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Abstract. In this paper, we present a deterministic algorithm to produce dis-
turbance vectors for collision attacks against SHA-1. We show that all published
disturbance vectors can be classified into two types of vectors, type-I and type-I1.
We define a cost function, close to those described in [9], to evaluate the complexity
of a collision attack for a given disturbance vector. Using the classification and the
cost function we made an exhaustive search which allowed us to retrieve all known
vectors. We also found new vectors which have lower cost. This may lead to the
best collision attack against SHA-1, with a theoretical attack complexity of 251 hash
function calls.
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1 Introduction

SHA-1 has been a widely used hash function since it was published by NIST as a Federal
Processing Standard in 1995 [11]. SHA-1 is an evolution of a previous standard named
SHA-0 [10]. SHA-1 and SHA-O only differ in their message expansion.

Many researches have discussed collision attacks against SHA-0 and SHA-1 [5,1,2,
15-17,3,14,4,6,8]. Chabaud and Joux [5] pointed out the weakness of the state update
transformation common to SHA-O and SHA-1. They described a linear differential path
composed of interleaved 6-steps local collisions. The core of this differential path is rep-
resented by a disturbance vector (so-called L-characteristic) which indicates where the
6-step local collisions are initiated. Once a disturbance vector is chosen, one can evaluate
the complexity of a collision attack against SHA-0 or SHA-1 directly from this vector. The
critical factor for choosing a disturbance vector is considered to be the Hamming weight
of its last 60 coordinates. A lot of work has been spent in order to find good vectors [16,
7,13,12,18]. The algorithms proposed are essentially probabilistic algorithms based on
coding theory tools.

This article presents a new algorithm able to produce efficient disturbance vectors for
collision attacks against SHA-1. Based on the experiments done using this algorithm, we
present a classification for these vectors. First, we will describe our algorithm and present
what we will call type-I and type-II classes. We then show that all the previously proposed
and/or used disturbance vectors can be classified into one of these classes. We define a cost
function in order to compare known vectors, and show that these vectors are not optimal.
We therefore introduce a new vector which is optimal according to this cost function. This
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vector may be used in order to build a collision attack against SHA-1 with a theoretical
complexity of 251 hash function calls.

We organized the paper as follows. In Section 2, we give a brief description of SHA-1.
Then, in Section 3, we describe our new algorithm, define type-I and type-II families and
show that all known vectors are elements of these classes. In Section 4, we define the cost
function we used in order to evaluate the complexity of collision attacks against SHA-1. We
then provide a new disturbance vector and give a complexity comparison with previous
disturbance vectors. Finally, we draw conclusions in Section 5.

2 Short description of SHA-1

SHA-1 [11], is a 160-bit dedicated hash function based on the design principle of MD4. Tt
applies the Merkle-Damgard paradigm to a dedicated compression function. The input
message is padded and split into k& 512-bit message blocks. At each iteration of the com-
pression function h, a 160-bit chaining variable H; is updated using one message block
My, i.e Hiyq1 = h(Hy, Miyq). The initial value Hy (also called IV) is predefined and Hy,
is the output of the hash function.

The SHA-1 compression function is build upon the Davis-Meyer construction. It uses
a function E as a block cipher with H; for the message input and My for the key input,
a feed-forward is then needed in order to break the invertibility of the process:

HtJrl = E(Ht,MtJrl) H Ht,

where B denotes the addition modulo 232 32-bit words by 32-bit words. This function is
composed of 80 steps (4 rounds of 20 steps), each processing a 32-bit message word W;
to update 5 32-bit internal registers (A4, B, C, D, E). The feed-forward consists in adding
modulo 232 the initial state with the final state of each register. Since more message bits
than available are utilized, a message expansion is therefore defined.

Message expansion. First, the message block M; is split into 16 32-bit words Wy, ..., Wis.
These 16 words are then expanded linearly, as follows:
Wi = Wi—16 ® W;_14 ® Wi_g & W;_3) << 1 for 16 <i < 79.

State update. First, the chaining variable H; is divided into 5 32-bit words to fill the 5
registers (Ao, Bo, Co, Do, Eo). Then the following transformation is applied 80 times:

A1 =(Ai<5)+ fi(B:,Ci, D)+ E; + K; + W,

Biy1 = A,
STEP; 1 := 4 Ciy1 = B; > 2,

Dit1=0C;

Eit1=0D;.

where K; are predetermined constants and f; are boolean functions defined in Table 1.



round step 14 | fi(B,C,D) | K;

1 1<i<20 fir =(BAC)® (BAD) 0x5a827999
2 21 <4 <40 fxor=B&Ca&D Ox6ed6ebal
3 41 <i <60 fras =(BAC)® (BAD)® (CAD) 0x8fabbcdc
4 61 <17 <80 fxor=B&C&D Oxca62c1d6

Table 1. Boolean functions and constants in SHA-1.

Feed-forward. The sums modulo 2322 (AO + Ago), (BQ + Bgo), (CO + 080); (DO + Dgo),
(Eo + Esp) are concatenated to form the chaining variable Hy 1.

