
Complete Fairness in Multi-Party Computation

Without an Honest Majority

S. Dov Gordon∗ Jonathan Katz∗

Abstract

Gordon et al. recently showed that certain (non-trivial) functions can be computed with
complete fairness in the two-party setting. Motivated by their results, we initiate a study of
complete fairness in the multi-party case and demonstrate the first completely-fair protocols for
non-trivial functions in this setting. We also provide evidence that achieving fairness is “harder”
in the multi-party setting, at least with regard to round complexity.

∗Dept. of Computer Science, University of Maryland. Email: {gordon,jkatz}@cs.umd.edu. This work was
supported by NSF CAREER award #0447075 and US-Israel Binational Science Foundation grant #2004240.

1 Introduction

In the setting of secure computation, a group of parties wish to run a protocol for computing some
function of their inputs while preserving, to the extent possible, security properties such as privacy,
correctness, input independence and others. These requirements are formalized by comparing a
real-world execution of the protocol to an ideal world where there is a trusted entity who performs
the computation on behalf of the parties. Informally, a protocol is “secure” if for any real-world
adversary A there exists a corresponding ideal-world adversary S (corrupting the same parties
as A) such that the result of executing the protocol in the real world with A is computationally
indistinguishable from the result of computing the function in the ideal world with S.

One desirable property is fairness which, intuitively, means that either everyone receives the
output, or else no one does. Unfortunately, it has been shown by Cleve [4] that complete fairness
is impossible in general without a majority of honest parties. Until recently, Cleve’s result was
interpreted to mean that no non-trivial functions could be computed with complete fairness without
an honest majority. A recent result of Gordon et al. [7], however, shows that this folklore is wrong;
there exist non-trivial functions than can be computed with complete fairness in the two-party
setting. Their work demands that we re-evaluate our current understanding of fairness.

Gordon et al. [7] deal exclusively with the case of two-party computation, and leave open the
question of fairness in the multi-party setting. Their work does not immediately extend to the
case of more than two parties. (See also the discussion in the section that follows.) Specifically,
an additional difficulty that arises in the multi-party setting is the need to ensure consistency
between the outputs of the honest parties, even after a malicious abort. In the two-party setting,
the honest player can respond to an abort by replacing the malicious player’s input with a random
value and computing the function locally (so long as it is “early” enough in the protocol that the
malicious player has not yet learned anything about the output). This option is not immediately
available in the multi-party setting, as the honest players do not know each other’s input values,
and cannot replace them with random values. This issue is compounded with the adversary’s ability
to adaptively abort the t malicious players in any order and at anytime, making fairness in the
multi-party setting still harder to achieve.

In light of the above discussion, we initiate the study of complete fairness in the multi-party
setting. We focus on the case when a private broadcast channel (or, equivalently, a PKI) is available
to the parties; note that Cleve’s impossibility result applies in this case as well. Although one can
meaningfully ask what can be achieved in the absence of broadcast, we have chosen to assume private
broadcast so as to separate the question of fairness from the question of agreement (which has
already been well studied in the cryptographic and distributed systems literature). We emphasize
that, as in [7], we are interested in obtaining complete fairness rather than some notion of partial
fairness.

1.1 Our Results

A natural first question is whether two-party feasibility results [7] can be extended “easily” to
the multi-party setting. More formally, say we have a function f : {0, 1} × · · · × {0, 1} → {0, 1}
taking n boolean inputs. (We restrict to boolean inputs/outputs for simplicity only.) For any subset
∅ ⊂ I ⊂ [n], we can define the partition fI of f to be the two-input function fI : {0, 1}|I|×{0, 1}n−|I|

defined as
fI(y, z) = f(x),

1

where x ∈ {0, 1}n is such that xI = y and xĪ = z. It is not hard to see that if there exists an I
for which fI cannot be computed with complete fairness in the two-party setting, then f cannot
be computed with complete fairness in the multi-party setting. Similarly, the round complexity for
computing f with complete fairness in the multi-party case must be at least the round complexity
of fairly computing each fI . What about the converse? We show the following negative result
regarding such a “partition-based” approach to the problem:

Theorem 1 (Under suitable cryptographic assumptions) there exists a 3-party function f all of
whose partitions can be computed with complete fairness in O(1) rounds, but for which any protocol
computing f with complete fairness requires ω(log k) rounds, where k is the security parameter.

This seems to indicate that fairness in the multi-party setting is qualitatively harder than fairness
in the two-party setting.

The function f for which we prove the above theorem is interesting in its own right: it is
the 3-party majority function (i.e., voting). Although the ω(log k)-round lower bound may seem
discouraging, we are able to show a positive result for this function; to the best of our knowledge,
this represents the first non-trivial feasibility result for complete fairness in the multi-party setting.

Theorem 2 (Under suitable cryptographic assumptions) there exists an ω(log k)-round protocol for
securely computing 3-party majority with complete fairness.

Unfortunately, our efforts to extend the above result to the case of n-party majority have been
unsuccessful. One may therefore wonder whether there exists any (non-trivial) function that can
be computed with complete fairness for general n. Indeed, there is:

Theorem 3 (Under suitable cryptographic assumptions) for any number of parties n, there exists
an O(n)-round protocol for securely computing boolean OR with complete fairness.

OR is non-trivial in our context: OR is complete for multi-party computation (without fairness) [9],
and cannot be computed with information-theoretic privacy even in the two-party setting [3].

Relation to prior work. At a superficial level, the proof of the ω(log k)-round lower bound of
Theorem 1 uses an approach similar to that used to prove an analogous lower bound in [7]. We
stress, however, that the theorem does not follow as a corollary of that work (indeed, it cannot since
each of the partitions of f can be computed with complete fairness in O(1) rounds). Furthermore,
we need to introduce new ideas to prove the result in our setting; in particular, we rely in an
essential way on the fact that the output of any two honest parties must agree (whereas this issue
does not arise in the two-party setting considered in [7]).

Ishai et al. [8] propose a protocol for computing the sum of n inputs that is resilient to a
dishonest majority in a weaker sense than that considered here. Specifically, they show that when
t < n parties are corrupted then a real execution of the protocol is as secure as an execution in the
ideal world with complete fairness, but where the adversary can query the ideal functionality O(t)
times (using different inputs each time). We refer the reader to their work for further discussion.

2

1.2 Outline of the Paper

We include the standard definitions of secure multi-party computation in Appendix A. We stress
that although the definitions are standard, what is not standard is that we are interested in attaining
complete fairness even though we do not have an honest majority.

We begin with our negative result, showing that any completely-fair protocol for 3-party ma-
jority requires ω(log k) rounds. Recall that what is especially interesting about this result is that it
demonstrates a gap between the round complexities required for completely-fair computation of a
function and its (two-party) partitions. In Section 3, we show feasibility of completely-fair compu-
tation of 3-party majority via an ω(log k)-round protocol. In Section 4 we describe our feasibility
result for the case of boolean OR.

2 A Lower Bound on the Round Complexity of Majority

2.1 Proof Overview

In this section, we prove Theorem 1 taking as our function f the three-party majority function maj.
That is, maj(x1, x2, x3) = 0 if at least two of the three values {x1, x2, x3} are 0, and is 1 otherwise.
Note that any partition of maj is just (isomorphic to) the greater-than-or-equal-to function, where
the domain of one input can be viewed as {0, 1, 2} and the domain of the other input can be viewed
as {0, 1} (in each case, representing the number of ‘1’ inputs held). Gordon et al. [7] show that,
under suitable cryptographic assumptions, the greater-than-or-equal-to function on constant-size
domains can be securely computed with complete fairness in O(1) rounds.

We prove Theorem 1 by showing that any completely-fair 3-party protocol for maj requires
ω(log k) rounds. The basic approach is to argue that if Π is any protocol for securely computing maj,
then eliminating the last round of Π results in a protocol Π′ that still computes maj correctly “with
high probability”. Specifically, if the error probability in Π is at most µ (that we will eventually set
to some negligible function of k), then the error probability in Π′ is at most c ·µ for some constant c.
If the original protocol Π has r = O(log k) rounds, then applying this argument inductively r times
gives a protocol that computes maj correctly on all inputs with probability significantly better than
guessing without any interaction at all. This gives the desired contradiction.

