, 22, 26] describe implemen-
tation results of prime field arithmetic. All authors implemented the modular
multiplication for the prime number p1 = 2160 − 231 − 1 with dedicated reduc-
tion. The modular reduction is easy to achieve in this finite field, because it
consists of two shifts and four additions. Generic reduction methods like Barret-
or Montgomery reduction are not necessary.

Since we want to compare the security levels with our other implementations,
we have implemented the arithmetic for two finite fields Fp1

and Fp2
, where

p2 = 2168 − 28 − 1. Both libraries are based on the recommendations of Scott in
[22]. Caused by the additional byte of the elements on Fp2

we have modified the
multiplication in Fp2

in a intuitive manner (see Figure 1). Reducing elements in
Fp2

is rather simple, because shifting operations can be discarded.
The running times of the two libraries are quite similar. The modular mul-

tiplication in Fp1
took 3177 clock cycles on average. The multiprecision multi-

plication 160 × 160 was performed in 2593 clock cycles and is about 60 cycles
faster than [22] (see Table 1). The difference might be caused by some saved
memory accesses, but there is no fundamental new approach. So we skip the
investigation of that acceleration. In Fp2

the multiplication counted 3338 clock
cycles. The ratio of the two routines of 95% coincides with the ratio of the binary
lengths of the prime numbers. In both libraries dedicated squaring routines lead
to a speed up of the squaring by at least 26%.

Table 1: Comparison of 160×160 bit multiprecision multiplication

Source # Clock cycles

Gura et al.[16] 3103
Uhsadel et al. [26] 2881
Scott et al. [22, 25] 2651
this work 2593
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Fig. 1: Multiplication in GF(2168 − 28 − 1).

Note, that our numbers for modular multiplication involve also the clock
cycles for saving and recovering the registers prior to the function call or prior
to the return jump. These necessary cycles are discarded in the previous papers
[16, 22, 26].

3.2 Finite Field Extensions of Odd Characteristic Greater 3.

In [4] Bailey and Paar propose finite extension fields of odd characteristic p,
where p is adapted to the word size of the target processor. Similar to finite fields
of characteristic 2 the elements of the finite field are represented by polynomials
with coefficients in Fp. Bailey and Paar define so called optimal extension fields
which have the following two properties:

1. The characteristic p of the extension field can be written as p = 2n−c, where
c2 < n.

2. The field extension is defined by an irreducible binomial, i.e.

Fpd
∼= Fp[X ]/(Xd − ω), ω ∈ Fp.

Since we want to investigate the efficiency of elliptic curves over those exten-
sion fields, we restrict the extension degree d to be a prime number greater than
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7. Diem shows in [11] that those finite fields prevent the attack based on the
Weil descent presented by Gaudry et al. in [13] for finite fields of characteristic
2.

It is easy to see, that OEFs cannot be defined for every arbitrary prime p.
Bailey and Paar mention, that the extension degree d has to divide the order e
of ω in Fp but it must not divide the number (p− 1)/e. This sufficient condition
restricts the number of possibilities.

The arithmetic in OEF is derived from the usual arithmetic in polynomial
rings. The addition of two polynomials is done by the addition of their coefficients
modulo p and the multiplication is computed by a complete multiplication of two
polynomials and the subsequent reduction modulo the irreducible polynomial.

Depending on the constant term ω it might be advantageous to choose a
trinomial of the form Xd ±Xm± 1, because all its coefficients have the absolute
value 1 and hence the reduction consists of additions in Fp only. In particular,
if the smallest possible value for ω involves a multiplication and if the multipli-
cation on the target microcontroller is much more expensive than an addition,
the trinomial might reduce the computation time compared to the binomial.

Our implementation is based on the finite field Fp11 , where p = 216 − 129
and the extension is defined by X11 − 3. Although our target platform has an
8-bit architecture the 16 bit construction is much more efficient than choosing
an 8-bit prime number.

Choosing an 8-bit prime number results in an extension degree d = 23 in
order to obtain an elliptic curve which provides at least 160 bit security. There
is only one possibility p = 139 with irreducible polynomial X23 − 2. In the
multiplication of polynomials of degree 23 we have to reveal 23 partial products
for every coefficient of the product. Those partial products are summed up in
an accumulator of 24 bits and therefore we need 3 additions for every partial
product. If we assume, that we have to load the two factors into the CPU we
can conclude that the computation of one coefficient of the product consumes
23 · (2 + 3 + 4) clock cycles (multiplication + additions + loading) without
reduction modulo p and X23 − ω. So a lower limit for the clock cycles of one
multiplication is 23 · 207 = 4761.

