
The Ff -Family of Protocols for RFID-Privacy and Authentication

Erik-Oliver Blass1 Anil Kurmus1 Refik Molva1 Guevara Noubir2 Abdullatif Shikfa1

1 Eurecom, Sophia Antipolis, France
2 Northeastern University, Boston, USA

Abstract

In this paper, we present the design of the

lightweight Ff family of privacy-preserving authen-

tication protocols for RFID-systems. Ff is based on

a new algebraic framework for reasoning about and

analyzing this kind of authentication protocols. Ff

offers user-adjustable, strong authenticity and privacy

against known algebraic and also recent SAT-solving

attacks. In contrast to related work, Ff achieves these

two security properties without requiring an expen-

sive cryptographic hash function. Ff is designed for

a challenge-response protocol, where the tag sends

random nonces and the results of HMAC-like computa-

tions of one of the nonces together with its secret key.

In this paper, the authenticity and privacy of Ff is

evaluated using analytical and experimental methods.

1. Introduction

Nowadays, Radio-Frequency-Identification (RFID)

is used for a variety of applications, ranging from

simple library borrowing systems, access-control, up

to complete Supply-Chain-Management solutions. The

general setup consists of tiny, chip-like “tags” and

“readers”. Tags are wirelessly identified by the readers

using some identification protocol executed by tags and

readers.

The pervasive use of RFID-systems in our daily life

raises new security and privacy issues. Recently, it

has been shown that currently deployed RFID-systems,

e.g., London’s underground ticketing system “Oyster

Card” or the keyless car entry system “KeeLoq” are in-

secure and allow fraudulent usage, cf., [11, 12]. Similar

to fraudulent usage of services or illegal access to cars,

the privacy of RFID users is at risk, as RFID-tags can

be wirelessly scanned and tracked. For RFID-systems

to become widely accepted by industry and end-users,

secure and privacy-preserving authentication protocols

are thus required.

In [37], Di Pietro and Molva introduced a privacy-

preserving authentication protocol for RFID tags called

“DPM”. This protocol provides tag anonymity and

security against malicious impersonation of a tag.

However, the DPM-protocol suffers from some weak-

nesses. Based on an algebraic approach, an adversary is

able to compute 2

3
of the secret key bits shared between

reader and tag and also break the tag’s privacy, cf.,

[40, 42].

While one advantage of the DPM-protocol is re-

duced complexity on the reader-side during authen-

tication, a major drawback of the DPM-protocol lies

in the requirement to evaluate a strong, cryptographic

hash function, e.g., SHA-1/-2, on the tag. Such cryp-

tographic primitives are in general to costly for tags in

most RFID-applications, as they alone already require

≈ 10, 000 gate equivalents (NANDs), while tags are

often assumed to feature around 1, 000 to 10, 000 gates

available for the whole security protocol on the tag,

cf., [6, 21, 22, 24, 25].

Inspired by the DPM-protocol, we propose a family

of new low-cost authentication protocols for RFID tags

that provide key secrecy and privacy. The protocols

and underlying keyed-hashing functions are designed

to withstand known and new efficient algebraic attacks,

statistical attacks, LPN attacks, and recent SAT-solving

based attacks. We introduce a new algebraic attack and

show it’s efficiency against existing protocols.

In conclusion, the major contributions of this paper

are:

• First, we develop a new kind of algebraic,

linearization attack that is especially effective

against DPM [37], breaking key secrecy and pri-

vacy.

• We propose the new Ff family of protocols which

is designed such that it is secure against algebraic

attacks, LPN attacks [27], and also against a

new type of attack based on SAT-solving [3]. We

present theoretical analysis as well as implemen-

tation and evaluation results to argue for Ff ’s

security.

• Compared to related work, e.g., [2, 35–37, 41,

46], there is no expensive cryptographic hash

function like SHA-1 running on the tag required

anymore: Ff is extremely lightweight. Similarly,

the reader does not need to be able to compute

SHA-1, but can also be resource restricted, e.g., an

embedded device. Nevertheless with Ff , authen-

tication as well as privacy can be assured with an

arbitrary, user-adjustable level of security.

• Contrary to, e.g., [2, 35, 36, 41], Ff does not

require the existence of a non-volatile state on

the tag.

• Finally, the Ff -protocols are “unconditionally”

complete, i.e., a valid, legitimate tag will always

be identified by the reader as a valid tag – in

contrast to, for example HB+ [24] and variants,

where this is only guaranteed within a certain

probability.

