
Algebraic Cryptanalysis of MQQ Public Key
Cryptosystem by MutantXL

Mohamed Saied Emam Mohamed1, Jintai Ding2, and Johannes Buchmann1

1 TU Darmstadt, FB Informatik
Hochschulstrasse 10, 64289 Darmstadt, Germany

{mohamed,buchmann}@cdc.informatik.tu-darmstadt.de
2 Department of Mathematical Sciences, University of Cincinnati

Cincinnati OH 45220, USA
jintai.ding@uc.edu

Abstract. In this paper, we present an efficient attack to the multi-
variate Quadratic Quasigroups (MQQ) cryptosystem. Our cryptanalysis
breaks MQQ cryptosystems by solving systems of multivariate quadratic
polynomial equations using a modified version of the MutantXL algo-
rithm. We present experimental results comparing the behavior of our
implementation of MutantXL to Magma’s implementation of F4 on MQQ
systems (≥ 135 bit). Based on our results we show that the MutantXL
implementation solves with much less memory than Magma’s implemen-
tation of F4 algorithm.

1 Introduction

The intractability of solving some mathematical problems is the security basis for
many public key cryptosystems. One of the most popular cryptosystems based
on this criteria is the multivariate cryptosystem which involves the problem of
solving large systems of multivariate polynomial equations over finite fields.

The first multivariate public key cryptosystem introduced by Matsumoto and
Imai in [13] was broken by Patarin in [15]. Other systems like The Hidden Field
Equation (HFE) by Patarin [16] and the unbalanced Oil and Vineger (UOV) by
Kipnis, Patarin and Goubin [12] were attacked by Faugère [8] and Wolf et al.
[1],[17] respectively.

In recent years, several algorithms to solve systems of multivariate equations
such as XL [3], F4 [6], and F5[7] have been introduced. These algorithms gen-
erally outperform the standard Buchberger algorithm [2]. In 2006, Ding [4] pre-
sented the mutant strategy, which characterizes the degeneration of a polynomial
system. He also suggested to use this new strategy to improve the performance
of various algorithms. Combining the mutant strategy with the XL algorithm,
we showed in [14] that a MutantXL algorithm outperforms F4 in solving HFE
based systems as well as random systems.

A new multivariate scheme referred to as Multivariate Quadratic Quasigroups
(MQQ) was presented by Gligoroski et al. in, [10], [11]. This cryptosystem is
considered to be of higher potential and expected to be as fast as block cipher

2 M.S.E. Mohamed, J. Ding, and J. Buchmann

[10], [11]. In this paper, we introduce a new implementation of MutantXL, first
published by Ding et al., in [5] and improved by Mohamed et al., in [14], that
also outperforms F4 in solving MQQ systems. We show by experimental results
that our implementation can solve the MQQ multivariate quadratic equation
systems using much less memory than Magma’s implementation of F4.

The paper is organized as follows. In Section 2 we study the structure of
MQQ systems . In Section 3 we describe the MutantXL algorithm and it’s new
implementation. Section 4 contains our experimental results. Finally we conclude
our paper in section 5.

2 MQQ Cryptosystem

The multivariate quadratic polynomial equations of the MQQ cryptosystem are
generated via quasigroup string transformation performed on a class of quasi-
groups. The public key consists of n quadratic polynomials with n variables. The
only parameter that adjusts the security level of the MQQ public key cryptosys-
tem is the number of variables n, where the authors in [10], [11] suggest the
length of n ≥ 140 for a conjectured security level of 2

n
2 . In this section we only

present a brief overview of the MQQ cryptosystem. A more detailed explanation
is found in [10], [11].

Definition 1. Let Q = {a1, . . . , an} be a finite set of n elements. A quasigroup
(Q, ∗) is a groupoid satisfying the law

(∀a, b ∈ Q)(!∃x, y ∈ Q)(a ∗ x = b & y ∗ a = b) (1)

The unique solutions to these equations are written x = a\∗b and y = b/∗a where
\∗ and /∗ are called a left parastrophe and a right parastrophe of ∗ respectively.
The basic quasigroup string transformation e-transformation is defined as follows
[9]:

Definition 2. A quasigroup e-transformation of a string S = (s0, . . . , sk−1) ∈
Qk with a leader l ∈ Q is the function el : Q×Qk → Qk defined as T = el(S),
T = (t0, . . . , tk−1) such that

ti =
{

l ∗ s0 i = 0
ti−1 ∗ si 1 ≤ i ≤ k − 1 (2)

Consider the case when each element a ∈ Q has a unique d-bit representation
x1, . . . , xd ∈ {0, 1} such that a = x1x2 . . . xd. The binary operation ∗ of the Finite
quasigroups (Q, ∗) is equivalent to a vector valued operation ∗vv : {0, 1}2d →
{0, 1}d defined as:

a ∗ b = c⇔ ∗vv(x1, . . . , xd, y1, . . . , yd) = (z1, . . . , zd)

where x1 . . . xd, y1 . . . yd, and z1 . . . zd are binary representations of a, b, and c
respectively.

