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Abstract. Consider a scenario in which parties use a public key encryp-
tion scheme and a signature scheme with a single public key/private key
pair—so the private key sk is used for both signing and decrypting. Such
a simultaneous use of a key is in general considered poor cryptographic
practice, but from an efficiency point of view looks attractive.

We offer security notions to analyze such violations of key separation. For
both the identity- and the non-identity-based setting, we show that—
although being insecure in general—for schemes of interest the resulting
combined (identity-based) public key scheme can offer strong security
guarantees.

Keywords: Combined public key scheme, identity-based cryptography,
key separation.

1 Introduction

Schemes for public key encryption and digital signatures are among the most
prominent cryptographic tools, and often both of these primitives are used within
the same protocol. Although a digital signature scheme and a public key encryp-
tion scheme aim at different goals, the underlying algorithms may have much
in common, and the question for synergies when implementing both primitives
arises. From an efficiency point of view it is desirable that resources can be
shared among the two schemes: if both schemes rely on a similar computational
assumption, it may well happen that the key generation procedure is verba-
tim identical. For the sake of efficiency, here it is tempting to use a single public
key/private key pair for both the signature and the encryption scheme. However,
this clearly violates the principle of key separation and is commonly considered
poor cryptographic practice.



Related work. If the essential application of an encryption and a signature scheme
in a protocol consists of signing messages with a sender’s private key followed by
encrypting the signed messages under a recipient’s public key, then signcryption
[22] can be an attractive alternative to separate encryption and signature mech-
anisms. For a signcryption scheme, the decryption and signing keys are typically
from different parties, but insider security against multi-user signcryption [1, 12]
is analogous to our security goal in the sense that both indistinguishability of
ciphertexts and existential unforgeability must be achieved. While a signcryp-
tion scheme is designed to satisfy this type of requirement, here we glue a given
signature scheme to a given encryption scheme by enforcing the use of a single
key pair for both schemes, and we try to understand the security implications
of this glueing. As detailed in [1], a signcryption scheme in particular induces a
signature and an encryption scheme. With regard to key lengths, however, these
induced schemes appear inferior to dedicated encryption or signature mecha-
nisms, as essentially two signcryption keys are used to form one key for the
induced signature or encryption scheme. For a scenario where we want the flexi-
bility of separate encryption and signature mechanisms, the use of a signcryption
scheme appears less attractive than a “secure key reuse” as described below.

One plausible approach to explore the double use of keys is to invoke the
universal composition (UC) framework [8]. More specifically, one could try to
interpret the problem we address in this paper as a composition with joint state
[9]. We are not aware that a key “double use” as we discuss it has been explored
in the UC framework so far. This also applies to the identity based setting:
universally composable identity-based encryption as considered by Nishimaki et
al. in [19] does not guarantee that a single key for signature and encryption
can be used securely: According to [19, Theorem 1] non-adaptively realizing the
functionality FIBE from [19] is equivalent to IND-ID-CCA-security1.

Known results. For the concrete scenario considered in this paper, Haber and
Pinkas [16] show that the simultaneous use of related keys in a signature scheme
and a public key encryption scheme is, for several examples, secure in a strong
sense. More specifically, they consider an adversary against a signature scheme
which has (unrestricted) access to a decryption oracle of an encryption scheme
using a related secret key, and prove that for several signature schemes such
adversaries are not more damaging than “standard” ones. Analogously, for some
encryption schemes, they prove that an attacker who is granted (unrestricted)
access to a signing oracle of a signature scheme using a related secret key will
not endanger the security of the encryption scheme. In subsequent work, a main
focus was on the design of universal padding schemes that can be used for both
signing and encryption without the need of separate keys. Coron et al. showed
that PSS enables such a secure composition of a signature and encryption scheme
with a single key pair [11]. More recently, Komano and Ohta propose combined
constructions building on OAEP+ and REACT. Instead of the partial-domain
one-wayness requirement of Coron et al., [18] imposes a one-wayness require-

1 In this paper, we use CCA synonymously with CCA2.
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ment only. Further refinements of universal paddings are explored by Chevallier-
Mames et al. in [10].

Our Contribution. Section 2 follows Haber and Pinkas [16] in the sense that we
try to combine existing schemes that have not been designed for usage with a
common private key. We analyze the security of such combined schemes using
dedicated security notions building on the ones coined by Komano and Ohta in
[18]. After showing how the simultaneous use of a private key can be fatal, we
give a combined scheme with a security proof: already [16, Section 4.5] notes
that the ElGamal signature scheme in the modification of Pointcheval and Stern
[21] would remain secure if an adversary had access to a decryption oracle for
an encryption scheme using the same private key. We combine this signature
scheme with an ElGamal encryption scheme under a Fujisaki-Okamoto conver-
sion and prove the resulting scheme to be secure in a strong sense: in the random
oracle model, the combined scheme achieves both existential unforgeability and
indistinguishability of encryptions.

Section 3 explores the use of a unique private key in an identity-based setting:
an identity-based public key encryption scheme IBE and an identity-based sig-
nature scheme IBS share a setup and key extraction algorithm and each user has
one secret key only which is used for both signing and decrypting. We prove that
such a simultaneous use can be possible without jeopardizing the security of the
involved schemes. Namely, for an identity based signature scheme by Hess [17]
and an identity based encryption scheme of Boneh and Franklin [7] we prove
security in the sense of a natural generalization of standard security notions in
identity-based cryptography.