After introducing our system- and adversary model

together with the definition of the two security goals

authenticity and privacy in Section 2, Section 3

presents an overview of the Ff -family of privacy-

preserving authentication protocols. In Section 4, we

discuss the necessary properties of low-complexity

keyed-hashing functions to at least guarantee key non-

equivalence and other statistical properties. Section 5,

we then discuss the algebraic properties of the con-

sidered hashing function, such as linearization, key

expansion-compaction, and analysis of a new algebraic

attack that performs very well against special instances

of Ff , e.g., [37]. Finally, in Section 6, we propose a

new, secure instance for Ff and evaluate the algebraic

and SAT-solving attacks on it.

2. System Model and Assumptions

An RFID-“system” consists of n tags and a single

reader. For the sake of simplicity, we call a tag TID,

i.e., TID is the unique name or ID of a tag. Each

tag TID shares a different secret, e.g., a key KTID
,

with the reader. The reader stores n different tuples

(TID,KTID
) as entries in its database D, n = |D|. For

better comparison, we set n to a typical value, i.e.,

n = 216 as in [37].

The setup, i.e., the simple application, used in this

paper is a reader in front of a closed (and locked)

door. The reader will unlock and open the door, if

and only if he can identify a tag TID ∈ D. The

reader identifies a single tag with the usage of a

communication protocol. As soon as a tag is within

the reader’s wireless communication range, the reader

starts a protocol run with the tag. Here, a protocol run

is a single execution of the protocol, i.e., a pass through

one instance of the protocol. During the protocol run,

the reader uses its database D, to finally identify the

tag’s ID at the end of the protocol run.

RFID tags are severely restricted in terms of com-

putational resources. We assume tags similar to EPC

Global Gen. 2 Class 1 tags [18]. These read-only

tags are assumed to be passive, without a battery.

They draw their power to operate completely from

the reader’s electromagnetic field. Tags do not fea-

ture a state, i.e., some kind of non-volatile memory.

However, we assume each tag has access to a source

of (cryptographically) good randomness. For example,

a tag could draw random data from its antenna by

extrapolation of static-noise.

Today’s tags feature only a couple of thousands Gate

Equivalents [24, 25] (GE), thus the implementation of

complex hash functions like SHA-1 (requiring 10, 641
GE [6]) is impossible.

Typically a tag is in the reader’s communication

range for only a short duration of time, e.g., while

its user “swings” it close to the reader. We assume

this to be ≈ 1s. The overall amount of data exchanged

between the tag and the reader is thus limited.

As opposed to prior work, we also assume the

reader to be resource restricted: in many real world

application scenarios, a reader is neither permanently

connected to a high-performance back-end system

to forward a tag’s reply for authentication to, nor

does the reader feature a high-performance CPU. In-

stead, we assume the reader to be equipped with a

microcontroller-based CPU. The reader is therefore not

capable of doing complex computations, e.g., SHA-

1 computations, on all elements of its database. As a

result, strong hash functions are not available for RFID

protocol design.

2.1. Adversary model

The adversary model in this paper follows the def-

initions of [44]: we assume an active, man-in-the-

middle-like adversary. The adversary can not only

listen to all wireless communication between reader

and tags, but also block, exchange, or modify ongoing

communication. He can also temporarily put a tag into

a quality time [43] phase, by drawing a tag into his

possession. During this phase, he can query the tag a

finite, reasonable number of times, i.e., send messages

to and receive answers from the tag. Reasonable means

that the adversary can not exceed more operations than

typical “security margins” [26]. For example, he can

query only ≪ 264 times. He can also send and receive

messages to and from the reader a finite, reasonable

number of times. The adversary can, however, neither

read out a tag’s nor the reader memory. He can not

compromise a tag or the reader.

More formally, the adversary executes an algorithm,

and this algorithm has access to a set of oracles that

can be called a finite number of times. He can do a

DRAWTAG oracle-call. This will give him, out of the

set of all possible tags, one temporarily anonymized tag

ID Tvtag of a tag TID. The oracle randomly chooses

TID out of the total set of all tags. The adversary

can only draw one tag at a time. Before he can draw

another tag, he has to FREE the current tag. Note that

with subsequent calls to DRAWTAG, the oracle might

randomly choose the same tag TID. However, each

time Tvtag given to the adversary might differ from

each other.

