
Secure Arithmetic Computation with No Honest Majority

Yuval Ishai ∗ Manoj Prabhakaran † Amit Sahai ‡

November 8, 2008

Abstract
We study the complexity of securely evaluating arithmetic circuits over finite rings. This question

is motivated by natural secure computation tasks. Focusing mainly on the case of two-party protocols
with security against malicious parties, our main goals are to: (1) only make black-box calls to the ring
operations and standard cryptographic primitives, and (2) minimize the number of such black-box calls
as well as the communication overhead.

We present several solutions which differ in their efficiency, generality, and underlying intractability
assumptions. These include:

• An unconditionally secure protocol in the OT-hybrid model which makes a black-box use of an
arbitrary ring R, but where the number of ring operations grows linearly with (an upper bound on)
log |R|.

• Computationally secure protocols in the OT-hybrid model which make a black-box use of an un-
derlying ring, and in which the number of ring operations does not grow with the ring size. The
protocols rely on variants of previous intractability assumptions related to linear codes. In the most
efficient instance of these protocols, applied to a suitable class of fields, the (amortized) commu-
nication cost is a constant number of field elements per multiplication gate and the computational
cost is dominated by O(log k) field operations per gate, where k is a security parameter. These
results extend a previous approach of Naor and Pinkas for secure polynomial evaluation (SIAM J.
Comput., 35(5), 2006).

• A protocol for the rings Zm = Z/mZ which only makes a black-box use of a homomorphic
encryption scheme. When m is prime, the (amortized) number of calls to the encryption scheme
for each gate of the circuit is constant.

All of our protocols are in fact UC-secure in the OT-hybrid model and can be generalized to multiparty
computation with an arbitrary number of malicious parties.

∗Technion, Israel and University of California, Los Angeles. yuvali@cs.technion.il
†University of Illinois, Urbana-Champaign. mmp@cs.uiuc.edu
‡University of California, Los Angeles. sahai@cs.ucla.edu

1 Introduction

This paper studies the complexity of secure multiparty computation (MPC) tasks which involve arithmetic
computations. Following the general feasibility results from the 1980s [Yao86, GMW87, BGW88, CCD88],
much research in this area shifted to efficiency questions, with a major focus on the efficiency of securely
distributing natural computational tasks that arise in the “real world”. In many of these cases, some inputs,
outputs, or intermediate values in the computation are integers, finite-precision reals, matrices, or elements
of a big finite ring, and the computation involves arithmetic operations in this ring. To name just a few
examples from the MPC literature, such arithmetic computations are useful in the contexts of distributed
generation of cryptographic keys [BF01, FMY98, PS98, Gil99, ACS02], privacy-preserving data-mining and
statistics [LP02, CIK+01], comparing and matching data [NP06, FNP04, HL08], auctions and mechanism
design [NPS99, DFK+06, Tof07, BCD+08], and distributed linear algebra computations [CD01, NW06,
KMWF07, CKP07, MW08].

This motivates the following question:

What is the complexity of securely evaluating a given arithmetic circuit C over a given finite
ring R?

Before surveying the state of the art, some clarifications are in place.

Arithmetic circuits. An arithmetic circuit over a ring is defined similarly to a standard boolean circuit, ex-
cept that the inputs and outputs are ring elements rather than bits and gates are labeled by the ring operations
add, subtract, and multiply. (Here and in the following, by “ring” we will refer to a finite ring by default.)
In the current context of distributed computations, the inputs and outputs of the circuit are annotated with
the parties to which they belong. Thus, the circuit C together with the ring R naturally define a multi-party
arithmetic functionality CR. Note that arithmetic computations over the integers or finite-precision reals
can be embedded into a sufficiently large finite ring or field, provided that there is an a-priori upper bound
on the bit-length of the output. See Section 1.4 for further discussion of the usefulness of arithmetic circuits
and some extensions of this basic model to which our results apply.

Secure computation model. The main focus of this paper is on secure two-party computation or, more
generally, MPC with an arbitrary number of malicious parties. (In this setting it is generally impossible
to guarantee output delivery or even fairness, and one has to settle for allowing the adversary to abort the
protocol after learning the output.) Our protocols are described in the “OT-hybrid model,” namely in a
model that allows parties to invoke an ideal oblivious transfer (OT) oracle [Rab81, EGL85, Gol04]. This
has several advantages in generality and efficiency, see [IPS08] and Section 1.4 below for discussion.

Ruling out the obvious. An obvious approach for securely realizing an arithmetic computation CR is by
first designing an equivalent boolean circuitC ′ which computes the same function on a binary representation
of the inputs, and then using standard MPC protocols for realizing C ′. The main disadvantage of such an
approach is that it typically becomes very inefficient whenR is large. One way to rule out such an approach,
at least given the current state of the art, is to require the communication complexity to grow at most linearly
with log |R|. (Note that even in the case of finite fields with n-bit elements, the size of the best known
boolean multiplication circuits is ω(n log n); the situation is significantly worse for other useful rings, such
as matrix rings.)

A cleaner way for ruling out such an approach, which is of independent theoretical interest, is by restrict-
ing protocols to only make a black-box access to the ring R. That is, Π securely realizes C if ΠR securely

1

realizes CR for every finite ring R and every representation of elements in R.1 This black-box access to R
enables Π to perform ring operations and sample random ring elements, but the correspondence between
ring elements and their identifiers (or even the exact size of the ring) will be unknown to the protocol.2 When
considering the special case of fields, we allow by default the protocol Π to access an inversion oracle.

1.1 Previous Work

In the setting of MPC with honest majority, most protocols from the literature can make a black-box use of
an arbitrary field. An extension to arbitrary black-box rings was given in [CFIK03], building on previous
black-box secret sharing techniques of [DF89, CF02].

In the case of secure two-party computation and MPC with no honest majority, most protocols from
the literature apply to boolean circuits. Below we survey some previous approaches from the literature that
apply to secure arithmetic computation with no honest majority.

In the semi-honest model, it is easy to employ any homomorphic encryption scheme with plaintext group
Zm for performing arithmetic MPC over Zm. (See, e.g., [AF90, CIK+01].) An alternative approach, which
relies on oblivious transfer and uses the standard binary representation of elements in Zm, was employed
in [Gil99]. These protocols make a black-box use of the underlying cryptographic primitives but do not
make a black-box use of the underlying ring. Applying the general compilers of [GMW87, CLOS02] to
these protocols in order to obtain security in the malicious model would result in inefficient protocols which
make a non-black-box use of the underlying cryptographic primitives (let alone the ring).

In the malicious model, protocols for secure arithmetic computation based on threshold homomor-
phic encryption were given in [CDN01, DN03]3 (extending a similar protocol for the semi-honest model
from [FH96]). These protocols provide the most practical general solutions for secure arithmetic two-party
computation we are aware of, requiring a constant number of modular exponentiations for each arithmetic
gate. On the down side, these protocols require a nontrivial setup of keys which is expensive to distribute.
Moreover, similarly to all protocols described so far, they rely on special-purpose zero-knowledge proofs
and specific number-theoretic assumptions and thus do not make a black-box use of the underlying crypto-
graphic primitives, let alone a black-box use of the ring.

The only previous approach which makes a black-box use of an underlying ring (as well as a black-box
use of OT) was suggested by Naor and Pinkas [NP06] in the context of secure polynomial evaluation. Their
protocol can make a black-box use of any field (assuming an inversion oracle), and its security is related
to the conjectured intractability of decoding Reed-Solomon codes with a sufficiently high level of random
noise. The protocol from [NP06] can be easily used to obtain general secure protocols for arithmetic circuits
in the semi-honest model. However, extending it to allow full simulation-based security in the malicious
model (while still making only a black-box use of the underlying field) is not straightforward. (Even in the
special case of secure polynomial evaluation, an extension to the malicious model suggested in [NP06] only
considers privacy rather than full simulation-based security.)

Finally, we note that Yao’s garbled circuit technique [Yao86], which is essentially the only known tech-
nique for constant-round secure computation of general functionalities, does not have a known arithmetic

1When considering computational security we will require representations to be computationally efficient, in the sense that given
identifiers of two ring elements a, b one can efficiently compute the identifiers of a + b, a− b, and a · b.

2Note that it is not known how to efficiently learn the structure of a ring using a black box access to ring operations, even in the
special case of general finite fields [BL96, MR07].

3While [CDN01, DN03] refer to the case of robust MPC in the presence of an honest majority, these protocols can be easily
modified to apply to the case of MPC with no honest majority. We note that while a main goal of these works was to minimize the
growth of complexity with the number of parties, we focus on minimizing the complexity in the two-party case.

2

analogue. Thus, in all general-purpose protocols for secure arithmetic computation (including the ones
presented in this work) the round complexity must grow with the multiplicative depth4 of C.

1.2 Our Contribution

We study the complexity of general secure arithmetic computation over finite rings in the presence of an
arbitrary number of malicious parties. We are motivated by the following two related goals.

• Black-box feasibility: only make a black-box use of an underlying ring R or field F and standard
cryptographic primitives;

• Efficiency: minimize the number of such black-box calls, as well as the communication overhead.

For simplicity, we do not attempt to optimize the dependence of the complexity on the number of parties,
and restrict the following discussion to the two-party case.

We present several solutions which differ in their efficiency, generality, and underlying intractability
assumptions. Below we describe the main protocols along with their efficiency and security features. An
overview of the underlying techniques is presented in Section 1.3.

An unconditionally secure protocol. We present an unconditionally secure protocol in the OT-hybrid
model which makes a black-box use of an arbitrary finite ring R, but where the number of ring operations
and the number of ring elements being communicated grow linearly with (an upper bound on) log |R|.
(We assume for simplicity that an upper bound on log |R| is given by the ring oracle, though such an upper
bound can always be inferred from the length of the strings representing ring elements.) More concretely, the
number of ring operations for each gate of C is poly(k) · log |R|, where k is a statistical security parameter.
This gives a two-party analogue for the MPC protocol over black-box rings from [CFIK03], which requires
an honest majority (but does not require the number of ring operations to grow with log |R|).
Protocols based on noisy linear encodings. Motivated by the goal of reducing the overhead of the previous
protocol, we present a general approach for deriving secure arithmetic computation protocols over a ring R
from linear codes over R. The (computational) security of the protocols relies on intractability assumptions
related to the hardness of decoding in the presence of random noise. These protocols generalize and extend
in several ways the previous approach of Naor and Pinkas for secure polynomial evaluation [NP06] (see
Section 1.3 for discussion). Using this approach, we obtain the following types of protocols in the OT-
hybrid model.

• A protocol which makes a black-box use of an arbitrary field F , in which the number of field opera-
tions (and field elements being communicated) does not grow with the field size. More concretely, the
number of field operations for each gate of C is bounded by a fixed polynomial in the security param-
eter k, independently of |F |. The underlying assumption is related to the conjectured intractability of
decoding a random linear code5 over F . Our assumption is implied by the assumption that a noisy
codeword in a random linear code over F is pseudorandom. Such a pseudorandomness assumption
follows from the average-case hardness of decoding a random linear code when the field size is poly-
nomial in k (see [BFKL93, AIK07] for corresponding reductions in the binary case).

4The multiplicative depth of a circuit is the maximal number of multiplication gates on a path from an input to an output.
5The above efficiency feature requires that random linear codes remain hard to decode even over very large fields. Note,

however, that log |F | is effectively restricted by the running time of the adversary, which is (an arbitrarily large) polynomial in k.
The assumption can be relaxed if one allows the number of ring operation to moderately grow with log |F |.

3

• A variant of the previous protocol which makes a black-box use of an arbitrary ring R, and in partic-
ular does not rely on inversion. This variant is based on families of linear codes over rings in which
decoding in the presence of erasures can be done efficiently, and for which decoding in the presence
of (a suitable distribution of) random noise seems intractable.

• The most efficient protocol we present relies on the intractability of decoding Reed-Solomon codes
with a (small) constant rate in the presence of a (large) constant fraction of noise.6 The amortized
communication cost is a constant number of field elements per multiplication gate. (Here and in the
following, when we refer to “amortized” complexity we ignore an additive term that may depend
polynomially on the security parameter and the circuit depth, but not on the circuit size. In most
natural instances of large circuits this additive term does not form an efficiency bottleneck.)

A careful implementation yields protocols whose amortized computational cost is O(log k) field op-
erations per gate, where k is a security parameter, assuming that the field size is super-polynomial
in k. In contrast, protocols which are based on homomorphic encryption schemes (such as [CDN01]
or the ones obtained in this work) apply modular exponentiations, which require Ω(k + log |F |) ring
multiplications per gate, in a ciphertext ring which is larger than F . This is the case even in the semi-
honest model. Compared to the “constant-overhead” protocol from [IKOS08] (applied to a boolean
circuit realizing CF), our protocol has better communication complexity and relies on a better stud-
ied assumption, but its asymptotic computational complexity is worse by an O(log k) factor when
implemented in the boolean circuit model.

Protocols making a black-box use of homomorphic encryption. For the case of rings of the form
Zm = Z/mZ (with the standard representation) we present a protocol which makes a black-box use of
any homomorphic encryption scheme with plaintext group Zm. Alternatively, the protocol can make a
black-box use of homomorphic encryption schemes in which the plaintext group is determined by the key
generation algorithm, such as those of Paillier [Pai99] or Damgård-Jurik [DJ02]. In both variants of the
protocol, the (amortized) number of communicated ciphertexts and calls to the encryption scheme for each
gate of C is constant, assuming that m is prime. This efficiency feature is comparable to the protocols
from [CDN01, DN03] discussed in Section 1.1 above. Our protocols have the advantages of using a more
general primitive and only making a black-box use of this primitive (rather than relying on special-purpose
zero-knowledge protocols). Furthermore, the additive term which we ignore in the above “amortized” com-
plexity measure seems to be considerably smaller than the cost of distributing the setup of the threshold
cryptosystem required by [CDN01].