To prove that eliminating the last round of Π cannot affect correctness “too much”, we consider
a constraint that holds for the ideal-world evaluation of maj. (Recall, we are working in the ideal
world where complete fairness holds.) Specifically, consider an adversary who corrupts two parties,
and let the input of the honest party P be chosen uniformly at random. The adversary can learn
P ’s input by submitting (0, 1) or (1, 0) to the trusted party. The adversary can also try to bias the
output of maj to be the opposite of P ’s choice by submitting (0, 0) or (1, 1); this will succeed in
biasing the result half the time. But the adversary cannot both learn P ’s input and simultaneously
bias the result. (If the adversary submits (0, 1) or (1, 0), the output of maj is always equal to P ’s
input; if the adversary submits (0, 0) or (1, 1) the the output of maj reveals nothing about P ’s
input.) Concretely, for any ideal-world adversary, the sum of the probability that the adversary
guesses P ’s input and the probability that the output of maj is not equal to P ’s input is at most 1.
In our proof, we show that if correctness holds with significantly lower probability when the last
round of Π is eliminated, then there exists a real-world adversary that violates this constraint.

3

2.2 Proof Details

We number the parties P1, P2, P3, and work modulo 3 in the subscript. The input of Pj is denoted
by xj . The following claim formalizes the ideal-world constraint described informally above.

Claim 4 For all j ∈ {1, 2, 3} and any adversary A corrupting Pj−1 and Pj+1 in an ideal-world
computation of maj, we have

Pr [A correctly guesses xj] + Pr [outputj 6= xj] ≤ 1,

where the probabilities are taken over the random coins of A and random choice of xj ∈ {0, 1}.

Proof: Consider an execution in the ideal world, where Pj ’s input xj is chosen uniformly at
random. Let equal be the event that A submits two equal inputs (i.e., xj−1 = xj+1) to the
trusted party. In this case, A learns nothing about Pj ’s input and so can guess xj with probability
at most 1/2. It follows that:

Pr [A correctly guesses xj] ≤
1

2
Pr [equal] + Pr [equal] .

Moreover,

Pr [outputj 6= xj] =
1

2
Pr [equal]

since outputj 6= xj occurs only if A submits xj−1 = xj+1 = x̄j to the trusted party. Therefore:

Pr [A correctly guesses xj] + Pr [outputj 6= xj] ≤
1

2
Pr [equal] + Pr [equal] +

1

2
Pr [equal]

= Pr [equal] + Pr [equal] = 1,

proving the claim.

Let Π be a protocol that securely computes maj using r = r(k) rounds. Consider an execution
of Π in which all parties run the protocol honestly except for possibly aborting in some round. We

denote by b
(i)
j the value that Pj−1 and Pj+1 both1 output if Pj aborts the protocol after sending

its round-i message (and then Pj−1 and Pj+1 honestly run the protocol to completion). Similarly,

we denote by b
(i)
j−1 (resp., b

(i)
j+1) the value output by Pj and Pj+1 (resp., Pj and Pj−1) when Pj−1

(resp., Pj+1) aborts after sending its round-i message. Note that an adversary who corrupts, e.g.,

both Pj−1 and Pj+1 can compute b
(i)
j immediately after receiving the round-i message of Pj .

Since Π securely computes maj with complete fairness, the ideal-world constraint from the
previous claim implies that for all j ∈ {1, 2, 3}, any inverse polynomial µ(k), and any poly-time
adversary A controlling players Pj−1 and Pj+1, we have:

Prxj←{0,1} [A correctly guesses xj] + Prxj←{0,1} [outputj 6= xj] ≤ 1 + µ(k) (1)

for k sufficiently large. Security of Π also guarantees that if the inputs of the honest parties agree,
then with all but negligible probability their output must be their common input regardless of when
a malicious Pj aborts. That is, for k large enough we have

xj+1 = xj−1 ⇒ Pr
[

b
(i)
j = xj+1 = xj−1

]

≥ 1− µ(k) (2)

1It is not hard to see that security of Π implies that the outputs of Pj−1 and Pj+1 in this case must be equal with
all but negligible probability. For simplicity we assume this to hold with probability 1 but our proof can be modified
easily to remove this assumption.

4

for all j ∈ {1, 2, 3} and all i ∈ {0, . . . , r(k)}.
The following claim represents the key step in our lower bound.

Claim 5 Fix a protocol Π, a function µ, and a value k such that Equations (1) and (2) hold, and
let µ = µ(k). Say there exists an i, with 1 ≤ i ≤ r(k), such that for all j ∈ {1, 2, 3} and all
c1, c2, c3 ∈ {0, 1} it holds that:

Pr
[

b
(i)
j = maj(c1, c2, c3) | (x1, x2, x3) = (c1, c2, c3)

]

≥ 1− µ. (3)

Then for all j ∈ {1, 2, 3} and all c1, c2, c3 ∈ {0, 1} it holds that:

Pr
[

b
(i−1)
j = maj(c1, c2, c3) | (x1, x2, x3) = (c1, c2, c3)

]

≥ 1− 5µ. (4)

Proof: When j = 1 and c2 = c3, the desired result follows from Equation (2); this is similarly
true for j = 2, c1 = c3 as well as j = 3, c1 = c2.

Consider the real-world adversary A that corrupts P1 and P3 and sets x1 = 0 and x3 = 1. Then:

• A runs the protocol honestly until it receives the round-i message from P2.

• A then locally computes the value of b
(i)
2 .

– If b
(i)
2 = 0, then A aborts P1 without sending its round-i message and runs the protocol

(honestly) on behalf of P3 until the end. By definition, the output of P2 will be b
(i−1)
1 .

– If b
(i)
2 = 1, then A aborts P3 without sending its round-i message and runs the protocol

(honestly) on behalf of P1 until the end. By definition, the output of P2 will be b
(i−1)
3 .

• After completion of the protocol, A outputs b
(i)
2 as its guess for the input of P2.

Consider an experiment in which the input x2 of P2 is chosen uniformly at random, and then
A runs protocol Π with P2. Using Equation (3), we have:

Pr [A correctly guesses x2] = Pr
[

b
(i)
2 = x2

]

= Pr
[

b
(i)
2 = f(0, x2, 1)

]

≥ 1− µ . (5)

We also have:

Pr [output2 6= x2] =
1

2
· Pr [output2 = 1 | (x1, x2, x3) = (0, 0, 1)]

+
1

2
· Pr [output2 = 0 | (x1, x2, x3) = (0, 1, 1)]

=
1

2

(

Pr
[

b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]

+ Pr
[

b
(i−1)
3 = 1 ∧ b

(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]

+ Pr
[

b
(i−1)
3 = 0 ∧ b

(i)
2 = 1 | (x1, x2, x3) = (0, 1, 1)

]

+ Pr
[

b
(i−1)
1 = 0 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 1, 1)

])

. (6)

5

¿From Equation (1), we know that the sum of Equations (5) and (6) is upper-bounded by 1 + µ.
Looking at the first summand in (6), this implies that

Pr
[

b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]

≤ 4µ. (7)

Probabilistic manipulation gives

Pr
[

b
(i−1)
1 = 1 ∧ b

(i)
2 = 0 | (x1, x2, x3) = (0, 0, 1)

]

= 1− Pr
[

b
(i−1)
1 = 0 ∨ b

(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]

≥ 1− Pr
[

b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]

− Pr
[

b
(i)
2 = 1 | (x1, x2, x3) = (0, 0, 1)

]

≥ 1− Pr
[

b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]

− µ ;

where the last inequality is due to the assumption of the claim. Combined with (7), this implies:

Pr
[

b
(i−1)
1 = 0 | (x1, x2, x3) = (0, 0, 1)

]

≥ 1− 5µ.

Applying an analogous argument starting with the third summand in (6) gives

Pr
[

b
(i−1)
3 = 1 | (x1, x2, x3) = (0, 1, 1)

]

≥ 1− 5µ.

Repeating the entire argument, but modifying the adversary to consider all possible pairs of cor-
rupted parties and all possible settings of their inputs, completes the proof of the claim.

Theorem 6 Any protocol Π that securely computes maj with complete fairness (assuming one
exists2 at all) requires ω(log k) rounds.