A tag Tvtag that is drawn into quality time, can

be queried with a finite number of additional calls to

oracles. A call to LAUNCH initializes a new protocol

run, i.e., resets and prepares the reader and Tvtag for a

new execution of a protocol. With a call to SENDTAG,

the adversary sends data to Tvtag and receives its

response from the oracle. Similarly with a call to

SENDREADER, the adversary can send data to the

reader. Finally, if a protocol instance is finished, i.e.,

the adversary called SENDREADER, a query to the

RESULT-oracle will tell the adversary, if the reader

accepted the data it received, apparently identified a

tag, and opened the door.

With EXECUTE, a complete protocol instance is run

through, and the adversary receives from the oracle all

communication between Tvtag and the reader.

This adversary is called non-narrow weak in [44].

Tag Compromise and Destruction. Instead of

the above non-narrow weak adversary, we could also

allow the adversary to compromise and destruct tags or

to create fake tags. However, such a strong adversary

would not have any advantage over the weak adversary

in our setup: we assume tags to be stateless, and in

the Ff family of protocols, tags do not share any keys

or secret information, even not partially. Consequently,

there would be no gain in compromising or destroying

tags for the adversary. So, even the Ff is secure against

a strong adversary, it is sufficient to focus only on the

capabilities of a weak adversary in this paper.

2.2. Security Goals

In our RFID-system, we want to provide two secu-

rity goals: (1) Authenticity and (2) Privacy.

2.2.1. Authenticity. The purpose of a tag is to authen-

tically identify itself, and therewith the person carrying

the tag, towards the reader using some communication

protocol. Authenticity in this context means that, after

execution of the communication protocol, i.e., one pro-

tocol run, the reader can be sure that a certain, specific

tag took part in this communication protocol – and not

a non-legitimate adversary. The reader should be sure

with “overwhelming probability”, the adversary should

be able to fake authentication only with “negligible

probability”.

More formally speaking, the communication proto-

col should result in recent aliveness, with the reader

being the initiator of the protocol, e.g., see definitions

in [29, 43].

As in [44], the adversary will use the above oracles,

put tags into quality time and query them. Never-

theless, he should not succeed in making the reader

authenticate some tag TID ∈ D in a protocol execution,

without that TID takes part in this protocol execution.

The probability of succeeding should be negligible for

the adversary.

The above can also be called the soundness of

an identification protocol [13]. Similar, completeness

means that if some tag TID ∈ D takes part in a protocol

run with the reader, and the adversary does not modify

or block the tag’s message to the reader, the reader

should never reject this tag, i.e., always open the door

for a valid tag.

Please note that authentication, i.e., secure identifi-

cation of a certain tag is a stronger requirement than

completeness. Clearly, if a reader can identify a certain

tag TID, it can decide whether TID ∈ D. Depending

on the scenario, completeness might be sufficient. Yet,

in this paper, Ff will provide both.

Also note that we do not focus on any form of agree-

ment authentication, i.e., we do not care about mutual

authentication. There is no application or need to do

further communication besides protocol execution for

authentication in the RFID-system.

2.2.2. Privacy. While authenticity aims at protecting

the tag identification, privacy focuses on not revealing

the identity of a tag to an adversary. Generally, an

adversary should not be able to tell which tag exactly

has been drawn into quality time. He must not find

out the ID of some tag Tvtag . This can also be called

anonymity. Furthermore, two subsequently drawn tags

Tvtag and Tvtag′ must not be linked together: the

adversary should not be able to tell whether Tvtag =

Tvtag′ or not.

Following the more formal definitions of [44], the

adversary draws a tag into quality time using the

DRAWTAG-oracle. He receives Tvtag and calls the

above mentioned oracles a finite number of times.

He uses FREE to release the tag. Finally, he does

this procedure a second time: draws Tvtag′ , calls the

oracles, and frees Tvtag′ .

Now, the adversary has to decide whether Tvtag

was the same tag as Tvtag . If the probability of the

adversary doing the right decision is negligible small,

the protocol is private.

3. A Family of Authentic and Private

RFID Protocols

The scope of this paper is a family of RFID

protocols that allow for the identification of tags by

readers in a privacy-preserving manner. In a generic,

challenge-response based authentication protocol, a

reader sends a nonce N to a tag TID, and the tag

replies with {R,F (N,R, KTID
)}, see [5]. Here, N

is the reader’s challenge for replay protection, R is a

random nonce by the tag for privacy protection, KTID

is the pairwise secret key between tag and reader, and

F is an HMAC-like (“keyed-hash”) function.

The basic idea behind the family or framework of

protocols we focus on is described in the following.