2 Combined public key schemes

2.1 Preliminaries and definitions

Adapting the terminology from [16], we define a combined public key scheme as
a combination of a public key encryption scheme and a signature scheme that
have the key generation in common:

Definition 1 (combined public key scheme).
A combined public key scheme is a tuple (K, E ,D,S,V) of polynomial time al-
gorithms:

– K is a probabilistic key generation algorithm that upon input the security
parameter 1k outputs a public key/secret key pair (pk, sk).

– E is a probabilistic encryption algorithm that upon input a message m and
a public key pk computes a ciphertext c← Epk(m).

– D is a deterministic decryption algorithm that upon input a candidate ci-
phertext c and a secret key sk outputs a plaintext m ← Dsk(c) or an error
symbol ⊥.

– S is a probabilistic signing algorithm that upon input a message m and a
secret key sk outputs a signature σ ← Ssk(m).
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– V is a deterministic verification algorithm that upon input a public key pk,
a message m and a candidate signature σ outputs true or false.

For a pair (pk, sk) generated by K we require that with overwhelming prob-
ability the obvious correctness condition holds: For all messages m we have
Dsk(Epk(m)) = m and Vpk(m,Ssk(m)) = true.

To model the security of a combined public key scheme we adapt the notions
of EUF-CCA2&ACMA and IND-CCA2&ACMA security introduced in [18]. For
brevity, we deviate from [18] and simply write EUF-C[CM]A respectively IND-
C[CM]A when considering “adversaries with an additional oracle.” Essentially,
the notion IND-C[CM]A formalizes the situation in which an IND-CCA adversary
has, in addition to the usual tools, access to a signing oracle, and, analogously, an
EUF-C[CM]A adversary is an EUF-CMA adversary having access to a decryption
oracle, too.:

Definition 2 (IND-C[CM]A).
Let (K, E ,D,S,V) be a combined public key scheme, and let A be a probabilistic
polynomial time adversary. Consider the following attack scenario:

1. Compute a key pair (pk, sk)← K(1k), and hand pk as input to A.
2. The adversary A is given unrestricted access to a signing oracle OS to run
Ssk(·) and unrestricted access to a decryption oracle OD to run Dsk(·). At
the end of this stage, A outputs two plaintexts m0 6= m1 of equal length.

3. A value b ∈R {0, 1} is chosen uniformly at random, and A learns a target
ciphertext c← Epk(mb).

4. The algorithm A is again given unrestricted access to the signing oracle OS ,
and the only restriction in querying OD is that target ciphertext c must not
be queried. At the end of this stage A outputs a guess b′ for b.

The advantage AdvA = AdvA(k) of A is defined as |2 · P [b = b′] − 1|, and we
call (K, E ,D,S,V) secure in the sense of IND-C[CM]A if AdvA is negligible for
all probabilistic polynomial time adversaries A.

Definition 3 (EUF-C[CM]A).
Let (K, E ,D,S,V) be a combined public key scheme, and let A be a probabilistic
polynomial time adversary. Consider the following attack scenario:

1. Compute a key pair (pk, sk)← K(1k), and hand pk as input to A.
2. The adversary A is given unrestricted access to a signing oracle OS to run
Ssk(·) and unrestricted access to a decryption oracle OD to run Dsk(·). At
the end of this stage, A outputs a message m and a signature σ such that m
has not been submitted to the signing oracle OS .

The success probability SuccA = SuccA(k) of A is defined as P [Vpk(m, σ) =
true], and we call (K, E ,D,S,V) secure in the sense of EUF-C[CM]A if SuccA is
negligible for all probabilistic polynomial time adversaries A.
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2.2 Combining secure schemes is not sufficient

As already indicated with the definitions in the previous section, our main focus
is on the combination of IND-CCA-secure encryption and EUF-CMA-secure sig-
nature schemes. Before looking at this in more detail, we note that for passive
adversaries the situation is somewhat trivial:

Remark 1 ( IND-CPA+EUF-NMA). Suppose we have a signature scheme that
is secure against no message attacks (EUF-NMA) and a public key encryp-
tion scheme that is secure against chosen plaintext attacks (IND-CPA). If these
schemes have an identical key generation algorithm K, then the resulting com-
bined scheme certainly is secure against adversaries without access to a decryp-
tion or a signing oracle: the simultaneous use of the two schemes has no effect
on the tools available to an adversary.

For adversaries with access to stronger tools, different situations can arise:

Example 1 ( IND-CPA+EUF-CMA). We build on prominent encryption and sig-
nature constructions of Bellare and Rogaway [5, 4].

Signature Scheme: Denote by f : {0, 1}k −→ {0, 1}k a trapdoor one-way
permutation and by H : {0, 1}k −→ {0, 1}k a random oracle.

– K: outputs, as public key pk, enough information to efficiently evalu-
ate f , and the secret key sk, which consists of trapdoor information to
efficiently evaluate f−1;

– S: to sign message m ∈ {0, 1}k with secret key sk, Ssk(m) outputs the
signature

(σ1, σ2) := (f−1(H(m)), H(f−1(m)));

– V : to verify a signature (σ′
1, σ

′
2) on message m for the public key pk,

Vpk(m, (σ′
1
, σ′

2
)) returns true if and only if f(σ′

1
) = H(m).2

Encryption Scheme: Let f and H be as before.

– K: as above;
– E : we set Epk(m) := (f(r), H(r)⊕m) with a uniformly at random chosen

r ∈R {0, 1}k;
– D: to decrypt (f(r), H(r)⊕m), we compute H(f−1(f(r)))⊕(H(r)⊕m) =

m.