Proof: Assume to the contrary that there exists a protocol Π that securely computes maj with
complete fairness using r = O(log k) rounds. Let µ(k) = 1

4·5r(k) , and note that µ is noticeable.
By the assumed security of Π, the conditions of Claim 3 hold for k large enough; Equation (3),
in particular, holds for i = r(k). Fixing this k and applying the claim iteratively r(k) times, we
conclude that Pj−1 and Pj+1 can correctly compute the value of the function, on all inputs, with
probability at least 3/4 without interacting with Pj at all. This is clearly impossible.

3 Fair Computation of Majority for Three Players

In this section we describe a completely-fair protocol for computing maj for the case of n = 3
parties. The high-level structure of our protocol is as follows: the protocol consists of two phases.
In the first phase, the parties run a secure-with-abort protocol to generate (authenticated) shares
of certain values; in the second phase some of these shares are exchanged, round-by-round, for a
total of m iterations. A more detailed description of the protocol follows.

In the first phase of the protocol the parties run a protocol π implementing a functionality
ShareGen that computes certain values and then distributes authenticated 3-out-of-3 shares of

2In the following section we show that such a protocol does, indeed, exist.

6

ShareGen

Inputs: Let the inputs to ShareGen be x1, x2, x3 ∈ {0, 1}. (If one of the received inputs is not in
the correct domain, then a default value of 1 is used for that player.) The security parameter is k.

Computation:

1. Define values b
(1)
1 , . . . , b

(m)
1 , b

(1)
2 , . . . , b

(m)
2 and b

(1)
3 , . . . , b

(m)
3 in the following way:

• Choose i∗ ≥ 1 according to a geometric distribution with parameter α = 1/5 (see text).

• For i = 0 to i∗ − 1 and j ∈ {1, 2, 3} do:

– Choose x̂j ← {0, 1} at random.

– Set b
(i)
j = maj(xj−1, x̂j , xj+1).

• For i = i∗ to m and j ∈ {1, 2, 3}, set b
(i)
j = maj(x1, x2, x3).

2. For 0 ≤ i ≤ m and j ∈ {1, 2, 3}, choose b
(i)
j|1, b

(i)
j|2 and b

(i)
j|3 as random three-way shares of b

(i)
j .

(E.g., b
(i)
j|1 and b

(i)
j|2 are random and b

(i)
j|3 = b

(i)
j|1 ⊕ b

(i)
j|2 ⊕ b

(i)
j .)

3. Let (pk, sk)← Gen(1k). For 0 ≤ i ≤ m, and j, j′ ∈ {1, 2, 3}, let σ
(i)
j|j′ = Signsk(i‖j‖j′‖b

(i)
j|j′).

Output:

1. Send to each Pj the public key pk and the values
{

(b
(i)
1|j , σ

(i)
1|j), (b

(i)
2|j , σ

(i)
2|j), (b

(i)
3|j , σ

(i)
3|j)

}m

i=0
. Ad-

ditionally, for each j ∈ {1, 2, 3} parties Pj−1 and Pj+1 receive the value b
(0)
j|j .

Figure 1: Functionality ShareGen.

these values to the parties. (See Figure 1.) Three sets of values {b
(i)
1 }

m
i=0, {b

(i)
2 }

m
i=0, and {b

(i)
3 }

m
i=0

are computed; looking ahead, b
(i)
j denotes the value that parties Pj−1 and Pj+1 are supposed to

output in case party Pj aborts after iteration i of the second phase; see below. The values b
(i)
j

are computed probabilistically, in the same manner as in [7]. That is, a round i∗ is first chosen
according to a geometric distribution with parameter α = 1/5.3 (We will set m so that i∗ ≤ m with

all but negligible probability.) Then, for i < i∗ the value of b
(i)
j is computed using the true inputs

of Pj−1 and Pj+1 but a random input for Pj ; for i ≥ i∗ the value b
(i)
j is set equal to the correct

output (i.e., it is computed using the true inputs of all parties). Note that even an adversary who

knows all the parties’ inputs and learns, sequentially, the values (say) b
(1)
1 , b

(2)
1 , . . . cannot determine

definitively when round i∗ occurs.
We choose the protocol π computing ShareGen to be secure-with-designated-abort [5] for P1.

Roughly speaking, this means privacy and correctness are ensured no matter what, and output
delivery and (complete) fairness are guaranteed unless P1 is corrupted; see Appendix A.3.

The second phase of the protocol proceeds in a sequence of m = ω(log n) iterations. (See

Figure 2.) In each iteration i, each party Pj broadcasts its share of b
(i)
j . (We stress that we allow

rushing, and do not assume synchronous broadcast.) Observe that, after this is done, parties Pj−1

and Pj+1 jointly have enough information to reconstruct b
(i)
j , but neither party has any information

about b
(i)
j on its own. If all parties behave honestly until the end of the protocol, then in the final

3This is the distribution on N = {1, 2, . . .} given by flipping a biased coin (that is heads with probability α) until
the first head appears.

7

Protocol 1

Inputs: Party Pi has input xi ∈ {0, 1}. The security parameter is k.

The protocol:

1. Preliminary phase:

(a) Parties P1, P2 and P3 run a protocol π for computing ShareGen. Each player uses their
respective inputs, x1, x2 and x3, and security parameter k.

(b) If P2 and P3 receive ⊥ from this execution, then P2 and P3 run a two-party protocol
πOR to compute the logical-or of their inputs.

Otherwise, continue to the next stage.

In what follows, parties always verify signatures; invalid signatures are treated as an abort.

2. For i = 1, . . . , m − 1 do:

Broadcast shares:

(a) Each Pj broadcasts (b
(i)
j|j , σ

(i)
j|j).

(b) If (only) Pj aborts:

i. Pj−1 and Pj+1 broadcast (b
(i−1)
j|j−1, σ

(i−1)
j|j−1) and (b

(i−1)
j|j+1, σ

(i−1)
j|j+1), respectively.

ii. If one of Pj−1, Pj+1 aborts in the previous step, the remaining player outputs its own

input value. Otherwise, Pj−1 and Pj+1 both output b
(i−1)
j = b

(i−1)
j|1 ⊕ b

(i−1)
j|2 ⊕ b

(i−1)
j|3 .

(Recall that if i = 1, parties Pj−1 and Pj+1 received b
(0)
j|j as output from π.)

(c) If two parties abort, the remaining player outputs its own input value.

3. In round i = m do:

(a) Each Pj broadcasts b
(m)
1|j , σ

(m)
1|j .

(b) If no one aborts, then all players output b
(m)
1 = b

(m)
1|1 ⊕ b

(m)
1|2 ⊕ b

(m)
1|3 . If (only) Pj aborts,

then Pj−1 and Pj+1 proceed as in step 2b. If two players abort, the remaining player
outputs its own input value as in step 2c.

Figure 2: A protocol for computing majority.

iteration all parties reconstruct b
(m)
1 and output this value.

If a single party Pj aborts in some iteration i, then the remaining players Pj−1 and Pj+1 jointly

reconstruct the value b
(i−1)
j and output this value. (Recall that these two parties jointly have

enough information to do this.) If two parties abort in some iteration i (whether at the same time,
or one after the other) then the remaining party simply outputs its own input.

We refer to Figures 1 and 2 for the formal specification of the protocol. We now prove that this
protocol securely computes maj with complete fairness.

Theorem 7 Assume that (Gen,Sign,Vrfy) is a secure signature scheme, that π securely computes
ShareGen with designated abort, and that πOR securely computes OR with complete fairness.4 Then
the protocol in Figure 2 securely computes maj with complete fairness.

Proof: Let Π denote the protocol of Figure 2. Observe that Π yields the correct output with
all but negligible probability when all players are honest. This is because, with all but negligible

probability, i∗ ≤ m, and then b
(m)
j = maj(x1, x2, x3). We thus focus on security of Π.

4It is shown in [7] that such a protocol exists under standard assumptions.