(1) A tag TID provides the reader with a series of one-

way results computed over its key KTID
. (2) The reader

compares these one-way results with the entries of its

database D: using the key included in each entry, the

reader identifies the entry in its database whose series

of one-way results matches all the one-way results

received by the tag.

The reason for such a setup is to keep the complexity

for tag and reader low while still trying to make

the reader quickly “converge” to a single entry in

its database. Instead of one pass through the whole

database D with a very expensive hash function, we

aim at multiple passes (“rounds”) on a database of

decreasing size and utilizing a very lightweight hash

function.

3.1. Round-Based Identification

Figure 1 depicts a typical message flow based on

this protocol framework. In the first protocol message,

the reader transmits the random challenge N as re-

quired for replay detection. In the second message,

the tag TID replies with a set of a total of q random

numbers (Ri) and the results of a one-way function

wi := F (Ri, N, KTID
) computed over each Ri, N ,

and the tag’s secret identification key KTID
. We call

each pair (Ri, wi = F (Ri, N, KTID
)) sent a round in

this context. In order to identify the tag, the reader

computes w′

i := F (Ri, N, K ′) using the identification

key K ′ of tag T ′ included in each tag’s entry of

its database. The entry (T ′,K ′) in D for which the

received values wi and the one computed by the reader

w′

i matches for all {1, . . . q} yields the identity of the

tag.

As it is the core of this family of protocols, function

F has to fulfill some critical requirements:

1.) Efficiency: F must be less complex than a strong

hash function, because if F were comparable to a hash

function, there would not be an advantage over much

simpler hash-based authentication protocols.

2.) Security and Privacy: even though F discloses

some information about the secret key of the tag as

all one-way hash functions do, retrieving the key and

doing impersonation (authenticity), identifying a tag,

or guessing the link between two different protocol

runs (privacy) with the same tag should be practically

infeasible.

3.) Identification Rate: the received value of F and

the one computed by the reader should be different

with a non-negligible probability for the entries in

the reader’s database that do not match the tag; in

other words: if KTID
!= K ′, then F (Ri, N, KTID

) !=
F (Ri, N, K ′) with a non-negligible probability. Ide-

ally, this probability should be close to 50% to give

good identification rate and to protect the privacy of

tags. If two tags reply to one query with the same

outputs or different outputs in half of the cases, re-

spectively, the adversary does not gain any information

whether the tags are the same or not. Finally, a good

identification rate does not only help the reader to

eventually identify a tag, but also prevents the adver-

sary to impersonate any tag in D by simply sending

random data to the reader.

3.2. The Ff Protocol Family

Based on the above “round-based” idea of protocols

and inspired by [37], we now describe and concentrate

!"

#$%"&$'"()#$%"!%"*+,-
.%""#/%"&/'"()#/%"!%"*+,-

.%"0"0"0"0"#1%"&1'"()#1%"!%"*+,-
"."

+23"+,-"

""*+,-"

#42546"
-"

786"9'$":8"1"

"""786"142;<"4=:6>"*?"9="-"

""""""97"()#@%"!%"*?."!"&9"
"""""""""":<4="4A9B9=2:4"*?"9="-"

""""4=5786"

4=5786"

#4:C6=":<4"64B29=9=3"4=:6>"87"-"

Figure 1. Round-based tag identification

on our Ff family of private authentication protocols.

Each tag TID shares not only one key KTID
, but also a

second secret key K ′

TID
with the reader. Consequently,

the reader stores tuples (TID, {KTID
,K ′

TID
}) in its

database D.

1) Each protocol run, i.e., single execution of the

protocol, starts with the reader sending a nonce.

Reader → Tag: N0 ∈ GF (2lmt)
2) The tag (TID) replies with a single message. This

message’s

content is split into q rounds as follows:

Tag → Reader:

1. (R1
1, R

2
1, . . . , R

d
1),

Ff (KTID
, Ra1

1
) + Ff (K ′

TID
, N1)

2. (R1
2, R

2
2, . . . , R

d
2),

Ff (KTID
, Ra2

2
) + Ff (K ′

TID
, N2)

· · ·

q. (R1
q , R

2
q , . . . , R

d
q),

Ff (KTID
, R

aq

q) + Ff (K ′

TID
, Nq),

with Rv
u, Nu,KTID

,K ′

TID
∈ GF (2lmt), ai ∈ {1 . . . d},

q ∈ IN, Ff : GF (2lmt) × GF (2lmt) → GF (2t).