We can easily show these two schemes to be secure in the sense of EUF-CMA
and IND-CPA, respectively:

Lemma 1. The signature scheme described in Example 1 is secure in the sense
of EUF-CMA in the random oracle model.

2 Obviously, this signature scheme is malleable in the sense that from a given signature
(σ1, σ2) for a message m, further signatures (σ1, σ

′

2) for m can be derived.
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Proof. We structure the proof along a sequence of games, at which the adversary
A, a probabilistic polynomial time adversary with unrestricted access to the
random oracle H, interacts with a simulator/challenger. At this, we start in
G0 with the real attack simulation game, i. e., the adversary and the simulator
interact as described in the standard EUF-CMA setting. In the sequel, event Si

denotes the event in which A wins the game against the challenger at Game Gi.

Game G0. This is the real attack game. Thus, the challenger

1. Computes a key pair (f, f−1)← K(1k), and hands f as input to A.
2. A is given unrestricted access to a signing oracle OS to run Ssk(·). At the

end of this stage, A outputs a message m and a signature pair (σ1, σ2) such
that m has not been submitted to the signing oracle OS .

The probability of success the adversary has in this game, P [S0], is

P [Vf (m, (σ1, σ2)) = true].

Game G1. We formalize at this the random oracle simulation of H : H-queries are
answered by a simulator which keeps record of hash queries on a so-called H-list,
i. e., for every query H(query) the simulator outputs a value random selected
uniformly at random from X and adds the triple (num, query, random) to his
H-list. Subsequently, for a hash query H(x) such that a record (n, x, r) appears
in the H-list (where n is any natural number), the answer of the simulator will
be r.

Now, the random oracle assumption states that P [S0] = P [S1].

Game G2. We modify the simulation of the random oracle H : on input any value
query, now the simulation of the random oracle outputs not only the correspond-
ing value r as above, but also the output value of an H-query as in Game G1 on
input f−1(query)—namely, now an H-query simulation involves two H-queries
from the previous game. It is clear that this change does not augment the proba-
bility of success of our adversary, for, if he knows already f−1(m), this modified
H-simulation does not provide him with anything new and, if he does not know
f−1(m), H(f−1(m)) looks like a randomly selected element from X to him. As
a result, we still have P [S0] = P [S1] = P [S2].

From this point on, it is easy to see that our adversary is actually facing an
EUF-CMA game against Bellare and Rogaway’s FDH signature scheme, and, as
a result, it follows that P [S2] is negligible in the security parameter. However,
we reproduce here the arguments needed to complete the proof.

Game G3. Let us modify the previous game in the sense that, in order to win the
game, we require that the adversary not only produces a valid triple (m∗, σ∗

1 , σ∗
2),

but moreover guesses correctly the position num m* at which m∗ occurs in the
H-list. (Note that we may assume m∗ has indeed been queried to the random
oracle, as the triple (m∗, σ∗

1 , σ∗
2) must at some point pass the verification process).

Now
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P [S3] ≥ P [S2] ·
1

p(k)
,

where p(k) is a polynomial upper bound on the number of queries of A to
OS and H.

Game G4. We further modify the simulation of the H-queries, in the following
sense: for the query number num m*, set random := y. For any other query, define
random := f(x) where x is selected uniformly at random from {0, 1}k. Exactly
as before, the records (num, query, random) are written down on the H-list.

Note that this simulation of H is indistinguishable from the one in Game G3,
as f is a permutation.

Game G5. By now, the simulation of the signing oracle can be done without
using the secret key, for all preimages of elements ever queried to H are known
by the simulator (note that m∗ is never queried to the signing oracle, as it is
part of the forgery). We thus modify our simulation in that sense, and obviously
P [S5] = P [S4].

Moreover, it is clear that (m, σ∗
1
, σ∗

2
) being a successful forgery actually im-

plies A has been able to compute a preimage of y, and as a result, P [S5] is
negligible, which concludes our proof. ⊓⊔

Lemma 2. The encryption scheme described in Example 1 is secure in the sense
of IND-CPA in the random oracle model.

Proof. Actually, this scheme was first proposed and proven secure in [4]. We
sketch a proof here for completeness: We formalize the proof via a sequence of
games or experiments, in which the adversary interacts with a simulator. As
usual, we will denote by Si the event that the adversary wins in Game Gi.
Game G0. Real attack game. Thus, the challenger

1. Computes a key pair (pk, sk)← K(1k), and hands pk as input to A.
2. The adversary A is given unrestricted access to a decryption oracle OD to

run Dsk(·). At the end of this stage, A outputs two plaintexts m0 6= m1 of
equal length.

3. A value b ← {0, 1} is chosen uniformly at random, and A learns a target
ciphertext c← Epk(mb).

4. The algorithm A is again given unrestricted access to the signing oracle OS ,
and the only restriction in querying OD is that target ciphertext c must not
be queried. At the end of this stage, A outputs a guess b′ for b.

Now, as standard, P [S0] = |2 · P [b = b′] = 1|.

Game G1. Usual random oracle simulation: H-queries are answered by a simula-
tor which keeps record of hash queries on a so-called H-list, i. e., for every query
H(query) it outputs a value random selected uniformly at random from X and
adds the triple (num, query, random) to his H-list.
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Subsequently, for a hash query H(x) such that a record (n, x, r) appears in
the H-list (where n is any natural number), the answer of the simulator will be
r.

Again, the random oracle assumption states that P [S0] = P [S1].

