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Abstract. In this paper, we re-visit the problem of unconditionally se-
cure multiparty set intersection in information theoretic model. Li et.al
[24] have proposed a protocol for n-party set intersection problem, which
provides unconditional security when t < n

3
players are corrupted by

an active adversary having unbounded computing power. Moreover, they
have claimed that their protocol takes six rounds of communication and
incurs a communication complexity of O(n4m2), where each player has
a set of size m. However, we show that the round complexity and com-
munication complexity of the protocol in [24] is much more than what is
claimed in [24]. We then propose a novel unconditionally secure protocol
for multiparty set intersection problem with n > 3t players, which signif-
icantly improves the ”actual” round and communication complexity (as
shown in this paper) of the protocol given in [24]. To design our protocol,
we use several tools which are of independent interest.

Keywords: Multiparty Computation, Information Theoretic Security, Er-
ror Probability.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation
(MPC) allows a set of n players to securely compute an agreed function, even if
up to t players are under the control of a centralized adversary. More specif-
ically, assume that the desired functionality can be specified by a function
f : ({0, 1}∗)n → ({0, 1}∗)n and player Pi has input xi ∈ {0, 1}∗. At the end
of the computation of f , Pi gets yi ∈ {0, 1}∗, where (y1, . . . , yn) = f(x1, . . . , xn).
The function f has to be computed securely using a protocol where at the end of
the protocol all players (honest) receive correct outputs and the messages seen
by the adversary during the protocol contain no additional information about
the inputs and outputs of the honest players, other than what can be computed
from the inputs and outputs of the corrupted players. In the information theo-
retic model, the adversary who actively controls at most t players, is adaptive,
? Financial Support from Microsoft Research India Acknowledged

?? Financial Support from Infosys Technology India Acknowledged.
? ? ? Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.



rushing [12] and has unbounded computing power. The function to be computed
is represented as an arithmetic circuit over a finite field F consisting of five type
of gates, namely addition, multiplication, random, input and output. An MPC
protocol securely evaluates the circuit gate-by-gate [6, 27, 2, 27, 19, 21, 4].

The MPC problem was first defined and solved by Yao [29] in his seminal
work in two-party scenario. The first generic solutions presented in [18, 10, 16]
were based on cryptographic intractability assumptions. Later, the research on
MPC in information theoretic model was initiated by Ben-Or et. al. [6] and
Chaum et. al. [9] in two different independent work and carried forward by the
works of [27, 2]. Information theoretic security can be achieved by MPC proto-
cols in two flavors –(a) Perfect: The outcome of the protocol is perfect in the
sense that no probability of error is involved in the computation of the function
(b) Unconditional: The outcome of the protocol is correct except with negligible
error probability. While Perfect MPC can be achieved iff t < n/3 [6], uncon-
ditional MPC (UMPC) requires only honest majority i.e t < n/2 [27]. In the
recent years, lot of research concentrated on designing communication efficient
protocols for both perfect and unconditional MPC. Perfect MPC protocols with
optimal resilience i.e t < n/3 are presented in [19, 21, 4]. UMPC protocols with
non-optimal resilience i.e t < n/3 are presented in [20, 13]. Finally, UMPC pro-
tocols with optimal resilience i.e t < n/2 are presented in [12, 3].

Secure Multiparty Set Intersection (MPSI): Secure multiparty set inter-
section (MPSI) problem is a specific but interesting instance of general secure
multiparty computation (MPC) [29]. The MPSI problem can be stated as follows:
A set of n players, each with a private input set want to compute the intersec-
tion of these sets, without leaking any extra information to the corrupted players,
other than what is implied by the input of the corrupted players and the final
output (which is the intersection of all the sets). So for the MPSI problem, the
inputs are the secret sets of the players and the output is the intersection of
these sets. The goal of a secure MPSI protocol is to achieve the above mentioned
task correctly even in the presence of a centralized adversary who can control
at most t players out of the n players. Secure MPSI problem has huge practi-
cal applications such as online recommendation services, online dating services,
medical databases, data mining etc. [15].

The set intersection problem was first studied in cryptographic model (where
the adversary has bounded computing power) in [15, 23] where the protocols pre-
sented are based on homomorphic public key encryption. By representing the
sets as polynomials, the set intersection problem is converted into the task of
computing the common roots of the polynomials. The same approach was car-
ried over in information theoretic model (where the adversary has unbounded
computing power) by the authors of [24], where the authors have claimed to
present the first unconditionally secure MPSI protocol with n ≥ 3t + 1.

Our Motivation: Two important parameters of generic multiparty computa-
tion protocols are communication complexity and round complexity. These have
been the subject of intense study over the past two decades. Establishing bounds



on communication and round complexity of secure multiparty computation pro-
tocols are of fundamental theoretical interest. Moreover, reducing the commu-
nication and round complexity of multiparty computation protocols is crucial,
if we ever hope to use these protocols in practice. But looking at the most
recent advancements in the arena of MPC, we find that round complexity of
MPC protocols has been increased to an unacceptable level in order to reduce
communication complexity. For example, the perfect MPC protocol of [4] cele-
brated for its best known communication complexity, requires round complexity
of O(n2 + D) where D denotes the multiplicative depth of the circuit. On the
other hand, the perfect MPC protocols achieving best known round complexities
such as O(nD) [6] and O(n+D) [1] are far from being truly communication effi-
cient. If the practical applicability of multiparty protocols are of primary focus,
then it is always desirable not to sacrifice one parameter for the other. So it is
very essential to design protocol which balances both the parameters appropri-
ately. Motivated by this, in this work we design secure multiparty computation
protocol for the set intersection problem which achieves efficiency in both the
parameters simultaneously.

Note that we can solve MPSI problem by using the protocols for generic
MPC. However, since a generic solution does not exploit the nuances and the
special properties of the problem, it is not efficient in general. Therefore, it is
very interesting and useful to solve some specific practically-on-demand prob-
lems through direct approach. Moreover, it is not known how to modify the
existing general MPC protocols to solve the MPSI problem. Also as no article
has considered applying general MPC protocols to the MPSI problem before, we
could not estimate the total round complexity and communication complexity
when general MPC protocols are applied to set intersection problem. However,
we provide a partial comparison in section 2.2.

Our Model: We denote the set of n players (parties) involved in the secure
computation by P = {P1, P2, . . . , Pn} where player Pi possess set Si. We as-
sume that each set Si for 1 ≤ i ≤ n is of size m. The protocols presented in this
paper can easily be extended to work for the case when players have sets with
different size. We assume that all the n players are connected with each other by
pairwise secure channels. Moreover, the system is synchronous and the protocols
proceed in rounds, where in each round a player performs some computations,
sends (broadcasts) values to its neighbors, receives values from neighbors and
may again perform some more computation, in that order.

We model the distrust in the system by a centralized adversary At, who has
unbounded computing power and can actively control at most t players during
the protocol execution, where t < n

3 . To actively control a player means to take
full control over it and making it behave arbitrarily. The adversary is adaptive
[12] and hence can corrupt players dynamically during the protocol execution.
Moreover, the choice of the adversary to corrupt a player may depend upon
the data seen so far from the corrupted players. Moreover, the adversary is a
rushing adversary [17], who in a particular round, first collects all the messages
addressed to the corrupted players and exploits this information to decide on



what the corrupted players send during the same round. If a player comes under
the control of At, then it remains so throughout the protocol. A player which is
not under the control of At is called honest or uncorrupted. Our protocol provides
unconditional security i.e. information theoretic security with a negligible error
probability of 2−O(κ) in correctness for some security parameter κ. To bound the
error probability, all our computations are done over a finite field F = GF (2κ).
Thus each field element can be represented by κ bits. Notice that, we also assume
that n is polynomial in κ. For the ease of exposition, we always assume that the
messages sent through the channels are from the specified domain. Thus if a
player receives a message which is not from the specified domain (or no message
at all), he replaces it with some pre-defined default message from the specified
domain.

Broadcast: Broadcast allows a sender to distribute a value x, such that all the
players identically receive the same value x (even if the sender is faulty). If a
physical broadcast channel is available in the system, then achieving broadcast is
very trivial. In such a case, broadcasting ` bits requires single round and exactly
` bits of communication. But if the broadcast channel is not physically available
in the system, then broadcasting an ` bit(s) message can be simulated perfectly
(without any error probability) by executing a protocol which takes O(t) rounds
and communicates O(n2`) bits, where n ≥ 3t + 1 [7, 8].