!"#$%"&#

'# '#

'#'# '#

(# (#

'#

(#'#

'#

'#

)#

*!"#$%"&#

"#$%"&#

"#$%"&#

+,#

-,#

.
/#

.
0# .

*#

1
/#

1
0# 1

*#

Figure 2. Overview of l, m, t, Ff , f , K, ki, R, ri

In every round i, ai is chosen randomly by the

tag. So, TID sends in each round i, 1 ≤ i ≤ q, not

only one random value Ri, but each time d random

values R1
i , . . . , R

d
i . Also in each round, TID randomly

selects one of these values, Rai

i , 1 ≤ ai ≤ d and

sends Ff (KTID
, Rai

i) + Ff (K ′

TID
, Ni) along with the

random values to the reader. So you can see that in the

Ff protocol family, wi = F (Ri, N, KTID
) of Fig. 1 is

split into wi = Ff (KTID
, Rai

i)+Ff (K ′

TID
, Ni), Ri of

Fig. 1 is split into R1
i , . . . , R

d
i .

3.2.1. Reader-Side Identification of a Tag. After

sending N0, the reader receives q tuples ((R1
i , . . . ,

Rd
i), wi = Ff (KTID

, Rai

i) + Ff (K ′

TID
, Ni)), 1 ≤ i ≤

q from tag TID. Using these tuples, the reader “strikes

out” keys in D to eventually reduce D to one single key,

similar to Fig. 1. In each round i, the reader verifies all

remaining keys as follows: for the jth remaining entry

(Tj , {KTj
,K ′

Tj
}) ∈ D, he computes the equations:

Ff (KTj
, R1

i) + F (KTj
, Ni)

?
= wi

Ff (KTj
, R2

i) + F (KTj
, Ni)

?
= wi

· · ·

Ff (KTj
, Rd

i) + F (KTj
, Ni)

?
= wi

If and only if all of the above equations are invalid,

the entry (Tj , {KTj
, K ′

Tj
}) is removed from D and

the reader continues with the next round i + 1 and the

reduced database. The idea is that after q-rounds, there

will be only 1 tag remaining in D. We call this kind

of identification of a single tag converging to a single

entry.

You can already see that Ff provides completeness:

for data sent from a valid tag, at least one equation

will always hold. Therefore, a valid tag will never be

removed from D and never be rejected from the reader.

3.2.2. Replay-Protection. The reason behind not

simply sending wi = Ff (KTID
, Rai

i), but wi =
Ff (KTID

, Rai

i) + Ff (K ′

TID
, Ni) to the reader during

round i is to protect against replay attacks. The reader

expects wi to depend on the original nonce N0 sent at

the beginning of the protocol run. Thus, the adversary

cannot simply store the tag’s response of a previous,

successful protocol run using EXECUTE and replay the

data during a subsequent run with SENDREADER.

In Ff , we derive all Ni from N0 as explained later

in Section 3.2.4.

3.2.3. Relation between Ff and f . Furthermore in

our family of protocols, Ff is made of small fan-in

functions f , f : GF (2mt) × GF (2mt) → GF (2t), as

follows:

Ff (K, R) =

l∑

i=1

f(ki, ri).

Here, “+” equals the XOR “⊕”.

Generally, keys K and random nonces R (or N) are

each of size (l ·m · t) bits. Throughout this paper, we

will group subsequent bits of a key or nonce into l

so called symbols, such that K = (k1, . . . , kl), R =
(r1, . . . , rl). Each of the l symbols consists of (mt)
bits. By writing ki,j or ri,j , we denote the jth bit of

the ith key symbol or random symbol, respectively.

These relations are shown in Fig. 2.

Parameters {d, l,m, t} are system parameters and

will be discussed later. Finally, real-world example

values for these parameters are presented in Section 6.

3.2.4. Using a PRNG. Sending (R1
i , . . . , R

d
i) to the

reader in every round i will generally give an adversary

the opportunity to mount choosen-plaintext-attacks on

the tag’s key by modifying the answer he receives from

SENDTAG and calling the SENDREADER oracle with

the modified data.

Also, as a tag is in communication range only

for a limited time, the amount of data that can be

transferred is limited. Depending on system parameters

q, d, l,m, t, this amount of data might be exceeded

such that the tag can not authenticate itself.

To overcome both problems, we therefore propose to

derive subsequent R
j
i from previous R

j
i using a pseu-

do-random-number-generator PRNG.

More formally, we propose to compute

R
j
i := PRNG(Rj−1

i), j > 1

R1
i := PRNG(Rd

i−1).