If p is a 16-bit prime number, then we have exactly 11 multiplications of
16-bit numbers for every coefficient. The multiplication of two 16-bit numbers
results in a 32-bit value which has to be added to a 40 bit accumulator. The
two factors a = a12

8 + a0 and b = b12
8 + b0 are multiplied in the following

way (see Figure 2): First the partial products a1b1 and a0b0 are computed and
added to the accumulator. In order to avoid checking the carry bits for the whole
accumulator the carry bit occurring during the addition of the higher byte of a0b0

is stored in an extra register. Then the products a1b0 and a0b1 are computed and
added to the accumulator, such that the carry bit of the higher byte is catched
again in a further register. All in all the multiplication of two 16-bit numbers
can be realized within 20 cycles. Including the 8 cycles loading the factors into
the CPU the multiplication of the two polynomials of degree 11 consume 3390
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clock cycles without any reduction. This is an acceleration of almost 30% and
justifies the choice of 16-bit prime numbers.

a0a1 b0b1

c1

r0r1r2r3r4

r0r1r2r3r4

a0    b0a1     b1

a0    b1

a1     b1

c2

c2

Carry bit

Addition

r0r4 Accumulator

a0a1 Bytes of A

b0b1 Bytes of B

c1c2 Carry catcher

...

Fig. 2: 16×16-bit multiplication with 40 bit accumulator and carry catchers.

The reduction of the higher coefficients ci, i ∈ {11, . . . , 20}, is performed
within the calculation of the coefficients ci−11. Reducing the coefficient ci results
in an addition of the carry bits (4 clock cycles), copying, shifting and adding the
accumulator (15 further cycles). All in all the reduction of a higher coefficient,
i.e. the multiplication by 3, is done in 19 cycles. Since the shift instruction is
only twice as fast as the 8 × 8 multiplication on the ATmega128, the reduction
of the accumulator modulo 216 − 129 is built on 7 multiplications. The total
count of clock cycles for one field multiplication in Fpd is 4188. Furthermore
we implemented a particular squaring function in order to avoid the double
computation of the mixed terms. The acceleration is about 46%. In Table 2 we
give a detailed analysis of the instruction counts computing the product of two
OEF-elements. Note, that clock cycles for storing or recovering of registers are
neglected in the table.

3.3 Finite Fields of Characteristic Two.

Finite extension fields of characteristic two are very attractive for hardware
accelerated elliptic curve operations, since their field arithmetic consists of binary
operations only.

Usually finite fields of even characteristic are represented by polynomials
over F2 of degree less than d, where d is a prime number and the degree of the
field extension (see [17]). The arithmetic in those fields is performed modulo
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Table 2: Instruction counts for OEF-multiplication.

Instruction Counts

Load/Store 506
Mul 561
Add 1686
Shift 61
other 181

total 2995
Clock cycles 4062

an irreducible polynomial f(X). To decrease the computation time spent in the
reduction of polynomials, f(X) should be sparse, i.e. a trinomial or pentanomial.

Binary polynomials are represented with a binary vector of length d, which
can be stored in ⌈d/w⌉ processor words. Hankerson et al. propose several tech-
niques implementing the modular multiplication of A(X), B(X) ∈ F2d in soft-
ware [17]. The basic multiplication method — called Shift-and-Add — is derived
from the well-known Horner scheme and performs deg(A) − 1 left shifts and an
addition of B(X) for every non-zero coefficient of A. If the left shift causes a
polynomial of degree greater than d, a reduction is executed. Hankerson presents
several variants of the Shift-and-Add algorithm. The most efficient one is the
comb multiplication with windows of width four.

To explain this method and its implementation on the ATmega128, we write
A(X) in the following way

A(X) =

d−1∑

i=0

aiX
i =

⌈(d−1)/4⌉
∑

i=0





3∑

j=0

a4i+jX
j





︸ ︷︷ ︸

αi

X4i.

The basic algorithm described by Hankerson et al. [18] works as follows:

Algorithm 1: Comb method with windows of width 4.

Input: A(X), B(X) ∈ F2d

Output: C(X) = A(X)B(X)

1. Compute T [u] = u(X)B(X) for all u ∈ F2[X], deg(u) < 4
2. C = 0
3. For i = ⌈(d− 1)/8⌉ to 0 do

C(X) = C(X) + T [α2i+1]X
8i

4. C(X) = C(X)X4

5. For i = ⌈(d− 1)/8⌉ to 0 do
C(X) = C(X) + T [α2i]X

8i

6. return C(X)
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Seo, Han and Hong try to optimize the number of memory accesses to the
variable C by combining several windows αi [23]. They explain their technique
for two windows αi and αi+1 and show that a lot of redundant memory accesses
can be discarded. But their implementation is not written in assembly language
and therefore, the CPU registers are not used in an optimal way. In particular,
the overhead generated by the C-compiler affects the runtime negatively. So we
pursue the strategy, processing the windows αi sequentially but using all registers
of the processor. Of course this strategy results in a bigger code size, but we will
see, that the code size is still acceptable.