2 Existing Solution for Unconditionally Secure MPSI
Problem and Our Contribution

The MPSI problem was first studied in cryptographic model in [15, 23] where
the protocols presented are based on homomorphic public key encryption. By
representing the sets as polynomials, the set intersection problem is converted
into the task of computing the common roots of the polynomials. The same ap-
proach was carried over by the authors in [24], where the authors have presented
the first unconditionally secure MPC protocol for set intersection problem with
n ≥ 3t + 1. We first recall the strategy to convert the problem of multiparty set
intersection into the task of computing the common roots of the polynomials.

2.1 Polynomial Representation of Set and Reducing the MPSI
problem to Finding Common Roots of Polynomials

Let S = {s1, s2, . . . , sm} be a set of size m where ∀i, si ∈ F. Now set S can be
represented by a polynomial f(x) of degree m where f(x) =

∏m
i=1(x − si) =

a0 + a1x + . . . + amxm. Thus the elements of set S are the m roots of the m-
degree polynomial f(x). Now it is obvious that if an element s is a root of f(x),
then s is a root of r(x)f(x) too, where r(x) is a random polynomial of degree
m over F. Now for multiparty set intersection, player Pi represents his set Si by
a m-degree polynomial f (Pi)(x) and supplies f (Pi)(x) (its m + 1 coefficients) as
his input. Then all the players jointly and securely compute the function

F (x) = (r(1)(x)f (P1)(x) + r(2)(x)f (P2)(x) + . . . + r(n)(x)f (Pn)(x)) (1)



where r(1)(x), . . . r(n)(x) are n random polynomials of degree m over F, which
are jointly generated by the n players. Note that F (x) preserves all the common
roots of f (P1)(x), . . . , f (Pn)(x). Every element s ∈ (S1 ∩ S2 ∩ . . . Sn) is a root of
F (x), i.e. F (s) = 0. Hence after computing F (x) in a secure manner, it can be
reconstructed towards every player who locally checks if F (s) = 0 for every s in
his private set. All the elements at which the evaluation of F (x) is zero forms
the intersection set (S1 ∩ S2 ∩ . . . Sn). In [23], it has been proved formally that
F (x) does not reveal any extra information, other than what is deduced from
intersection set (S1 ∩ S2 ∩ . . . Sn).

2.2 Existing Unconditionally Secure MPSI Protocol: Its
Shortcomings and Analysis

The authors of [24] have used the same approach of [23] and converted the
multiparty set intersection problem to finding common roots of polynomials. The
authors claimed that their protocol takes 6 rounds and communicates O(n4m2)
elements from F (see sec 4.2 of [24]). 1 However, we now show that the round
complexity and communication complexity of the protocol of [24] is much more
that what is claimed in [24].

In order to securely compute function F (x) given in Equation 1, the protocol
of [24] is divided into three phases, namely Input, Computation and Output
Phase. We briefly mention the steps performed in each phase, along with the
corresponding round complexity and communication complexity as claimed in
[24]. In addition, we reason why the communication and round complexity of
each phase, as claimed in [24] is not correct and finally try to provide a correct
complexity analysis for each of the phases.

1. Input Phase: Here each of the n players represent their secret set as a poly-
nomial and t-shares2 the coefficients of the polynomials among the n players.
In order to do the sharing, the players use a two dimensional verifiable secret
sharing. A two dimensional verifiable secret sharing (VSS) [17, 14, 22], which is
an extension of Shamir secret sharing [28], ensures that each player (including
a corrupted player) ”consistently” and correctly t-shares the coefficients of his
polynomial with everybody. Now, the authors in [24] claimed that this takes two
rounds, where in the first round, each player does the sharing and in the second
round verification is done by all the players to ensure whether everybody has
received correct and consistent shares (see sec. 4.2 in [24]). Moreover, they have
not provided the communication complexity of this phase. Now it is well known
in the literature that the minimum number of rounds taken by any VSS protocol
with n ≥ 3t + 1 players is at least three [17, 14, 22]. Moreover, the current best
three round VSS protocol with n = 3t + 1 requires a private communication of
O(n3) and broadcast of O(n3) field elements[14, 22]. Now in the Input Phase

1 In [24], the authors have used k to denote the size of each set.
2 We say that an element c ∈ F is t-shared among the n players if there exists a

polynomial p(x) over F of degree t such p(0) = s and each player Pi has the share
p(i).



of [24], each player executes (m + 1) VSS’s to share the coefficients of his secret
polynomial. In addition, each player also executes n(m + 1) VSS’s to share the
coefficients of n random polynomials of degree m each. So the total number of
VSS done in Input Phase is O(n2m). Hence, the Input Phase will take at
least three rounds with a communication complexity of O(n5m) and broadcast
of O(n5m) field elements. Moreover, if the broadcast channel is not available,
then the Input Phase will take Ω(t) rounds with a communication overhead
of O(n7m) field elements.

2. Computation Phase: Given that the coefficients of f (P1)(x), f (P2)(x), . . . ,
f (Pn)(x), r(1)(x), r(2)(x), . . . , r(n)(x) are correctly t-shared, in the computation
phase, the players jointly try to compute F (x) = r(1)(x)f (P1)(x)+r(2)(x)f (P2)(x)+
. . . + r(n)(x)f (Pn)(x), such that the coefficients of F (x) are t-shared. In order to
do so, the players executes a sequence of steps. But we recall only the first two
steps, which are crucial in the communication and round complexity analysis
of the Computation Phase. During step 1, the players locally multiply the
shares of the coefficients of r(i)(x) and f (Pi)(x), for 1 ≤ i ≤ n, which results
in 2t-sharing3 of the coefficients of f (P1)(x)r(1)(x), . . . , f (Pn)(x)r(n)(x). During
step 2, each player calls a re-sharing protocol and converts the 2t-shares of the
coefficients of f (P1)(x)r(1)(x), . . . , f (Pn)(x)r(n)(x) into t-sharing of these coeffi-
cients. The re-sharing protocol allows a party to produce t-sharing of an element
given its t′-sharing, where t′ > t. In [24], the authors have called a re-sharing
protocol, without giving the actual details and claimed that re-sharing and other
additionally required verifications will take only three rounds with a communi-
cation overhead of O(n4m2) field elements (see sec. 4.2 of [24]). The authors
in [24] have given the reference of [19] for the details of re-sharing protocol.
However, the protocol given in [19] is a protocol for general MPC, which uses
”circuit based approach” to securely evaluate a function. Specifically, the MPC
protocol of [19] assumes that the function (general) to be securely computed is
represented as an arithmetic circuit over F. The protocol divides the circuit as
a sequence of segments, where each segment consists of addition and multipli-
cation gate(s). The protocol evaluates one segment at a time, where either the
segment is evaluated correctly or it may fail. In the case of failure, the protocol
outputs a pair (Pi, Pj), where at least one of Pi or Pj is corrupted. In the case
of failure, the segment is re-executed by neglecting Pi, Pj . Now the re-sharing
protocol given in [19] is executed after each multiplication in a particular seg-
ment. In the worst case, a particular segment may fail t times (due to t corrupted
players), in which case the re-sharing will be done at least t times (every seg-
ment contains at least one multiplication gate). In fact, the MPC protocol of
[19] takes Ω(t) rounds in the presence of broadcast channel in the system, where
as in the absence of broadcast channel it will take Ω(t2) rounds. The authors
in [24] have not mentioned clearly what will be the outcome of their protocol

3 We say that an element c ∈ F is 2t-shared among the n players if there exists a
polynomial p(x) over F of degree 2t such p(0) = s and each player Pi has the share
p(i).



if the re-sharing protocol (whose details they have not given) fails during the
computation phase.

To summarize, we can say that the details of the protocol given in [24] are
incomplete. In addition, it seems that the round complexity and communication
complexity of the protocol as claimed in [24] are not consistent with the given
protocol. Moreover, it is not mentioned whether they have assumed a broadcast
channel in the system. The protocol in [24] makes use of two dimensional VSS
and sub-protocols for multiplication of two shared secrets as black-boxes. If no
broadcast channel is available in the system, then even by using the current
best known protocols for VSS and multiplication of shared secrets, any protocol
needs Ω(t) rounds to securely evaluate the function given in Eqn (1). On the
other hand, even if a broadcast channel is available in the system, then also by
using the current best protocols for VSS and multiplication of shared secrets,
any protocol requires more than six rounds and communication overhead of more
than O(n4m2) field elements to evaluate the function given in Eqn (1).