Game G2. We modify the construction of the challenge ciphertext c∗ = (c∗1, c
∗
2)

as follows:

– select r ∈ {0, 1}k uniformly at random, define c∗
1

:= f(r),
– select uniformly at random a bitstring mask, define c∗

2
:= mask⊕mb.

Note that the adversary will only notice the difference between G0 and G1

if he is able to compute an f -preimage for c∗
1
, i. e., with negligible probability.

On the other hand, c∗2 is a one-time pad encryption of mb, and, as a result, the
adversary has probability 1

2
of guessing correctly whether b = 1 or b = 0. ⊓⊔

However, when combining the above schemes in the obvious way, the signing
oracle is a powerful tool to violate the security of the encryption scheme. Indeed,
given a challenge ciphertext (f(r), H(r)⊕mb), the adversary can query a signa-
ture on f(r) to learn the masking value H(r) and thus recover the corresponding
plaintext mb.

The encryption scheme involved in the construction above was “only” se-
cure in the sense of IND-CPA, and one might be tempted to think that security
problems would not arise if both the encryption and signature schemes are more
robust. However, we conclude this section with an example showing that combin-
ing an IND-CCA secure public key encryption scheme and an EUF-CMA secure
signature scheme is in general not sufficient to obtain a combined public key
scheme that is secure in the sense of IND-C[CM]A:

Example 2 ( IND-CCA+EUF-CMA). Given an IND-CCA secure public key en-
cryption scheme (K, E ,D) we define a new scheme (K∗, E∗,D∗) where

– K∗: outputs the same public key pk∗ := pk as K, but the secret key
sk∗ := (sk, r∗) contains, in addition to the secret key sk determined
by K, a random bitstring r∗ of length linear in the security parameter
and such that r∗ cannot occur as encryption of any plaintext;

– E∗: identical with E ;
– D∗: checks if the ciphertext is equal to r∗. If yes, the secret value sk

is returned, otherwise the algorithm D is applied.

It is easy to see that (K∗, E∗,D∗) is secure in the sense of IND-CCA. Now suppose
we are also given an EUF-CMA secure signature scheme (K,S,V). Using the
algorithm K∗ just defined we form a new signature scheme (K∗,S∗,V∗) where

– S∗: runs S to obtain a signature σ, and outputs (σ, r∗), i. e., the
secret bitstring r∗ is appended to each signature.
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– V∗: checks if a given signature (σ′, r′) satisfies r′ = r∗, and if this
holds outputs the same as V applied to σ′. If r′ 6= r∗, then V∗ outputs
false.

Then (K∗,S∗,V∗) still offers security in the sense of EUF-CMA, but the combined
public-key scheme (K∗, E∗,D∗,S∗,V∗) is clearly not secure in the sense of IND-
C[CM]A.

One would hope that problems as in the above (contrived) examples do not
occur in a “natural” setting; however, it is not always easy to argue formally
whether given encryption/signature schemes can be combined securely. In the
next section, we give an example of a combination of two established schemes
resulting in EUF-C[CM]A and IND-C[CM]A security in the random oracle model.
A central proof tool is the Forking Lemma as used by Pointcheval and Stern in
[21].

2.3 A secure combined public key scheme

We start by briefly describing the Modified ElGamal (MEG) signature scheme
presented by Pointcheval and Stern in [21], and the encryption scheme of Fu-
jisaki and Okamoto based on ElGamal encryption and one-time padding [14].
Moreover, we will summarize the essential results needed, to prove the resulting
combined public key encryption scheme secure in the sense of Definition 2 and
3.

Fujisaki-Okamoto ElGamal based encryption For any k ∈ N and for any
q ∈ N of length k, let H1 : {0, . . . , q − 1} −→ {0, 1}k and H2 : {0, . . . , q − 1} ×
{0, 1}k −→ {0, . . . , q − 1} be random oracles. The encryption scheme described
in Figure 1 was presented in [14] as an instantiation of the general Fujisaki-
Okamoto conversion using ElGamal encryption as asymmetric component and
a one-time pad as symmetric component.

It follows from the results of [14], that the above scheme is IND-CCA se-
cure in the random oracle model, provided that the Decisional Diffie-Hellman
assumption holds for G.

Modified ElGamal signature scheme In [20] Pointcheval and Stern give a
general strategy for providing security proofs for signature schemes in the ran-
dom oracle model. One of the most prominent instantiations of this framework
is a modification of the ElGamal Signature scheme (MEG), which we describe
in Figure 2. At this, for any k ∈ N and any prime p ∈ N of length polynomial in
k, let us assume a random oracle F : {0, 1}∗ × G −→ {0, . . . , q − 1} is publicly
known. The existential unforgeability of the MEG scheme was proven in [20,
21] as an application of the so-called Forking Lemma. We review here the basic
results and ideas behind this proof, which will be needed in the sequel. For more
details, we refer to the original papers.
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– K: on input k it
• chooses a generator g of a cyclic group G of order q,
• selects x ∈R {0, . . . , q − 1} uniformly at random,
• outputs (q, g, gx) as public key and x as secret key;

– E : on input m ∈ {0, 1}k, it
• selects r ∈R G uniformly at random,
• computes c1 := r · yH2(r,m), c2 := gH2(r,m) and c3 := H1(r) ⊕ m,
• outputs the ciphertext (c1, c2, c3);

– D: on input a ciphertext (c1, c2, c3), it
• computes r̂ = c1(c

x
2)−1,

• retrieves m̂ = H1(r̂) ⊕ c3,
• checks wether c1 = r̂yH2(r̂,m̂), if this check fails, it outputs ⊥, otherwise,

it outputs m̂.