In our approach the comb multiplication with windows of width four is also
executed in two loops following the algorithm given above. Since the ATmega128
has an 8-bit architecture, the multiplication by X8i is replaced by an address
computation, but the most important problem is the handling of the polynomial
C(X). Our implementation is based on the observation, that nearly all registers,
which are affected by the addition of the multiple αiB(X) are altered again
during the addition of αi−2B(X). Only one single register after the addition
of αiB(X) keeps untouched. On the other hand, adding αi−2B(X) changes a
new register of the variable C, so we have to load this part of the memory into
the CPU. In order to avoid unnecessary copy instructions, these two bytes are
exchanged. This results in a total number of 42 memory accesses processing C
inside both loops (see Figure 3).

T1T2T3T4T5T6T7T8T9T10T11T12T13T14T15T16T17T18T19T0

R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R18R19 R0

Hi( Byte 20)

T1 T2T3T4T5T6T7T8T9T10T11T12T13T14T15T16T17T18T19T0Hi( Byte 19)

R20

T20

T20

T1T2 T3T4T5T6T7T8T9T10T11T12T13T14T15T16T17T18T19T0Hi( Byte 18) T20

T1T2T3 T4T5T6T7T8T9T10T11T12T13T14T15T16T17T18T19T0Hi( Byte 17) T20

T1T2T3T4T5T6T7T8T9T10T11T12 T13T14T15T16T17T18T19T0Hi( Byte 8) T20

T1T2T3T4T5T6T7T8T9T10T11T12T13T14T15T16T17T18T19 T0Hi( Byte 0) T20

...

...

+ ++ + ++ + ++ + ++ + + ++ + + ++

+ ++ + ++ + ++ + ++ + + ++ + + ++

+ ++ + ++ + ++ + ++ + + ++ + + ++

+ ++ + ++ + ++ + ++ + + ++ + + ++

+ ++ + ++ + ++ + ++ + +++ + + ++ +

Fig. 3: First part of GF(2167) comb multiplication with windows of width 4. T0 to
T20 denote the 21 bytes of the multiple of B(X) determined by the nibble “Hi(Byte
XX)”. The bytes without filling are added to the registers. Bytes filled with light-gray
are loaded into the registers. The dark-gray bytes are stored in the RAM after the
addition (except T20 of Hi(Byte 20)).

In the following table we listed the instructions for the comb method with
windows of width four. The precomputation phase, the two loops as well as the
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multiplication of the polynomial by X4 is separated to provide more details on
the implementation. Instructions calculating the addresses or clearing registers
are summed up in a separate column. It turns out, that the number of memory
accesses is lower than the reported number of load and store instructions given
by Seo, Han and Hong [23].

Table 3: Instruction counts for comb method with window width 4.

Phase Load/Store XOR Shifts other Total

Precomputation 481 157 146 185 969
Loop 1 501 400 0 169 1070
Multiplication by X4 43 0 176 25 244
Loop 2 544 441 0 188 1173

Total 1569 998 322 567 3456
Clock Cycles 3138 998 322 599 5057

The reduction of the polynomial C(X) is then performed byte-wise. Hanker-
son presents in [17] an efficient reduction method for sparse reduction polyno-
mials. We adapt this methodology to our reduction polynomial X167 + X6 + 1.
We reduce one complete register by the congruence X168 ≡ X7 + X , such that
we have to perform two left shift, two right shift and four XOR instructions.
The implementation of the multiplication in assembly language as well as the
faster reduction caused by the different reduction polynomial lead to an efficient
multiplication in GF(2167) (see Table 4). While our implementation computes
the product of two finite field elements in 0.67 ms, Seo et al. consume about 2.9
ms. This is an improvement by a factor 4.

Additionally, we composed a particular function to square a polynomial in
F2d , because squaring in characteristic 2 is just a spreading of the coefficients
[5]:

A(X)2 =

(
d−1∑

i=0

aiX
i

)2

=
d−1∑

i=0

aiX
2i mod f.

As recommended in [17], the spreading is achieved by a table look-up. In order
to avoid a result C(X) = A(X)2 of double length, we composed a second look-up
table storing the coefficients of the polynomials u(X)2(X7 +X) in two bytes per
entry. The polynomials are used to include the reduction into the spreading of
the upper half.