8

We note that when no parties are corrupt, the proof of security is straightforward, since we
assume the existence of a private broadcast channel. We therefore consider separately the cases
when a single party is corrupted and when two parties are corrupted. Since the entire protocol
is symmetric except for the fact that P1 may choose to abort π, without loss of generality we
may analyze the case when the adversary corrupts P1 and the case when the adversary corrupts
{P1, P2}. In each case, we prove security of Π in a hybrid world where there is an ideal functionality
computing ShareGen (with abort) as well as an ideal functionality computing OR (with complete
fairness). Applying the composition theorem of [2] then gives the desired result. The case where
only P1 is corrupted is much simpler, and is therefore handled in Section B.1.

Claim 8 For every non-uniform, poly-time adversary A corrupting P1 and P2 and running Π
in a hybrid model with access to ideal functionalities computing ShareGen (with abort) and OR

(with completes fairness), there exists a non-uniform, poly-time adversary S corrupting P1 and P2

and running in the ideal world with access to an ideal functionality computing maj (with complete
fairness), such that

{

idealmaj,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N

s
≡

{

hybrid
ShareGen,OR
Π,A (x1, x2, x3, k)

}

xi∈{0,1},k∈N

.

Proof: This case is significantly more complex than the case when only a single party is corrupted,

since here A learns b
(i)
3 in each iteration i of the second phase. As in [7], we must deal with the

fact that A might abort exactly in iteration i∗, after learning the correct output but before P3 has
enough information to compute the correct output.

We now describe a simulator S who corrupts P1 and P2 and runs A as a black-box. For ease of
exposition in what follows, we sometimes refer to the actions of P1 and P2 when more formally we
mean the action of A on behalf of those parties.

1. S invokes A on the inputs x1 and x2, the auxiliary input z, and the security parameter k.

2. S receives x′1 and x′2 from P1 and P2, respectively, as input to ShareGen. If x′1 /∈ {0, 1} (resp.,
x′2 /∈ {0, 1}), then S sets x′1 = 1 (resp., x′2 = 1).

3. S computes (sk, pk)← Gen(1k), and then generates shares as follows:

(a) Choose
{

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2

}m

i=0
uniformly at random.

(b) Choose x̂3 ← {0, 1} and set b
(0)
3 = maj(x′1, x

′
2, x̂3). Set b

(0)
3|3 = b

(0)
3 ⊕ b

(0)
3|1 ⊕ b

(0)
3|2.

S then hands A the public key pk, the values
{

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2

}m

i=0
(along with

their appropriate signatures), and the value b
(0)
3|3 as the outputs of P1 and P2 from ShareGen.

4. If P1 aborts execution of ShareGen, then S extracts x′′2 from P2 as its input to OR. It then
sends (1, x′′2) to the trusted party computing maj, outputs whatever A outputs, and halts.

5. Otherwise, if P1 does not abort, then S picks a value i∗ according to a geometric distribution
with parameter α = 1

5 .

In what follows, for ease of description, we will use x1 and x2 in place of x′1 and x′2, keeping in
mind that that A could of course have used substituted inputs. We also ignore the presence

9

of signatures from now on, and leave the following implicit in what follows: (1) S always
computes an appropriate signature when sending any value to A; (2) S treats an incorrect
signature as an abort; and (3) if S ever receives a valid signature on a previously unsigned
message (i.e., a forgery), then S outputs fail and halts.

Also, from here on we will say that S sends b to A in round i if S sends a value b
(i)
3|3 such that

b
(i)
3|3 ⊕ b

(i)
3|1 ⊕ b

(i)
3|2 = b

(i)
3 = b.

6. For round i = 1, . . . , i∗ − 1, the simulator S computes and then sends b
(i)
3 as follows:

(a) Select x̂3 ← {0, 1} at random.

(b) b
(i)
3 = maj(x1, x2, x̂3).

7. If P1 aborts in round i < i∗, then S sets x̂2 = x2 and assigns a value to x̂1 according to the

following rules that depend on the values of (x1, x2) and on the value of b
(i)
3 :

(a) If x1 = x2, then S sets x̂1 = x1 with probability 3
8 (and sets x̂1 = x̄1 otherwise).

(b) If x1 6= x2 and b
(i)
3 = x1, then S sets x̂1 = x1 with probability 1

4 (and sets x̂1 = x̄1

otherwise).

(c) If x1 6= x2 and b
(i)
3 = x2, then S sets x̂1 = x1 with probability 1

2 (and sets x̂1 = x̄1

otherwise).

S then finishes the simulation as follows:

(a) If x̂1 6= x̂2, then S submits (x̂1, x̂2) to the trusted party computing maj. Denote the

output it receives from the trusted party by bout. Then S sets b
(i−1)
1 = bout, computes

b
(i−1)
1|3 = b

(i−1)
1 ⊕ b

(i−1)
1|1 ⊕ b

(i−1)
1|2 , sends b

(i−1)
1|3 to P2 (on behalf of P3), outputs whatever A

outputs, and halts.

(b) If x̂1 = x̂2, then S sets b
(i−1)
1 = x̂1 = x̂2, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕ b

(i−1)
1|1 ⊕ b

(i−1)
1|2 , and

sends b
(i−1)
1|3 to P2 (on behalf of P3). (We stress that this is done before sending anything

to the trusted party computing maj.) If P2 aborts, then S sends (0, 1) to the trusted
party computing maj. Otherwise, it sends (x̂1, x̂2) to the trusted party computing maj.
In both cases it outputs whatever A outputs, and then halts.

If P2 aborts in round i < i∗, then S acts analogously but swapping the roles of P1 and P2 as
well as x1 and x2.

If both parties abort in round i < i∗ (at the same time), then S sends (0, 1) to the trusted
party computing maj, outputs whatever A outputs, and halts.

8. In round i∗:

(a) If x1 6= x2, then S submits (x1, x2) to the trusted party. Let bout = maj(x1, x2, x3) denote
the output.

(b) If x1 = x2, then S simply sets bout = x1 = x2 without querying the trusted party and
continues. (Note that in this case, bout = maj(x1, x2, x3) even though S did not query
the trusted party.)

10

9. In rounds i∗, . . . ,m− 1, the simulator S sends bout to A.

If A aborts P1 and P2 simultaneously, then S submits (1, 0) to the trusted party (if he hasn’t
already done so in step 8a), outputs whatever A outputs, and halts.

If A aborts P1 (only), then S sets b
(i−1)
1 = bout, computes b

(i−1)
1|3 = b

(i−1)
1 ⊕ b

(i−1)
1|1 ⊕ b

(i−1)
1|2 , and

sends b
(i−1)
1|3 to P2 (on behalf of P3). Then:

Case 1: x1 6= x2. Here S has already sent (x1, x2) to the trusted party. So S simply outputs
whatever A outputs and ends the simulation.

Case 2: x1 = x2. If P2 does not abort, then S sends (x1, x2) to the trusted party. If P2

aborts, then S sends (0, 1) to the trusted party. In both cases S then outputs whatever
A outputs and halts.

If A aborts P2 (only), then S acts as above but swapping the roles of P1, P2 and x1, x2. If
A does not abort anyone through round m, then S sends (x1, x2) to the trusted party (if he
hasn’t already done so), outputs what A outputs, and halts.

Due to space limitations, the analysis of S is given in Appendix B.2.

4 Completely-Fair Computation of Boolean OR

The protocol in the previous section enables completely-fair computation of 3-party majority; un-
fortunately, we were not able to extend the approach to the case of n > 3 parties. In this section,
we demonstrate feasibility of completely-fair computation of a non-trivial function for an arbitrary
number of parties n, any t < n of whom are corrupted. Specifically, we show how to compute
boolean OR with complete fairness.

The basic idea behind our protocol is to have the parties repeatedly try to compute OR on
committed inputs using a protocol that is secure-with-designated-abort where only the lowest-
indexed party can force an abort. (See Appendix A.3.) The key observation is that, in case of
an abort, the dishonest players only “learn something” about the inputs of the honest players in
case all the malicious parties use input 0. (If any of the malicious players holds input 1, then the
output is always 1 regardless of the inputs of the honest parties.) So, if the lowest-indexed party
is corrupt and aborts the computation of the committed OR, then the remaining parties simply
recompute the committed OR using ‘0’ as the effective input for any parties who have already been
eliminated. The parties repeatedly proceed in this fashion, eliminating dishonest parties at each
iteration. Eventually, when the lowest-indexed player is honest, the process terminates and all
honest players receive (correct) output.