Roughly, computation of the function given in Eqn. 1 requires CI = n(m+1)
input gates (every player Pi inputs (m+1) coefficients of his polynomial f (Pi)(x)),
CR = n(m + 1) random gates (n polynomials r(1)(x), . . . , r(n)(x) have in total
n(m+1) random coefficients), CM = n(m+1)2 multiplication gates (computing
r(1)(x)f (Pi)(x) requires (m + 1)2 co-efficient multiplications) and CO = 2m + 1
output gates (the 2m + 1 coefficients of F (x) should be outputted). The com-
munication complexity of any multiparty computation protocol computing an
agreed function f is the function of CI , CR, CM and CO where the arithmetic
circuit realizing f requires CI , CR, CM and CO input, random, multiplication
and output gates respectively. Now assuming that the circuit realizing set inter-
section problem requires the above mentioned number of gates, we give a rough
estimation of the round complexity and communication complexity of general
MPC protocols proposed in [5, 1, 19, 13, 4] to solve set intersection. Assuming the
absence of a broadcast channel in the system4, the communication complexity
and round complexity of the current best known MPC protocols to implement
the function given in Eqn. (1) is given in the following Table.

Reference of the protocol used Communication complexity in bits Round Complexity

[5] O(n7m2κ) O(n)
[1] O(n7m2κ) O(n)
[19] O((n5m + n4m2)κ) O(n2)
[13] O((n2m2 + n4)κ) O(n2)
[4] O((n2m2 + n3)κ) O(n2)

2.3 Our Contribution

We now propose a new protocol for unconditional MPSI problem with n = 3t+1
and with complete complexity analysis. Our protocol communicates O((m2n3 +
n4)κ) bits and broadcasts O((m2n3 + n4)κ) bits and requires constant number
of rounds provided that broadcast channel is available. So in the absence of
4 We assume that a broadcast of ` bit message can be simulated in O(t) rounds with

a communication overhead of O(n2`) [7, 8].



broadcast channel, our protocol requires communication of O((m2n5+n6)κ) bits
and takesO(t) rounds. Comparing our results with the first two rows of the Table
(provided above), we find that our protocol incurs much lesser communication
complexity than the protocols of [5, 1], while keeping round complexity same.
But the protocols of [19, 13, 4] provides better communication complexity than
ours at the cost of increased round complexity. Our proposed protocol achieves
its task by using some new techniques (which are presented first time in this
paper) and some existing techniques.

3 Sub-Protocols Used in Our Protocol

In this section, we present a number of sub-protocols each solving a specific task.
Some of the sub-protocols are based on few existing techniques while some are
proposed by us for the first time. For convenience, we analyze the round complex-
ity and communication complexity of the sub-protocols assuming the existence
of physical broadcast channel in the system. Finally, the round and communica-
tion complexity of our multi-party set intersection protocol is evaluated in (a)
the presence of physical broadcast and (b) the absence of physical broadcast.
Recall that in the absence of broadcast channel, broadcast is simulated using a
protocol.

3.1 Information Checking

Information Checking (IC) and IC Signatures [12, 27]: IC is an informa-
tion theoretically secure method for authenticating data and is used to generate
IC signatures. The IC signatures can be used as semi ”digital signatures”. When
a player INT ∈ P receives an IC signature from a dealer D ∈ P on some secret
value(s) S, then INT can later produce the signature and have the players in P
verify that it is in fact a valid signature of D on S. An IC scheme consists of a
sequence of three protocols:

1. Distr(D, INT,P, S) is initiated by the dealer D, who hands secret S =
[S(1) . . . S(`)] ∈ F`, where ` ≥ 1 to intermediary INT . In addition, D hands
some authentication information to INT and verification information
to the individual players in P, also called as receivers.

2. AuthVal(D, INT,P, S) is initiated by INT to ensure that in protocol Re-
vealVal, secret S held by INT will be accepted by all the (honest) players
(receivers) in P. .

3. RevealVal (D, INT,P, S) is carried out by INT and the receivers in P,
where INT produces S, along with authentication information and the
individual receivers in P produce verification information. Depending
upon the values produced by INT and the receivers, either S is accepted or
rejected by all the players/receivers.

The authentication information, along with S, which is held by INT at the
end of AuthVal is called D’s IC signature on S, obtained by INT . The IC
signature must satisfy the following properties:



1. If D and INT are uncorrupted, then S will be accepted in RevealVal.
2. If INT is uncorrupted, then at the end of AuthVal, INT knows an S,

which will be accepted in RevealVal, except with probability 2−O(κ).
3. If D is uncorrupted, then during RevealVal, with probability at least 1 −

2−O(κ), every S′ 6= S produced by a corrupted INT will be rejected.
4. If D and INT are uncorrupted, then at the end of AuthVal, S is information

theoretically secure from At.

We now present an IC protocol, called EfficientIC, which allows D to sign on an
` length secret S ∈ F` simultaneously, with ` ≥ 1, by communicating O((`+n)κ)
bits and broadcastingO((`+n)κ) bits, where n = 3t+1. Let S = (s(1), . . . , s(`)) ∈
F`. The idea of this protocol is taken from [26]. The protocol EfficientIC is given
in Table 1. In the protocol EfficientDistr takes one round, EfficientAuthVal
takes two rounds while EfficientRevealVal takes two rounds.

EfficientIC(D, INT,P, `, s(1), . . . , s(`))

EfficientDistr(D, INT,P, `, s(1), . . . , s(`)): Round 1: D selects a random `+ t− 1 degree polyno-

mial F (x) over F, whose lower order ` coefficients are s(1), . . . , s(`). In addition, D selects another
random ` + t− 1 degree polynomial R(x), over F, which is independent of F (x). D selects n distinct
random elements α1, α2, . . . , αn from F such that each αi ∈ F−{0, 1, . . . , n− 1}. D privately gives
F (x) and R(x) to INT . To receiver Pi ∈ P, D privately gives αi, vi and ri, where vi = F (αi) and
ri = R(αi). The polynomial R(x) is called authentication information, while for 1 ≤ i ≤ n, the
values αi, vi and ri are called verification information.

EfficientAuthVal(D, INT,P, `, s(1), . . . , s(`)): Round 2: INT chooses a random d ∈ F \ {0} and

broadcasts d, B(x) = dF (x) + R(x).

Round 3: For 1 ≤ j ≤ n, D checks dvj + rj
?
= B(αj). If D finds any inconsistency, he

broadcasts F (x). Parallely, receiver Pi broadcasts ”Accept” or ”Reject”, depending upon whether
dvi + ri = B(αi) or not.

Local Computation (by each player): if F (x) is broadcasted in Round 3 then accept the lower

order ` coefficients of F (x) as D’s secret and terminate. else construct an n length bit vector V Sh,

where the jth, 1 ≤ j ≤ n bit is 1(0), if Pj ∈ P has broadcasted ”Accept” (”Reject”) during Round

3. The vector V Sh is public, as it is constructed using broadcasted information. If V Sh does not
contain n− t 1’s, then D fails to give any signature to INT and IC protocol terminates here.

If F (x) is not broadcasted during Round 3, then (F (x), R(x)) is called D’s IC signature on

S = (s(1), . . . , s(`)) given to INT , which is denoted by ICSig
(s(1),...,s(`))

(D, INT ).

EfficientRevealVal(D, INT,P, `, s(1), . . . , s(`)): (a) Round 1: INT broadcasts F (x), R(x); (b)

Round 2: Pi broadcasts αi, vi and ri.

Local Computation (by each player): For the polynomial F (x) broadcasted by INT , construct

an n length vector V Rec
F (x) whose jth bit contains 1 if vj = F (αj), else 0. Similarly, construct the

vector V Rec
R(x) corresponding to R(x). Finally compute V Rec

F R = V Rec
F (x) ⊗ V Rec

R(x), where ⊗ denotes bit

wise AND. Since broadcasted information is public, each player (honest) will compute the same

vectors V Rec
F (x) and V Rec

R(x) and hence V Rec
F R . If V Rec

F R and V Sh matches at least at t + 1 locations

(irrespective of bit value at these locations), then accept the lower order ` coefficients of F (x)

as S = (s(1), . . . , s(`)). In this case, we say that D’s signature on S is correct. Else reject F (x)
broadcasted by INT and we say that INT has failed to produce D’s signature.

Table 1. An IC Protocol to Sign ` Secrets where n ≥ 3t + 1



Lemma 1. Protocol EfficientIC correctly generates IC signature on ` field el-
ements (each of size κ bits) at once by communicating O((` + n)κ) bits and
broadcasting O((` + n)κ) bits. The protocol satisfies the properties of IC signa-
ture with an error probability of at most 2−O(κ).

Proof: The proof is similar to the proof of the IC protocol given in [26] and
hence is omitted. 2

When we say that D hands over ICSig(s(1),...,s(`))(D, INT ) to INT , we mean
EfficientDistr and EfficientAuthVal are executed in the background. Simi-
larly, INT reveals ICSig(s(1),...,s(`))(D, INT ) can be interpreted as INT along
with other players invoking EfficientRevealVal.