Finally, we want to illustrate the advantage of the comb method with win-
dows of width 4 and so we have implemented the binary Shift-and-Add as
well as two window methods on the ATmega128. We have chosen the finite
field F2[X ]/(f(X)), where f(X) = X167 + X6 + 1 ∈ F2[X ]. In Table 4 we
give the clock cycles and timings of all implemented multiplication routines in
F2[X ]/(X167 + X6 + 1).
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R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R18R19 R0R20
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Fig. 4: Squaring in GF(2167) including reduction. The light-gray bytes are copied into
the registers of the microcontroller. The reduced bytes A(X)2(X7+1) (H10 . . . H20 and
L11 . . . L20) are xored with the registers.

Table 4: Clock cycles of multiplication functions in F2[X]/(X167 + X6 + 1)

Function # Clock cycles Time in ms

Double-and-Add 10852 1.36
Double-and-Add (Window width 4) 8789 1.10
Comb method (Window width 4) 5490 0.69
Squaring 663 0.08

4 Application to Elliptic Curves

In this section we apply our efficient arithmetic to elliptic curve cryptography.
In the following the notation Fq will denote a finite field of characteristic p > 3
with q elements. The parameter q has not to be a prime number but a prime
power q = pd. If q is a prime power then Fq is a field extension over the prime
field Fp of degree d. If the finite field has characteristic 2, then it will be explicitly
denoted by F2d .

Let E be an elliptic curve over an arbitrary finite field, then the elliptic curve
can be represented by an shortened Weierstraß-equation

E : y2 = x3 + ax + b, with a, b ∈ Fq and 4a3 + 27b2 6= 0.

E : y2 + xy = x3 + ax2 + b, with a, b ∈ F2d and b 6= 0.

The set of solutions of the polynomials together with the point at infinity form
an additive group. The addition law of the elliptic curve is built on operations
in the finite field Fq or F2d resp. Therefore fast arithmetic in the finite fields
is necessary for efficient elliptic curve cryptosystems. In [9] the authors report,
that field inversions reduce the efficiency of elliptic curve based cryptosystems
drastically, because the ratio of a field inversion to the field multiplication is
rather high. For all finite fields we were able to confirm this statement, such
that we avoid field inversions by switching to projective coordinates.

The transformation to the projective space is not unique. Several embeddings
are proposed in the literature [10]. Cohen et al. point out, that for fields of odd
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characteristic the Jacobian representation

P
2(Fq) → A

2(Fq)

[X : Y : Z] 7→

(
X

Z2
,

Y

Z3

)

for Z 6= 0.

of coordinates offers the fastest implementations. In characteristic 2 coordinates
introduced by Lopez and Dahab are the optimal choice [19].

P
2(F2d) → A

2(F2d)

[X : Y : Z] 7→

(
X

Z
,

Y

Z2

)

for Z 6= 0.

We recall addition laws for these projective representations in order to select our
algorithms for scalar multiplication.

Table 5: Point addition and point doubling for Jacobian coordinates in Fq

P 6= Q P = Q

X3 = −CE − 2AE + D2 X3 = C
Y3 = −BCE + D(AE −X3) Y3 = −8Y 4

1 + B(A− C)
Z3 = Z1Z2C Z3 = 2Y1Z1

A = X1Z
2
2 , B = Y1Z

3
2 , A = 4X1Y

2
1 , B = 3X2

1 + aZ4
1 ,

C = X2Z
2
1 −A, D = Y2Z

3
1 −B, E = C2 C = −2A + B2

The computational effort for adding two different points in Jacobian coordi-
nates consists of 12 multiplications and 4 squarings. For the doubling of P we
have to perform 4 multiplications and 6 squarings. Representing points in Jaco-
bian coordinates is more efficient than affine coordinates if the multiplication is
12 times faster than an inversion.

Table 6: Point addition and point doubling for Lopez-Dahab coordinates in F2d

P 6= Q P = Q

X3 = A(H + D) + B(C + G) X3 = C2 + B
Y3 = (AJ + FG)F + (J + Z3)X3 Y3 = (Y 2

1 + aZ3 + B)X3 + Z3B
Z3 = FZ1Z2 Z3 = AC

A = X1Z2, B = X2Z1, C = A2, D = B2, A = Z2
1 , B = bA2, C = X2

1

E = A + B, F = C + D, G = Y1Z
2
2

H = Y2Z
2
1 , I = G + H, J = IE

Using elliptic curves over binary fields representing points in Lopez-Dahab
coordinates, we have to execute 3 multiplications and 4 squarings for point ad-
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dition, whereas we only need 5 multiplications and 4 squarings in the case of
point doubling.