Fig. 1. ElGamal encryption with Fujisaki-Okamoto conversion

Remark 2. In [20, 21], the case q = p − 1 for an α-hard prime p is considered.
For our purposes, the case of q being prime is sufficient, as for the combination
with the encryption scheme discussed in Section 2.3, we want to build on the
Decisional Diffie Hellman assumption in the group G.

Pointcheval and Stern’s results from [20, 21] apply to a large class of signature
schemes, matching the following pattern: a signature of a message m consists of
three components—a “commitment element” σ1 sent by the signer, a random
oracle image of this commitment together with the message, h := F (m, σ1), and a
third component σ2 which links σ1 and h together and should be hard to compute
without the secret signing key. These generic signature schemes can actually
be obtained from any three-pass honest-verifier zero-knowledge identification
protocol, as proven by Fiat and Shamir in [13].

For such generic schemes, it is proven [21, Theorem 10] that if a passive
adversary is able to produce a valid forgery he will also be able to output two
valid related signature tuples (m, σ1, h, σ2), (m, σ1, h

′, σ′
2
), where h and h′ are

distinct and constructed using different random oracles F and F ′. This result
is commonly addressed as Forking Lemma. For the scenario considered here,
this result has very strong implications, namely in [21, Theorem 18] the authors
prove that for MEG, such two tuples provide a solution for the discrete logarithm
problem on input (g, gx), provided that p is an α-hard prime. Moreover, [21,
Lemma 19] states that actually, for an α-hard prime p, the same reasoning
can be applied in the case of an active adversary, as the signing oracle can be
simulated without the secret key with an indistinguishable distribution. As a
result, the existential unforgeability of the MEG scheme can be proven, in the
random oracle model, under the discrete logarithm assumption.
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– K: on input k it
• chooses a generator g of a subgroup G of ( Z

pZ
)× of order q. We thus rep-

resent the elements of G as integers mod p,
• selects x ∈R {0, . . . , q − 1} uniformly at random,
• outputs (q, g, gx) with (g, gx) ∈ G2 as public key and x as secret key;

– S : on input a message m ∈ {0, 1}∗, it
• selects K ∈R ( Z

qZ
)× uniformly at random and defines r := gK ∈ G,

• sets h := F (m, r) and selects s ∈ {0, . . . , q − 1} so that gh = (gx)rrs, that
is, s is the solution of the linear equation F (m, r) = xr + Ks mod q,

• outputs the triplet (r, h, s);

– V: on input a triplet (r, h, s), it
• outputs true if and only if r ∈ G and gh = yrrs mod p.

Fig. 2. Pointcheval-Stern Modified ElGamal Signature

ElGamal based combined public key scheme Joining the above ElGamal
based encryption and signature schemes in the natural way, we obtain a combined
public key scheme (K, E ,D,S,V), where

– K : on input k, the key generation algorithm
• chooses a random large α-hard prime p, of length polynomial in k (and

larger than k),
• chooses a generator g of a subgroup G of ( Z

pZ
)× of order q,

• selects x ∈R {0, . . . , q − 1} uniformly at random,
• outputs (q, g, gx) as public key and x as secret key;

– E ,D : exactly as defined in Figure 1;
– S : on input a message m ∈ {0, 1}∗, the signing algorithm
• selects K ∈R ( Z

qZ
)× uniformly at random and defines r = gK ∈ G,

• sets h = F (m, r) and selects s ∈ {0, . . . , q−1} so that gh = (gx)rrs, that
is, s is the solution of the linear equation F (m, r) = xr + Ks mod q,
• outputs the triple (r, h, s);

– V : exactly as defined in Figure 2.

The following proposition establishes rather strong security guarantees for this
combined public key scheme:

Proposition 1. If the Decisional Diffie-Hellman assumption holds for G, the
above ElGamal based combined public key scheme is IND-C[CM]A and EUF-
C[CM]A secure in the random oracle model.

Proof. We consider the attack scenarios described in Definitions 2 and 3: Assume
the key generation algorithm has been executed and the corresponding public
key (q, g, gx) has been forwarded to the adversary A. Thus, A has access to all
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public information and can execute the encryption algorithm of the Fujisaki-
Okamoto public key encryption scheme and the verification algorithm of the
MEG signature scheme. In addition, A has access to oracles OD and OS subject
to the restrictions from Definition 2 respectively Definition 3.

EUF-C[C,M]A security. We start by arguing that OS is not needed by A,
with a similar argument as in [21, Lemma 19]. Let SSim be a simulator that
on input any message m outputs a valid signature triple (σ1, h, σ2), such that
SSim’s output distribution is indistinguishable from the output distribution of
the signature algorithm. Such a simulator exists, as proven in [21, Lemma 19]
for α-hard prime numbers. At this, it is important to note that SSim does not
hold the secret signing key.

Our adversary A will only notice that he is interacting with SSim instead of
OS provided that one the following events occurs:

– E1: there exists a triple (r, h, s) output by the simulator on input a message
m, so that at some point A submitted the query (m, r) to the random oracle
F ; or

– E2: there exist two triples (r, h, s), (r, h′, s′), with h 6= h′, output by the
simulator when queried (twice) with the same input m.

Note that A will only derive distinguishing information from the encryption
algorithm or from interacting with OD if at some point he queries the random
oracle F ; thus, this event is captured by event E1 above.