Now, the tag only needs to draw and send one sin-

gle random number, Rd
0 , to the reader. This reduces

the opportunity for the adversary to precisely modify

subsequent Rs, as he is able to choose only the first

random date Rd
0 . Also, data volume that is wirelessly

sent to the reader shrinks from (qd) · |R| bits to |R|
bits.

Still within the protocol, the tag computes all

pseudo-random numbers R
j
i , 1 ≤ j ≤ d for each round

i and then randomly, i.e., indeterministically, chooses

one ai and computes Ff (K, Rai

i) + F (K ′, Ni).

The second Ff protocol message, from

the tag to the reader, now looks as follows:

(Rd
0, Ff (K, Ra1

1) + F (K ′, N1), Ff (K, Ra2

2) +
F (K ′, N2), . . . , Ff (K, R

aq

q) + F (K ′, Nq)), where

ai is chosen (really) randomly each time. With Rd
0 ,

the reader computes all subsequent pseudo-random

numbers and proceeds as in Section 3.2.1.

As we do not care about the secrecy of the internal

state of PRNG, but only require (pseudo)-randomness

for the Rs, we use a cheap LFSR to derive them

with “good enough randomness”. Both, the tag and

the reader will use Rd
0 as the seed, the first internal

state of the LFSR. Section 6 will argue about the costs

of implementing an LFSR on a tag and why using

an LFSR does not have an impact on security. As

we only care about the (pseudo)-randomness of the

Rs, it is in the following Sections sufficient to only

assume that each subsequent R
j
i is still drawn truly

indeterministically.

Deriving Ni. The above also holds for subse-

quent Nis that are required for replay-protection: we

derive

Ni+1 := PRNG(Ni),

with the original N0 received from the reader.

Let us again assume for now that the Ni are

completely random, deriving from an LFSR is not a

security issue.

For the following algebraic reasoning, let us also

not consider Ff (K, Rai

i) + Ff (K ′, Ni) in each round

i, but focus only on Ff (K, Rai

i). For the discussion

on statistical properties of Ff and its strength against

algebraic and SAT-attacks, this is sufficient.

4. Low-cost hash functions with good

statistical properties

In this section, we discuss the required properties of

“low-cost” or “low-complexity” hash functions Ff to

prevent classical statistical attacks and to prevent the

formation of key equivalence classes, i.e., we discuss

key in-distinguishability and balanced output.

We will first focus on hashing functions with t = 1
bit output, as this is the case, e.g., for DPM [37], and

security properties are much easier to derive. Then, in

Section 4.2, we extend the required properties to the

case of t > 1 bit output hashing functions.

4.1. t = 1 bit output hashing

Let f be a small fan-in boolean function f :
GF (2m) × GF (2m) → GF (2), i.e., t = 1. Consider

the class of 1 bit output hashing function Ff built by

XORing the outputs of f as follows. For every key K

and random input R of length l > 1 symbols (each of

m bits), K, R ∈ GF (2lm):

Ff (K, R) =

l∑

i=1

f(ki, ri) (1)

4.1.1. Key Equivalence. Two keys are said to be

equivalent, if they can never be distinguished when

hashed with any random input. To guarantee that an

RFID tag can be uniquely identified and cannot be

impersonated with any other tag, it is important to

guarantee the non-existence of equivalence classes of

keys with respect to Ff .

It turns out that it is sufficient that the elementary

function f satisfies two simple conditions to prevent

the formation of equivalent keys in Ff . The required

conditions, specified in Theorem 4.1, are that for any

two key symbols ki, kj , there should exist at least one

random symbol r for which they are not distinguish-

able with f , and there should exist at least one random

symbol r′ for which they are distinguishable.

Theorem 4.1: A hashing function Ff has no in-

distinguishable keys (no equivalence keys) iff the

underlying elementary hashing function f satisfies

conditions (2). More formally stated:

∀K "= K ′ ∈ GF (2lm)∃R ∈ GF (2lm) s.t.

Ff (K, R) "= Ff (K ′, R)

⇔






∀ki "= kj ∈ GF (2m)
∃r ∈ GF (2m) s.t. f(ki, r) = f(kj , r)
∃r′ ∈ GF (2m) s.t. f(ki, r

′) "= f(kj , r
′)







(2)

See Appendix A for the proof.

No Anti-Equivalence. Note that, as an additional

property, (2) also implies the following:

∀K "= K ′ ∈ GF (2lm)∃R ∈ GF (2lm) s.t.