Both variants of the protocol can be naturally extended to the case of matrix rings Zn×n
m , increasing

the communication complexity by a factor of n2. (Note that emulating matrix operations via basic arith-
metic operations over Zm would result in a bigger overhead, corresponding to the complexity of matrix
multiplication.) Building on the techniques from [MW08], this protocol can be used to obtain efficient
protocols for secure linear algebra which make a black-box use of homomorphic encryption and achieve
simulation-based security against malicious parties (improving over similar protocols with security against
covert adversaries [AL07] recently presented in [MW08]).

All of our protocols are in fact UC-secure in the OT-hybrid model and can be generalized to multiparty
computation with an arbitrary number of malicious parties. The security of the protocols also holds against

6The precise intractability assumption we use is similar in flavor to an assumption used in [NP06] for evaluating polynomials
of degree d ≥ 2. With a suitable choice of parameters, our assumption is implied by a natural pseudorandomness variant of the
assumption from [NP06], discussed in [KY08]. The assumption does not seem to be affected by the recent progress on list-decoding
Reed-Solomon codes and their variants [GS99, CS03, BKY07, PV05].

4

adaptive adversaries, assuming that honest parties may erase data. (This is weaker than the standard notion
of adaptive security [CFGN96] which does not rely on data erasure.) The round complexity of all the
protocols is a constant multiple of the multiplicative depth of C.

1.3 Techniques

Our results build on a recent technique from [IPS08] (which was inspired by previous ideas from [IKOS07]
and also [HIKN08]). The main result of [IPS08] constructs a secure two-party protocol for a functionality
f in the OT-hybrid model by making a black-box use of the following two ingredients: (1) an outer MPC
protocol which realizes f using k additional “servers”, but only needs to tolerate a constant fraction of
malicious servers; and (2) an inner two-party protocol which realizes in the semi-honest OT-hybrid model a
reactive two-party functionality defined (in a black-box way) by the outer protocol. The latter functionality
is essentially a distributed version of the algorithm run by the servers in the outer protocol.

Because of the black-box nature of this construction, if both ingredients make a black-box use of R
and/or a black-box use of cryptographic primitives, then so does the final two-party protocol.

Given the above, it remains to find good instantiations for the outer and inner protocols. Fortunately,
good instances of the outer protocol already exist in the literature. In the case of general black-box rings, we
can use the protocol of [CFIK03]. In the case of fields, we can use a variant of the protocol from [DI06] for
better efficiency. This protocol has an amortized communication cost of a constant number of field elements
for each multiplication gate in the circuit. In terms of computational overhead, a careful implementation
incurs an amortized overhead of O(log k) field operations per gate, where k is a security parameter, assum-
ing that the field size is superpolynomial in k. (The overhead is dominated by the cost of Reed-Solomon
encoding over the field.)

Our final protocols are obtained by combining the above outer protocols with suitable implementations
of the inner protocol. Our main technical contribution is in suggesting concrete inner protocols which yield
the required security and efficiency features.

Similarly to [IPS08], the inner protocols corresponding to the outer protocols we employ require to
securely compute, in the semi-honest model, multiple instances of a simple “product-sharing” functionality,
in which Alice holds a ring element a, Bob holds a ring element b, and the output is an additive secret
sharing of ab. (The efficient version of the outer protocol requires the inner protocol to perform only a
constant amortized number of product-sharings per multiplication gate. All other computations, including
ones needed for handling addition gates, are done locally and do not require interaction.) In [IPS08] such
a product-sharing protocol is implemented by applying the GMW protocol [GMW87] (in the semi-honest
OT-hybrid model) to the binary representation of the inputs. This does not meet our current feasibility and
efficiency goals.

Below we sketch the main ideas behind different product-sharing protocols on which we rely, which
correspond to the main protocols described in Section 1.2.

Unconditionally secure product-sharing. In our unconditionally secure protocol, Bob breaks his input b
into n additive shares and uses them to generate n pairs of ring elements, where in each pair one element is
a share of b and the other is a random ring element. (The location of the share of b in each pair is picked at
random and is kept secret by Alice. Note that additive secret-sharing can be done using a black-box access
to the ring oracle.) Bob sends these n pairs to Alice. Alice multiplies each of the 2n ring elements (from the
left) by her input a, and subtracts from each element in the i-th pair a random ring element ti. This results
in n new pairs. Bob retrieves from each pair the element corresponding to the original additive share of b by
using n invocations of the OT oracle. Bob outputs the sum of the n ring elements she obtained, and Alice

5

outputs
∑n

i=1 ti.
It is easy to verify that the protocol has the correct output distribution. The security of the protocol can

be analyzed using the Leftover Hash Lemma [ILL89]. (Similar uses of this lemma were previously made
in [IN96, IKOS06].) Specifically, the protocol is statistically secure when n > log2 |R| + k. We note that
in light of efficient algorithms for low-density instances of subset sum [LO85], one cannot hope to obtain
significant efficiency improvements by choosing a smaller value of n and settling for computational security.

Product-sharing from linear codes. Our construction for black-box fields generalizes the previous ap-
proach of Naor and Pinkas [NP06] in a natural way. The high level idea is as follows. Bob sends to Alice
a noisy randomized linear encoding (or noisy linear secret-sharing) of b which is assumed to hide b. Alice
uses the homomorphic properties of this encoding to compute a noisy encoding of ab+ z for a random z of
her choice. Bob uses OT to retrieve only the non-noisy portions of the latter encoding. Note that the above
unconditionally secure protocol can also be viewed as an instance of this general paradigm.

In more detail, suppose that G is an n × k generating matrix of a linear code C ⊂ Fn whose minimal
distance is bigger than d. This implies that an encoded message can be efficiently recovered from any n− d
coordinates of the encoding by solving a system of linear equations defined by the corresponding sub-matrix
of G. Now, suppose that G has the following intractability property: the distribution of Gu+ e, where u is
a random message from F k whose first coordinate is b and e is a random noise vector of Hamming weight
at most d, keeps x semantically secure. (This follows, for instance, from the pseudorandomness of a noisy
codeword in the code spanned by all but the first column of G.) Given such G the protocol proceeds as
follows. Bob sends to Alice v = Gu+ e as above, where e is generated by first picking at random a subset
L ⊂ [n] of size n− d and then picking ei at random for i 6∈ L and setting ei = 0 for i ∈ L. By assumption,
v keeps b hidden from Alice. Alice now locally computes v′ = a · v − Gz, where z is a random message
in F k. Restricted to the coordinates in L, this agrees with the encoding of a random message whose first
coordinate is ab− z1. Using the OT-oracle, Bob obtains from Alice only the coordinates of v′ with indices
in L, from which it can decode and output ab− z1. Alice outputs z1.

The basic secure polynomial evaluation protocol from [NP06], when restricted to degree-1 polynomials,
essentially coincides with the above protocol when C is a Reed-Solomon code. The extension to general
linear codes makes the underlying security assumption more conservative. Indeed, in contrast to Reed-
Solomon codes, the problem of decoding random linear codes is believed to be intractable even for very low
levels of noise.

In our actual protocols we will use several different distributions for picking the generating matrix G,
and allow the noise distribution to depend on the particular choice of G (rather than only on its minimal
distance). In particular, for the case of general black-box rings we pick G from a special class of codes for
which decoding does not require inversion and yet the corresponding intractability assumption still seems
viable.

Finally, in our most efficient code-based protocol we use Reed-Solomon codes as in [NP06], but extend
the above general template by letting Bob pack t = Ω(k) field elements (b1, . . . , bt) into the same codeword
v. This variant of the construction does not apply to a general G, and relies on a special property of Reed-
Solomon codes which was previously exploited in [FY92]. This approach yields a protocol which realizes t
parallel instances of product-sharing by communicating only O(t) field elements.

Product-sharing from homomorphic encryption. Our last product-sharing protocol applies to rings of
the form Zm or n× n matrices over such rings and makes a standard use of homomorphic encryption. The
only technicality that needs to be addressed is that the most useful homomorphic homomorphic encryption
schemes do not allow to control the modulusm but rather have this modulus generated by the key-generation
algorithm. However, in the semi-honest model it is simple (via standard techniques) to emulate secure

6

computation modulo m via secure computation modulo any M � m.

1.4 Further Discussion

From the OT-hybrid model to the plain model An advantage of presenting our protocols in the OT-hybrid
model is that they can be instantiated in a variety of models and under a variety of assumptions. For instance,
using UC-secure OT protocols from [PVW08, DNO08], one can obtain efficient UC-secure instances of
our protocols in the CRS model. In the stand-alone model, one can implement these OTs by making a
black-box use of homomorphic encryption [IKLP06]. Thus, our protocols which make a black-box use of
homomorphic encryption do not need to employ an additional OT primitive in the stand-alone model.

We finally note that our protocols requires onlyO(k) OTs with security in the malicious model, indepen-
dently of the circuit size; the remaining OT invocations can all be implemented in the semi-honest model,
which can be done very efficiently using the technique of [IKNP03]. Furthermore, all the “cryptographic”
work for implementing the OTs can be done off-line, before any inputs are available. We expect that in most
natural instances of large-scale secure arithmetic computation, the cost of realizing the OTs will not form an
efficiency bottleneck.

Extensions. While we explicitly consider here only stateless arithmetic circuits, this model (as well as our
results) can be readily generalized to allow stateful, reactive arithmetic computations whose secret state
evolves by interacting with the parties.7

Another direction for extending the basic results has to do with the richness of the arithmetic computa-
tion model. Recall that the standard model of arithmetic circuits allows only to add, subtract, and multiply
ring elements. While this provides a clean framework for the study of secure computation over black-box
rings, many applications depend on other operations that cannot be efficiently expressed in this basic cir-
cuit model. For instance, when emulating arithmetic computation over the integers via computation over a
(sufficiently large) finite field, one typically needs to check that the inputs comes from a given range.

As it turns out, reactive arithmetic computations are surprisingly powerful in this context, and can be
used to obtain efficient secure realizations of useful “non-arithmetic” manipulations of the state, including
decomposing a ring element into its bit-representation, equality testing, inversion, comparison, exponentia-
tion, and others [DFK+06, Tof07]. These reductions enhance the power of the basic arithmetic model, and
allow protocols to efficiently switch from one representation to another in computations that involve both
boolean and arithmetic operations.

1.5 Roadmap

We now briefly outline the structure of the rest of this paper. Our basic definitions, including those of black-
box computational rings and our notion of security in this context, are given in Section 2. To achieve our
results (focusing on the two-party setting), recall that our overall technical approach is to invoke [IPS08],
which gives a general blueprint for constructing efficient protocols by combining an “outer MPC protocol”
secure against active adversaries in the honest majority setting, with an “inner two-party protocol” for simple
functionalities that need only be secure against passive adversaries. We will give the details of this in Section
5, but the bottom line (as discussed above) is that existing protocols (some with minor modifications) suffice
for the outer MPC protocols, and all we need to provide are efficient inner protocols secure against passive

7An ideal functionality which formally captures such general reactive arithmetic computations was defined in [DN03] (see
also [Tof07, Chapter 4]) and referred to as an arithmetic black-box (ABB). All of our protocols for arithmetic circuits can be
naturally extended to realize the ABB functionality.

7

adversaries. Furthermore, since we are in the setting of passive adversaries, the only functionality that we
need the inner protocol to compute is a basic ring multiplication function, at the end of which the two parties
should hold additive shares of the product of their respective inputs. To construct efficient protocols for this
basic functionality, we examine three approaches. Our first two approaches are based on “noisy encodings”
of various types, which we define in Section 3, and the last approach is based on homomorphic encryption.
The actual protocols (“inner two-party protocols”) based on these three approaches are given in Section 4.

2 Preliminaries

Black-box rings and fields. A probabilistic oracle R is said to be a valid implementation of a finite ring R
if it behaves as follows: it takes as input one of the commands add, subtract, multiply, sample and two m
bit “element identifiers” (or none, in the case of sample), and returns a single m bit string. There is a one-
to-one mapping label : R ↪→ {0, 1}m such that for all x, y ∈ R R(op, label(x), label(y)) = label(x ∗R y)
where op is one of add, subtract and multiply and ∗R is the ring operation +,−, or · respectively. When an
input is not from the range of label, the oracle outputs ⊥. (In a typical protocol, if a ⊥ is ever encountered
by an honest player, the protocol aborts.) The output of R(sample) is label(x) where x will be drawn
uniformly at random from R. We will be interested in oracles of the kind that implements a family of rings,
of varying sizes. Such a function should take an additional input id to indicate which ring it is implementing.

Definition 2.1 A probabilistic oracle R is said to be a concrete ring family (or simply a ring family) if, for
all strings id, the oracle R(id, ·) (i.e., with first input being fixed to id), is an implementation of some ring.
This concrete ring will be denoted by Rid.

Note that so far we have not placed any computability requirement on the oracle; we only require a concrete
mapping from ring elements to binary strings. However, when considering computationally secure protocols
we will typically restrict the attention to “efficient” families of rings: we say R is a computationally efficient
ring family if it is a ring family that can be implemented by a probabilistic polynomial time algorithm.