The actual protocol follows the above intuition, but is a bit more involved. A formal description
of the protocol is given in Figure 3, and the “committed OR” functionality is defined in Figure 4.

Theorem 9 Assume Com is a computationally-hiding, statistically-binding commitment scheme,
and that πP securely computes CommittedORP (with abort). Then the protocol of Figure 3 computes
OR with complete fairness.

11

Protocol 2

Inputs: Each party Pi holds input xi ∈ {0, 1}, and the security parameter is k.

Computation:

1. Let P = {P1, . . . , Pn} be the set of all players.

2. Each player Pi chooses random coins ri and broadcasts ci = Com(1k, xi, ri), where Com

denotes a computationally-hiding, statistically-binding commitment scheme. If any party Pi

does not broadcast anything (or otherwise broadcasts an invalid value), then all honest players
output 1. Otherwise, let ~c = (c1, . . . , cn).

3. All players Pi ∈ P run a protocol πP for computing CommittedORP , with party Pi using

(xi, ri,~cP) as its input where ~cP
def
= (ci)i:Pi∈P .

4. If players receive ⊥ from the execution of CommittedORP , they set P = P \ {P ∗}, where
P ∗ ∈ P is the lowest-indexed player in P , and return to step 3.

5. If players receive a set D ⊂ P from the execution of CommittedORP , they set P = P \ D and
return to step 3.

6. If players receive a binary output from the execution of CommittedORP , they output this value
and end the protocol.

Figure 3: A protocol computing OR for n players.

CommittedORP

Inputs: The functionality is run by parties in P . Let the input of player Pi ∈ P be (xi, ri,~c
i) where

~ci = (ci
j)j:Pj∈P . The security parameter is k.

For each party Pi ∈ P, determine its output as follows:

1. Say Pj disagrees with Pi if either (1) ~cj 6= ~ci or (2) Com(1k, xj , rj) 6= ci
j . (Note that disagree-

ment is not a symmetric relation.)

2. Let Di be the set of parties who disagree with Pi.

3. If there exist any parties that disagree with each other, return Di as output to Pi. Otherwise,
return

∨

j:Pj∈P xj to all parties.

Figure 4: Functionality CommittedORP , parameterized by a set P

Proof: Let Π denote the protocol of Figure 3. For simplicity we assume Com is perfectly binding,
though statistical binding suffices. For any non-uniform, polynomial time adversary A in the hybrid
world, we demonstrate a non-uniform polynomial-time adversary S corrupting the same parties as
A and running in the ideal world with access to an ideal functionality computing OR (with complete
fairness), such that

{

idealOR,S(x1, . . . , xn, k)
}

xi∈{0,1},k∈N

c
≡

{

hybrid
CommittedORP

Π,A (x1, . . . , xn, k)
}

xi∈{0,1},k∈N

.

Applying the composition theorem of [2] then proves the theorem.
We note that when no players are corrupt, the proof of security is easy, due to the assumed

existence of a private broadcast channel. We now describe the execution of S:

1. Let C 6= ∅ be the corrupted players, and let H = {P1, . . . Pn} \ C denote the honest players.
Initialize I = C. Looking ahead, I denotes the set of corrupted parties who have not yet been
eliminated from the protocol.

12

2. S invokes A on the inputs {xi}i:Pi∈C , the auxiliary input z, and the security parameter k.

3. For Pi ∈ H, the simulator S gives to A a commitment ci = Com(1k, xi, ri) to xi = 0 using
randomness ri. S then records the commitment ci that is broadcast by A on behalf of each
party Pi ∈ C. If any corrupted player fails to broadcast a value ci, then S submits 1’s to the
trusted party on behalf of all corrupted parties, outputs whatever A outputs, and halts.

4. If I = ∅, S submits (on behalf of all the corrupted parties) 0’s to the trusted party computing
OR (unless it has already done so). It then outputs whatever A outputs, and halts. If I 6= ∅,
continue to the next step.

5. S sets P = H∪I and obtains inputs {(ri, xi,~c
i)}i:Pi∈I for the computation of CommittedORP .

For each Pi ∈ P, the simulator S computes the list of players Di that disagree with Pi (as
in Figure 4), using as the inputs of the honest parties the commitments defined in Step 3,
and assuming that honest parties provide correct decommitments. Observe that if Pi, Pj ∈ H
then Di = Dj ⊆ I. Let DH ⊆ I be the set of parties that disagree with the honest parties.

Let P ∗ be the lowest-indexed player in P. If no parties disagree with each other, go to step 6.
Otherwise:

(a) If P ∗ ∈ I, then A is given {Di}i:Pi∈I . If P ∗ aborts, then S sets I = I \ {P ∗} and goes
to step 4. If P ∗ does not abort, then S sets I = I \ DH and goes to step 4.

(b) If P ∗ /∈ I, then A is given {Di}i:Pi∈I . Then S sets I = I \ DH and goes to step 4.

6. S computes the value b =
∨

Pi∈I
xi .

(a) If b = 0, and S has not yet queried the trusted party computing OR, then S submits 0’s
(on behalf of all the corrupted parties) to the trusted party and stores the output of the
trusted party as bout. S gives bout to A (either as just received from the trusted party,
or as stored in a previous execution of this step).

(b) If b = 1, then S gives the value 1 to A without querying the trusted party.

S now continues as follows:

(a) If P ∗ ∈ I and P ∗ aborts, then S sets I = I \ {P ∗} and goes to step 4.

(b) If P ∗ /∈ I, or if P ∗ does not abort, then S submits 1’s to the trusted party if it has not
yet submitted 0’s. It outputs whatever A outputs, and halts.

We refer the reader to B.3 for an analysis of the above simulation.

References

[1] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology — Crypto
’91, volume 576 of Lecture Notes in Computer Science, pages 377–391. Springer, 1992.

[2] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

13

[3] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal of Discrete
Math, 4(1):36–47, 1991.

[4] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proc. 18th
Annual ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.

[5] O. Goldreich. Foundations of Cryptography, Volume 2 – Basic Applications. Cambridge Uni-
versity Press, 2004.

[6] S. Goldwasser and L. Levin. Fair computation and general functions in the presence of immoral
majority. In Advances in Cryptology — Crypto ’90, volume 537 of Lecture Notes in Computer
Science. Springer, 1991.

[7] D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party compu-
tation. In Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), 2008.

[8] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guaranteed
output delivery in secure multiparty computation. In Advances in Cryptology — Crypto 2006,
volume 4117 of Lecture Notes in Computer Science, pages 483–500. Springer, 2006.

[9] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in private
computations. SIAM J. Computing, 29(4):1189–1208, 2000.

[10] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology — Crypto ’91,
volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer, 1992.

A Standard Definitions

A.1 Preliminaries

We denote the security parameter by k. A function µ(·) is negligible if for every positive poly-
nomial p(·) and all sufficiently large k it holds that µ(k) < 1/p(k). A distribution ensemble

X = {X(a, k)}a∈Dk , k∈N is an infinite sequence of random variables indexed by a ∈ Dk and k ∈ N,
where Dk is a set that may depend on k. (Looking ahead, Dk will denote the domain of the parties’
inputs.) Two distribution ensembles X = {X(a, k)}a∈Dk , k∈N and Y = {Y (a, k)}a∈Dk , k∈N are com-

putationally indistinguishable, denoted X
c
≡ Y , if for every non-uniform polynomial-time algorithm

D there exists a negligible function µ(·) such that for every k and every a ∈ Dk

∣

∣ Pr[D(X(a, k)) = 1]− Pr[D(Y (a, k)) = 1]
∣

∣ ≤ µ(k).

The statistical difference between two distributions X(a, k) and Y (a, k) is defined as

SD
(

X(a, k), Y (a, k)
)

=
1

2
·
∑

s

∣

∣Pr[X(a, k) = s]− Pr[Y (a, k) = s]
∣

∣ ,

where the sum ranges over s in the support of either X(a, k) or Y (a, k). Two distribution ensem-

bles X = {X(a, k)}a∈Dk , k∈N and Y = {Y (a, k)}a∈Dk , k∈N are statistically close, denoted X
s
≡ Y ,

if there is a negligible function µ(·) such that for every k and every a ∈ Dk, it holds that
SD

(

X(a, k), Y (a, k)
)

≤ µ(k).