Now, as argued in the proof of [21, Lemma 12], the probability of events
E1 and E2 together is, up to a constant factor, bounded by the probability of
success of A in making a forgery. As a result, we know that if A is able to create
a forgery by querying OS with non-negligible probability, he will also be able to
make a forgery interacting with SSim with non-negligible probability.

However, we can argue that A is not able to forge a signature with non-
negligible probability interacting only with SSim: the Forking Lemma [21, The-
orem 10] guarantees that such an adversary that is able to forge a signature
with non-negligible probability, can also solve the underlying discrete logarithm
problem in polynomial time. In other words, our adversary A, interacting with
SSim (which holds no secret key) and OD could decrypt arbitrary ciphertexts,
which contradicts the IND-CCA security of the Fujisaki-Okamoto conversion. As
a result, A cannot succeed when aiming at a forgery, and we have established
EUF-C[CM]A security for the combined scheme.

IND-C[CM]A security. As we have argued that the signing oracle can be sim-
ulated without the secret key, our adversary is nothing more than a standard
IND-CCA adversary against an IND-CCA secure scheme obtained with a Fujisaki-
Okamoto conversion. Consequently, his advantage against this encryption scheme
is negligible, and we see that the combined scheme is also IND-C[CM]A secure.

⊓⊔

12



3 Identity-based signature and encryption

In the context of identity-based public key cryptography, it appears natural to
use the same identity for both encryption and signature purposes. One could
explore the setting where a single key generation center is used for extracting
signing and private decryption keys from user identities, and there is only a single
set of public parameters; here we go one step further and consider, analogously
as in the previous section, a situation in which each user has only one secret key
to do both decrypting and signing.

3.1 Preliminaries and definitions

To adapt the definition of a Combined Public Key Scheme to the identity-based
setting, we introduce the following definition:

Definition 4 (Combined identity-based public key scheme).
A combined identity-based public key scheme is a tuple (I,K, E ,D,S,V) of poly-
nomial time algorithms:

– I is a probabilistic setup algorithm that upon input the security parameter
1k returns public system parameters pk and a secret master key sk.

– K is a probabilistic key extraction algorithm which upon input the public
system parameters pk, the master key sk, and an identity id ∈ {0, 1}∗ outputs
a secret key skid, which can both be used for signature and decryption.

– E is a probabilistic encryption algorithm that upon input the public pa-
rameters pk, an identity id and a plaintext m computes a ciphertext c ←
Eid,pk(m).

– D is a deterministic decryption algorithm that upon input a candidate ci-
phertext c, the public parameters pk and a secret key skid outputs a plaintext
m← Dskid,pk(c) or an error symbol ⊥.

– S is a probabilistic signing algorithm that upon input a message m, public
parameters pk and a secret key skid outputs a signature σ ← Sskid,pk(m).

– V is a deterministic verification algorithm that upon input the public param-
eters pk, an identity id, a message m and a candidate signature σ outputs
true or false.

For a pair (pk, sk) generated by K we require that with overwhelming probability
the obvious correctness condition holds for all private keys skid: For all messages
m we have Dskid,pk(Eid,pk(m)) = m and

Vid,pk(m,Sskid,pk(m)) = true.

To define the security of a combined identity-based public key scheme we
adapt Definitions 2 and 3 accordingly, granting an adversary the (restricted)
capability to obtain private keys, signatures and decryptions for identities of his
choice:
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Definition 5 (IND-ID-C[CM]A).
Let (I,K, E ,D,S,V) be a combined identity-based public key scheme, and let
A be a probabilistic polynomial time adversary. Consider the following attack
scenario:

1. Compute a key pair (pk, sk)← I(1k), and hand pk as input to A.
2. The adversary A is given unrestricted access to a key extraction oracle OK

to extract private keys, unrestricted access to a signing oracle OS and un-
restricted access to a decryption oracle OD.3 At the end of this stage, A
outputs two plaintexts m0 6= m1 of equal length and an identity id0 such that
OK has not been queried for the corresponding secret key skid0

.
3. A value b ∈R {0, 1} is chosen uniformly at random, and A learns a target

ciphertext c← Eid0,pk(mb).
4. The algorithm A is again given access to the key extraction oracle OK, the

signing oracle OS , and the decryption oracle OD, the only restrictions being
that OD must not be queried to decrypt the target ciphertext c under skid0

and OK must not be queried for skid0
. At the end of this stage A outputs a

guess b′ for b.

The advantage AdvA = AdvA(k) of A is defined as |2 · P [b = b′] − 1|, and we
call (I,K, E ,D,S,V) secure in the sense of IND-ID-C[CM]A if AdvA is negligible
for all probabilistic polynomial time adversaries A.

Definition 6 (EUF-ID-C[CM]A).
Let (I,K, E ,D,S,V) be a combined identity-based public key scheme, and let
A be a probabilistic polynomial time adversary. Consider the following attack
scenario:

1. Compute a key pair (pk, sk)← K(1k), and hand pk as input to A.
2. The algorithm A is given unrestricted access to a key extraction oracle OK

to extract private keys, unrestricted access to a signing oracle OS and unre-
stricted access to a decryption oracle OD. At the end of this stage, A outputs
a message m, an identity id0 and a signature σ such that OS has not been
queried for a signature on m under skid0

and such that OK has not been
queried for skid0

.

The success probability SuccA = SuccA(k) of A is defined as

P [Vid0,pk(m, σ) = true],

and we call (I,K, E ,D,S,V) secure in the sense of EUF-ID-C[CM]A if SuccA is
negligible for all probabilistic polynomial time adversaries A.