There are some special cases that we shall refer to:

1. Suppose that for all id, we have that Rid is a ring with an identity for multiplication, 1. Then, we call
R a ring family with inverse if in addition to the other operations, R(id,one) returns labelid(1) and
R(id, invert, labelid(x)) returns labelid(x−1) if x is a unit (i.e., has a unique left- and right-inverse)
and ⊥ otherwise.

2. If R is a ring family with inverse such that for all id the ring Rid is a field, then we say that R is a field
family.

3. We call a ring family with inverse R a pseudo-field family, if for all id, all but negligible (in |id|)
fraction of the elements in the ring Rid are units.

Some special families of rings we will be interested in, other than finite fields, include rings of the
form Zm = Z/mZ for a composite integer m (namely, the ring of residue classes modulo m), and rings
of matrices over a finite field or ring. With an appropriate choice of parameters, both of these families are
in fact pseudo-fields. Note that a concrete ring family R for the rings of the form Zm could use the binary
representation ofm as the input id; further the elements in Zm could be represented as dlogme-bit strings in
a natural way. Of course, a different concrete ring family for the same ring can use a different representation.

Finally, for notational convenience we assume that the length of all element identifiers in Rid is exactly
|id|. In particular, the ring Rid has at most 2|id| elements.

8

Arithmetic circuits. An arithmetic circuit is a circuit (i.e., a directed acyclic graph with the nodes labeled
as input gates, output gates or internal gates), in which the internal gates are labeled with a ring operation:
add, subtract or multiply. (In addition, for fields, one often considers the additional constant gate one.)
An arithmetic circuit C can be instantiated with any ring R. We denote by CR the mapping (from a vector
of ring elements to a vector of ring elements) defined in a natural way by instantiating C with R. For a
concrete ring family R, we denote by CR the mapping which takes an id and a vector of input identifiers
and outputs the corresponding vector of output identifiers. (If any of the inputs is not a valid identifier, CR

outputs ⊥.)
In the context of multi-party computation, each input or output to such a circuit is annotated to indicate

which party (or parties) it “belongs” to. Given such an annotated circuit C and a concrete ring family R, we
define the functionality FR

C to behave as follows:

• The functionality takes id as a common (public) input, and receives (private) inputs to C from each
party. It then evaluates the function CR(id, inputs) using access to R, and provides the outputs to the
parties.8

Protocols securely realizing arithmetic computations. We follow the standard UC-security framework
[Can05]. Informally, a protocol π is said to securely realize a functionality F if there exists a PPT simu-
lator Sim, such that for all (non-uniform PPT) adversaries Adv, and all (non-uniform PPT) environments
Env which interact with a set of parties and an adversary, the following two scenarios are indistinguishable:
the REAL interaction where the parties run the protocol π and the adversary is Adv; the IDEAL interaction
where the parties communicate directly with the ideal functionality F and the adversary is SimAdv. Indis-
tinguishability can either be statistical (in the case of unconditional security) or computational (in the case
of computational security). All parties, the adversary, the simulator, the environment and the functionality
get the security parameter k as implicit input. Polynomial time computation, computational or statistical in-
distinguishability and non-uniformity are defined with respect to this security parameter k. However, since
we don’t impose an a-priori bound on the size of the inputs received from the environment, the running time
of honest parties is bounded by a fixed polynomial in the total length of their inputs (rather than a fixed
polynomial in k).

We distinguish between static corruption and adaptive corruption. In the latter case it also makes a
difference whether the protocols can erase their state (so that a subsequent corruption will not have access
to the erased information), or no erasure is allowed. Our final protocols will have security against adaptive9

corruption in the model that allows honest parties to erase their state information, but as an intermediate
step, we will consider protocols which have security only against static corruption.

We shall consider protocols which make oracle access to a ring family R. For such a protocol we
define its arithmetic computation complexity as the number of oracle calls to R. Similarly the arithmetic

8FR
C can take id as input from each party, and ensure that all the parties agree on the same id. Alternately, we can restrict to

environments which provide the same common input id to all parties. In this case id could be considered part of the specification
of the functionality, more appropriately written as FR

C,id.
9One of the reasons for us to aim for adaptive security with erasure is that we will be relying on the main protocol compiler

of [IPS08], as described informally in the Introduction and treated more formally in Section 5. This compiler requires that the
component protocols, the “outer MPC protocol” and the “inner two-party protocol,” both enjoy adaptive security – the outer protocol
must be adaptively secure in the model without erasures, but the inner protocol can be adaptively secure with erasures (in the OT-
hybrid model). Note that the conference version of [IPS08] incorrectly claimed that the main protocol’s proof of security works
even when the inner protocol is only statically secure, but this does not seem to be the case. However, this issue does not present
any problems for us here, as we are easily able to modify our proposed “inner” protocols to achieve adaptive security with erasures
using standard techniques, as detailed in Appendix A.

9

communication complexity is defined as the number of ring-element labels in the communication transcript.
The arithmetic computation (respectively communication) complexity of our protocols will dominate the
other computation steps in the protocol execution (respectively, the number of other bits in the transcript).
Thus, the arithmetic complexity gives a good measure of efficiency for our protocols.

Note that while any computational implementation of the ring oracle necessarily requires the complexity
to grow with the ring size, it is possible that the arithmetic complexity does not depend on the size of the
ring at all.

We now define our main notion of secure arithmetic computation.

Definition 2.2 Let C be an arithmetic circuit. A protocol π is said to be a secure black-box realization of
C-evaluation for a given set of ring families if, for each R in the set,

1. πR securely realizes FR
C , and

2. the arithmetic (communication and computation) complexity of πR is bounded by some fixed polyno-
mial in k and |id| (independently of R).

In the case of unconditional security we will quantify over the set of all ring families, whereas in the case
of computational security we will typically quantify only over computationally efficient rings or fields.10 In
both cases, the efficiency requirement on π rules out the option of using a brute-force approach to emulate
the ring oracle by a boolean circuit.

We remark that our constructions will achieve a stronger notion of security, as the simulator used to
establish the security in item (1) above will not depend on R. A bit more precisely, the stronger definition is
quantified as follows: there exists a simulator such that for all adversaries, ring families, and environments,
the ideal process and the real process are indistinguishable. For simplicity however we phrase our definition
as above which does allow different simulators for different R.

3 Noisy Encodings

A central tool for our main protocols is a noisy encoding of elements in a ring or a field. In general this
encoding consists of encoding a randomly padded message with a (possibly randomly chosen) linear code,
and adding noise to the codeword obtained. The encodings will be such that, with some information re-
garding the noise, decoding (of a codeword derived from the noisy codeword) is possible, but otherwise the
noisy codeword hides the message. The latter will typically be a computational assumption, for parameters
of interest to us.

We shall use two kinds of encodings for our basic protocols in Section 4. The first of these encodings
has a statistical hiding property which leads to a statistically secure protocol (in the OT-hybrid model). The
other kind of encoding we use (described in Section 3.2) is hiding only under computational assumptions.
In fact, we provide a general template for such encodings and instantiate it variously, leading to different
concrete computational assumptions.

3.1 A Statistically Hiding Noisy Encoding

• Encoding of x, EncR
n (id, x): Here x ∈ Rid; n is a parameter of the encoding.

10This is needed only in the constructions which rely on concrete computational assumptions. A computationally-unbounded
ring oracle can be used by the adversary to break the underlying assumption.

10

– Denote Rid by R.

– Pick a “pattern” σ ∈ {0, 1}n.

– Pick a random vector u ∈ Rn conditioned on
∑n

i=1 ui = x.

– Pick a pair of random vectors (v0, v1) ∈ Rn ×Rn, conditioned on vσi
i = ui. That is, the vector

u is “hidden” in the pair of vectors v0 and v1 according to the pattern σ.

– Output (v0, v1, σ).

The encoding could be seen as consisting of two parts (v0, v1) and σ, where the latter is information
that will allow one to decode this code. For x ∈ R, let SR,n

x denote the distribution of the first part of the
encoding EncR

n (id, x), namely (v0, v1).
This simple encoding has the useful property that it statistically hides x when the decoding information

σ is removed. The proof of this fact makes use of the Leftover Hash Lemma [ILL89] (similarly to previous
uses of this lemma in [IN96, IKOS06]).

Lemma 1 Let n > log |R| + k. Then, for all x ∈ R, the statistical distance between the distribution of
SR,n

x and the uniform distribution over Rn ×Rn is 2−Ω(k).

PROOF: Consider the hash function family H that consists of functions Hv0,v1 : {0, 1}n → R, where
(v0, v1) ∈ Rn × Rn, defined as Hv0,v1(σ) :=

∑
i v

σi
i . It is easily verified that this is a 2-universal hash

function family. Then, by the Leftover Hash Lemma,

1
|H|

∑
H∈H

∆(H(U{0,1}n),UR) = 2−Ω(n−log |R|),

where U{0,1}n stands for the uniform distribution over {0, 1}n and ∆ denotes the statistical difference be-
tween two distributions.

To prove the lemma we make use also of the following symmetry between all the possible outcomes
of the hash functions: There is a family of permutations on H, {πα|α ∈ R} such that for all z ∈ R,
Pr[z|H] = Pr[z + α|πα(H)] (where Pr[z|H] is a shorthand for Prσ←{0,1}n [H(σ) = z]). In particular we
can set πα(Hv0,v1) := Hu0,u1 where u0 (respectively u1) is identical to v0 (respectively v1) except for the
first co-ordinate which differs by α: u0

1 − v0
1 = u1

1 − v1
1 = α. Then,

1
|H|

∑
H∈H

∆(H(U{0,1}n),UR) =
1
|H|

1
2

∑
H∈H

∑
z∈R

(
|Pr[z|H]− 1

|R|
|
)

=
1
|H|

1
2

∑
z∈R

∑
H∈H

(
|Pr[x|πx−z(H)]− 1

|R|
|
)

=
|R|
|H|

1
2

∑
H∈H

(
|Pr[x|H]− 1

|R|
|
)

because πx−z is a permutation

=
1
2

∑
H∈H

(
|Pr[H|x]− 1

|H|
|
)

because with Pr[H] =
1
|H|

, Pr[x] =
1
|R|

.

Note that the last expression is indeed the statistical difference between SR,n
x and URn×Rn . To complete the

proof note that we have already bounded the first quantity by 2−Ω(n−log |R|). �

11

3.2 Linear Code Based Encodings

We describe an abstract noisy encoding scheme for a ring family R. The encoding scheme is specified using
a code generation algorithm G:

• G is a randomized algorithm such that GR(id) outputs (G,H,L) where G is an n×k matrix, L ⊆ [n],
|L| = ` and H is another matrix. We note that only G and L will be used in the noisy encoding
process; H will be useful in describing the decoding process.

Here k is the security parameter as well as the code dimension, and n(k) (code length) and `(k) (number of
coordinates without noise) are parameters of G. In our instantiations n will be a constant multiple of k and
in most cases we will have ` = k.

Let R be a ring family and R = Rid from some id. Given G, a parameter t(k) ≤ k (number of ring
elements to be encoded, t = 1 by default), and x ∈ Rt, we define a distribution ER

(G,t)(x), as that of the
public output in the following encoding process:

• Encoding EncodeR
(G,t)(id, x):

– Input: x = (x1, . . . , xt) ∈ Rt.

– Let (G,L,H)← GR(id)

– Pick a random vector u ∈ Rk conditioned on ui = xi for i = 1, . . . , t (i.e., u is x padded with
k − t random elements). Compute Gu ∈ Rn.

– Pick a random vector v ← Rn, conditioned on vi := (Gu)i for i ∈ L.

– Let the private output be (G,L,H, v) and the public output be (G, v) (where each ring element
is represented as a bit string obtained by the mapping label used by R).

The matrix H is not used in the encoding above, but will be required for a decoding procedure that our
protocols will involve. In our main instantiationsH can be readily derived fromG and L. But we includeH
explicitly in the outcome of G, because in some cases it is possible to obtain efficiency gains if (G,H,L) are
sampled together. We sketch one such case when we describe “Ring code based encoding” in Section 3.2.1.

Assumption 1 (Generic version, for a given G, R and t(k).) For all sequences {(idk, xk, yk)}k, let Rk =
Ridk

, and suppose xk, yk ∈ R
t(k)
k . Then the ensembles {ERk

(G,t)(x)}k and {ERk

(G,t)(y)}k are computationally
indistinguishable.

For the sake of reference to some previously studied assumptions, we also define a simpler (but stronger)
generic assumption, which implies the above version:

Assumption 2 (Generic pseudorandomness version, for a given G and R.) For any sequence {idk}k,
let Rk = Ridk

. Then the ensembles {ERk

(G,t)(0
t(k))}k and {

(
G← GRk , v ← Rn

k

)
}k are computationally

indistinguishable.

3.2.1 Instantiations of the Encoding

The above generic encoding scheme can be instantiated by specifying a code generation algorithm G, a ring
family, and the parameter t(k) which specifies the length of the input to be encoded. We consider three such
instantiations.

12

Random code based instantiation. Our first instantiation of the generic encoding has t(k) = 1 and uses
a code generation algorithm GRand based on a random linear code. Here the ring family is any field family
F. GF

Rand(id) works as follows:

• Let k = |id|. Let n = 2k and ` = k. Denote Fid by F .

• Pick a random n× k matrix G← Fn×k.

• Pick a random subset L ⊆ [n], |L| = k, such that the k×k submatrix G|L is non-singular, where G|L
consists of those rows in G whose indices are in L.11

• Let H be the k × k matrix such that HG|L = I , the k × k identity matrix. (This H will be used in
our protocol constructions.)