Algebraic Cryptanalysis of MQQ by MutantXL 3

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each d-bit repre-
sentation of Q there are a unique vector valued operation ∗vv and d uniquely
determined 2d− array of boolean functions f1, . . . , fd such that ∀a, b, c ∈ Q

a ∗ b = c⇔ ∗vv(Xd, Y d) = (f1(Xd, Y d), . . . , fd(Xd, Y d))

where Xd = x1, . . . , xd, Y d = y1, . . . , yd.

Each k − array boolean function f(x1, . . . , xk) has the following algebraic
normal form (ANF):

ANF (f) = c0 +
∑

1≤i≤k

cixi +
∑

1≤i≤j≤k

ci,jxixj + . . . , (3)

where c0, ci, ci,j , . . . ∈ {0, 1}. The degrees of the boolean functions fi are one of
the complexity factors of the quasigroup (Q, ∗).

Definition 3. A quasigroup (Q, ∗) of order 2d is called multivariate quadratic
quasigroup (MQQ) of type Quadd−kLinkk if exactly d− k of the polynomials fi

are quadratic and k of them are linear, where 0 ≤ k ≤ d.

The authors in [10], [11] provided a heuristic algorithm to generate MQQs
of order 2d and of type Quadd−kLink. The algorithm randomly generates quasi-
groups until it finds a quasigroup that satisfies the aforementioned definition of
MQQs. Several runs of the algorithm generate several MQQs which are then
used to generate the public key [10], [11].

3 MutantXL

In this section we briefly describe the MutantXL algorithm which is a variant
of the XL algorithm using the mutant strategy. For detailed explanation please
refer to [5], [14].

Let X := {x1, . . . , xn} be a set of variables and

R = F2[x1, . . . , xn]/(x2
1 − x1, ..., x

2
n − xn)

be the ring of polynomial functions over F2 in X with the monomials of R or-
dered by the graded lexicographical order <glex. Let P = (p1, . . . , pm) ∈ Rm

be a sequence of m quadratic polynomials in R. Throughout the operation of
the algorithm, a degree bound D will be used. This degree bound denotes the
maximum degree of the polynomials contained in P . Note that the contents of
P will be changed throughout the operation of the algorithm. The MutantXL
will perform the following statements:

– Initialize: Set D to the maximum degree of P , Set the elimination degree d
to D and set the set of mutants M to empty.

4 M.S.E. Mohamed, J. Ding, and J. Buchmann

– Eliminate: Compute row echelon form of the set Pd ={p ∈ P : deg(p) ≤ d}.

– Solve: If there are univariate polynomials in P , then determine the values
of the corresponding variables. If this solves the system return the solution
and terminate, otherwise substitute the values for the variables in P , set d
to max{deg(p) : p ∈ P} and go back to Eliminate.

– ExtractMutants: Add all the new elements of Pd that have degree < d to M .

– MultiplyMutants: If M is not empty, then multiply a necessary number of
mutants that have degree k = min{deg(p): p ∈ M} as in [14], remove the
multiplied polynomials from M , add the new polynomials obtained to P , set
d to k + 1 and go back to Eliminate.

– Extend : Multiply a subset of the Higher degree elements in P as described
below by all variables x ∈ X without redundant, set d to D and go back to
Eliminate.

To clarify our modification to the Extend step, we define the following:

– PD = {p ∈ P : deg(p) = D}
– A = {p ∈ PD : p = m · q, m is a monomial and q ∈M}
– B = PD \A

First extending by adding all the elements of E to P where

E = {p : p = x · b, x ∈ X and b ∈ B},

D = D + 1 and go back to eliminate.
In the case of the system loops back to the Extend step, if the set A is

not empty then we multiply the elements of A partially as the same as the
enlargement strategy in [14]. After each round MutantXL tries to solve the
system until it finds the solution or all the elements in A were multiplied.