Ff (K, R) = Ff (K ′, R).

This property is important from a privacy perspective:

Otherwise, if two keys K, K ′ give different output on

all different Rs, the adversary would get with calls to

the SENDTAG oracle, ∀R,F (K, R) "= F (K ′, R), and

a third key, K ′′, gives different output to K on all Rs,

∀R,F (K, R) "= F (K ′′, R), then the adversary would

know that ∀R,F (K ′, R) = F (K ′′, R). So, K ′ and K ′′

are the same keys. This would break privacy.

Example: DPM-Function. The DPM-function

fDPM was introduced and defined in [37] as the

majority function M of a key symbol XOR random

symbol:

fDPM(ki, ri) = fDPM(ki,1, ki,2, ki,3, ri,1, ri,2, ri,3) =

(ki,1 + ri,1)(ki,2 + ri,2) + (ki,1 + ri,1)(ki,3 + ri,3)+

(ki,2 + ri,2)(ki,3 + ri,3)

Unfortunately, this function does not satisfy the

first condition of Theorem 4.1. A key symbol, i.e.,

the “triplet” (ki,1, ki,2, ki,3), is always hashed to the

same output as its opposite value, i.e., the key symbol

(ki,1, ki,2, ki,3). Therefore, the resulting FfDPM
func-

tion, FfDPM
:=

∑l

i=1 fDPMf(ki, ri), has equivalence

classes. One can note, that by inverting an even number

of symbols of a key (of a total of l symbols), we obtain

an equivalent key for FfDPM
. Thus, the key-space in

DPM is divided into 22m+1 equivalence-classes, each

of 2m−1 equivalent elements.

4.1.2. Probability of (In-)Distinguishability. It is

quite important that the probability for which two

different keys can be distinguished from each other

with any R is close to 50%: on the one hand, this helps

the reader to identify a tag in its database much more

quickly. On the other hand, it is important to have Ff

produce the same output for two different keys with

50% for each R, to protect against above mentioned

Anti-Equivalence classes.

In the following, we show that the XOR struc-

ture of the considered class of hashing functions al-

lows an exponential amplification of statistical (in-

)distinguishability. The size of the set of Rs which

do not distinguish between two keys K, K ′ shrinks

exponentially quickly as a function of the Hamming

distance of the two keys, HD(K, K ′). This result

can also be viewed as an extension of the piling-up

lemma [31] and Yao’s XOR lemma [28].

Theorem 4.2: The set of random values for which

two keys are indistinguishable is bounded as follows.

∃δ ∈ [0, 1
2)∀k "= k′ ∈ GF (2m) s.t.

1
2 − δ ≤ Pr[f(k, r) "= f(k′, r)] ≤ 1

2 + δ

⇒

∀K "= K ′ ∈ GF (2lm)
1
2 − (2δ)HD(K,K′) ≤ Pr[F (K, R) "= F (K ′, R)]

≤ 1
2 + (2δ)HD(K,K′)

See Appendix A for the proof.

In conclusion, this means that with a sufficient

key-length, the probability of Ff to have a different

output between two keys or not is bound to 50% for

any two Rs, regardless of f . Also, this allows the

reader to eventually distinguish between to tags and

“converge” during its identification process to a single

tag, providing completeness.

Example For an elementary hashing function f with

a bounded bias δ = 1
8 (meaning that two key symbols

result in equal and different values in at least 3
8 of the

cases), key symbol size m = 4, and key length l = 32
symbols, we obtain that the probability that two ran-

dom keys are correlated is bounded within the interval:

[12−
∑l

i=0(
l
i)(1−

1
24)l−i(1

24)i(2δ)l−i, 1
2 +

∑l

i=0(
l
i)(1−

1
24)l−i(1

24)i(2δ)l−i]. This is obtained by summing the

product of the probability that two random keys have

exactly i equal symbols and the correlation bound of

Theorem 4.2 with Hamming distance i. The resulting

bounding interval is: [12 − 2−56, 1
2 + 2−56].

4.1.3. Balanced Output. Balanced output is an im-

portant statistical property that the Ff needs to satisfy.

Even a slight imbalance in the output would allow an

adversary to characterize a tag based on the probability

distribution of it’s output. A tag can be characterized

by (p0, p1), where pi is the probability of outputting

value i. A safe function Ff should have equal values

of pi = 1
2 .