3.2 Generating ` Length Random Vector

We now present a protocol called RandomVector(P, `) (given in Table 2)
which allows the players in P to jointly generate ` length random vector (r(1), . . . , r(`)) ∈
F`, where each r(i) is a random element in F. The protocol uses the ideas from
[13]. Protocol RandomVector uses Vandermonde Matrix and its capability to
extract randomness. Protocol RandomVector also uses the four round perfect
VSS (verifiable secret sharing) protocol of [17] (see Fig 2 of [17]) as black box.
The perfect VSS (see the definition of VSS in Section 2.1 of [17] with n ≥ 3t + 1
players consists of two phases, namely Sharing Phase and Reconstruction
Phase. Sharing Phase takes four rounds and allows a dealer D(which can be
any player from the set of n players) to verifiably share a secret s ∈ F by com-
municating O(n2 log |F|) bits and broadcasting O(n2 log |F|) bits where |F| ≥ n.
Reconstruction Phase takes single round and allows all the (honest) players
to reconstruct the secret s (shared by dealer D in Sharing Phase) by broadcast-
ing O(n log |F|) bits, where |F| ≥ n. Notice that in this paper |F| = GF (2κ) ≥ n.
The VSS protocol has an important property that once D (possibly corrupted)
shares a secret s during Sharing Phase, then D is committed s. Later, in the
Reconstruction Phase, irrespective of the behavior of the corrupted players,
the same s will be reconstructed. Thus a bad D will not be able to change his
commitment from s to any other value during Reconstruction Phase.

As mentioned above, protocol RandomVector uses the properties of Van-
dermonde matrix to generate the random vector. We now briefly mention how
this can be done. The current description is from [13]

Vandermonde Matrix and Randomness Extraction [13]: We express a
matrix M ∈ F (r,c) with r rows and c columns as M = {mi,j}j=1,...,c

i=1,...,r . We use MT

to denote the transpose of M . For distinct elements β1, . . . , βr from F, we use
V (r,c) to denote the Vandermonde Matrix V (r,c) = {βj

i }j=0,...,c−1
i=1...,r . Now we can

use V (r,c) for randomness extraction. Let U = V (r,c)T

be the transpose of V (r,c)

with r > c. Now assume that (x1, . . . , xr) is generated by picking up c elements
from F uniformly at random and then picking the remaining r− c elements from
F with an arbitrary distribution independent of the first c elements. Now we



compute (y1, . . . , yc) = U(x1, . . . , xr). (y1, . . . , yc) is an uniformly random vector
of length c extracted from (x1, . . . , xr) [13]. This principle is used in protocol
RandomVector.

(r(1), . . . , r(`)) = RandomVector(P, `)

1. Every player Pi ∈ P selects L = d `
2t+1 e random values r(1,Pi), . . . , r(L,Pi).

2. Every player Pi ∈ P as a dealer invokes Sharing Phase of four round VSS protocol of [17]

with n ≥ 3t + 1 for sharing each of the values r(1,Pi), . . . , r(L,Pi).

3. For reconstructing the values r(1,Pi), . . . , r(L,Pi) (shared by Pi in Sharing Phase), Recon-
struction Phase of four round VSS of [17] with n ≥ 3t + 1 is invoked for L times separately.

Now for every player Pi ∈ P, the values r(1,Pi), . . . , r(L,Pi) are public.

4. Now players compute (r(1,1), . . . , r(1,2t+1)) = U(r(1,P1), . . . , r(1,Pn)), (r(2,1), . . . , r(2,2t+1)) =

U(r(2,P1), . . . , r(2,Pn)), . . ., (r(L,1), . . . , r(L,2t+1)) = U(r(L,P1), . . . , r(L,Pn)), where U =

V (n,2t+1)T
. Now let r((i−1)(2t+1)+j) = r(i,j) for 1 ≤ i ≤ L and 1 ≤ j ≤ (2t + 1). r(1), . . . , r(`)

are the desired ` length random vector, generated jointly by all the players in P.

Table 2. A Five Round Protocol for Generating ` length Random vector.

Lemma 2. Protocol RandomVector generates ` length random vector (r(1), . . . , r(`)).
RandomVector takes five rounds and communicates O(`n2κ) bits and broad-
casts O(`nκ) bits.

Proof: The correctness of Protocol RandomVector follows from the correct-
ness of the four round perfect VSS proposed in [17] and the randomness ex-
traction capability of Vandermonde Matrix [13]. In protocol RandomVector,
in total nL instances of Sharing Phase and nL instances of Reconstruc-
tion Phase will be invoked. Since each instance of Sharing Phase communi-
cates O(n2κ) bits, broadcasts O(n2κ) bits and each instance ofReconstruction
Phase broadcastsO(nκ) bits, protocol RandomVector communicatesO(nLn2κ) =
O(`n2κ) bits and broadcasts O(`nκ) bits. 2

3.3 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 1. d-1D-Sharing: We say that a value s is correctly d-1D-shared
among the players in P if every honest player Pi ∈ P is holding a share si of
s, such that there exists a degree d polynomial f(x) over F with f(0) = s and
f(i) = si for every Pi ∈ P. The vector (s1, s2, . . . , sn) of shares is called a d-
sharing of s and is denoted by [s]d. We may skip the subscript d when it is clear
from the context. A set of shares (possibly incomplete) is called d-consistent if
these shares lie on a d degree polynomial.

If a secret s is d-1D-shared by a player D ∈ P, then we denote it as [s]Dd . We
say that a dealer D∈ P correctly t-1D-shares a secret s, if D picks a random t
degree polynomial f(x) over F with f(0) = s and sends the share f(i) to player
Pi. This is simple Shamir-sharing [28]. However, a corrupted D may distribute
shares which may not be t-consistent; i.e., the shares lie on a polynomial of



degree greater than t. So, in the sequel, we describe a protocol 1DShare which
allows a dealer D∈ P to verifiably t-1D-share ` secret values s(1), s(2), . . . , s(`),
with ` ≥ 1 resulting in each player Pi ∈ P holding the shares s

(1)
i , s

(2)
i , . . . , s

(`)
i ,

where s
(l)
i denotes the ith share of secret s(l). Verifiably 1D-sharing ensures

correct t-1D-sharing even for a corrupted D. The protocol uses few ideas from
[13]. In the protocol, we use our EfficientIC protocol, which provides us with
high efficiency. Notice that D can also produce the desired sharing by using a
perfect VSS protocol with n ≥ 3t + 1 [17, 14, 22] to share each s(i) separately.
However, this will involve lot of communication overhead. Rather, by using the
ideas of [13] and incorporating our EfficientIC protocol, D can do the same
task with less communication overhead, but with a negligible error probability.
Before describing the protocol, we define few notations which are commonly used
in the literature.

By saying that the players in P compute (locally) ([y(1)]d, . . . , [y(`′)]d) =
ϕ([x(1)]d, . . . , [x(`)]d) (for any function ϕ : F` → F`′), we mean that each Pi com-
putes (y(1)

i , . . . , y
(`′)
i ) = ϕ(x(1)

i , . . . , x
(`)
i ). Note that applying an affine (linear)

function ϕ to correct d-1D-sharings, we get correct d-1D-sharings of the output.
So by adding two correct d-1D-sharings , we get another correct d-1D-sharing
of the sum, i.e. [a]d + [b]d = [a + b]d. However, by multiplying two correct d-1D-
sharings, we get a correct 2d-1D-sharing of the product, i.e. [a]d[b]d = [ab]2d.

The protocol 1DShare is given in Table 3. The goal of the protocol is as fol-
lows: (a) If D is honest then he correctly generates t-1D-sharing of the secrets
(s(1), s(2), . . . , s(`)), such that all the honest players publicly verify that D has
correctly generated the sharing. Also when D is honest, then the secrets will be
information theoretically secure from the adversary At. (b) If D is corrupted
and has not generated correct t-1D-Sharing, then with very high probability,
everybody will detect it and protocol will terminate with everybody accepting
a pre-defined ` t-1D-sharings of 1, namely [1]t, [1]t, . . . , [1]t on behalf of D.