The following variants of this instantiation are also interesting:

• Instead of choosing n(k) = 2k, we can choose n(k) > 2k + logc |F | for some c < 1 (say c = 1
2).

By choosing a larger n we essentially weaken the required assumption. (We remark that the case of
n(k) > log |F | is not of much interest to us here, because then our construction which employs this
assumption is bettered by our unconditional construction.)

• The above encoding can be directly used with a pseudo-field family instead of a field family. Note
that the invertibility of elements was used in deriving H , but in a pseudo-field, except with negligible
probability this derivation will still be possible.

Ring code based instantiation. Our next instantiation also has t(k) = 1. It uses a code generation
algorithm GRing that works with any arbitrary ring family (not just fields). But for simplicity we will assume
that the ring has a multiplicative identity 1.12 Here again in the noisy encoding we will use t = 1. GR

Ring(id)
works follows.

• Let k = |id|. Let n = 2k and ` = k. Denote Rid by R.

• Pick two k × k random matrices A and B with elements from R, conditioned on them being upper
triangular and having 1 in the main diagonal. Let G be the 2k × k matrix

[
A
B

]
.

• Define L as follows. Let L = {a1, . . . , ak} where ai = i or k + i uniformly at random. (That is ai

indices the i-th row in either A or B.)

• Note thatG|L is an upper triangular matrix with 1 in the main diagonal. It is easy to compute an upper
triangular matrix H (also with 1 in the main diagonal) using only the ring operations on elements in
G|L such that HG|L = I .

Here, instead of choosing two matrices, we could choose several, to make the resulting assumption weaker
at the expense of increasing n.

We point out an alternate encoding which would also work with arbitrary rings. One can construct G|L
and H such that HG|L = I simultaneously by taking a two opposite random walks in the special linear

11For efficiency of G, it is enough to try random subsets L ⊆ [n] and check if G|L is non-singular; in the unlikely event that no
L is found in k trials, G can replace G with an arbitrary matrix with a k × k identity matrix in the first k rows.

12Rings which do not have 1 can be embedded into a ring of double the size which does have 1, by including new elements a+1
for every element a in the original ring, and setting 1 + 1 = 0.

13

group SL(n,R) (i.e., the group of n × n matrices over the ring R, with determinant 1), where each step in
the walk consists of adding or subtracting a row from another row, or a column from another column; in
the “opposite” walk, the step corresponding to an addition has a subtraction, and the step corresponding to
subtraction has an addition. The random walks start from the identity matrix, and will be long enough for
the generated matrices to have sufficient entropy. Note that in such a scheme, we need to rely on the code
generation algorithm to simultaneously sample (G,L,H), rather than output just (G,L), because matrix
inversion is not necessarily easy for all rings.

Reed-Solomon code based instantiation. In our third instantiation of the generic encoding, we will have
t(k) to be a constant fraction of k. The code generation algorithm GRS is based on the Reed-Solomon code,
and will work with any sufficiently large field family F. GF

RS(id) works as follows:

• Let k = |id|. Let n = ck, for a sufficiently large constant13 c > 4, and ` = 2k − 1. Denote Fid by F .

• Pick distinct points ζi ∈ F for i = 1, . . . , k, and ϑi ∈ F , for i = 1, . . . , n uniformly at random.

• Define the n× k matrix G so that it extrapolates a degree k − 1 polynomial, given by its value at the
k points ζi, to the n evaluation points ϑi. That is, G is such that for any u ∈ F k, (Gu)i = P (ϑi) for
i = 1, . . . , n, where P is the unique degree k − 1 polynomial such that P (ζi) = ui for i = 1, . . . , k.

• Pick L ⊆ [n] with |L| = ` = 2k − 1 at random.

• Let H be the k × 2k − 1 matrix such that (HvL)i = Q(ζi), where Q is the unique degree 2(k − 1)
polynomial such that Q(ϑj) = vj for all j ∈ L.

3.2.2 Instantiations of Assumption 1

Each of the above instantiations of the encoding leads to a corresponding instantiation of Assumption 1. For
the sake of clarity we collect these assumptions below.

Assumption 3 (a) [For GRand, with t(k) = 1.] For any computationally efficient field family F, for
all sequences {(idk, xk, yk)}k, let Fk = Fidk

, and suppose xk, yk ∈ Fk. Then the ensembles
{EFk

(GRand,1)(x)}k and {EFk

(GRand,1)(y)}k are computationally indistinguishable.

(b) [For GRing, with t(k) = 1.] For any computationally efficient ring family R, for all sequences
{(idk, xk, yk)}k, let Rk = Ridk

, and suppose xk, yk ∈ Rk. Then the ensembles {ERk

(GRing,1)(x)}k
and {ERk

(GRing,1)(y)}k are computationally indistinguishable.

(c) [For GRS, with t(k) = k/2.]14 For any computationally efficient field family F, for all sequences
{(idk, xk, yk)}k, let Fk = Fidk

, and suppose xk, yk ∈ F
t(k)
k . Then the ensembles {EFk

(GRand,t)(x)}k and

{EFk

(GRand,t)(y)}k are computationally indistinguishable, for t ≤ k/2.

13We require c > 4 so that Assumption 3(c) will not be broken by known list-decoding algorithms for Reed-Solomon codes.
c = 8 may be a safe choice, with larger values of c being more conservative.

14We can make the assumption weaker by choosing smaller values of t, or larger values of n in GRS.

14

4 Product-Sharing Secure Against Passive Corruption

In this section we consider the basic two-party functionality Fpdt-shr described below

• A sends a ∈ R and B sends b ∈ R to Fpdt-shr.

• Fpdt-shr samples two random elements zA, zB ∈ R such that zA + zB = ab, and gives zA to A and
zB to B.

When we want to explicitly refer to the ring in which the computation takes place we will write the func-
tionality as FR

pdt-shr.
We present three protocols based on noisy encodings, with increasing efficiency, but using stronger

assumptions, in the OT-hybrid model for this functionality (some of which are restricted to when R is a
field). We then present two protocols based on homomorphic encryption. These protocols are secure only
against static passive corruption. In Appendix A we present a general transformation, that applies to a class
of protocols covering all our above protocols, to obtain protocols that are secure against adaptive passive
corruption, with erasures.

4.1 A Basic Protocol with Statistical Security

• Protocol ρOT. A holds a ∈ R and B holds b ∈ R.

– B randomly encodes b as specified in Section 3.1. i.e., let (v0, v1, σ) ← EncR
n (id, b). Then∑

i v
σi = b.

– B sends (v0
i , v

1
i) (for i = 1, . . . , n) to A.

– A picks a random vector t ∈ Rn and sets zA =
∑n

i=1 ti; she computes w0
i = av0

i − ti and
w1

i = av1
i − ti.

– A and B engage in n instances of
(
2
1

)
OT, where in the ith instance A’s inputs are (w0

i , w
1
i) and

B’s input is σi. B receives wσi
i .

– A outputs zA. B outputs the sum of all the n elements he received above: i.e., B outputs

zB :=
∑

i

wσi
i =

∑
i

(avσi − ti) = ab− zA.

We will pick n > log(|R|) + k. Then we have the following result.

Lemma 2 Suppose n > log(|R|) + k. Then protocol ρOT securely realizes Fpdt-shr against static passive
corruption. The security is statistical.

PROOF SKETCH: When B is corrupted, it is easy to construct a simulator to obtain perfect security. The
more interesting case is when A is corrupted. Then the simulator Sim behaves as follows.

• Send A’s input to Fpdt-shr and obtain zA in response.

• Set t ∈ Rn in A’s random tape such that
∑

i ti = zA. Note that A’s output will then be zA.

• Sample an element α ← R and run the honest program for B using this input. The only message
produced by the simulation is a pair of vectors (v0, v1).

15

By Lemma 1, the message produced by the simulator is statistically close to the message produced by B in
the real execution (both being statistically close to the uniform distribution overRn×Rn), and the simulation
is statistically indistinguishable from a real execution. �

4.2 Basic Protocol Using Linear Codes for Rings

We improve on the efficiency of the protocol in Section 4.1 by depending on computational assumptions
regarding linear codes. One advantage of the protocol in this section is that it does not explicitly depend on
the size of the underlying ring. Restricted to fields, this construction can use the code generation GRand; for
arbitrary rings with unity, the construction can use GRing. Note that both coding schemes generate (G,L,H)
such that HG|L = I , which is what the protocol depends on. It uses these codes in a noisy encoding with
t = 1.

• Protocol σOT. A holds a ∈ R and B holds b ∈ R.

– B randomly encodes b using EncodeR
(G,1)(b) to get (G,H,L, v) as the private output. (Note that

t = 1 in the encoding, and HG|L = I .)

– B sends (G, v) to A.

– A picks a random vector x ∈ Rk and sets w = av −Gx.

– A andB engage in an
(
n
k

)
-OT whereA’s inputs are (w1, . . . , wn) andB’s input is L. B receives

wi for i ∈ L. (Recall that when considering passive corruption, an
(
n
k

)
-OT maybe implemented

using n instances of
(
2
1

)
-OT. Here OT is a string-OT and the inputs are labels for the ring

elements.)

– A outputs zA := x1, the first co-ordinate of x. B outputs zB := (HwL)1 = ab− x1.

Lemma 3 If Assumption 1 holds for a code generation scheme G, with t = 1, then Protocol σOT securely
realizes Fpdt-shr, against static passive corruption.

PROOF SKETCH: The interesting case is when A is corrupt and B is honest. Then the simulator Sim
behaves as follows.

• Send A’s input to Fpdt-shr and obtain zA in response.

• Set x ∈ Rn in A’s random tape conditioned on x1 = zA. Note that A’s output will then be zA.

• Sample an element α ∈ R and run the honest program for B using this input. The only message
produced by the simulation is the pair (G, v).

(G, v) is the only message output by (simulated) B in the (simulated) protocol. In the real execution
this message is distributed according to ER

(G,1)(b) whereas in the simulation it is distributed according to
ER

(G,1)(α). By the assumption in the lemma, we conclude that these two distributions are indistinguishable
(even if b and α are known), and hence the view of the environment in the real execution is indistinguishable
from that in the simulated execution. �

16

4.3 Amortization using Packed Encoding

In this section we provide a passive-secure protocol in the OT-hybrid model for multiple instances of the
basic two-party functionality Fpdt-shr. That is, we realize the two-party functionality FF t

pdt-shr which takes
as inputs a ∈ F t and b ∈ F t, and outputs random vectors zA and zB to A and B respectively, such that
zA + zB = ab := (a1b1, . . . , atbt) (note that multiplication in F t refers to coordinate-wise multiplication).

We use the noisy encoding scheme with the code generation algorithm GRS. We shall choose t = k/2.

• Protocol τOT. A holds a = (a1, . . . , at) ∈ F t and B holds b = (b1, . . . , bt) ∈ F t.

– B randomly encodes x using EncodeR
(GRS,t)(x) to get (G,H,L, v) as the private output.

– B sends G and v = (v1, . . . , vn) ∈ Fn to A. Recall that for some degree k − 1 polynomial Pb,
vi := Pb(ϑi) for i ∈ L (and vi is a random field element if i 6∈ L).

– Note that the points ϑi and ζi are implicitly specified by G. A picks a random degree k − 1
polynomial Pa such that Pa(ζi) = ai for i = 1, . . . , t, and also a random degree 2(k − 1)
polynomial Pr. A computes wi := Pa(ϑi)vi − Pr(ϑi) for i = 1, . . . , n.

– A and B engage in a
(

n
2k−1

)
OT, where A’s inputs are (w1, . . . , wn) and B’s input is L. B

receives wi for i ∈ L.

– B computes Hw|L. Note that then (Hw|L)i = Q(ζi) where Q is the unique degree 2(k − 1)
polynomial Q such that Q(ϑi) = wi for i ∈ L.

– A sets zA
i := Pr(ζi) for i = 1, . . . , t. and B sets zB

i := Q(ζi) for i = 1, . . . , t.
Note that (if A and B are honest), Q is the degree 2(k − 1) polynomial PaPb − Pr, and hence
zA
i + zB

i = Pa(ζi)Pb(ζi) = aibi.

– A outputs zA := (zA
1 , . . . , z

A
t) and B outputs zB := (zB

1 , . . . , z
B
t).

Remark about computational efficiency. The computational complexity of Protocol τOT (ignoring the
use of OT) is dominated by the evaluation and interpolation of polynomials (note that the matrices G and
H can be stored in an implicit form just by storing the points ϑi and ζi). As such, in general the com-
plexity would be O(k log2 k) for randomly chosen evaluation points [vzGG99]. We note, however, that
this complexity can be reduced to O(k log k) by a more careful selection of evaluation points [vzGG99],
at the expense of having to assume that Assumption 3(c) holds also with respect to this specific choice of
evaluation points.

Lemma 4 If Assumption 3(c) holds, then Protocol τOT securely realizes FF t

pdt-shr, against static passive
corruption.

PROOF SKETCH: The interesting case is when A is corrupt and B is honest. Then the simulator Sim
behaves as follows.

• Send A’s input a to FF t

pdt-shr and obtain zA in response.

• Set A’s random tape so that she picks Pr such that Pr(ζi) = zA
i for i = 1, . . . , t. Note that A’s output

will then be zA.

• Sample α ∈ F t and run the honest program for B using this input. The only message produced by
the simulation is the vector v.