14

A.2 Secure Multi-Party Computation with Complete Fairness

Multi-party computation. A multi-party protocol for parties P = {P1, . . . , Pn} and comput-
ing a (possibly randomized) functionality f = (f1, . . . , fn), is a protocol satisfying the following
functional requirement: if each Pi begins by holding 1k and input x, and all parties run the pro-
tocol honestly, then the joint distribution of the outputs of the parties is statistically close to
(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

In what follows, we define what we mean by a secure protocol. Our definition follows the
standard definition of [5] (based on [6, 10, 1, 2]), except that we require complete fairness even
though we do not have honest majority. We consider active adversaries, who may deviate from the
protocol in an arbitrary manner, and static corruptions.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure
if any adversary interacting in the real protocol (where no trusted party exists) can do no more
harm than if it was involved in the above-described ideal computation.

Execution in the ideal model. The parties are P = {P1, . . . , Pn}, and there is an adversary
S who has corrupted some subset I ⊂ P of them. An ideal execution for the computation of f
proceeds as follows:

Inputs: Each party Pi holds its input xi and the security parameter k. The adversary S also
receives an auxiliary input z.

Send inputs to trusted party: The honest parties send their inputs to the trusted party. S
may substitute any values it likes on behalf of the corrupted parties. We denote by x′i the
value sent to the trusted party on behalf of Pi.

Trusted party sends outputs: If any x′i is not in the correct domain, the trusted party sets
x′i = x̂i for some default value x̂i. Then, the trusted party chooses r uniformly at random
and sends fi(x

′
1, . . . , x

′
n; r) to each Pi.

Outputs: The honest parties output whatever they were sent by the trusted party, the corrupted
parties output nothing, and S outputs an arbitrary function of its view.

We let idealf,S(z)(x1, . . . , xn, k) be the random variable consisting of the output of the adversary
and the output of the honest parties following an execution in the ideal model as described above.

Execution in the real model. Here a multi-party protocol π is executed by P, and there is
no trusted party. In this case, the adversary A gets the inputs of the corrupted parties (as well
as an auxiliary input z) and sends all messages on behalf of these parties, using an arbitrary
polynomial-time strategy. The honest parties follow the instructions of π.

Let f be as above and let π be a multi-party protocol computing f . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let realπ,A(z)(x1, . . . , xn, k) be
the random variable consisting of the view of the adversary and the output of the honest parties,
following an execution of π where Pi begins holding its input xi and the security parameter k.

15

Security as emulation of an ideal execution. Having defined the ideal and real models, we
can now define security of a protocol. Loosely speaking, the definition says that a secure protocol
(in the real model) emulates the ideal model (in which a trusted party exists).

Definition 10 Let f be as above. Protocol π is said to securely compute f with complete fairness

if for every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a
non-uniform probabilistic polynomial-time adversary S in the ideal model such that

{

idealf,S(z)(~x, k)
}

~x∈({0,1}∗)n, z∈{0,1}∗, k∈N

c
≡

{

realπ,A(z)(~x, k)
}

~x∈({0,1}∗)n, z∈{0,1}∗, k∈N
.

A.3 Secure Multi-Party Computation With Designated Abort

This definition is standard for secure multi-party computation without an honest majority [5]. It
allows early abort (i.e., the adversary may receive its own outputs even though the honest parties
do not), but only if P1 is corrupted.

We again let P = {P1, . . . Pn} denote the parties, and consider an adversary S who has corrupted
a subset I ⊂ P of them. The only change from the definition in Section A.2 is with regard to the
ideal model for computing f , which is now defined as follows:

Inputs: As previously.

Send inputs to trusted party: As previously.

If any x′i is not in the correct domain, the trusted party sets x′i = x̂i for some default value x̂i.
Then, the trusted party chooses r uniformly at random and sets zi = fi(x

′
1, . . . , x

′
n; r).

Trusted party sends outputs, P1 honest: The trusted party sends zi to each Pi.

Trusted party sends outputs, P1 corrupt: The trusted party sends {zi}i:Pi∈I to S. Then S
sends either abort or continue to the trusted party. In the former case the trusted party sends
⊥ to all honest parties, and in the latter case the trusted party sends zi to each honest Pi.

Note that an adversary corrupting P1 can always abort the protocol, even if |I| < n/2.

Outputs: As previously.

We let idealabort
f,S(z)(~x, k) be the random variable consisting of the output of the adversary and the

output of the honest parties following an execution in the ideal model as described above.

Definition 11 Let f be a functionality, and let π be a protocol computing f . Protocol π is said
to securely compute f with designated abort if for every non-uniform probabilistic polynomial-time
adversary A in the real model, there exists a non-uniform probabilistic polynomial-time adversary
S in the ideal model such that

{

idealabort
f,S(z)(~x, k)

}

~x∈({0,1}∗)n, z∈{0,1}∗, k∈N

c
≡

{

realπ,A(z)(~x, k)
}

~x∈({0,1}∗)n, z∈{0,1}∗, k∈N
.

16

B Proofs

B.1 Proof of Security for Majority With a Single Corrupted Party

Claim 12 For every non-uniform, poly-time adversary A corrupting P1 and running Π in a hybrid
model with access to ideal functionalities computing ShareGen (with abort) and OR (with complete
fairness), there exists a non-uniform, poly-time adversary S corrupting P1 and running in the ideal
world with access to an ideal functionality computing maj (with complete fairness), such that

{

idealmaj,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N

s
≡

{

hybrid
ShareGen,OR
Π,A (x1, x2, x3, k)

}

xi∈{0,1},k∈N

.

Proof:
Fix some polynomial-time adversary A corrupting P1. We now describe a simulator S that also

corrupts P1 and runs A as a black box.

1. S invokes A on the input x1, the auxiliary input z, and the security parameter k.

2. S receives input x′1 ∈ {0, 1} on behalf of P1 as input to ShareGen.

3. S computes (sk, pk) ← Gen(1k), and gives to A the public key pk and values b
(0)
2|2, b

(0)
3|3, and

{

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1

}m

i=0
(along with their appropriate signatures) chosen uniformly at random.

4. If A aborts execution of ShareGen, then S sends 1 to the trusted party computing maj, outputs
whatever A outputs, and halts. Otherwise, S picks a value i∗ according to a geometric
distribution with parameter α = 1

5 .

For simplicity in what follows, we ignore the presence of signatures and leave the following
implicit from now on: (1) S always computes an appropriate signature when sending any
value to A; (2) S treats an incorrect signature as an abort; and (3) if S ever receives a valid
signature on a previously unsigned message, then S outputs fail and halts.

5. S now simulates the rounds of the protocol one-by-one: for i = 1 to m − 1, the simulator

chooses random b
(i)
2|2 and b

(i)
3|3 and sends these to A. During this step, an abort by A (on behalf

of P1) is treated as follows:

(a) If P1 aborts in round i ≤ i∗, then S chooses a random value x̂1 and sends it to the
trusted party computing maj.

(b) If P1 aborts in round i > i∗, then S submits x′1 to the trusted party computing maj.

In either case, S then outputs whatever A outputs and halts.

6. If P1 has not yet aborted, S then simulates the final round of the protocol. S sends x′1 to the

trusted party, receives bout = maj(x′1, x2, x3), and chooses b
(m)
1|2 and b

(m)
1|3 at random subject to

b
(m)
1|2 ⊕ b

(m)
1|3 ⊕ b

(m)
1|1 = bout. S then gives these values to A, outputs whatever A outputs, and

halts.

17

Due to the security of the underlying signature scheme, the probability that S outputs fail is
negligible in k. Note that the view of P1 is otherwise statistically close in both worlds. Indeed,
until round m the view of P1 is independent of the inputs of the other parties in both the real and
ideal worlds. In round m itself, P1 learns the (correct) output bout in the ideal world and learns
this value with all but negligible probability in the real world.