Informally the protocol works as follows: D chooses `+1 random polynomials
f (0)(x), . . . , f (`)(x) such that f (0)(0) = r and f (l)(0) = s(l) for l = 1, . . . , ` where
r is a random non-zero value. D then hands over ICSig(f(0)(i),...,f(`)(i))(D, Pi) =

ICSig
(ri,s

(1)
i ,...,s

(`)
i )

(D, Pi) to Pi where ri, s
(1)
i , . . . , s

(`)
i denotes ith shares of r

and s(1), . . . , s(`) respectively. All the players then combinedly generate a non-
zero random value z using Protocol RandomVector. Now D broadcasts the
polynomial f(x) = f (0)(x) +

∑`
l=1 f (l)(x)zl =

∑`
l=0 f (l)(x)zl. Parallely every

player Pi computes and broadcasts yi = ri +
∑`

l=1 s
(l)
i zl. Every player checks

whether f(i) ?= yi for all i = 1, . . . , n. If yes then D has succeeded to produce
(s(1)]Dt , . . . , [s(`)]Dt . Otherwise, there exists at least one player, say Pi, such that
f(i) 6= yi. In this case, player Pi is asked to reveal ICSig

(ri,s
(1)
i ,...,s

(`)
i )

(D, Pi);

i.e., D’s IC signature on the shares of s(1), s(2), . . . , s(`) and r. If the signature is
correct then Pi has raised a valid complaint against D (with very probability).
So D is detected to be corrupted and the protocol terminates with the players
assuming a predefined ` t-1D-sharings of 1: [1]t, [1]t, . . . , [1]t.



([s(1)]Dt , . . . , [s(`)]Dt ) = 1DShare(D,P, `, s(1), s(2), . . . , s(`))

1. For every l = 1, . . . , `, D picks a random polynomial f(l)(x) over F of degree t, with

f(l)(0) = s(l). D also chooses a random polynomial f(0)(x) of degree t with f(0)(0) = r
where r ∈R F is an uniformly random non-zero element. For every i = 1, ...., n, D and
player Pi (acting as INT ), respectively executes EfficientDistr and EfficientAuthVal of

EfficientIC(D, Pi,P, ` + 1, ri, s
(1)
i , s

(2)
i , . . . , s

(`)
i ), so that player Pi (as an INT ) gets D’s IC

signature on ri, s
(1)
i , s

(2)
i , . . . , s

(`)
i , where ri = f(0)(i) and f(l)(i) = s

(l)
i for l = 1, . . . , `.

2. All the players in P invoke RandomVector(P, 1) to generate a non-zero random value z ∈ F.
3. D broadcasts the polynomial f(x) = f(0)(x) +

∑`
l=1 f(l)(x)zl =

∑`
l=0 f(l)(x)zl. Parallely,

every player Pi computes and broadcasts yi = ri +
∑`

l=1 s
(l)
i zl.

4. If the polynomial f(x) broadcasted by D is of degree more than t, then output t-1D-sharing of
` 1’s i.e [1]t, [1]t, . . . , [1]t, and the protocol terminates here.

5. Every player checks whether f(i)
?
= yi for all i = 1, . . . , n. If yes then everybody ac-

cepts the t-1D-sharings [s(1)]t, [s
(2)]t, . . . , [s(`)]t and the protocol terminates. Otherwise, for

some Pi, with f(i) 6= yi, player Pi (acting as INT ), along with the receivers in P execute

EfficientRevealVal(D, Pi,P, `+1, ri, s
(1)
i , . . . , s

(`)
i ) to reveal ICSig

(ri,s
(1)
i

,...,s
(`)
i

)
(D, Pi). If

Pi succeeds to prove D’s signature on ri, s
(1)
i , . . . , s

(`)
i and f(i) 6= ri +

∑`
l=1 s

(l)
i zl, then output

t-1D-sharing of ` 1’s i.e [1]t, [1]t, . . . , [1]t and the protocol terminates here. We say that Pi has
raised a valid complaint against D. But if the signature is invalid then ignore Pi’s complaint

against D and everybody accepts the t-1D-sharings [s(1)]t, [s
(2)]t, . . . , [s(`)]t.

Table 3. A Eleven Round Protocol for verifiably t-1D-share ` secrets.

Lemma 3. If D is honest then protocol 1DShare correctly and securely gen-
erates t-1D-sharing of ` secrets except with error probability of 2−O(κ). If D is
corrupted and if some of the ` sharings dealt by D is not t-1D-sharing, then
D fails to generate the required sharings and ` t-1D-sharings of 1 will be out-
putted, except with error probability of 2−O(κ). The protocol takes eleven rounds,
communicates O((`n + n2)κ) bits and broadcasts O((`n + n2)κ) bits.

Proof: The communication complexity and number of rounds can be checked
easily by inspection. We now prove it’s correctness. If D is honest then all the
honest players will correctly verify the t-1D-sharing of ` secrets. However, a
corrupted player Pi may broadcast incorrect y′i 6= yi , such that y′i 6= f(i) and
can forge D’s IC signature on the corresponding incorrect r′i 6= ri or/and s

′(j)
i 6=

s
(j)
i , 1 ≤ j ≤ `. But from the properties of IC protocol this can happen with

error probability of at most of 2−O(κ).The secrecy of the secrets s(1), s(2), . . . , s(`)

for an honest D follows from the fact that At will have only t shares for each
s(i), 1 ≤ i ≤ n and random r. In addition, the value f(0) is blinded with a
random value r, chosen by D. Thus, At will have no information about the
secrets.

Now we consider the case, when D is corrupted and the sharing of at least
one of the secrets s(1), s(2), . . . , s(`) is not a correct t-1D-sharing, i.e. the shares
of the honest players lie on a polynomial of degree higher than t. The argument
follows from [13]. Let f (l)(x) is the polynomial sharing s(l) and f (0)(x) is the
polynomial sharing r. According to our assumption at least one of the polynomi-
als f (l)(x) for l ∈ {0, 1, . . . , `} has degree greater than t. Now we show that the
polynomial f(x) = f (0)(x) +

∑`
l=1 f (l)(x)zl =

∑`
l=0 f (l)(x)zl will be of degree



t with negligible probability. Let m be such that f (m)(x) has maximal degree
among f (0)(x), . . . , f (`)(x), and let tm be the degree of f (m)(x). Then accord-
ing to the condition, tm > t. Now each polynomial f (l)(x) can be written as
f (l)(x) = αlx

tm + f ′(l)(x) where f ′(l)(x) has degree lower that tm. By assump-
tion αm 6= 0. Let g(x) =

∑`
l=0 αlx

l. It is easy to see that g(x) is a non-zero
polynomial because at least αm 6= 0. Also, degree of g(x) is at most `. Now
in the protocol, a corrupted D will not be caught if g(z) = 0. But since the
polynomial g(x) will be non-zero polynomial with degree at most ` and since z
is chosen uniformly at random from F, g(z) = 0 will occur with probability at
most `

|F| = 2−O(k). So we may assume that g(z) 6= 0 with very high probability.

This implies that f(x) =
∑`

l=0 f (l)(x)zl has degree tm > t. It follows that if
some of the sharings done by D are not t-1D-sharings, then D will be detected
as faulty with very high probability. 2

We now present a simple protocol called ReconsPublic, for reconstructing
a secret which is correctly t-1D-Shared. In the protocol, every player broadcasts
his share. Now out of these n shares, at most t could be corrupted. But since
n ≥ 3t + 1, by applying standard error correction algorithm (e.g. Berlekamp
Welch Algorithm [25]), the secret can be recovered. The protocol is given in
Table 4.

s = ReconsPublic(P, [s]t) :
Each player Pi broadcasts his share of s, namely si. All the players apply error correction (e.g.
Berlekamp Welch Algorithm) to reconstruct s from the n shares.

Table 4. A Single Round Reconstruction Protocol

Lemma 4. ReconsPublic is an one round protocol and broadcasts O(nκ) bits.

3.4 Upgrading t-1D-sharing to t-2D-sharing

Definition 2. We say that a value s is correctly d-2D-shared among the players
in P if there exists d degree polynomials f, f1, f2 . . . , fn with f(0) = s and for
i = 1, . . . , n, f i(0) = f(i). Moreover, every (honest) player Pi ∈ P holds a share
si = f(i) of s, the polynomial f i(x) for sharing si and share-share sji = f j(i)
for the share sj of every other (honest) player Pj ∈ P. We denote d-2D-sharing
of s as [[s]]d.