17

Indistinguishability of the simulation follows because of the assumption in the lemma: given α and b,
ER

(GRS,t)(α) and ER
(GRS,t)(b) are computationally indistinguishable. �

4.4 Protocols based on Homomorphic Encryption

In this section, we construct protocols (secure against passive adversaries) for the basic two-party function-
ality Fpdt-shr, based on homomorphic encryption. Since we work in the context of rings, by homomorphic
encryption (informally speaking), we mean an encryption scheme where it is possible to both: (1) given
encryptions of two ring elements x and y, it is possible to generate an encryption of x + y; and (2) given a
ring element α and an encryption of a ring element x, it is possible to generate an encryption of αx. It is
important to stress two points:

• Any encryption scheme that is group-homomorphic for the standard representation of the (additive)
group Zm is immediately homomorphic in our sense with respect to the ring Zm.

• As such, our notion of homomorphic encryption, even though it is defined in the context of rings,
is different from and should not be confused with the notion of “fully” or “doubly” homomorphic
encryption. In particular, we do not require that given encryptions of two ring elements x and y, it is
possible to generate an encryption of x · y, where · is the ring multiplication operation.

Note that while most homomorphic encryption schemes from the literature fit this definition (since
they are group-homomorphic for the standard representation of the (additive) group Zm), some do not; for
example, the El Gamal encryption scheme is group-homomorphic for a subgroup of Z∗p, but there does not
seem to be any ring structure for which El Gamal encryption would be homomorphic in our sense15.

Furthermore, we consider two types of homomorphic encryption schemes. Informally speaking, the
issue that separates these two types of homomorphic encryption schemes is whether the ring underlying the
homomorphic encryption scheme can be specified beforehand (which we call a “controlled ring” scheme),
or whether it is determined by the key generation algorithm (which we call an “uncontrolled ring”). For
example, the key generation algorithm of the classic Goldwasser-Micali encryption scheme [GM84] based
on quadratic residuosity always produces keys for a Z2-homomorphic encryption scheme, and is thus a
“controlled ring” scheme. Note that by considering higher residuosity classes, Benaloh [Ben87] similarly
constructs “controlled ring” homomorphic encryption schemes for the rings Zp, where p is a polynomially
bounded (small) prime number. On the other hand, schemes like the Paillier cryptosystem [Pai99] are
homomorphic with respect to the ring Zn, where n is a randomly chosen product of two large primes chosen
at the time of key generation; n cannot be specified ahead of time. Thus, the Paillier scheme is an example
of an “uncontrolled ring” homomorphic encryption scheme.

We first describe formally what we call “controlled ring” homomorphic encryption:

Definition 4.1 A “controlled ring” homomorphic encryption scheme corresponding to a concrete ring fam-
ily R is a tuple of algorithms (G,E,D,C), such that:

1. (G,E,D) is a semantically secure public-key encryption scheme, except that the algorithm G takes
as input both 1k and id, and the set of values that can be encrypted using the public-key output by G
are the elements of Rid.

15Since Z∗
p is cyclic, it can be associated with the ring Zp−1; however there does not seem to be any computationally efficient way

to consider El Gamal encryption to be homomorphic for any nontrivial subring of this ring, as it would seem to require computing
discrete logarithms in Z∗

p or its subgroups.

18

2. For any x1, x2 ∈ Rid, given (pk, sk) ← G(1k, id) and two ciphertexts c1 = E(pk, x1) and c2 =
E(pk, x2), we have that C(pk, c1, c2) outputs a distribution whose statistical distance to the distribu-
tion E(pk, x1 + x2) is negligible in k.

3. For any x, α ∈ Rid, given (pk, sk) ← G(1k, id) and a ciphertext c = E(pk, x), we have that
C(pk, c, α) outputs a distribution whose statistical distance to the distribution E(pk, x · α) is negli-
gible in k.

Such controlled ring homomorphic encryption schemes immediately give rise to a protocol for our basic
two-party functionality Fpdt-shr, as we now demonstrate.

• Protocol θ. A holds a ∈ Rid and B holds b ∈ Rid.

– (Initialization) A runs G(1k, id) to obtain (pk, sk). This is done only once, as the same public
key can be used as many times as necessary.

– A computes c = E(pk, a), and sends c to B.
– B chooses r ∈ Rid at random, computes c′ = E(pk, r), and then computes c′′ = C(pk, C(pk, c, b), c′)

and sends c′′ to A. Note that c′′ is an encryption of ab+ r. B outputs −r.
– A computes v = D(sk, c′′), and outputs v.

The correctness and privacy properties of this protocol (against passive corruptions) follow immediately
from the definition of controlled ring homomorphic encryption.

As mentioned above, unfortunately many known homomorphic encryption schemes do not allow com-
plete control over the ring underlying the homomorphic encryption scheme, and so they do not satisfy the
definition of controlled ring homomorphic encryption schemes. We deal with these types of homomorphic
encryption schemes separately below.

Definition 4.2 An “uncontrolled ring” homomorphic encryption scheme corresponding to a concrete ring
family R is a tuple of algorithms (G,E,D,C), such that:

1. (G,E,D) is a semantically secure public-key encryption scheme, except that the algorithm G outputs
id along with the public and private keys, and the set of values that can be encrypted using the public-
key output byG are the elements of Rid. Furthermore, it is guaranteed that |Rid| > 2k, and |Rid| < 2qk

for some universal constant q.

2. Given (pk, sk, id) ← G(1k), for any x1, x2 ∈ Rid, and given two ciphertexts c1 = E(pk, x1) and
c2 = E(pk, x2), we have that C(pk, c1, c2) outputs a distribution whose statistical distance to the
distribution E(pk, x1 + x2) is negligible in k.

3. Given (pk, sk, id) ← G(1k), for any x, α ∈ Rid, given a ciphertext c = E(pk, x), we have that
C(pk, c, α) outputs a distribution whose statistical distance to the distribution E(pk, α · x) is negli-
gible in k.

In the case of uncontrolled ring homomorphic encryption schemes, we will not consider general rings,
but rather focus our attention on the special case of ZM (i.e. Z/MZ). Here, we will assume that we are
using the standard representation of this ring (as integers in [0,M − 1] working modulo M). We note that
this is our only protocol where a specific representation of the underlying ring is important and required for
our result. In this case, using a little bit of standard additional machinery, we can once again construct a
quite simple protocol for our basic two-party functionality Fpdt-shr, as a show below.

19

• Protocol ψ. A holds a ∈ ZM and B holds b ∈ ZM .

– (Initialization) Let k′ = d2 logMe + 2 + k. A runs G(1k′) to obtain (pk, sk,N), where N >
4(2kM2). This is done only once, as the same public key can be used as many times as necessary.

– A computes c = E(pk, a), and sends c to B.

– B chooses r ∈ ZM and s ∈ Z2(2kM) at random, computes c′ = E(pk, r), c′′ = E(pk, sM), and
then computes c′′′ using the algorithm C repeatedly so that c′′′ is an encryption of ab+ r+ sM .
Note that ab + r + sM < N , by choice of parameters. B then sends c′′′ to A, and outputs −r
mod M .

– A computes v = D(sk, c′′′), and outputs v mod M .

A straightforward counting argument shows that for any a, b, r ∈ ZM , setting w = ab + r mod M ,
we have that the statistical distance between the distributions D1 = (ab + r + sM) and D2 = (w + sM),
where s ∈ Z2(2kM) is chosen at random, is at most 2−k. This is because ab + r ≤ 2M2, and so there are
at most 2M choices of s for which w + sM would not be in the support of D1. Thus, by the definition of
uncontrolled ring homomorphic encryption, the correctness and privacy properties of this protocol (against
passive corruptions) follow immediately.

Matrix rings. Although we focus on the case of ZM above, it is easy to see that this approach can gener-
alized to other related settings, such as the ring of n by n matrices over ZM , in a straightforward manner.
At a high level, this is because any ZM -homomorphic encryption scheme immediately gives rise to an en-
cryption scheme that is homomorphic for the ring of n by n matrices over ZM . In this context, by simply
encrypting each entry in the matrix, the homomorphic property of matrix addition would follow immedi-
ately from the homomorphic property with respect to addition of the underlying encryption scheme. The
slightly interesting case is the “scalar” multiplication (by a known matrix) property of the homomorphic
encryption scheme. It is easy to see that this property also holds, since each entry of the product matrix is
just a degree-2 function of the entries of the two matrices being multiplied. Thus, for instance in our case
of n by n matrices, one can compute the Fpdt-shr functionality with only O(n2) ciphertexts communicated,
even though no algebraic circuits for matrix multiplication are known (or generally believed to exist) with
O(n2) gates.

The discussion regarding matrices above is implicitly written in the context of controlled-ring homo-
morphic encryption. In the context of uncontrolled-ring homomorphic encryption, using the same ideas,
Protocol ψ can be directly adapted to allow one to compute m degree-2 functions over n variables while
communicating only O(m+n) ciphertexts. This allows one to use uncontrolled-ring homomorphic encryp-
tion to compute the Fpdt-shr functionality for n by n matrices over ZM with only O(n2) ciphertexts (for an
encryption scheme over ZN where logN is O(log n+ k + logM)) being communicated.

5 General Arithmetic Computation against Active Corruption

As already discussed in Section 1.3, our general protocols are obtained by applying the general technique
of [IPS08], with appropriate choices of the “outer protocol” and the “inner protocol” that apply to the
arithmetic setting.

More concretely, the result from [IPS08] shows how obtain a UC-secure protocol in the OT-hybrid
model for any (probabilistic polynomial time) two-party functionality f against active corruption by making
a black-box use of the following two ingredients:

20

1. an “outer protocol” for f which employs k auxiliary parties (servers); this protocol should be UC-
secure against active corruption provided that only some constant fraction the servers can be cor-
rupted; and

2. an “inner protocol” for implementing a reactive two-party functionality (“inner functionality”) corre-
sponding to the local computation of each server, in which the server’s state is secret-shared between
Alice and Bob. In contrast to the outer protocol, this protocol only needs to be secure against passive
corruption. The inner protocol can be implemented in the OT-hybrid model.

While the general result of [IPS08] is not sensitive to the type of secret sharing used for defining the
inner functionality, in our setting it is crucial that any ring elements stored by a server will be secret-shared
between Alice and Bob using additive secret sharing over the ring. Given our protocols for Fpdt-shr, this will
let us have the the inner protocol use the ring in a black-box fashion, as described below.

Note that the only operations that the server in an outer protocol needs to do one of the following
operations: add two ring elements, multiply two ring elements, sample a ring element uniformly at random,
or check if two ring elements are equal. If there are oprations which do not involve any ring elements, the
inputs and outputs to these operations are maintained as bit strings and an arbitrary protocol for boolean
circuit evaluation (e.g., GMW in the OT-hybrid model) can be employed. Among the operations that do
involve ring elements, addition and sampling are straightforward: whenever a server in the outer protocol
needs to locally add two ring elements x, y, this can be done locally in the inner protocol by having each of
Alice and Bob add their local shares of the two secrets. When a server in the outer protocol needs to sample
a random ring element, Alice and Bob locally sample the shares of this element. For multiplication, when a
server needs to multiply two ring elements x, y in the outer protocol, the inner protocol will need to apply a
sub-protocol for the following two-party functionality:

• A holds xA and yA, B holds xB and yB .

• The server should compute random values cA and cB such that cA + cB = (xA + xB)(yA + yB).

• A is given cA and B is given cB .

The above functionality can be realized (in the semi-honest model) by making two calls to any of the
product-sharing protocols from Section 4. Specifically, a secure reduction from the above functionality to
Fpdt-shr may proceed as follows:

• A and B engage in two instances of Fpdt-shr with inputs (xA, yB) and (yA, xB) and obtain (αA, αB)
and (βA, βB) where αA + αB = xAyB and βA + βB = yAxB .

• A outputs cA := xAyA + αA + βA and B outputs cB := xByB + αB + βB .

There will be several such instances of Fpdt-shr in each round. Note that Protocol τOT can be used to
realize multiple instances of Fpdt-shr with a constant amortized algebraic complexity per instance.

The final type of computation performed by servers involving ring elements is equality check between
two ring elements. In all the outer protocols we employ, the result of such an equality test is made public.
(In fact, in our setting of “security with abort,” the outer protocols we consider will abort whenever an
inequality is detected by an honest server in such an equality test.) The corresponding inner functionality
needs to check that xa + xb = ya + yb, where xa, ya are identifiers of ring elements known to Alice and
xb, yb are known to Bob. One way to do this would be by letting Alice locally compute xa− ya, Bob locally
compute yb − xb, and then using an arbitrary inner protocol for boolean circuits for comparing the two

21

identifiers. This relies on our assumption that each ring element has a unique identifier. However, in fact in
the outer protocols we consider, there is a further structure that allows us to avoid this generic approach. The
elements to be compared by a server in our outer protocols will always be known to one of the parties (Alice
or Bob), and hence in a passive-secure implementation this comparison can be done locally by that party.
(This is referred to as a “type I computation” in [IPS08]. Note that given a passive-secure implementation,
the compiler of [IPS08] ensures over all security.)

Below we summarize the results we obtain by combining appropriate choices for the outer protocol with
the inner protocols obtained via the shared-product protocols from Section 4. All these results can be readily
extended to the multi-party setting as well, where the complexity grows polynomially with the number of
parties; see Appendix B.

Unconditionally secure protocol. To obtain our unconditional feasibility result for black-box rings, we
use the protocol from [CFIK03] (which makes a black-box use of an arbitrary ring) as the outer protocol
and the unconditional protocol ρOT to build the inner protocol. This yields the following result:

Theorem 1 For any arithmetic circuit C, there exists a protocol Π in the OT-hybrid model that is a secure
black-box realization of C-evaluation for the set of all ring families. The security holds against adaptive
corruption with erasures, in computationally unbounded environments.