We therefore only have to argue that outputs of the two honest parties in the real and ideal
worlds are statistically close. Clearly this is true if P1 never aborts. As for the case when P1 aborts
at some point during the protocol, we divide our analysis into the following cases:

• If P1 aborts the execution of ShareGen in step 4, then S submits ‘1’ on behalf of P1 to the
trusted party computing maj. Thus, in the ideal world, the outputs of P2 and P3 will be
maj(1, x2, x3). In the real world, if P1 aborts computation of ShareGen, the honest parties
output OR(x2, x3). Since maj(1, x2, x3) = OR(x2, x3), their outputs are the same.

• If P1 aborts in round i of the protocol (cf. step 5), then in both the real and ideal worlds the
following holds:

– If i ≤ i∗, then P2 and P3 output maj(x̂1, x2, x3) where x̂1 is chosen uniformly at random.

– If i > i∗, then P2 and P3 output maj(x′1, x2, x3)

Since i∗ is identically distributed in both worlds, the outputs of P2 and P3 in this case are
identically distributed as well.

• If P1 aborts in round m (cf. step 6), then in the ideal world the honest parties will output
maj(x′1, x2, x3). In the real world the honest parties output maj(x′1, x2, x3) as long as i∗ ≤
m− 1, which occurs with all but negligible probability.

This completes the proof.

B.2 Completing the Proof of Claim 8

We first note that the probability S outputs fail is negligible, due to the security of the underling
signature scheme. We state the following claim:

Claim 13 If P1 and P2 both abort, then S always sends (0, 1) or (1, 0) to the trusted party.

We leave verification to the reader. We must prove that for any set of fixed inputs, the joint
distribution over the possible views of A and the output of P3 is equal in the ideal and hybrid
worlds:

(viewhyb(x1, x2, x3),outhyb(x1, x2, x3)) ≡ (viewideal(x1, x2, x3),outideal(x1, x2, x3)) (8)

We begin by noting that this is trivially true when no players ever abort. It is also easy to verify
that this is true when P1 aborts during the execution of ShareGen. From here forward, we therefore
assume that A aborts player P1 at some point after the execution of ShareGen. We consider what
happens when A aborts P2 as well, but for simplicity we will only analyze the cases where P1 is
aborted first, and when they are aborted at the same time. The analysis when A aborts only P2,
or when he aborts P1 sometime after P2 is symmetric and is not dealt with here. We will break up
the view of A into two parts: the view before P1 aborts, where a particular instance of this view is

18

denoted by ~ai, and the single message intended for P2 that A receives after P1 aborts, denoted by

b
(i−1)
1 . Letting i denote the round in which P1 aborts, and bout the value output by P3, we wish to

prove:

Pr
[

(viewhyb,outhyb) = (~ai, b
(i−1)
1 , bout)

]

= Pr
[

(viewideal,outideal) = (~ai, b
(i−1)
1 , bout)

]

(we drop explicit mention of the inputs to improve readability). Towards proving this, we first prove
the following two claims.

Claim 14 For all fixed inputs and all feasible adversarial views (~ai, b
(i−1)
1),

Pr
[

(viewhyb,outhyb) = (~ai, b
(i−1)
1 , bout)

∧

i > i∗
]

= Pr
[

(viewideal,outideal) = (~ai, b
(i−1)
1 , bout)

∧

i > i∗
]

Proof: We denote by P⊥2 the event that P2 aborts the protocol (either at the same time as

P1, or after P1 aborts, during the exchange of the shares of b
(i−1)
1). We also replace the event

(

viewhyb = (~ai, b
(i−1)
1)

∧

i > i∗
)

by Ehyb, and the event
(

viewideal = (~ai, b
(i−1)
1)

∧

i > i∗
)

by Eideal

in order to shorten notation. We have the following:

Pr
[

(viewhyb,outhyb) = (~ai, b
(i−1)
1 , bout)

∧

i > i∗
]

= Pr
[

outhyb = bout

∧

P⊥2
∧

Ehyb

]

+ Pr
[

outhyb = bout

∧

¬P⊥2
∧

Ehyb

]

= Pr
[

outhyb = bout | P
⊥
2

∧

Ehyb

]

· Pr
[

P⊥2
∧

Ehyb

]

+ Pr
[

outhyb = bout | ¬P⊥2
∧

Ehyb

]

· Pr
[

¬P⊥2
∧

Ehyb

]

and that the same is true in the ideal world. It follows from the descriptions of the protocol and
the simulator that

Pr
[

P⊥2
∧

viewhyb = (~ai, b
(i−1)
1)

∧

i > i∗
]

= Pr
[

P⊥2
∧

viewideal = (~ai, b
(i−1)
1)

∧

i > i∗
]

and similarly that

Pr
[

¬P⊥2
∧

viewhyb = (~ai, b
(i−1)
1)

∧

i > i∗
]

= Pr
[

¬P⊥2
∧

viewideal = (~ai, b
(i−1)
1)

∧

i > i∗
]

.

The above two equalities hold because the protocol is designed such that any view ~ai occurs with the

same probability in both worlds. Furthermore, given that i > i∗, it holds that b
(i−1)
1 = f(x1, x2, x3),

independent of ~ai. P2 decides whether to abort based only on these two variables, so the decision
is the same in both worlds. We therefore need only to prove that

Pr
[

outhyb = bout | P
⊥
2

∧

viewhyb = (~ai, b
(i−1)
1)

∧

i > i∗
]

= Pr
[

outideal = bout | P
⊥
2

∧

viewideal = (~ai, b
(i−1)
1)

∧

i > i∗
]

(9)

19

and that

Pr
[

outhyb = bout | ¬P⊥2
∧

viewhyb = (~ai, b
(i−1)
1)

∧

i > i∗
]

= Pr
[

outideal = bout | ¬P⊥2
∧

viewideal = (~ai, b
(i−1)
1)

∧

i > i∗
]

(10)

Both equations follow easily again from the protocol and simulator descriptions. To see Equation
9, note that in the hybrid world when both P1 and P2 abort, P3 always outputs his own input,
bout = x3. In the ideal world, recall from claim 13 that anytime P1 and P2 both abort, and
in particular in round i > i∗, S submits either (0, 1) or (1, 0) to the trusted party, resulting in
bout = x3. For Equation 10, note that in the hybrid world when P1 aborts in round i > i∗, and P2

does not, P3 outputs bout = f(x1, x2, x3). In the ideal world, this is also true, as S submits (x1, x2)
to the trusted party (either in step 8a or in step 9).

We proceed now to the more difficult claim, in the case when i ≤ i∗:

Claim 15 For all fixed inputs, for all outputs bout, and for all feasible adversarial views (~ai, b
(i−1)
1),

Pr
[

(viewhyb,outhyb) = (~ai, b
(i−1)
1 , bout)

∧

i ≤ i∗
]

= Pr
[

(viewideal,outideal) = (~ai, b
(i−1)
1 , bout)

∧

i ≤ i∗
]

Proof: We denote by P⊥2 , as before, the event that P2 aborts the protocol. We now replace the

event
(

viewhyb = (~ai, b
(i−1)
1)

∧

i ≤ i∗
)

by Ehyb, and the event
(

viewideal = (~ai, b
(i−1)
1)

∧

i ≤ i∗
)

by

Eideal to shorten notation. We again have that

Pr
[

(viewhyb,outhyb) = (~ai, b
(i−1)
1 , bout)

∧

i ≤ i∗
]

= Pr
[

outhyb = bout

∧

P⊥2
∧

Ehyb

]

+ Pr
[

outhyb = bout

∧

¬P⊥2
∧

Ehyb

]

= Pr
[

outhyb = bout | P
⊥
2

∧

Ehyb

]

· Pr
[

P⊥2
∧

Ehyb

]

+ Pr
[

outhyb = bout | ¬P⊥2
∧

Ehyb

]

· Pr
[

¬P⊥2
∧

Ehyb

]

and again, the same probabilistic argument holds in the ideal world. Rewriting the above, therefore,
we equivalently must prove that

Pr
[

outhyb = bout | P
⊥
2

∧

Ehyb

]

· Pr
[

P⊥2 | Ehyb

]

· Pr [Ehyb]

+ Pr
[

outhyb = bout | ¬P⊥2
∧

Ehyb

]

· Pr
[

¬P⊥2 | Ehyb

]

· Pr [Ehyb]