If a secret s is d-2D-shared by a player D ∈ P, then we denote it as [[s]]Dd . Notice
that if s is d-2D-shared, i.e. [[s]]d, then the ith shares of the secret, namely si will
be automatically d-2D-shared by player Pi, i.e [si]Pi

d . We now present a protocol
for upgrading t-1D-sharing to t-2D-sharing. Specifically, given that the players
in P jointly holds the correct t-1D-sharing of ` secrets s(1), s(2), . . . , s(`), i.e.
[s(1)]t, [s(2)]t, . . . , [s(`)]t, our protocol Upgrade1Dto2D, given in Table 5, out-
puts t-2D-sharings [[s(1)]]t, [[s(2)]]t, . . . , [[s(`)]]t. Some of the ideas of the protocol



are taken from [3], where a protocol for upgrading t-1D-sharing to t-2D-sharing
of ` secrets has been provided with dispute control for n ≥ 2t + 1 players. The
protocol of [3] either performs the upgradation or may fail. But in the case of
failure, it outputs a pair (Pi, Pj), where at least one of Pi or Pj is corrupted. We
use some of their [3] ideas to design our protocol for n ≥ 3t+1 players. Our pro-
tocol always outputs the correct t-2D-sharings of ` secrets, with overwhelming
probability, given correct t-1D-sharings for the same set of secrets. Moreover,
At will learn nothing about the original secrets during the upgradation. Fur-
thermore, if a player tries to cheat during the upgradation, then with very high
probability, it will be caught.

([[s(1)]]t, [[s
(2)]]t, . . . , [[s(`)]]t) = Upgrade1Dto2D(P, `, [s(1)]t, [s

(2)]t, . . . , [s(`)]t)

1. Each player Pi ∈ P invokes 1DShare(Pi,P, 1, s(0,Pi)) to verifiably t-1D-share a random non-

zero value s(0,Pi) ∈ F. Let s
(0,Pi)
j denotes the jth share of s(0,Pi).

2. Now every player Pi computes his sum share s
(0)
i =

∑n
j=1 s

(0,Pj)
i which is the ith share of s(0) =

∑n
j=1 s(0,Pj). So now players in P hold correct t-1D-sharings of `+1 secrets s(0), s(1), . . . , s(`),

i.e. [s(0)]t, [s
(1)]t, . . . , [s`]t.

3. Now every player Pi invokes 1DShare(Pi,P, ` + 1, s
(0)
i , s

(1)
i , . . . , s

(`)
i ) to correctly t-1D-share

his shares s
(0)
i , s

(1)
i , . . . , s

(`)
i of the secrets s(0), s(1), . . . , s(`) respectively, in that order.

4. Now to detect the players Pk (at most t), who have t-1D-shared wrong shares s̄
(0)
k , s̄

(1)
k , . . . , s̄

(`)
k

with s̄
(l)
k 6= s

(l)
k for some l ∈ {0, 1, . . . , `}, the players in P jointly generate an ` length random

vector (r(1), . . . , r(`)) by invoking Protocol RandomVector(P, `). Now all the players publicly

reconstructs si = s
(0)
i +

∑`
l=1 r(l)s

(l)
i and s = s(0) +

∑`
l=1 r(l)s(l). This is done as follows:

(a) Player Pi computes si = s
(0)
i +

∑`
l=1 r(l)s

(l)
i . Then ReconsPublic(P, [si]t) is invoked to

publicly reconstruct si, for i = 1, . . . , n.
(b) Once all the players publicly reconstruct s1, s2, . . . , sn, s is reconstructed by applying

Berlekamp Welch error correcting algorithm to s1, s2, . . . , sn. Berlekamp Welch Algorithm
also provides the error locations. Hence if si has been pointed as error location, the sharings

done by Pi by executing 1DShare(Pi,P, ` + 1, s
(0)
i , s

(1)
i , . . . , s

(`)
i ) will be ignored.

5. Output [[s(1)]]t, [[s
(2)]]t, . . . , [[s(`)]]t.

Table 5. A Twenty Eight Round Protocol For Upgrading t-1D-sharing to t-2D-sharing.

Lemma 5. Protocol Upgrade1Dto2D correctly upgrades t-1D-sharing of a set
of ` secrets to t-2D-sharing with overwhelming probability. The protocol con-
sumes twenty eight rounds and communicates O((`n2+n3)κ) bits and broadcasts
O((`n2 + n3)κ) bits. Moreover, At learns nothing about the original secrets.

Proof: The communication and round complexity of Protocol Upgrade1Dto2D
can be verified by inspection of the protocol (there are two instances of 1DShare
protocol which takes eleven rounds each). We now prove the correctness. Pro-
vided ` correct t-1D-sharing [s(1)]t, [s(2)]t, . . . , [s(`)]t, every honest player Pi will
correctly t-1D-share his shares s

(0)
i , s

(1)
i , . . . , s

(`)
i . Without loss of generality let

the first t players are corrupted and remaining 2t + 1 players are honest. Now
for every honest player Ph for some h ∈ {(t + 1), . . . , (3t + 1)}, the value
sh = s

(0)
h +

∑`
l=1 r(l)s

(l)
h will be reconstructed correctly, with sh being the hth



share of s = s(0)+
∑`

l=1 r(l)s(l). But a corrupted player Pc, where c ∈ {1, 2, . . . , t}
may share s̄

(0)
c , s̄

(1)
c , . . . , s̄

(`)
c with s̄

(l)
c 6= s

(l)
c for some l ∈ {0, 1, . . . , `}. If Pc

shares s̄
(0)
c , s̄

(1)
c , . . . , s̄

(`)
c with s̄

(l)
c 6= s

(l)
c for some l ∈ {0, 1, . . . , `}, then with

very high probability Pc will be caught. This is because if Pc executes 1DShare
with s̄

(0)
c , s̄

(1)
c , . . . , s̄

(`)
c , then ReconsPublic(P, [s̄c]t) will publicly reconstruct

the value s̄c. The probability that s̄c = sc is negligible since the ` length vector
(r(1), . . . , r(`)) is chosen uniformly at random. So with very high probability s̄c

will not be the actual cth share of s. Hence Barlekemp Welch Error correction
algorithm when applied to the shares s1, s2, . . . , s̄c, . . . st, st+1, . . . , sn will point
s̄c as error location in which case Pc will be caught and will not be involved
in further computation. It is easy to see that at any stage of the protocol, At

learns no more than t shares for each s(l), 1 ≤ l ≤ `. Hence all the secrets are
information theoretically secure. 2

3.5 Proving c = ab

Now let D∈ P holds ` pairs of values (a(1), b(1)), . . . , (a(`), b(`)) such that D has
already correctly t-1D-shared a(1), . . . , a(`) and b(1), . . . , b(`) among the players
in P. Now D wants to correctly t-1D-share c(1), . . . , c(`) without leaking any
additional information about a(l), b(l) and c(l), such that every (honest) player in
P knows that c(l) = a(l)b(l) for l = 1, . . . , `. We propose a protocol ProveCeqAB
(given in Table 6) to achieve this task. The idea of the protocol is inspired from
[12] with the following modification: we make use of our protocol 1DShare,
which provides us with high efficiency.

We try to explain the idea of the protocol with a single pair (a, b). D has
already t-1D-shared a and b using polynomials, say fa(x) and fb(x). Now he
wants to generate t-1D-sharing of c, where c = ab, without leaking any additional
information about a, b and c. For this, he first selects a random non-zero β ∈
F and generates t-1D-sharing of c, β and βb. Let fc(x), fβ(x) and fβb(x) are
polynomials implicitly used for sharing c, β and βb. All the players in P then
jointly generate a random value r. All the players then compute [Y ]t = r[a]t+[β]t.
D then broadcasts the value Y D = ra+β, while the players publicly reconstruct
Y . Everybody then verifies whether Y is same as Y D. If D has correctly shared
c, β and βb, then Y = Y D. Otherwise all the players will conclude that D fails
to prove c = ab. However, if Y = Y D, then the players proceed further and
compute [X]t = Y [b]t − [βb]t − r[c]t. The players then publicly reconstructs X.
Now again if D has correctly shared c, β and βb, then X = Y b − βb − rc = 0.
So after reconstructing X, every body checks whether X = 0. If X = 0 then
everybody accepts the t-1D-sharing of c as valid t-1D-sharing of ab. Otherwise
all the players will conclude that D fails to prove c = ab.

The error probability of the protocol is negligible because of the random r
which is jointly generated by all the players. Specifically, a corrupted D might
have shared βb 6= βb or c 6= c but still X can be zero and this will happen iff
fβb(x) + rfc(x) = fβb(x) + rfc(x). However this equation is satisfied by only
one value of r. Since r is randomly generated, independent of D, the probability



that the equality will hold is 1
|F| which is negligibly small. The secrecy follows

from the fact that the broadcasted value Y D is randomly distributed. Now we
can extend the above idea parallely for each of the ` pairs (a(l), b(l)).