The arithmetic communication complexity of the protocol ρOT, and hence that of the above protocol,
grows linearly with (a bound on) | log Rid|. (Recall that, by convention, the required upper bound is given
by |id|; otherwise such a bound can be inferred from the length of identifiers.)

Protocols from noisy encodings. To obtain a computationally secure protocol whose arithmetic commu-
nication complexity is independent of the ring, we shall depend on Assumption 1, instantiated with the code
generation algorithm GRand based on random linear codes. By replacing ρOT by σOT (with GRand as the code
generation scheme) in the previous construction we obtain the following:

Theorem 2 Suppose that Assumption 3(a) holds. Then, for every arithmetic circuit C, there exists a pro-
tocol Π in the OT-hybrid model that is a secure black-box realization of C-evaluation for the set of all
computationally efficient field families F. The security holds against adaptive corruption with erasures.
Further, the arithmetic complexity of Π is poly(k) · |C|, independently of F or id.

Using GRing instead of GRand, this result extends to all ring families for which Assumption 1 holds with
GRing. Recall that we propose this assumption for all efficient computational ring families R.

Theorem 3 Suppose that Assumption 3(b) holds. Then, for every arithmetic circuit C, there exists a pro-
tocol Π in the OT-hybrid model that is a secure black-box realization of C-evaluation for the set of all
computationally efficient ring families R. The security holds against adaptive corruption, with erasures.
Further, the arithmetic complexity of Π is poly(k) · |C|, independently of R or id.

Finally, our most efficient protocol will be obtained by using a variant of the protocol from [DI06] as
the outer protocol (see Appendix C) and an inner protocol which is based on τOT (with n = O(k) and
t = Ω(k)). To get the specified computational complexity, the size of the field should be super-polynomial
in the security parameter. (The communication complexity does not depend on this assumption.)

Theorem 4 Suppose that Assumption 3(c) holds. Then, for every arithmetic circuitC, there exists a protocol
Π in the OT-hybrid model with the following properties. The protocol Π is a secure black-box realization of
C-evaluation for the set of all computationally efficient field families F, with respect to all computationally
bounded environments for which |Fid| is super-polynomial in k. The security of Π holds against adaptive

22

corruption with erasures. The arithmetic communication complexity of Π is O(|C|+ k · depth(C)), where
depth(C) denotes the depth of C, and its arithmetic computation complexity is O(log2 k) · (|C| + k ·
depth(C)). Its round complexity is O(depth(C)).

By using a suitable choice of fields and evaluation points for the Reed-Solomon encoding (see Section 4.3),
and under a corresponding specialization of Assumption 3(c), the computational overhead of the above
protocol can be reduced from O(log2 k) to O(log k). (In this variant we do not attempt to make a black-box
use of the underlying field and rely on the standard representation of field elements.)

Protocols from homomorphic encryption. We also consider protocols which make a black-box16 use of
homomorphic encryption. These are obtained in a manner similar to above, but using protocols θ and ψ as
the inner protocols and [CFIK03] as the outer protocol. Using these we obtain the following theorems:

Theorem 5 For every arithmetic circuit C, there exists a protocol Π in the OT-hybrid model, such that for
every ring family R, the protocol ΠR securely realizes FR

C by making a black-box use of any controlled-ring
homomorphic encryption for R. The security holds against adaptive corruption with erasures. The number
of invocations of the encryption scheme is poly(k) · |C|, independently of R or id.

Note that the above theorem can be instantiated with the ring of n by n matrices over Zp, and the communi-
cation complexity of the resulting protocol would be poly(k) · |C| ·n2. Combined with [MW08], this yields
constant-round protocols for secure linear algebra which make a black-box use of homomorphic encryption
and whose communication complexity is nearly linear in the input size.

For the case of fields, we obtain the following more efficient version of the result by using the efficient
outer protocol from Appendix C:

Theorem 6 For every arithmetic circuit C, there exists a protocol Π in the OT-hybrid model, such that for
every field family F, the protocol ΠF securely realizes FR

C by making a black-box use of any controlled-ring
homomorphic encryption for F. The security holds against adaptive corruption with erasures. Further, Π
makes O(|C| + k · depth(C)) invocations of the encryption scheme, and the communication complexity is
dominated by sending O(|C|+ k · depth(C)) ciphertexts.

We also obtain analogous results for uncontrolled-ring homomorphic encryption:

Theorem 7 For every arithmetic circuit C there exists a black-box construction of a protocol Π in the
OT-hybrid model from any uncontrolled-ring homomorphic encryption for the standard representation of
the ring family ZM , such that Π is a secure realization of C-evaluation for the same ring family under
the standard representation. The security holds against adaptive corruption with erasures. The number of
invocations of the encryption scheme is poly(k)·|C|, independently of id, and the communication complexity
is dominated by poly(k) · |C| ciphertexts. During the protocol, the ring size parameter fed to the encryption
scheme by honest parties is limited to k′ = O(k + |id|).

If, further, the ring over which C should be computed is restricted to be a field, there exists a proto-
col as above which makes O(|C| + k · depth(C)) invocations of the encryption scheme, and where the
communication complexity is dominated by sending O(|C|+ k · depth(C)) ciphertexts.

The efficient version of the above theorem also applies to the case of arithmetic computation over pseudo-
fields, in scenarios where it is computationally hard to find zero divisors. Furthermore, it can be generalized
to the ring of n by n matrices, which when used with constructions of uncontrolled-ring ZN -homomorphic

16Here and in the following, when saying that a construction makes a black-box use of a homomorphic encryption primitive we
refer to the notion of a fully black-box reduction, as defined in [RTV04]. This roughly means that not only does the construction
make a black-box use of the primitive, but also its security is proved via a black-box reduction.

23

encryption schemes from the literature [Pai99, DJ02] would yield arithmetic protocols for matrices over
large rings whose complexity grows quadratically with n.

We finally note that in the stand-alone model, the OT oracle in the above protocols can be realized by
making a black-box use of the homomorphic encryption primitive without affecting the asymptotic number
of calls to the primitive. This relies on the black-box construction from [IKLP06] and the fact that onlyO(k)
OTs need to be secure against active corruption. Thus, the above theorems hold also in the plain, stand-alone
model (as opposed to the OT-hybrid UC-model), assuming that the underlying ring has identity.17

Acknowledgments. We thank Jens Groth, Farzad Parvaresh, Oded Regev, and Ronny Roth for helpful
discussions.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In Moti Yung, editor,
CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 417–432. Springer, 2002.

[AF90] Martı́n Abadi and Joan Feigenbaum. Secure circuit evaluation. J. Cryptology, 2(1):1–12, 1990.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input lo-
cality. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Sci-
ence, pages 92–110. Springer, 2007. Full version in http://www.cs.princeton.edu/
˜bappelba.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in
Computer Science, pages 137–156. Springer, 2007.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakobsen,
Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. Multiparty computation goes live. Cryptology ePrint
Archive, Report 2008/068, 2008. http://eprint.iacr.org/.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, CRYPTO, vol-
ume 963 of Lecture Notes in Computer Science, pages 97–109. Springer, 1995.

[Ben87] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Department of Computer Science,
Yale University, 1987.

[BF01] Dan Boneh and Matthew K. Franklin. Efficient generation of shared rsa keys. J. ACM,
48(4):702–722, 2001. Earlier version in Crypto ’97.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, CRYPTO, volume
773 of Lecture Notes in Computer Science, pages 278–291. Springer, 1993.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th STOC, pages 1–10. ACM,
1988.

17The identity element is used in the standard construction of semi-honest OT from homomorphic encryption.

24

[BKY07] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding interleaved reed-solomon
codes over noisy channels. Theor. Comput. Sci., 379(3):348–360, 2007. Earlier version in
ICALP ’03.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to
cryptography (extended abstract). In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 283–297. Springer, 1996.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous ver-
sion “A unified framework for analyzing security of protocols” availabe at the ECCC archive
TR01-016. Extended abstract in FOCS 2001.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. Revised version of [Can01].

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols. In Proc. 20th STOC, pages 11–19. ACM, 1988.

[CD01] Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant number of
rounds. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science,
pages 119–136. Springer, 2001.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In EUROCRYPT, pages 280–299, 2001. LNCS No. 2045.

[CF02] Ronald Cramer and Serge Fehr. Optimal black-box secret sharing over arbitrary abelian groups.
In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
272–287. Springer, 2002.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In STOC, pages 639–648, 1996.

[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party computa-
tion over rings. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer
Science, pages 596–613. Springer, 2003.

[CIK+01] Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubinfeld, and Rebecca N.
Wright. Selective private function evaluation with applications to private statistics. In PODC,
pages 293–304, 2001.

[CKP07] Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure computation of the moore-
penrose pseudoinverse and its application to secure linear algebra. In Alfred Menezes, editor,
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 613–630. Springer, 2007.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party computation. In Proc. 34th STOC, pages 494–503. ACM, 2002.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and higher) dimensional
space from noisy data. In STOC, pages 136–142. ACM, 2003.

25

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 307–315. Springer, 1989.

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Uncondi-
tionally secure constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in
Computer Science, pages 285–304. Springer, 2006.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In Cynthia Dwork, ed-
itor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 501–520. Springer,
2006.

[DJ02] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In CT-RSA, pages 79–95, 2002.

[DN03] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty compu-
tation from threshold homomorphic encryption. In Dan Boneh, editor, CRYPTO, volume 2729
of Lecture Notes in Computer Science, pages 247–264. Springer, 2003.

[DNO08] Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally
composable oblivious transfer. Cryptology ePrint Archive, Report 2008/220, 2008. http:
//eprint.iacr.org/.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. Commun. ACM, 28(6):637–647, 1985.

[FH96] Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient secure compu-
tation. J. Cryptology, 9(4):217–232, 1996.

[FMY98] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed rsa-key gener-
ation. In STOC, pages 663–672, 1998.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of
Lecture Notes in Computer Science, pages 1–19. Springer, 2004.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (ex-
tended abstract). In STOC, pages 699–710. ACM, 1992.

[Gil99] Niv Gilboa. Two party rsa key generation. In Michael J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 116–129. Springer, 1999.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, April 1984. Preliminary version appeared in STOC’ 82.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental game. In ACM,
editor, Proc. 19th STOC, pages 218–229. ACM, 1987. See [Gol04, Chap. 7] for more details.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004.

26

[Gro08] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. Manuscript, 2008.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. OT-combiners via
secure computation. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer
Science, pages 393–411. Springer, 2008.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In Ran Canetti, editor, TCC, volume
4948 of Lecture Notes in Computer Science, pages 155–175. Springer, 2008.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions for
secure computation. In STOC, pages 99–108. ACM, 2006.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 145–161. Springer, 2003.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In FOCS, pages 239–248. IEEE, 2006.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In STOC, pages 21–30. ACM, 2007.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In STOC, pages 433–442. ACM, 2008.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstract). In STOC, pages 12–24. ACM, 1989.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptology, 9(4):199–216, 1996.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In CRYPTO, pages 572–591, 2008.

[KMWF07] Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew K. Franklin. Secure linear algebra
using linearly recurrent sequences. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 291–310. Springer, 2007.

[KY08] Aggelos Kiayias and Moti Yung. Cryptographic hardness based on the decoding of reed-
solomon codes. IEEE Transactions on Information Theory, 54(6):2752–2769, 2008.

[LO85] J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems. J. ACM,
32(1):229–246, 1985.

[LP02] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–
206, 2002. Earlier version in Crypto ’00.

27

[MR07] Ueli M. Maurer and Dominik Raub. Black-box extension fields and the inexistence of field-
homomorphic one-way permutations. In ASIACRYPT, pages 427–443, 2007.

[MW08] Payman Mohassel and Enav Weinreb. Efficient secure linear algebra in the presence of covert
or computationally unbounded adversaries. In David Wagner, editor, CRYPTO, volume 5157
of Lecture Notes in Computer Science, pages 481–496. Springer, 2008.

[NN90] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. In STOC, pages 213–223. ACM, 1990.

[NP06] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,
35(5):1254–1281, 2006. Earlier version in STOC ’99.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism
design. In ACM Conference on Electronic Commerce, pages 129–139, 1999.

[NW06] Kobbi Nissim and Enav Weinreb. Communication efficient secure linear algebra. In Shai
Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages
522–541. Springer, 2006.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223–238, 1999.

[PS98] Guillaume Poupard and Jacques Stern. Generation of shared rsa keys by two parties. In Kazuo
Ohta and Dingyi Pei, editors, ASIACRYPT, volume 1514 of Lecture Notes in Computer Science,
pages 11–24. Springer, 1998.

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the guruswami-sudan radius
in polynomial time. In FOCS, pages 285–294. IEEE, 2005.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO, pages 554–571, 2008.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
Aiken Computation Laboratory, 1981.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2004.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11), November 1979.

[Tof07] Tomas Toft. Primitives and Applications for Multi-party Computation. PhD thesis, Department
of Computer Science, Aarhus University, 2007.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
1999. Earlier version available on http://www.wisdom.weizmann.ac.il/˜oded/
frag.html .

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pages
162–167. IEEE, 1986.