= Pr
[

outideal = bout | P
⊥
2

∧

Eideal

]

· Pr
[

P⊥2 | Eideal

]

· Pr [Eideal]

+ Pr
[

outideal = bout | ¬P⊥2
∧

Eideal

]

· Pr
[

¬P⊥2 | Eideal

]

· Pr [Eideal]

Note that trivially have

Pr
[

¬P⊥2 | Ehyb

]

= Pr
[

¬P⊥2 | Eideal

]

20

and that

Pr
[

P⊥2 | Ehyb

]

= Pr
[

P⊥2 | Eideal

]

Furthermore, by the definition of the protocol, if P2 aborts, P3 outputs bout = x3 (just as in the
previous claim). It is easy to see that this is true in the ideal world as well, so we have

Pr
[

outhyb = bout | P
⊥
2

∧

Ehyb

]

= Pr
[

outideal = bout | P
⊥
2

∧

Eideal

]

When P2 does not abort, in both worlds bout = b
(i−1)
1 . So as long as we can prove that

Pr [Ehyb] = Pr [Eideal] (11)

it will then follow that

Pr
[

outideal = bout | ¬P⊥2
∧

Eideal

]

= Pr
[

outhyb = bout | ¬P⊥2
∧

Ehyb

]

which will complete the proof of our claim. Before proceeding, we make one final simplification of
Equation 11. Recall that any view ~ai of A (after the completion of ShareGen) consists simply of

the values b
(1)
3 , . . . , b

(i)
3 , b

(i−1)
1 . Letting viewi−1

hyb (respectively viewi−1
ideal) denote the values received

by A in the first i− 1 rounds of the protocol in the hybrid (resp. ideal) world, and viewi
hyb (resp.

viewi
ideal) denote the round i message, along with the following final message received by A after

it aborts P1 in round i, we note that:

Pr [Ehyb]

= Pr
[

viewi
hyb = (b

(i)
3 , b

(i−1)
1) | viewi−1

hyb = ~ai−1

∧

i ≤ i∗
]

· Pr
[

viewi−1
hyb = ~ai−1

∧

i ≤ i∗
]

and, equivalently in the ideal world:

Pr [Eideal]

= Pr
[

viewi
ideal = (b

(i)
3 , b

(i−1)
1) | viewi−1

ideal = ~ai−1

∧

i ≤ i∗
]

· Pr
[

viewi−1
ideal = ~ai−1

∧

i ≤ i∗
]

It is trivially true from the protocol and simulator descriptions that

Pr
[

viewi−1
hyb = ~ai−1

∧

i ≤ i∗
]

= Pr
[

viewi−1
ideal = ~ai−1

∧

i ≤ i∗
]

Furthermore, conditioned i ≤ i∗, we know that viewi
hyb (resp., viewi

ideal) is independent of viewi−1
hyb

(resp., viewi−1
ideal). Therefore, to prove Equation 11, and thus Theorem 7, it suffices to prove that

Pr
[

viewi
hyb = (b

(i)
3 , b

(i−1)
1) | i ≤ i∗

]

= Pr
[

viewi
ideal = (b

(i)
3 , b

(i−1)
1) | i ≤ i∗

]

We proceed now to do this by looking at every possible set of inputs (x1, x2, x3).

If (x1 = x2 = x3) :

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

= 1

21

In both worlds, b
(i)
3 is always x1. When P1 aborts in the ideal world, in accordance with step 7a,

S chooses x̂1 = x1 = x2 with probability 3
8 and sends b

(i−1)
1 = x1 to A. If S chooses x̂1 6= x1, then

it submits (x̂1, x2) for x̂1 6= x2 to the trusted party, and bout = x3 = x1, so again b
(i−1)
1 = x1. The

analysis is even simpler in the hybrid world, as both values are always x1.

If (x1 = x2 6= x3) :

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

=

(

(1− α) ·
3

8

)

+ α =
1

2

Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=

(

(1− α) ·
1

2

)

+

(

α ·
1

2

)

=
1

2

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= (1− α) ·
5

8
=

1

2

Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=

(

(1− α) ·
1

2

)

+

(

α ·
1

2

)

=
1

2

If (x3 = x1 6= x2) :

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

=

(

1

2
(1− α) ·

1

4

)

+ α =
3

10

Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=

(

1

2
(1− α) ·

1

2

)

+

(

α ·
1

2

)

=
3

10

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

=
1

2
(1− α) ·

3

4
=

3

10

Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=

(

1

2
(1− α) ·

1

2

)

+

(

α ·
1

2

)

=
3

10

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=
1

2
(1− α) ·

1

2
=

1

5

If (x1 6= x2 = x3) :

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

= 0

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=
1

2
(1− α) =

2

5

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

= 0

Pr
[

(b
(i)
3 , b

(i−1)
1)ideal = (x1, x1)

]

= Pr
[

(b
(i)
3 , b

(i−1)
1)hyb = (x1, x1)

]

=
1

2
(1− α) + α =

3

5

The key observation with this last set of inputs is that when x2 = x3, and i < i∗, regardless of

what value S chooses for x̂1, b
(i−1)
1 = x2 = x3, just as in the hybrid world.

22

B.3 Completing the Proof of Theorem 9

We first demonstrate that the view of A in the hybrid world is computationally indistinguishable
from its view in the ideal world. In step 3, the commitments by the simulator are all commitments
to 0 values rather than to the actual inputs of the honest players. However, it is easy to see that if A
could distinguish between the two worlds in this step, he could violate the security of the underlying
commitment scheme. We now show that, except for Step 3 of the simulation, the ideal world view
generated by the simulator and the hybrid world view are identically distributed. Recall that at
the start of Step 5 of the simulation, we let P = I ∪ H denote the set of remaining players. We
first note that when the outputs of CommittedORP(ri, xi,~c

i)i:Pi∈I∪H are disagreement lists (rather
than the OR of the remaining inputs), then in Step 5, S is capable both of correctly detecting this,
and of computing the disagreement lists, independently of the honest input values. In this step,
then, the view of A will be identical to his view in the hybrid world. If all remaining players are
consistent, in which case the output of CommittedORP is the binary OR of the remaining inputs,
there are two possibilities. If the input xi for some Pi ∈ I is 1, then the adversarial view created
by S in Step 6b is exactly as in the hybrid world; the output of CommittedORI∪H in the hybrid
world is always 1 in this case, regardless of the honest players’ inputs. When all input values xi

for Pi ∈ I are 0, then the hybrid world output of CommittedORI∪H will depend on the inputs of
the honest players, and S must query the trusted party to determine this value. Note, however,
that in this case the output of CommittedORI∪H in all subsequent calls in the hybrid world will
remain unchanged, regardless of which players are later excluded, and thus the view generated by
S in Step 6a is correct every time.

We next consider the joint distribution of the honest players’ outputs with the view of A. We
claim that the output of the honest players (in both worlds) is exactly b =

∨

Pi
xi for Pi that are

never eliminated, where for honest parties, these are simply their original input values, and for
malicious parties these are the values they first committed to (either in Step 3 in the ideal world,
or in Step 2 in the hybrid world). In the hybrid world, this claim follows trivially from the protocol
description. In the ideal world, there are two possible submissions that S can make to the trusted
party: S can submit all 0’s or all 1’s. S submits 0’s to the trusted party when all (remaining)
inputs xi for Pi ∈ I are 0 (in Step 6a), or when I = ∅ (in Step 4). In this case the output of the
honest parties is

b =
∨

Pi∈I∪H

xi =
∨

Pi∈I′∪H

xi

for any I ′ ⊆ I. Therefore, regardless of which players from I are eliminated in the future, the
output of the honest parties is equal to the OR of the inputs of the non-eliminated players, as
claimed. The only time S submits 1’s to the trusted party is in Step 6b, after it has verified that no
more parties will abort, and that (at least) one of the remaining inputs is a 1. Here too, then, the
output of the honest players is consistent with the inputs of the non-eliminated players. Finally,
notice that the set of players still participating at the end of the protocol depends only on the
view of A. Since we have already argued that the distributions on A’s views in the two worlds are
computationally indistinguishable, it follows that the distribution on possible sets of non-eliminated
players, I ∪ H are computationally indistinguishable as well. This completes the proof sketch.

23