Lemma 6. In protocol ProveCeqAB, if D does not fail, then with overwhelm-
ing probability, every (a(l), b(l)), c(l) satisfies c(l) = a(l)b(l) for l = 1, . . . , `.
ProveCeqAB takes eighteen rounds and communicates O((`n + n2)κ) bits and
broadcasts O((`n+n2)κ) bits. Moreover, if D is honest then At learns no infor-
mation about a(l), b(l) and c(l), for 1 ≤ l ≤ `.

Proof: The round complexity and communication complexity follows from the
working of the protocol. If D is honest then he will always be able to prove that
every (a(l), b(l)), c(l) satisfies c(l) = a(l), b(l) for l = 1, . . . , `. We now consider the
case when D is corrupted. Let corrupted D has shared β(l)b(l) 6= β(l)b(l) or/and
c(l) 6= c(l) for some l ∈ {1, . . . , `}. We show that the probability of X(l) = 0
is negligibly small. Notice that X(l) = 0 will hold only when β(l)b(l) + rc(l) =
β(l)b(l) + rc(l). However this equation is satisfied by only one value of r. Since r
is randomly generated, independent of D, the probability that the equality will
hold is 1

|F| which is negligibly small.

It is easy to see that if D is honest then at any stage of the protocol At

does not get more than t shares for a(l), b(l) and c(l), for 1 ≤ l ≤ `. Also the
values Y (l) are randomly distributed over F. This implies that a(l), b(l) and c(l)

are information theoretically secure from At. 2.

([c(1)]Dt , . . . , [c(`)]Dt ) = ProveCeqAB(D,P, `, [a(1)]Dt , [b(1)]Dt , . . . , [a(`)]Dt , [b(`)]Dt )

1. D chooses a random non-zero ` length tuple (β(1), . . . , β(`)) ∈ F`. D then

invokes 1DShare(D,P, `, c(1), . . . , c(`)), 1DShare(D,P, `, β(1), . . . , β(`)) and

1DShare(D,P, `, b(1)β(1), . . . , b(`)β(`)) to verifiably t-1D-share (c(1), . . . , c(`)),

(β(1), . . . , β(`)) and (b(1)β(1), . . . , b(`)β(`)) respectively. If in any of these 1DShare
protocol, D fails, then every player conclude that D fails in this protocol also and hence this
protocol terminates.

2. Now all the players in P invoke RandomVector(P, 1) to generate a random value r ∈ F.
3. For every l ∈ {1, . . . , `}, all players locally compute [Y (l)]t = (r[a(l)]t + [β(l)]t) and invoke

ReconsPublic(P, [Y (l)]t) to reconstruct Y (l). Parallely, D broadcasts the values Z(1) =

(ra(1) + β(1)), . . . , Z(`) = (ra(`) + β(`)). All the players check whether Z(l) ?
= Y (l). If not

then every player concludes that D fails in this protocol and hence the protocol terminates.

4. For every l ∈ {1, . . . , `}, all the players locally compute [X(l)]t =(
Y (l)[b(l)]t − [b(l)β(l)]t − r[c(l)]t

)
and invoke ReconsPublic(P, [X(l)]t) to reconstruct

X(l). All the players check whether X(l) ?
= 0. If not then every player concludes that D fails in

this protocol and hence the protocol terminates. Otherwise D has proved that c(l) = a(l)b(l).

Table 6. A Eighteen Round Protocol to Generate t-1D-Sharing of c(l) Where c(l) =
a(l)b(l)



3.6 Multiplication

Let the players in P hold ` pairs of correct t-1D-sharing among themselves,
i.e. ([a(1)]t, [b(1)]t), . . . , ([a(`)]t, [b(`)]t). We now present a protocol called Mult
which allows the players to compute ` t-1D-sharings [c(1)]t, . . . , [c(`)]t such that
c(l) = a(l)b(l) for l = 1, . . . , `. Our protocol is motivated from the technique
used in [12]. We explain the idea with only one pair, say (a, b). Given that
the players hold the t-1D-sharings of a and b i.e. Pi holds ai and bi where ai

and bi are the ith share of a and b respectively. Now multiplying ai and bi,
Pi obtains ith share di = aibi of c where c is 2t-1D-shared. This is not what
we desire. We want Pi to hold ci such that ci is the ith share of t-1D-sharing
of c. For that each player Pi t-1D-shares the value di = aibi with the proof
that di is indeed the multiplication of ai and bi. Now, all the players jointly
hold [d1]t . . . , [dn]t. Since d1, . . . , dn are n points on a 2t degree polynomial, say
C(x) whose constant term is c, by Lagrange interpolation formula [11], c can be
computed as c =

∑n
i=1 ridi where ri =

∏n
j=1,j 6=i

−j
i−j . The vector (r1, . . . , rn) is

called recombination vector [11] which is public and known to every player. So
for shorthand notation, we write c = Lagrange(d1, . . . , dn) =

∑n
i=1 ridi. Now all

players compute [c]t = Lagrange([d1]t, . . . , [dn]t) =
∑n

i=1 ri[di]t, to obtain the
desired output. Notice that since C(x) polynomial is of degree 2t, we need 2t+1
players to successfully t-1D-share his d value (a 2t degree polynomial requires
2t + 1 points on it to be interpolated correctly). So, even if t corrupted players
fail to t-1D-share their d values, our protocol will work. Protocol Mult, achieves
this task for ` pairs simultaneously.

([c(1)]t, . . . , [c(`)]t) = Mult(P, `, ([a(1)]t, [b
(1)]t), . . . , ([a(`)]t, [b

(`)]t))

1. All the players invoke Upgrade1Dto2D(P, `, [a(1)]t, . . . , [a(`)]t) and

Upgrade1Dto2D(P, `, [b(1)]t, . . . , [b(`)]t) to upgrade t-1D-sharings of 2` values to t-

2D-sharings, i.e, to generate [[a(1)]]t, . . . , [[a(`)]]t and [[b(1)]]t, . . . , [[b(`)]]t respectively.

2. Let (a
(l)
1 , . . . , a(l)

n ) and (b
(l)
1 , . . . , b(l)

n ) denotes the 1D sharings of a(l) and b(l) respectively.

Since a(l) and b(l) is t-2D-shared, their shares a
(l)
i and b

(l)
i are t-1D-shared (see the definition

of t-2D-sharing) by player Pi. The players in P locally computes [c(l)]2t = [a(l)]t[b
(l)]t for

l = 1, . . . , ` where [c(l)]2t = (a
(l)
1 b

(l)
1 , . . . , a(l)

n b(l)
n ).

3. Each player Pi has in his possession ith share of [c(l)]2t i.e. a
(l)
i b

(l)
i for l =

1, . . . , ` where both a
(l)
i and b

(l)
i are already t-1D-shared by Pi during Protocol

Upgrade1Dto2D executed in step 1 of this protocol. Now each player Pi invokes

ProveCeqAB(Pi,P, `, [a
(1)
i ]

Pi
t , [b

(1)
i ]

Pi
t , . . . , [a

(`)
i ]

Pi
t , [b

(`)
i ]

Pi
t ) to produce [c

(1)
i ]

Pi
t , . . . , [c

(`)
i ]

Pi
t

such that c
(l)
i = a

(l)
i b

(l)
i for l = 1, . . . , `. At most t (corrupted) players may fail to execute

ProveCeqAB. For simplicity assume first 2t +1 players are successful in executing ProveCe-
qAB.

4. Now for l ∈ {1, . . . , `}, first (2t + 1) players have produced [c
(l)
1 ]

P1
t , . . . , [c

(l)
(2t+1)]

P(2t+1)
t .

So for l = 1, . . . , `, players in P computes [c(l)]t as follows: [c(l)]t =

Lagrange([c
(l)
1 ]

P1
t , . . . , [c

(l)
(2t+1)]

P(2t+1)
t ).

Table 7. A protocol for computing [c(l)]t = [a(l)]t[b
(l)]t



Lemma 7. With overwhelming probability, protocol Mult produces ` t-1D-sharings
[c(1)]t, . . . , c(`)]t from ` pairs of t-1D-sharings ([a(1)]t, [b(1)]t), . . . , ([a(`)]t, [b(`)]t).
Mult takes 46 (twenty eight for Upgrade1Dto2D + eighteen for ProveCe-
qAB) rounds and communicates O((`n2 + n3)κ) bits and broadcasts O((`n2 +
n3)κ) bits. Moreover, At learns nothing about c(l), a(l) and b(l), for 1 ≤ l ≤ `.

3.7 Generating Random t-1D-Sharing

We present a protocol called Random(P, `), given in Table 8, which allows the
players in P to jointly generate ` random t-1D-sharings, [r(1)]t, . . . , [r(`)]t, where
each r(i) is a random element in F.