3 Signing and decryption oracles can access the master key sk and the public pa-
rameters pk, and hence can answer signature and decryption queries for arbitrary
identities; that is, queries for these oracles are of the form (id, message). For a fixed
identity id queries are replied using always the same secret key skid (cf. the Init

oracle in [2]).
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3.2 A secure combined identity-based public key scheme

To obtain an example of a secure combined identity-based public key scheme
in the above setting, we use an identity-based encryption scheme of Boneh and
Franklin [7] and combine it with the identity-based signature scheme proposed
by Hess in [17].

The FullIdent scheme of Boneh and Franklin In [7] an identity-based pub-
lic key encryption scheme is proposed that can be considered as first practical
proposal in this line of research and is referred to as FullIdent. It is similar to
the IND-CCA secure ElGamal variation discussed in the previous section, in the
sense that chosen ciphertext security is again obtained by means of the conver-
sion technique of Fujisaki and Okamoto from [14]. For a detailed discussion of
FullIdent and a proof of its IND-ID-CCA security we refer to [7, 15].

Consider (G, +) and (V, ·) two cyclic groups of prime order l, where l = Θ(2k).
Let e : G ×G → V be a suitable bilinear pairing. We write G∗ := G \ {0} and
V ∗ := V \ {1}. Furthermore, consider four hash functions H1, H2, H3, and H4

of appropriate domain and range. With these ingredients, the scheme FullIdent
is described in Figure 3.

Setup algorithm I: chooses a random generator P ∈R G. Moreover, Ymaster :=
sk · P is published, where sk ∈R

`

Z

lZ

´

×

is the uniformly at random chosen
master key.

Key extraction Kdec: for an identity id ∈ {0, 1}∗, the secret key is skid :=
sk · Qid, where Qid := H1(id) ∈ G∗.

Encryption algorithm E : to encrypt a message m ∈ {0, 1}n under the identity
id, the following steps are performed:
– compute Qid := H1(id) ∈ G∗

– choose a random σ ∈R {0, 1}n and set r := H3(σ, m) ∈
`

Z

lZ

´

×

– compute gid := e(Qid, Ymaster) ∈ V

The ciphertext is c := (r · P, σ ⊕ H2(g
r
id), m ⊕ H4(σ)).

Decryption algorithm D: To decrypt a candidate ciphertext c = (U, v, w) with
secret key skid, the subsequent steps are performed:
– if U 6∈ G∗, the error symbol ⊥ is returned
– compute σ := v ⊕ H2(e(skid, U))
– let m := w ⊕ H4(σ) and r := H3(σ, m)
– if U 6= r ·P return the error symbol ⊥, otherwise output m as decryption

of c

Fig. 3. Identity-based encryption from [7]

Hess’ identity-based signature scheme Consider, as above, (G, +) and (V, ·)
two cyclic groups of prime order l, where l = Θ(2k). Let e : G × G → V be a
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suitable bilinear pairing. Furthermore, consider two hash functions

h : {0, 1}∗ × V −→ (Z/lZ)× and
H : {0, 1}∗ −→ G∗.

Setup algorithm I: chooses a random generator P ∈R G. Moreover, Ymaster :=
sk · P is published, where sk ∈R

`

Z

lZ

´

×

is the uniformly at random chosen
master secret key.

Key extraction Ksig: for an identity id ∈ {0, 1}∗, the secret key corresponding
to this identity is computed from the secret master key by the issuing authority
as skid := sk · H(id) and forwarded to the signer.

Signing algorithm S: to sign a message m with skid, the signer chooses arbi-
trary P1 ∈ G∗, picks a random integer k ∈

`

Z

lZ

´

×

and computes:

– r := e(P1, P )k

– v := h(m, r)
– u := v · skid + k · P1

The signature on m under skid then is (u, v) ∈ G ×
`

Z

lZ

´

×

.
Verification algorithm V: returns true if and only if a candidate signature (u, v)

for a message m satisfies the equation v = h(m, r), where r is computed as
r = e(u,P ) · e(H(id),−Ymaster)

v.

Fig. 4. Identity-based signature scheme from [17]

The EUF-ID-CMA security of the scheme in Figure 4, in the random oracle
model, relies on the hardness of the Computational Diffie Hellman Problem in
G, as proven in [17, Theorem 1].

Combining FullIdent with Hess’ signature scheme
The identity-based schemes just described both use a discrete logarithm sk of a
public

Ymaster = sk · P

as secret master key. Moreover, also the key extraction algorithm is identical.
Thus, it seems natural to form a combined identity-based public key scheme
with the same setup and key extraction algorithm.

As public parameters pk we use a single value Ymaster = sk ·P ∈ G along with
all the remaining (sk-independent) needed public parameters—like P and the
specification of the random oracles H = H1, H2, . . . , H4, h—and of, only one,
admissible bilinear map e. Note that both schemes will make use of the hash
function H and of the bilinear map e; moreover, we shall assume that all these
involved hash functions behave like independent random oracles.

Proposition 2. In the random oracle model, if the Bilinear Diffie Hellman as-
sumption for (G, e) holds, then the above combined identity-based public key
scheme is secure in the sense of IND-ID-C[CM]A and in the sense of EUF-ID-
C[CM]A.
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Proof. We show that a successful adversary in the sense of IND-ID-C[CM]A yields
an IND-ID-CCA adversary against Boneh and Franklin’s FullIdent scheme. Sim-
ilarly, we argue that a successful EUF-ID-C[CM]A adversary would break the
EUF-IND-CMA security of Hess’ signature scheme.