28

A Security Against Adaptive Passive Corruption, with Erasures

Here we present a general transformation, that applies to a class of protocols covering all our protocols from
Section 4, to obtain protocols that are secure against adaptive passive corruption, in the model with erasures.
This transformation is done in a simple way using standard techniques. At a high level, the idea is simply to
call our basic protocol on randomly chosen inputs, erase the “local computations” done while executing the
basic protocol, and then communicate “corrections” in order to convert the outputs of the random execution
into the desired outputs for the real inputs (in a manner very similar to Beaver’s reduction of OT to random
OT [Bea95]). Intuitively, in our new protocol, if an adversary adaptively corrupts a party during the initial
random invocation of the basic protocol, there is no problem since the protocol was anyway run on random
inputs chosen independently of the parties’ actual inputs (although this is not quite accurate, which is why we
introduce a notion of “special simulation” below). On the other hand, if the adversary corrupts a party after
the basic protocol is done, then since the party has already erased the local computations of the protocol,
we are free to choose a “random-looking” output from the basic protocol in such a way that we can use it to
explain the actual inputs and outputs that we have.

The main protocol in this section, π̃OT has security against passive adaptive corruption, with erasures.
π̃OT is built using any protocol πOT with a simpler security property described below. Applying the trans-
formation in this section also has another efficiency advantage in scenarios where pre-processing interaction
is possible, and this is discussed briefly in a remark at the end of this section.

A.1 Special Simulation Security Against Passive Corruption

It will be convenient for us to introduce an intermediate notion of security of multi-party computation against
static passive corruption, which will then enable us to obtain security against adaptive passive corruption
with erasures. This intermediate security property is quite weak, and is required to hold only against random
inputs (though the candidates we shall use later in fact satisfy stronger security).

Let F be a secure function evaluation functionality. We use the following terminology.

• An environment Env is said to be a random-input environment if it provides independent random
inputs (according to a specified distribution) to each party.

• A simulator Sim is said to be a special simulator if it behaves as follows:

1. Sim sends the corrupt parties’ inputs to F , and obtains the outputs from F .

2. Sim picks random inputs for all the honest parties to be simulated. Sim also sets the random
tapes of all the parties (corrupt and honest). These choices are (jointly) indistinguishable from
the uniform (or specified) distribution, even given the input of the corrupt parties. (However
Sim can correlate these choices with the output obtained from F).

3. Sim ensures that on interacting with the simulated honest parties, the corrupt parties will produce
the same outputs as given by F . If this is not the case Sim will abort. Otherwise, it reports the
view of the corrupt parties in this execution to the environment.

Definition A.1 A protocol π is said to securely realize F on random inputs, against passive corruption, with
special simulation if there exists a special simulator Sim such that for all random-input environments Env
and a static passive adversary Adv, the real execution of the protocol π between the parties is indistinguish-
able to Env, from an ideal execution of the parties interacting with F and Sim.

29

A.2 Special Simulation Security to Security Against Adaptive Corruption with Erasures

Given a protocol πOT which securely realizes Fpdt-shr on random inputs, against passive corruption, with
special simulation, below we show how to construct a protocol π̃OT with security against adaptive passive
corruption, with erasures.

• Protocol π̃OT. A holds a ∈ R and B holds b ∈ R.

1. A picks rA ∈ R and B picks rB ∈ R at random.
2. A andB run πOT with inputs rA and rB respectively, and obtains outputs sA and sB respectively.

Note that sA + sB = rArB .
3. A and B erase the memory used for πOT. (They retain the inputs and outputs, namely (rA, sA)

and (rB, sB) respectively.)
4. A sends a− rA to B, and B sends b− rB to A.
5. A outputs zA := a(b− rB) + sA; B outputs zB := (a− rA)rB + sB . Note that zA + zB = ab.

We now show the following:

Lemma 5 For any πOT which securely realizes Fpdt-shr on random inputs, against passive corruption, with
special simulation, protocol π̃OT is a secure realization of Fpdt-shr against adaptive passive corruption with
erasures. If the security of πOT is statistical, so is that of π̃OT.

PROOF SKETCH: The interesting cases are when during the protocol initially A is corrupted and later B is
corrupted, or when initially B is corrupted and later A is corrupted. (Recall that all corruptions are passive.)

Let Ẽnv be an arbitrary environment which gives A and B inputs for π̃OT. We will consider the case
when A is corrupted initially and B may be corrupted later. The other case is symmetric for this analysis.
Our simulator S̃im works as follows.

• S̃im sends a to Fpdt-shr and obtains zA from it.

• S̃im picks a random value c← R and sets sA := zA − ac, and also picks a random value rA ← R.

• Next S̃im internally runs the special simulator Sim for πOT with rA as input to A. Sim expects to
interact with an instance of Fpdt-shr, which, for clarity, we will denote by F ′pdt-shr. Sim simulates
F ′pdt-shr by providing sA as the output for A.

• If Ẽnv instructs to corrupt B before this simulation finishes and the erasure step (step 3) is simulated,
then S̃im obtains the simulated state for B in πOT from Sim; then S̃im constructs a state for B in π̃OT

by combining this with b, the input to B (which is not used until step 4 of the protocol), and reports
this to Ẽnv.

• If B is still not corrupted at step 4, S̃im uses the value c as the simulated message from B to A in step
4. Note that zA = ac+ sA.

• By this step B has already erased his state during the execution of πOT. So if B is corrupted at any
point after this, its state can be explained by giving (b, rB, sB): for this the simulator S̃im will obtain
b by corrupting B in the ideal world, and set rB := b− c and sB := rArB − sA, where rA and sA are
the input and output of A in the simulated execution of πOT. Note that this pair (rB, sB) is consistent
with (rA, sA) by the functionality Fpdt-shr.

30

The indistinguishability of simulation follows from the two requirements on the simulator Sim for πOT:
that it is a special simulator and that it provides an indistinguishable simulation against static corruption (on
random inputs).

If B is corrupted before step 4, the simulated execution is indistinguishable from the real execution. To
see this, firstly note that Sim is given sA as the output from F ′pdt-shr, but this is indeed a random element
(because zA is random). Then, Sim is guaranteed to set the random tape of A, as well as B’s input and
random tape to be indistinguishable from uniformly random choices. So the simulated state of A and
B are indistinguishable from the real execution up to step 4. The simulated state of B is completed by
incorporating B’s input b (the state used in execution before step 4 being independent of b).

IfB is corrupted after step 4, then we consider the following two experiments, with an environment Env
which consists of the given environment Ẽnv as well as part of our simulator which picks c (but does not
get zA or compute sA). The environment Env provides rA as input to A and rB := b − c to B. It outputs
the bit output by Ẽnv.

REAL: A and B execute πOT on their inputs from Env.

IDEAL: In the IDEAL execution F ′pdt-shr gives a random pair (sA, sB) such that sA + sB = rArB . Sim
interacts with Env simulating the internal state of A.

By the security requirement on Sim, the two experiments are indistinguishable to the environment Env.
Further the REAL experiment above is identical to the REAL execution of π̃OT with Ẽnv. To complete the
proof we need to argue that the IDEAL execution above (with Env) is identical to our IDEAL execution (with
Ẽnv). Note that in our description of the simulation sA := zA − ac, whereas in the IDEAL execution with
Env, sA is just a random element. However, though the environment Env knows a and c, zA will be picked
at random (byFpdt-shr in our IDEAL execution). In other words, we could consider a modifiedF ′pdt-shr which
receives ac from the environment Env, then picks a random element zA and sets sA := zA − ac, without
altering the experiment. With this modification, our IDEAL execution (with Ẽnv and S̃im) is identical to the
IDEAL execution with Env and Sim.

�

In Section 4, for the protocols πOT, σOT and τOT we showed security against static passive corruption
(even for non-random inputs). The simulators we used in these proofs are in fact special simulators. The
same is easily seen to be true for protocols θ and ψ based on homomorphic encryption. Thus we have the
following result.

Lemma 6 Protocols πOT, σOT, τOT, θ, and ψ securely realize Fpdt-shr (or FF t

pdt-shr in the case of Protocol
τOT), on random inputs, against passive corruption, with special simulation.

Hence, by plugging them into the protocol π̃OT we obtain corresponding protocols which are secure
against passive, adaptive corruption with erasures.

Remark. The structure of the protocol in this section allows an efficiency gain by employing pre-processing.
The first half of the protocol, which is executed on random inputs can be carried out before the actual func-
tion evaluation starts. Further, when used to implement a reactive functionality, the entire set of steps
involving OT that will be ever used in the lifetime of the protocol can be carried out up front. In fact, later
in applying our protocols as the “inner protocol” of the final construction, we can use this reactive variant.

31

B Extension to Multi-Party Computation

In this section, we briefly sketch what is involved in extending our results to the multi-party case.
The protocol in [IPS08] extends to more than two parties, given inner and outer protocols for that many

parties. The outer protocols from [DI06] and [CFIK03] do extend to the multi-party setting (called the
“multi-client” setting in [IPS08] for more details). Hence by extending our inner protocol to the multi-party
setting, all our results extend similarly.

In the general multi-party case the only non-trivial kind of computations carried out by the servers in the
outer protocol is as follows:

• Each party Pi (i = 1, . . . ,m) sends xi and yi to the server.

• The server computes random values ci such that Σici = (Σixi)(Σiyi). Each party Pi is given ci as
the output.

A protocol for this using Fpdt-shr is as follows:

• For each ordered pair (i, j), i 6= j, parties Pi and Pj engage in an instance of Fpdt-shr with inputs
(xi, yj) and obtain outputs (α(i,j)

i , α
(i,j)
j), respectively, where α(i,j)

i + α
(i,j)
j = xiyj .

• Pi outputs xiyi + Σj 6=i

(
α

(i,j)
i + α

(j,i)
i

)
.

The correctness of this protocol, and its (perfect) privacy against passive corruptions, is standard and
analogous to the binary case from [GMW87].

C An Efficient Outer MPC Protocol

In this section, which is adapted from a preliminary full version of [IPS08], we describe a variant of the
protocol from [DI06] which we use as the efficient outer MPC protocol in our constructions. We restrict the
attention to the case of black-box fields (alternatively, pseudo-fields), and assume that the field size is super-
polynomial in the security parameter. (This assumption can be removed at a minor cost to the arithmetic
complexity.)

The protocol involves n servers and m clients (m = 2 by default), where only clients have inputs and
outputs. The protocol is statistically UC-secure against an adaptive adversary corrupting an arbitrary number
of clients and some constant fraction of the servers. We note that unlike the protocol from [DI06], here we
do not need to guarantee output delivery and may settle for the weaker notion of “security with abort”. This
makes the protocol simpler, as it effectively means that whenever an inconsistency is detected by an honest
party, this party can broadcast a complaint which makes the protocol abort.

For simplicity we assume that all n+m parties in the MPC protocol have common access to an oracle
which broadcasts random field elements, and do not count these elements towards the communication com-
plexity. In [DI06] this is emulated via a distributed coin-flipping protocol and an ε-biased generator [NN90],
which reduce the communication cost of implementing this procedure. Alternatively, random field elements
can be directly generated by the m clients in the final protocol via efficient coin-flipping in the OT-hybrid
model.

Before describing the protocol, we summarize its main efficiency features. For simplicity we shall
restrict ourselves to n = O(k), where k is a statistical security parameter, and a constant number of clients
m. To evaluate an arithmetic circuit C of size s and multiplicative depth d, the arithmetic communication

32

complexity is O(s+ kd).18 Assuming broadcast as an atomic primitive, the protocol requires O(d) rounds.
(We note that in the final m-party protocol obtained via the technique of [IPS08], broadcast only needs to be
performed among the clients; in particular, in the two-party case broadcast can be implemented by directly
sending the message.)

The computational complexity will be addressed after we describe the protocol.
To simplify the following exposition we will only consider the case of two clients Alice and Bob. An

extension to the case of a larger number of clients is straightforward.
Another simplifying assumption is that the circuit C consists of d layers, where each layer performs

addition, subtraction, or multiplication operations on values produced by the previous layer only. Circuits
of an arbitrary structure can be easily handled at a worst-case additive cost of O(nd), independently of the
circuit size. (This cost can be amortized away for almost any natural instance of a big circuit. For instance,
a sufficient condition for eliminating this cost is that for any two connected layers there are at least n wires
connecting between the layers.)

C.1 Building Blocks

The protocol relies on tools and sub-protocols that we describe below.

Secret sharing for blocks. Shamir’s secret sharing scheme [Sha79] distributes a secret s ∈ F by picking
a random degree-δ polynomial p such that p(0) = s, and sending to server j the point p(j). Here F is a
finite field such that |F | > n. By 1, 2, . . . , n we denote distinct interpolation points, which in the case of a
black-box access to F can be picked at random. The generalization of Franklin and Yung [FY92] achieves
far better efficiency with a minor cost to the security level. In this scheme, a block of ` secrets (s1, . . . , s`) is
shared by picking a random degree-δ polynomial p such that p(1−j) = sj for all j, and distributing to server
j the point p(j). (Here we assume that −`+ 1, . . . , n denote n+ ` distinct field elements.) Any set of δ+ 1
servers can recover the entire block of secrets by interpolation. On the other hand, any set of t = δ − `+ 1
servers learn nothing about the block of secrets from their shares. (Secret sharing schemes in which there is
a gap between the privacy and reconstruction thresholds are often referred to as “ramp schemes”.) For our
purposes, we will choose ` to be a small constant fraction of n and δ a slightly bigger constant fraction of n
(for instance, one can choose δ = n/3 and ` = n/4). This makes the amortized communication overhead
of distributing a field element constant, while maintaining secrecy against a constant fraction of the servers.