Note that all updated registers but A;;; are just rotated copies, so we only need to
consider the register A at each step. Thus, we have:

Ai+1 = (Az < 5) + fi(Ai—la A o>2 A, 3> 2) + A4 >24+ K+ W, (1)

3 Disturbance vectors searching algorithm

3.1 Principle of the algorithm

The search algorithm we used is mainly based on the simple observation that the message
expansion of SHA-1 can be defined in two directions: forward expansion and backward
expansion. Namely, one can fix Wy,...,Wi5 and then expand them forward to obtain
Wie, ..., Wro:

— Forward expansion : W; = (W;_16 ® W;_14 ® W,;_g ® W;_3) <« 1.

This is the standard way defined in SHA-1 specifications. We can also expand backward
to obtain W_gy, ..., W_1 defined by:

— Backward expansion : W; = (Wi+16 > 1) B Wit13 ® Wissg & Wigo.

Any sequence of 80 consecutive 32-bits words W, ..., W79 with —64 < i <0 is a valid
expanded message. For all Wy, ..., W15 we define an extended expanded message (EEM)
consisting of 144 32-bits words:

W_64,y...,W_1,Wo,...,Wis, Wis, ..., Wrg,

each EEM is composed of 65 valid expanded message. For all Wy, ..., Wi5 of total binary
Hamming weight of 3 or less, we generated the corresponding EEM and computed the
cost of its 65 expanded messages.

We experimentally observed some facts:

— fact 1: all efficient vectors ”looked” similar in some way,

— fact 2: we were able to find all previously known vectors,

fact 3: all efficient vectors mainly have their disturbances on low weight or heavy
weight bits of the W;,

— fact 4: lot of efficient vectors were the same under cyclic shift of their 32-bits words.



We remark here that some of these observations were already present in the literature.
Rijmen and Oswald [13], noticed that the codewords they found have a large amount
of W; in common. Jutla and Patthak [7] indicated that their first codeword was earlier
reported by Wang et al. in [16]. Pramstaller et al. [12] also pointed that their vector were
the same disturbance vector as the one used by Wang et al. with a shifted version of the
indices.

Considering fact 3 and fact 4 lead us to add some heuristics to our algorithm. With
these heuristics, we were able to extand our search for efficient vectors to Wy, ..., Wis
of total binary Hamming weight of 6 or less. This new search confirmed the previous
constated facts. The interpretation of these facts lead us to conclude that there were only
two types of efficient vectors.

3.2 Classification of disturbance vectors
We say that two disturbances vectors are equivalent if:

— the vectors are globally invariant under cyclic shift of their 32-bits words Wy, ..., Wrg
or,
— the vectors are generated by the same extented expanded message.

We experimentally verified that all efficient disturbance vectors lie in only two different
classes. We note these classes type-I and type-II. The type-I class contains the vector
first reported by Wang et al. in [16]. Type-II class contains the vector first reported as
Codeword2 by Jutla and Patthak in [7]. Table 4 and Table 5 present in a synthetic way
all previously known vectors and show that they are of type-I or type-II.

Whereas vectors of the same class are equivalent, the complexity of the associated
collision attacks can vary. We discuss in the next section how we evaluated this complexity.

4 Complexity evaluation

4.1 Cost function

In order to compare the complexity of collision attacks based on different disturbance
vectors we used a cost function. This cost function is based on the probabilities for local
collisions in SHA-1 described in Table 5 of the article proposed by Mendel et al. at FSE
2006 [9]. In the article of Wang et al. [16], conditions are counted from step 22 to 78. In
section 3.5 of the article of Mendel et al., the probabilities are computed, on the same
disturbance vector, from step 22 to 76. That’s why we arbitrarily chose to build our cost
function on the basis of a probability computation from step 22 to 76. We also used
the strict differential bit compression described by Yajima et al. [18]. Table 2 gives a
complexity comparison based on this cost function, of all disturbance vectors we were
aware of.

We are not claiming that this is the best way ever to evaluate the complexity of a
collision attack against SHA-1. The article of Mendel et al. demonstrates that this is an
estimation and that the accurate probability is lower than the estimation. Furthermore,
Heuristics like advanced message modifications or neutral bit techniques modify the com-
plexity computation. For example by allowing to start from steps higher than 22. Also,
early stopping techniques can lower the global complexity of the attack. However, this



simple cost function is a convenient way to make a raw comparison between proposed
disturbance vectors.

We also point out that our algorithm may use any other cost function. This is just an
evaluation function used to sort good candidates.

Disturbance vector Complexity evaluation
log

Wang et al. CRYPTO’05 [16] 66
Rijmen & Oswald CT-RSA 2005 [13]

Codewordl 84

Codeword2 84

Codeword3 95
Jutla & Patthak Eprint 2005 [7]

Codewordl 67

Codeword2 60

Codeword3 68
Pramstaller et al. IMA 2005 [12] 71
De Canniere et al. SAC 2007 [4] 79
Yajima et al. ASTACCS 2008 [18] 68

Table 2. Complexity comparison of known disturbance vectors.