IND-ID-C[CM]A security. Suppose we have an adversaryA in the sense of IND-
ID-C[CM]A violating ciphertext indistinguishability. We start by showing that the
signing oracle OS can be simulated for each identity without the corresponding
secret key; thus, it is of no help to A.

Consider a simulator SSim which on input of an identity id and a message

m chooses (u, v) ∈R G ×
(

Z

lZ

)×
and defines the hash value h(m, r) := v where

r = e(u, P ) · e(H(id),−Ymaster)
v. The output of SSim is (u, v) which is a valid

signature of m under id. The running time of SSim is comprised of the running
time of the verification step (and of the book keeping for H and h) and is thus
polynomial in the running time of A.

This simulator SSim can only be distinguished from a true signing oracle if
at some point a queried hash value h(m, r) is already defined. The probability
for this is O(q2

S/2k) if at most most qS signing queries are issued to SSim. Since
A and thus qS is polynomial in k, this probability is negligible.

From the above observations we see that an IND-ID-C[CM]A adversary A
violating ciphertext indistinguishability can be transformed into an ordinary
IND-ID-CCA attacker against the Boneh-Franklin scheme.

EUF-ID-C[CM]A security. Now suppose that an EUF-ID-C[CM]A adversary A
successfully violates the existential unforgeability of the combined identity-based
public key scheme in question.

Again, we argue that a decryption oracle can be simulated without the cor-
responding identities’ private keys: such a simulator DSim exists for the full en-
cryption scheme of [6]. A general argument for this is that the scheme arises as
the Fujisaki-Okamoto transform of a γ-uniform and ID-OWE secure encryption
scheme, see [6] and [14, Corollary 13]. In the following we give a more specific
argument.

Valid ciphertexts are of the form

(rP, σ ⊕H2(e(H(id), Ymaster)
r), m⊕H4(σ))

where H2, H3, H4 are suitable fixed hash functions, σ, m are bitstrings and the
equation r = H3(σ, m) holds true. Note that the map

f : (r, σ, m) 7→ (rP, σ ⊕H2(e(H(id), Ymaster)
r), m⊕H4(σ))

is bijective. The decryption function D inverts it internally to (σ, m) using the
secret key, and returns m as the message if r = H3(σ, m) holds true, and the
error symbol ⊥ otherwise.

The simulator DSim is defined as follows. First, the simulator DSim is arranged
to know the queries to the oracle of the hash function H3. Second, for a decryp-
tion query on a given ciphertext c it checks whether one of the queries (σ, m)
passed to the oracle of H3 so far satisfies f(r, σ, m) = c with r = H3(σ, m). If
yes, the answer to the decryption query is m, otherwise the error symbol ⊥.
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We now compare two runs of A with identical inputs, in particular with
identical random tapes and hence identical hash functions H, H2, H3, H4, but
in one case with access to the decryption function D and in the other case
with access to the simulator DSim. Obviously A will execute identically until
the, say, i-th decryption query will be answered differently by D and DSim. If
DSim outputs the message m on input of c, then r = H3(σ, m) for r, σ, m with
f(r, σ, m) = c, and D also outputs the message m. A difference can hence only
occur if DSim outputs ⊥ on input of c and D outputs a message on input of the
same c. This means that, while again r = H3(σ, m) for r, σ, m with f(r, σ, m) = c
must hold, the oracle for H3 has not been queried for σ, m in the run of A with
DSim. Then the oracle for H3 has also not been queried for σ, m in the run of A
with D, since the runs are identical up to the i-th decryption query (note that
only queries to the oracle of H3 outside DSim and D count). Randomizing over
the input of A and the hash functions we see that the probability of different
outputs of DSim and D in the i-th decryption query is equal to the probability
that A computes c such that r = H3(σ, m) for r, σ, m with f(r, σ, m) = c without
querying the oracle of H3 for σ, m. Since H3 assumes random values in (Z/lZ)×,
this probability is 1/(l− 1).

Now, if A makes at most qD decryption queries, then the probability that
DSim answers all these decryption queries like D is (1 − 1/(l − 1))qD . Since
l = Θ(2k) and qD is polynomial in k, this probability differs only negligibly from
1.

The running time of DSim is essentially that of encryption times the number
of queries to the oracle of H3 and is thus polynomial in k.

From the above observations we see that an EUF-ID-C[CM]A adversary A
producing a forged signature can be transformed into an ordinary EUF-ID-CMA
attacker against the scheme of Hess, which finishes the proof. ⊓⊔

4 Conclusions

Building on earlier work in [16, 18, 11], our discussion offers formal security no-
tions to analyze combined public key schemes both in an identity-based and in a
non-identity-based setting. We give two concrete constructions using established
public key schemes and prove them secure.

For the non identity-based case, the Forking Lemma turned out to be a
powerful tool: as in our example the signing oracle can be simulated without
knowledge of the secret key, a successful adversary constructing an existential
forgery would be able to efficiently solve the mathematical problem underlying
both the signature and the encryption scheme. Similarly, for the identity-based
setting, the strategy is to argue that both the signing and decryption oracle can
be simulated without the corresponding secret key. As a result, the “combined”
adversary reduces to a standard one and the security level is thus inherited from
the constituent encryption and signature schemes.

Aiming at the identification of further secure combined public key schemes,
the above proof strategies appear to be quite promising.
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