Adding and multiplying blocks. Addition (or subtraction) and multiplication of shared blocks is analo-
gous to the use of Shamir’s scheme in the BGW protocol [BGW88]. Suppose that a block a = (a1, . . . , a`)
was shared via a polynomial pa and a block b = (b1, . . . , b`) was shared via a polynomial pb. The servers
can then locally compute shares of the polynomial pa + pb, which are valid shares for the sum a+ b of the
two blocks. If each server multiplies its two local shares, the resulting n points are a valid secret-sharing
using the degree-(2δ) polynomial p = papb of the block ab = (a1b1, . . . , a`b`). Note, however, that even if
pa, pb were obtained from a random secret sharing, papb is not a random degree-(2δ) secret sharing of ab.
Thus, if we want to reveal ab we will need to mask papb by a random degree-2d secret-sharing of a block
of 0’s before revealing it. Also, in order to use ab for subsequent computations we will need to reduce its
degree back to δ.

18While we do not attempt here to optimize the additive O(kd) term, we note that a careful implementation of the protocol seems
to make this term small enough for practical purposes. In particular, the dependence of this term on d can be eliminated for typical
circuits.

33

Proving membership in a linear space. The protocol will often require a client to distribute to the servers
a vector v = (v1, . . . , vn) (where each vj includes one or more field elements) while assuring them that v
belongs to some linear space L. This should be done while ensuring that the adversary does not learn more
information about v than it is entitled to, and while ensuring the honest parties that the shares they end
up with are consistent with L. For efficiency reasons, we settle for having the shares of the honest parties
close to being consistent with L. Since we will only use this procedure with L that form an error correcting
code whose minimal distance is a large constant multiple of δ, the effect of few “incorrect” shares can be
undone via error-correction. (In fact, in our setting of security with abort error detection will be sufficient.)
More concretely, our procedure takes input v = (v1, . . . , vn) ∈ L from a dealer D (Alice or Bob). In the
presence of an active, adaptive adversary who may corrupt any client and at most t servers, it should have
the following properties:

• Completeness: If D is uncorrupted then every honest server j outputs vj .

• Soundness: SupposeD is corrupted. Except with negligible probability, either all honest servers reject
(in which case the dealer is identified as being a cheater), or alternatively the joint outputs of all n
servers are most 2t-far (in Hamming distance) from some vector in v ∈ L.

• Zero-Knowledge: If D is uncorrupted, the adversary’s view can be simulated from the shares vj of
corrupted servers.

Verifiable Secret Sharing (VSS) can be obtained by applying the above procedure on the linear space
defined by the valid share vectors. Note that in contrast to standard VSS, we tolerate some inconsistencies
to the shares on honest servers. Such inconsistencies will be handled by the robustness of the higher level
protocol.

Implementing proofs of membership. We will employ a sub-protocol from [DI06] (Protocol 5.1) for
implementing the above primitive. This protocol amortizes the cost of proving that many vectors v1, . . . , vq

owned by the same dealer D belong to the same linear space L by taking random linear combinations of
these vectors together with random vectors from L that are used for blinding. The high level structure of
this protocol is as follows.

• Distributing shares. D distributes v1, . . . , vq to the servers.

• Distributing blinding vectors. D distributes a random vector r ∈ L that is used for blinding. (This
step ensures the zero-knowledge property; soundness does not depend on the valid choice of this r.)

• Coin-flipping. The players invoke the random field element oracle to obtain a length-q vector defining
a random linear combination of the q vectors distributed by the dealer. (In [DI06] this is implemented
using distributed coin-flipping and an ε-biased generator; in our setting this can be implemented di-
rectly by the clients in the OT-hybrid model. Moreover, in the case of two clients we let the other
client, who does not serve as a dealer, pick r on its own.)

• Proving. The dealer computes the linear combination of its vectors vi defined by r, and adds to it the
corresponding blinding vector. It broadcasts the results.

• Complaining. Each server applies the linear combination specified by r to its part of the vectors
distributed by the dealer, and ensures that the result is consistent with the value broadcast in the
previous step. If any inconsistency is detected, the server broadcasts a complaint and the protocol
aborts. Also, the protocol aborts if the vector broadcasted by the dealer is not in L.

34

• Outputs. If no server broadcasted a complaint, the servers output the shares distributed by the dealer
in the first step (discarding the blinding vectors and the results of the coin-flips).

In the case of a static corruption of servers, if the shares dealt to honest servers are inconsistent, the proto-
col will abort except with 1/|F | probability, which is assumed to be negligible in k. The adaptive case is
a bit more involved, since the adversary can choose which servers to corrupt only after the random linear
combination is revealed. This case is easy to analyze via a union bound (which requires that |F | >

(
n
t

)
).

Alternatively, a tighter analysis shows that if |F | is superpolynomial in k then, except with negligible proba-
bility, either the protocol aborts or there exists a small setB of servers such that all shares held by the honest
servers excluding those in B are consistent with a valid codeword from L. This condition is sufficient for
the security of the protocol.

We will sometimes employ the above protocol in a scenario where vectors v1, . . . , vq are already dis-
tributed between the servers and known to the dealer, and the dealer wants to convince the servers that these
shares are consistent with L. In such cases we will employ the above sub-protocol without the first step.

Proving global linear constraints. We will often need to deal with a more general situation of proving
that vectors v1, . . . , vq not only lie in the same space L, but also satisfy additional global constraints. A
typical scenario applies to the case where the vi are shared blocks defined by degree-δ polynomials. In such
a case, we will need to prove that the secrets shared in these blocks satisfy a specified replication pattern
(dictated by the structure of the circuit C we want to compute). Such a replication pattern specifies which
entries in the q blocks should be equal. An observation made in [DI06] is that: (1) such a global constraint
can be broken into at most q` atomic conditions of the type “entry i in block j should be equal to entry i′

in block j′”, and (2) by grouping these atomic conditions into `2 types defined by (i, i′), we can apply the
previous verification procedure to simultaneously verify all conditions in the same type. That is, to verify
all conditions of type (i, i′) each server concatenates his two shares of every pair of blocks that should be
compared in this type, and then applies the previous verification procedure with L being the linear space of
points on degree-δ polynomials (p1, p2) which satisfy the constraint p1(1− i) = p2(1− i′). Unlike [DI06]
we will also employ the above procedure in the case where p1, p2 may be polynomials of different degrees
(e.g., δ and 2δ), but the same technique applies to this more general case as well.

C.2 The Protocol

The protocol is a natural extension of the protocol from [DI06], which can be viewed as handling the special
case of constant-depth circuits using a constant number of rounds. We handle circuits of depth d by using
O(d) rounds of interaction. The protocol from [DI06] handles general functions by first encoding them into
NC0 functions, but such an encoding step is too expensive for our purposes and in any case does not apply
to the arithmetic setting. The protocol is simplified by the fact that we only need to achieve “security with
abort”, as opposed to the full security of the protocol from [DI06].

Recall that we assume the circuit C to consist of d layers each, and that each gate in layer i depends on
two outputs from from layer i− 1.

The high level strategy is to pack the inputs for each layer into blocks in a way that allows to evaluate
multiplication, addition, and subtraction gates in this layer “in parallel” on pairs of blocks. That is, the
computation of the layer will consist of disjoint parallel computations of the form a · b, a + b, and a − b,
where a and b are blocks of ` binary values and the ring operation is performed coordinate-wise. This will
require blocks to be set up so that certain inputs appear in several places. Such a replication pattern will be

35

enforced using the procedure described above. Throughout the protocol, if a prover is caught cheating the
protocol is aborted.

The protocol will proceed as follows:

1. Sharing inputs. The clients arrange their inputs into blocks with a replication pattern that sets up the
parallel evaluation for the first layer (namely, so that the first layer will be evaluated by applying the
same arithmetic operation to blocks 1,2, to blocks 3,4, etc.). Each client then secret-shares its blocks,
proving to the servers that the shares of each block agree with a polynomial of degree at most δ and
that the secrets in the shared blocks satisfy the replication pattern determined by the first layer of C.
(Such proofs are described in the previous section.)

If we want to enforce input values to be boolean (namely, either 0 or 1) this can be done a standard
way by letting the servers securely reveal 1− a · a for each block a (which should evaluate to a block
of 0’s).

2. Evaluating C on shared blocks. The main part of the protocol is divided into d phases, one for
evaluating each layer of C. For h = 1, 2, . . . , d we repeat the following:

• Combining and and blinding. At the beginning of the phase, the inputs to layer h are arranged
into blocks, so that the outputs of layer h can be obtained by performing some arithmetic opera-
tion on each consecutive pair of blocks. Moreover, each block is secret-shared using a degree-δ
polynomial. Addition and subtraction on blocks can be handled non-interactively by simply
letting each server locally add or subtract its two shares. In the following we address the more
involved case of multiplication. We would like to reveal the outputs of the layer to Alice, masked
by random blinding blocks picked by Bob. For this, Bob will VSS random blocks, one for each
block of output. The secret-sharing of these blocks is done using polynomials of degree 2δ.
(Again, verifying that the shares distributed by Bob are valid is done using the procedure de-
scribed above.) For every pair of input blocks a, b whose product is computed, each server j
locally computes the degree-2 function c(j) = a(j)b(j) + r(j), where a(j), b(j) are its shares
of a, b and r(j) is its share of the corresponding blinding block r distributed by Bob. For each
pair of blocks combined in this way, the server sends his output (a single field element) to Alice.
Note that the points c(j) lie on a random degree-2δ polynomial pc, and thus reveal no infor-
mation about a, b. Moreover, the polynomial pc can be viewed as some valid degree-2δ secret
sharing of the block c = ab+ r.

• Reducing degree and rearranging blocks for layer h+1. Alice checks that the points c(j) indeed
lie on a polynomial pc of degree at most 2δ (otherwise she aborts). Then she recovers the blinded
output block c = ab+ r by letting cj = pc(1− j). Now Alice uses all blinded blocks c obtained
in this way to set up the (blinded) blocks for computing layer h+ 1.
For this, she sets up a new set of blocks that are obtained by applying a projection (namely,
permuting and copying) to the blocks c that corresponds to the structure of layer h + 1. (In
particular, the number of new blocks in which an entry in a block c will appear is precisely the
fan-out of the corresponding wire in C.) Let c′ denote the rearranged blinded blocks.
Now Alice secret-shares each block c′ using a degree-δ polynomial pc′ . She needs to prove
to the servers that the shares she distributed are of degree δ and that the entries of the shared
blocks c′ satisfy the required relation with respect to the blocks c that are already shared between
the servers using degree-2δ polynomials. Such a proof can be efficiently carried out using the
procedure described above. Note that pairs of polynomials (pc, pc′) such that pc is of degree

36

at most 2δ, pc′ is of degree at most δ, and pc(i) = pc′(j) form a linear space (for any fixed
i, j), and hence the 2n evaluations of such polynomials on the points that correspond to the
servers form a linear subspace of F 2n. Also, the corresponding code will have a large minimal
distance because of the degree restriction, which ensures that the adversary cannot corrupt a valid
codeword without being detected (or even corrected, in the setting of security without abort).

• Unblinding. To set up the input blocks for the evaluation of layer h + 1, we need to cancel
the effect of the blinding polynomials pr distributed by Bob. For this, Bob distributes random
degree-δ unblinding polynomials pr′ that encode blocks r′ obtained by applying to the r blocks
the same projection defined by the structure of layer h+1 that was applied by Alice. Bob proves
that the polynomials pr′ are consistent with the pr similarly to the corresponding proof of Alice
in the previous step. (In fact, both sharing the pr′ and proving their correctness could be done in
the first step.) Finally, each server obtains its share of an input block a for layer h+ 1 by letting
a(j) = c′(j)− r′(j).

3. Delivering outputs. The outputs ofC are revealed to the clients by having the servers send their shares
of each output block to the client who should receive it. The client checks that the n values received
for each block are consistent with a degree-d polynomial (otherwise it aborts), and recovers the output
of this block.

Communication complexity. By the choice of parameters, the communication overhead of encoding each
block of field elements is constant. Accounting for narrow layers (whose size is smaller than one block) as
well as wires between non-adjacent layers, we get an additive arithmetic communication overhead ofO(nd)
(accounting for the worst-case scenario of one may need to maintain a block of values to be used in each
subsequent layer). As noted above, this overhead can be reduced or even eliminated in most typical cases.
Finally, the cost of picking random field elements for the random linear combinations can be reduced via the
use of (arithmetic) ε-biased generators or directly improved via an alternative procedure described below.

Computational complexity. Using known FFT-based techniques for multipoint polynomial evaluation
and interpolation, both the secret sharing and the reconstruction of a block of length ` with n = O(`)
servers can be done with arithmetic complexity of O(` log2 `) [vzGG99]. Choosing evaluation points which
are n-th roots of unity, this complexity can be reduced to O(` log `) (at the expense of sacrificing the black-
box use of the field). The computational bottleneck in the above protocol is the procedure for verifying that
shared blocks satisfy the replication pattern corresponding to C. This can be improved by converting C into
an equivalent circuit C ′ which reduces the overhead of this procedure. A more direct and efficient way for
implementing the above procedure can be obtained by adapting an idea from [Gro08] to our setting. To test
that a set of M blocks vi satisfies a given replication pattern, pick a set of M random blocks ri and test that∑
viri =

∑
vir
′
i, where the blocks r′i are obtained by permuting the blocks in ri along the “cycles” defined

by the replication pattern. (That is, for each set of positions in the blocks vi which should be tested to be
equal, apply a cyclic shift to the values in the corresponding entries of the blocks ri.) This sum of inner
products can be computed by adding up all pointwise-products of vi and r′i together with a random block
whose entries add up to 0.

37