4.2 New disturbance vector

Using our algorithm, we were able to find an optimal disturbance vector. It is a type-
II vector which has a complexity evaluation of 2°7 with respect to the cost function we
defined. This vector is given in Table 3, with its estimated probability computation.

This vector may be used in a two block collision attack against SHA-1, the same
way that have been done in previous attacks. One may use an automatic generator to
produce the needed non-linear characteristics [3]. Then use boomerangs in the neutral
bits framework [6] or advanced message modifications such as those given in [17] to start
complexity evaluation from step 25. Assuming the above simplifications, which is arguable,
we estimate the complexity of the attack to be close to 2°! hash function calls.

5 Conclusion

In this paper, we introduce a new algorithm to produce disturbance vectors to be used in
collision attacks against SHA-1. By identifying two types of efficient disturbance vectors,
we show that all known disturbance vectors can be classified into one of these types.
We managed to find a better candidate that the previously proposed vectors. This new
disturbance vector may be used as an L-characteristic for a collision attack against SHA-1.
This attack has a theoretical complexity of 2°! hash function calls.
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Table 3. New disturbance vector.




DV, Wang Rijmen & Jutla & Pramstaller
et al. Oswald Patthak et al.
[16,17,14,6]|  [13] [7] [12]
> 2 > 1 Codewordl|Codeword3 > 2
0
1 0
2 1 0
0 3 2 1
1 4 3 2
2 5 4 3
3 6 5 4
4 0 7 6 5
5 1 8 7 6
6 2 9 8 7
7 3 10 9 8
8 4 0 11 10 9
9 5 1 12 11 10
10 6 2 0 13 12 11
11 7 3 1 14 13 12
12 8 4 2 15 14 13
13 9 5 3 16 15 14
14 10 6 4 17 16 15
15 1 7 5 18 17 16
16 12 8 6 19 18 17
17 13 9 7 20 19 18
18 14 10 8 21 20 19
19 15 11 9 22 21 20
20 16 12 10 23 22 21
21 17 13 11 24 23 22
22 18 14 12 25 24 23
23 19 15 13 26 25 24
24 20 16 14 27 26 25
25 21 17 15 28 27 26
61 57 53 51 64 63 62
62 58 54 52 65 64 63
63 59 55 53 66 65 64
64 60 56 54 67 66 65
65 61 57 55 68 67 66
66 62 58 56 69 68 67
67 63 59 57 70 69 68
68 64 60 58 71 70 69
69 65 61 59 72 71 70
70 66 62 60 73 72 71
71 67 63 61 74 73 72
72 68 64 62 75 74 73
73 69 65 63 76 75 74
74 70 66 64 77 76 75
75 71 67 65 78 77 76
76 72 68 66 79 78 7
77 73 69 67 79 78
78 74 70 68 79
79 75 71 69
76 72 70
77T 73 71
78 T4 T2
79 75 73
76 74
77 75
78 76
79 77
78
79

Table 4. Known disturbance vectors of type-I.




DV; Yajima |De Canniere| Jutla &
et al. et al. Patthak
18] ] 7]
S>> 2 > 2 Codeword2
00— 0= === === 0
o 1
000~ =—————-----———————— o 2
0= 0= === 3
R 4
Q=== === 5 0
Q00— === === 6 1
o 7 2
00=0——==—=———————————— 8 3
Q== e 9 4
000~ =—————-----———————— o 10 5
00— === T-m—m——o—o————————————— 11 0 6
——— Qe 12 1 7
0= == 13 2 8
000———====—— - — o — oo 14 3 9
—— Q= 15 4 10
00————————-m—m————————— oo 16 5 11
=== 17 6 12
e ettt 18 7 13
=== e 19 8 14
00————————-m—m————————— oo 20 9 15
0= == 21 10 16
L 22 11 17
e 23 12 18
000 === === 24 13 19
———————————————————————————————— 25 14 20
———————————————————————————————— 61 51 57
———————————————————————————————— 62 52 58
———————————————————————————————— 63 53 59
———————————————————————————————— 64 54 60
———————————————————————————————— 65 55 61
———————————————————————————————— 66 56 62
———————————————————————————————— 67 57 63
———————————————————————————————— 68 58 64
———————————————————————————————— 69 59 65
———————————————————————————————— 70 60 66
——————————————————————————————— o 71 61 67
———————————————————————————————— 72 62 68
———————————————————————————————— 73 63 69
—————————————————————————————— o- 74 64 70
——————————————————————————————— o 75 65 71
———————————————————————————————— 76 66 72
————————————————————————————— o-- s 67 73
—————————————————————————————— o- 78 68 74
—————————————————————————————— o- 79 69 75
———————————————————————————— o--- 70 76
————————————————————————————— o-- 71 s
———————————————————————————————— 72 78
——————————————————————————— o--0- 73 79
———————————————————————————— o-—- 74
———————————————————————————— o-o- 75
—————————————————————————— o-———-- 76
——————————————————————————— 0-00- s
———————————————————————————————— 78
—————————————————————————— 0--0-0 79

Table 5. Known disturbance vectors of type-II.