The core of elliptic curve cryptosystems is the scalar multiplication, i.e. the
iterated addition of a point to itself. It is well-known that cryptosystems resistant
against theoretical attacks might be vulnerable to side-channel attacks. These
attacks exploit information like power consumption, electromagnetic radiation,
run time oscillation or handling of calculation faults. In particular, simple power
analysis is a very dangerous and efficient threat. It assigns parts of the power
consumption profile to operations on the elliptic curve, i.e. the power consump-
tion profile is divided into additions and doublings on the curve. Therefore, it is
indispensable to adjust the power consumption profile by dummy operations or
to use scalar multiplication algorithms which process the key bits in a constant
manner.

There are several proposals for scalar multiplications preventing simple side
channel attacks. The most efficient algorithm is based on a window technique
[18], but since we are interested in memory saving methods we restrict to al-
gorithms, which do not need precomputed points. So, there are two remaining
algorithms, which can be used in secure implementations of elliptic curve cryp-
tosystems.

The Double-And-Add-Always (see Algorithm 2) is resistant against simple
side chanel attacks, because an addition and a doubling is executed indepen-
dently from the certain value of the key bit. Using mixed coordinates the algo-
rithm consumes 12n multiplications and 9n squarings for Fq [10] (12n multiplica-
tions and 10n squarings for F2d [18]). Additions in the finite fields are neglected,
because they play not an important role for the total running time.

Algorithm 2: Algorithm 3:

Double-and-add-always Montgomery ladder

Input: P ∈ E, k ∈ Z

Output: Q = kP
Input: X1

Output: A/B = Xk/Zk, C/D = Xk+1/Zk+1

Q[0]← P ; A← 1; B ← 0; C ← X1; D ← 1;
j ← 0; i← n− 1;
While j < n While i > −1;

Q[0]← P ; If ki = 1
Q[1]← Q[0] + P ; add(A, B, A, B, C, D);
Q← Q[ki]; double(C, D, C, D);
P ← 2P ; Else
j ← j + 1; add(C, D, C, D, A, B);

Return Q; double(A, B, A, B);
i← i− 1;

Return;

An alternative to the Double-And-Add-Always is the so called Montgomery-
Ladder (see Algorithm 3). It was published by Peter Montgomery [21] for fast
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factorization based on elliptic curves. It can be applied to elliptic curves defined
over arbitrary finite fields and the concrete formulas are summarized in [12] and
[18]. Montgomery determines the projective x-coordinates (X3, Z3), (X4, Z4) of
points P3 = P1 + P2, P4 = 2P2, such that the projective x-coordinates (X1, Z1)
and (X2, Z2) of P1, P2 and the difference P2−P1 are used only. Starting with the
input points P1 = O and P2 = P , we can derive the multiple kP such that the
same operations are executed for different values of the key bits. In F2d we need
6n multiplications and 4n squarings. For arbitrary elliptic curves defined over
finite fields of characteristic p > 3 we have 5n squarings and 14n multiplications.
Since in Fq squaring is not twice as fast as the multiplication, the Montgomery-
Ladder is faster than the Double-And-Add-Always for every choice of the finite
field.

In Table 7 we give the running times of the Montgomery-ladder on the AT-
mega128 for all finite fields implemented in the previous section. The used curves
were cryptographically strong, such that the security levels of the curves are sim-
ilar.

Table 7: Performance data of Montgomery-ladder without scalar randomization and
without reconstruction of the y-coordinate on ATmega128@8MHz

Finite field length of scalar # Clock cycles Running time Code size

Fp1
160 10086676 1.261 s 7.7 kB

Fp2
168 10534273 1.317 s 9.6 kB

Fp11 , p = 216 − 129 176 13830892 1.729 s 9.8 kB
F2167 165 6100462 0.763 s 11 kB

Table 7 shows, that the efficiency of the finite field is not the single argument
for fast ECC implementations. In particular, for finite fields of characteristic
two the short formulas of the Montgomery-Ladder enable scalar multiplications
secured against simple side channel attacks, which are comparable to other fi-
nite fields. Although the parameters extension field Fpd were adapted to the
properties of the target platform large prime fields are not less efficient.

5 Conclusion

In this paper we investigated the efficiency of different finite fields on the AT-
mega128 microcontroller. We used prime fields, optimal extension fields and
binary fields. Prime fields offer the fastest arithmetic, but involving the arith-
metic into quick scalar multiplication algorithms secured against simple power
analysis, binary curves outperform all other types of finite fields.
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