4 Experimental Results and Analysis

In this section we present the results of our attack attempts on MQQ systems.
We compare the performance of this particular implementation of MutantXL
to the performance of Magma’s implementation of F4 with respect to memory
resources required to solve the MQQ systems. Throughout all our simulations
we used a Sun X4440 server, with 4 ”Quad-Core AMD Opteron(tm) Processor
8356” CPUs and 128 GB of main memory, each CPU is running at 2,3 GHz.
In our first experiment, we set 15 GB as an upper limit to the memory using
the command ulimit -v 15000000 and tried to solve three MQQ systems with
135, 150 and 160 variables (the systems were suggested by the author of the
MQQ scheme in [10], [11]). All three systems were solved by MutantXL at a

Algebraic Cryptanalysis of MQQ by MutantXL 5

significantly low memory cost wheras Magma’s implementation of F4 failed to
solve under this memory constraint any of these systems.

In our second experiment, we increased the upper limit of the useable memory
to 50GB and tried to solve the same MQQ systems mentioned above. We found
that Magma’s implementation of F4 successfully solves but at a much higher
cost of memory compared to that of MutantXL.

Table 1 shows the results of our experiments, where N denotes the number of
equations which equal to the number of variables of the initial system, Memory
denotes the maximum memory used for each algorithm in MB and Max Matrix
denotes the maximum matrix size used in both algorithms.

Table 1. Performance of MutantXL versus F4

N MutantXL F4

Memory Max Matrix Memory Max Matrix

135 2341 47721 × 410176 18666 395550 × 392262

150 3483 51469 × 562626 24484 501565 × 497886

160 12955 157933 × 682801 44241 556942 × 551029

Tables 2 and 3 show the details of running MutantXL and Magma’s imple-
mentation of F4 in the case of n = 150. In table 2 for each step we show the
elimination degree (ED), the matrix size, the rank of the matrix (Rank), the
number of mutants found (NM) and the memory required. In table 3 we show
for each step the step degree (SD), the number of pairs (NP), the matrix size,
and the step memory in MB. For MutantXL the memory at each step is com-
puted by takes into account the total matrix size after each step, which is the
accumulative of all polynomials that are held in the memory.

It is clear from table 2 that MutantXL can easily solve the 150 variables
MQQ system. In the first iteration of the algorithm, the Eliminate step created
4 mutant polynomial equations of degree 1. In the multiply step, 590 linearly
independent quadratic equations were generated from these 4 mutants. The re-
sulting equations were then appended to the 146 quadratic polynomial equations
produced by eliminating the original system. In the second iteration, no mutants
were found, therefore, MutantXL extended the system by multiplying only the
146 quadratic equations producing 21900 cubic equations. In the third iteration
step, MutantXL eliminated the extended system thus generating 116 mutants.
Further iteration steps continuously generate mutants as shown in the table until
one of these mutants is univariate which finally leads to solving the system.

The previous analysis shows that MQQ is vulnerable to attacks from Mu-
tantXL algorithm due to the fact that it generally generates large number of
mutants in early iteration steps. On the other hand, MQQ can resist attacks

6 M.S.E. Mohamed, J. Ding, and J. Buchmann

Table 2. MutantXL Results for MQQ-150

Step ED Rank NM Matrix Size Memory

1 2 150 4 150×11326 0.2

2 2 740 0 750×11326 1.2

3 3 22640 116 22640×562626 1518

4 3 40033 6 40040×562626 2685

5 3 40906 11 40933×562626 2745

6 2 2373 5 2539×11326 2843

7 2 3030 6 3123×11326 2893

8 2 3785 4 3930×11326 2947

9 2 4269 4 4385×11326 2978

.

40 2 11308 3 11452×11326 3483

from F4 algorithm since F4 does not deal with the mutant polynomials pro-
duced during the process in a special way as MutantXL does.

Table 3. Magma Results for MQQ-150

Step SD NP Matrix Size Memory

1 2 141 150×11326 1195

2 2 62 740×11326 1195

3 3 3094 65680×562615 6932

4 3 3658 73074×553196 18795

5 2 231 2429×11260 18815

6 2 109 2916×11146 18815

7 2 123 3064×10540 18815

8 2 86 3468×10464 18815

9 2 86 3198×9726 18815

.

40 3 40270 501565×497886 24584

It is important to point out that we did not make a runtime comparison
between Magma and MutantXL, since our implementation is based on M4RI
package which is not in its optimal form regarding speed as stated by M4RI con-
tributors. Moreover we are still undergoing speed improvements to our current
implementation of MutantXL. In the future we plan to parallelize the imple-
mentation of MutantXL by performing parallel multiplication of polynomials
and using the last version of M4RI package. We expect that this parallel imple-
mentation of MutantXL will significantly improve its speed performance.