Random(P, `)

1. Every player Pi ∈ P invokes 1DShare(Pi,P, `, r(1,Pi), . . . , r(`,Pi)) to verifiably t-1D-share `

random values (r(1,Pi), . . . , r(`,Pi)) ∈ F`.

2. Now all the players in P jointly computes [r(l)]t =
∑n

i=1[r
(l,Pi)]t for l = 1, . . . , `

Table 8. A Eleven Round Protocol for Generating ` Random t-1D-sharings.

Lemma 8. With overwhelming probability, Random generates ` random t-1D-
sharing [r(1)]t, . . . , [r(`)]t. Random takes 11 rounds and communicates O((`n2+
n3)κ) bits and broadcasts O((`n2 + n3)κ) bits.

4 Unconditionally Secure MPSI Protocol with n ≥ 3t + 1

We now present our unconditionally secure MPSI protocol with n ≥ 3t+1 play-
ers. The protocol has three phases: Input and Preparation Phase, Computation
Phase and Output Phase. In the input and preparation phase, each party prop-
erly shares their inputs and in computation phase, computation is carried out
jointly on the shared inputs to get the final output. Recall that players wants to
compute securely the function F (x) where F (x) is as follows:

F (x) = (r(1)(x)f (P1)(x) + r(2)(x)f (P2)(x) + . . . + r(n)(x)f (Pn)(x)) (2)

Theorem 1. Input and Preparation phase takes 11 rounds (step 1 and step 2
can be executed parallely) and communicates O((mn3+n4)κ) bits and broadcasts
O((mn3 + n4)κ) bits.

Remark 1. If we try to compute set intersection by using the function given in
Eqn. (1), then the adversary can disrupt the security by forcing a corrupted
player to input a zero polynomial representing his set. If he does so, then he can
easily compute the intersection of the sets of the remaining players. Recall that a
player Pj ’s polynomial f (Pj)(x) =

∏m
k=1(x− e

(k)
j ). It is clear that the coefficient



Input and Preparation Phase

1. Every player Pi ∈ P represents his set Si = {e(1)
i , e

(2)
i , . . . , e

(m)
i } by a polynomial f(Pi)(x) of

degree m with f(Pi)(x) = (x − e
(1)
i ) . . . (x − e

(m)
i ) = a(0,Pi) + a(1,Pi)x + . . . + a(m,Pi)xm,

such that f(Pi)(e
(j)
i ) = 0, for 1 ≤ j ≤ m. Notice that a(m,Pi) = 1. Pi then invokes

1DShare(Pi,P, m, a(0,Pi), . . . , a(m−1,Pi)) to verifiably t-1D-share first lower order m coef-

ficients of fPi (x). Since a(m,Pi) = 1, every player in P assumes a predefined t-1D-sharing for

1 on behalf of a(m,Pi) (see Remark 1).

2. Let for i = 1, . . . , n polynomial r(i)(x) be expressed as r(i)(x) = b(0,i)+b(1,i)x+. . .+b(m,i)xm.
So all the players should jointly generate n(m + 1) random t-1D-sharings for n(m + 1)

random coefficients of the polynomials r(1)(x), . . . , r(n)(x). So all the players in P invoke

Random(P, m + 1) n times to produce n different set of m + 1 t-1D-sharings. So the ith

invocation of Random(P, m + 1) will generate the t-1D-sharings of the coefficients of polyno-

mial r(i)(x), namely [b(0,i)]t, . . . , [b(m,i)]t. This step can be executed in parallel to step 1.

Table 9. Input and Preparation Phase of our Unconditionally secure MPSI Protocol

of mth degree term is 1. This is true for every players polynomial. Hence, as
specified in [24, 23], to prevent a corrupted player giving zero polynomial as
input, it is enough to consider 1 as the default value for the coefficients of mth

degree term of the polynomial. So by default t-1D-sharing of 1 will be taken as
every players mth degree coefficient. Notice that we have incorporated this idea
in the step 1. of Input and Preparation Phase shown in Table 9.

After input and preparation phase, the players jointly compute the coefficients
of the polynomial F (x) =

∑n
i=1 r(i)(x)f (Pi)(x) in a shared manner in the Com-

putation Phase. In the Output Phase, all the coefficients of polynomial F (x)
are publicly reconstructed. Then each player locally evaluates F (x) at each el-
ement of his private set. All the elements at which F (x) = 0 belongs to the
intersection of the n sets. The computation and output phase is shown in Table
10.

Theorem 2. Computation and Output phase takes 47 rounds and communi-
cates O((m2n3 + n4)κ bits and broadcasts O((m2n3 + n4)κ bits.

Theorem 3. Multiparty set intersection protocol with 3t + 1 players takes 58
rounds and communicates O((m2n3 + n4)κ bits and broadcasts O((m2n3 + n4)κ
bits when physical broadcast channel is available in the system. In the absence
of a physical broadcast channel, the protocol takes O(t) rounds and communi-
cates O((m2n5 + n6)κ bits overall. The protocol correctly and securely solves
unconditionally secure MPSI problem with very high probability.

Proof: The round complexity and communication complexity can be easily
verified from the protocol. The correctness follows from the argument given in
Section 2.1. The secrecy follows from the secrecy of the protocols 1DShare,
Random and Mult. 2



Computation Phase

1. All the players in P compute F (i)(x) = r(i)(x)f(Pi)(x) such that F (i)(x) = c(0,i) + c(1,i)x +

. . .+c(2m,i)x2m is a 2m degree polynomial and all its coefficients c(0,i), . . . , c(2m,i) are correctly

t-1D-shared. For i = 1, . . . , n, the coefficients of all F (i)(x) are computed parallely.

(a) Since multiplication of polynomials r(i)(x) and f(Pi)(x) requires multipli-
cation of every pair of their coefficients, all players invoke Mult(P, (m +

1)2, ([a(0,i)]t, [b
(0,i)]t), ([a

(0,i)]t, [b
(1,i)]t), . . . , ([a(m,i)]t, [b

(m−1,i)]t), ([a
(m,i)]t, [b

(m,i)]t))
with (m + 1)2 pairs to produce (m + 1)2 t-1D-sharings

[a(0,i)b(0,i)]t, [a
(0,i)b(1,i)]t, . . . , [a(m,i)b(m−1,i)]t, [a

(m,i)b(m,i)]t.

(b) All players compute [c(0,i)]t = [a(0)b(0,i)]t, [c(1,i)]t = [a(0,i)b(1,i)]t +

[a(1,i)b(0,i)]t, . . . , [c(2m,i)]t = [a(m,i)b(m,i)]t.

2. All the players in P compute F (x) =
∑n

i=1 F (i)(x) such that F (x) = d(0) + d(1)x + . . . +

d(2m)x2m is a 2m degree polynomial and all its coefficients d(0), . . . , d(2m) are correctly t-1D-

shared. For this all players in P compute [d(j)]t =
∑n

i=1[c
(j,i)]t for j = 0, . . . , 2m.

Output Phase

1. The coefficients d(0), . . . , d(2m) of F (x) are publicly reconstructed. For that players invoke

ReconsPublic(P, [d(j)]t) to reconstruct d(j) for j = 0, . . . , 2m.
2. Each player Pi locally evaluates F (x) at each element of his set Si. If the evaluation is zero then

the element belongs to the intersection, else the element does not belong to the intersection. All
the elements from Si at which the evaluation is zero form the intersection set S1 ∩S2 . . . ,∩Sn.

Table 10. Computation Phase and Output phase of our Multiparty Set Intersection
Protocol

5 Conclusion

The proliferation of Internet has triggered tremendous opportunities for secure
distributed computation, where people cooperate with each other by supplying
their inputs with the intention to compute a function (task) of their common
interest. The group of people participating in this computation may even be
competitors, who do no trust each other. In such scenarios privacy becomes a
primary concern. Secure multiparty set intersection is one of the most sought
for practically important candidate problem of secure distributed computation.
Even though, this problem is extensively studied in the settings of computa-
tional security, very less attention has been paid for the problem in information
theoretic settings. For the first time in the literature, the authors in [24] had at-
tempted to give a protocol for unconditionally secure multiparty set intersection
problem with n ≥ 3t+1 players in information theoretic model. However, in this
paper, we have shown that the round complexity and communication complex-
ity of the protocol in [24] is much more than what is claimed in [24]. We then
provided a correct complexity analysis of the protocol given in [24]. Finally, we
proposed a new unconditionally secure protocol for multiparty set intersection
problem with n ≥ 3t+1, which significantly improves the (true) communication
and round complexity of the protocol given in [24]. To design our protocols, we
have used new tools which provides us improved efficiency. In the information
theoretic model, other problems like cardinality set intersection, set union, etc.
are worthy of consideration.
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