Algebraic Cryptanalysis of MQQ by MutantXL 7

5 Conclusion

In this article, we performed a very efficient practical cryptanalysis of MQQ
Public Key cryptosystem by solving a multivariate quadratic polynomial equa-
tions systems based on a quasigroup string transformations and a specific class
of quasigroups. To do that, we used MutantXL a variant of XL algorithm. Our
attack based on MutantXL implementation which is able to break MQQ sys-
tems of size 160 bits. The results presented in this paper show that MutantXL
attack is much more efficient than Magma F4 attack to MQQ cryptosystems.
We expect that MutantXL can successfully attack more bigger MQQ systems
than Faugere’s F4, F5 and Magma.

References

1. A. Braeken, C. Wolf, and B. Preneel. A study of the security of unbalanced oil
and vinegar signature schemes, 2004.

2. B. Buchberger. An algorithm for finding a basis for the residue class ring of a
zero-dimensional polynomial ring. Dissertation, University of Innsbruck, 1965.

3. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations. In Proceedings of
International Conference on the Theory and Application of Cryptographic Tech-
niques(EUROCRYPT), volume 1807 of Lecture Notes in Computer Science, pages
392–407, Bruges, Belgium, May 2000. Springer.

4. J. Ding. Mutants and its impact on polynomial solving strategies and algorithms.
Privately distributed research note, University of Cincinnati and Technical Uni-
versity of Darmstadt, 2006.

5. J. Ding, J. Buchmann, M. S. E. Mohamed, W. S. A. Moahmed,
and R.-P. Weinmann. MutantXL. In Proceedings of the 1st
international conference on Symbolic Computation and Cryptog-
raphy (SCC08), pages 16 – 22, http://www.cdc.informatik.tu–
darmstadt.de/reports/reports/MutantXL Algorithm.pdf, Beijing, China, April
2008. LMIB.

6. J.-C. Faugére. A new efficient algorithm for computing Gröbner bases (F4). Pure
and Applied Algebra, 139(1-3):61–88, June 1999.

7. J.-C. Faugére. A new efficient algorithm for computing Gro”bner bases without
reduction to zero (F5). In Proceedings of the 2002 international symposium on
Symbolic and algebraic computation (ISSAC), pages 75 – 83, Lille, France, July
2002. ACM.

8. J.-C. Faugére and A. Joux. Algebraic Cryptoanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases . In Proceedings of the International
Association for Cryptologic Research 2003, pages 44 – 60. Springer, 2003.

9. D. Gligoroski. Candidate one-way functions and one-way permutations based on
quasigroup string transformations. volume abs/cs/0510018, 2005.

10. D. Gligoroski, S. Markovski, and S. J. Knapskog. Public Key Block Cipher Based
on Multivariate Quadratic Quasigroups. In Cryptology ePrint Archive, Report
2008/320. http://eprint.iacr.org/.

11. D. Gligoroski, S. Markovski, and S. J. Knapskog. Multivariate Quadratic Trap-
door Functions Based on Multivariate Quadratic Quasigroups. In Proceedings of

8 M.S.E. Mohamed, J. Ding, and J. Buchmann

The AMERICAN CONFERENCE ON APPLIED MATHEMATICS, (MATH08),
Cambridge, Massachusetts, USA, March 2008.

12. A. Kipnis, H. S. H. Hotzvim, J. Patarin, and L. Goubin. Unbalanced oil and
vinegar signature schemes. In Advances in Cryptology EUROCRYPT 1999, pages
206–222. Springer, 1999.

13. T. Matsumoto and H. Imai. Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In Workshop on the Theory
and Application of of Cryptographic Techniques Advances in Cryptology- EURO-
CRYPT, volume 330 of Lecture Notes in Computer Science, pages 419–453, Davos,
Switzerland, May 1988. Springer.

14. M. S. E. Mohamed, W. S. A. E. Mohamed, J. Ding, and J. Buchmann. MXL2:
Solving Polynomial Equations over GF(2) using an Improved Mutant Strategy.
In Proceedings of The Second international Workshop on Post-Quantum Cryptog-
raphy, (PQCrypto08), volume 5299 of Lecture Notes in Computer Science, pages
203–215, Cincinnati, USA, October 2008. Springer-Verlag, Berlin.

15. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme. In
Procedings of Eurocrypt (Crypto’95).

16. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms. In Proceeding of International
Conference on the Theory and Application of Cryptographic Techniques Advances
in Cryptology- Eurocrypt, volume 1070 of Lecture Notes in Computer Science, pages
33–48, Saragossa, Spain, May 1996. Springer.

17. C. Wolf and B. Preneel. Superfluous keys in multivariate quadratic asymmetric
systems. In Public Key Cryptography PKC 2005, pages 275–287. Springer, 2005.