The family of Ff that we are considering converges

towards a balanced output as the key length is in-

creased. This derives from a similar argument as used

in Theorem 4.2. From this theorem, it is easy to see

that there is at most one key symbol ki that leads to a

constant output f(ki, r) independently of the random

input. Any other key k should have a bound δ0 on

its bias: Pr[f(k, r) = 0 ∈ [12 − δ0,
1
2 + δ0] (and

similarly for 1 output). Let Ki = (ki, . . . , ki) be the

l-symbol repetition of ki. Then, Pr[Ff (K, R) = 0 ∈

[12 − (δ0)
HD(K,Ki), 1

2 + (δ0)
HD(K,Ki)] (and similarly

for output 1).

4.2. t > 1 bit output hashing functions

The theorems of the previous section can be gener-

alized to hashing functions built using the same XOR

structure but with t > 1 bits of output. In this case, the

conditions on the elementary hashing function f can

be relaxed and the indistinguishability bounds further

tightened. This will allow for a better tag identification

(faster convergence).

Consider the class of t bit output hashing function

built by XORing the outputs of an elementary t bit

hashing function f : GF (2mt)×GF (2mt) → GF (2t)
as follows. For every key K and random input R

of length l > 1 symbols (each of mt bits), K =
(k1, · · · , kl), R = (r1, · · · , rl) ∈ GF (2lmt):

Ff (K, R) =
l

∑

i=1

f(ki, ri) (3)

Theorem 4.3: A hashing function Ff has no in-

distinguishable keys (no equivalence keys) iff the

underlying t bit elementary hashing function f satisfies

conditions (4). More formally stated:















∀ki &= kj ∈ GF (2mt)
∃h1, h2 ∈ GF (2t), h1 &= h2

∃r ∈ GF (2mt) s.t. f(ki, r) + f(kj , r) = h1

∃r′ ∈ GF (2mt) s.t. f(ki, r
′) + f(kj , r

′) = h2















(4)

⇒

∀K &= K ′ ∈ GF (2lmt)∃R ∈ GF (2lmt) s.t.

F (K, R) &= F (K ′, R)

See Appendix A for the proof.

Note that in the case of t bit output functions, there

is no need to make sure there is “no anti-equivalence”

as in the case of 1 bit output, cf., Section 4.1.1. Even if

the adversary would observe always different outputs,

∀R,F (K, R) &= F (K ′, R), F (K, R) &= F (K ′′, R),
from SENDTAG calls, he could not say anything on

K ′ ?
= K ′′. As outputs are now elements of GF (24),

each output can have 24 different choices – and not 2

anymore as in the case of GF (2).
Finally, Theorem 4.2 can also be extended to t bit

output functions. Let fi denote the restriction of f to

its ith output bit (1 ≤ i ≤ t).
Theorem 4.4: The set of random values for which

two keys are indistinguishable is bounded as follows.

∃δ ∈ [0, 1
2)∀k &= k′ ∈ GF (2mt)

1
2 − δ ≤ Pr[f1≤i≤t(k, r) &= f1≤i≤t(k

′, r)] ≤ 1
2 + δ

⇒

∀K &= K ′ ∈ GF (2lmt)
1
2 − (2δ)t·HD(K,K′) ≤ Pr[F (K, R) &= F (K ′, R)]

≤ 1
2 + (2δ)t·HD(K,K′)

See Appendix A for the proof.

4.2.1. Balanced Output. Similarly to Section 4.1.3, if

the f provides sufficient balance for each of the bits,

XORing over a large number of f outputs allows the

bias to converge to 0. So, to insure output balance

with high probability, we give the following sufficient

condition that should hold for a non-negligible fraction

of the key symbols ki: for a given key symbol ki, the

dimension of the vector space spanned by the elements

{f(ki, r)|r ∈ GF (2t)}, is equal to t.

4.3. Convergence-Rate and

Anti-Impersonation Security

As mentioned before, a mandatory property of Ff

should be to allow the reader to converge to a single

key in his database quickly, generally accept valid tags

(completeness), but still prevent an adversary to do an

impersonation attack)

4.3.1. Convergence and Completeness. As of Sec-

tion 4.2.1, the output of Ff is balanced. So, for each

tuple of random numbers R1
i , . . . , R

d
i and hash output

Ff (K, Rai

i) that is sent during each of the q rounds of

the protocol from the tag, the probability that another

key K ′ &= K in the reader’s database D is removed is

Premove(t, d):

Premove(t, d) := (
2t − 1

2t
)d

With the original size of the database n = |D|, the

number of invalid keys K ′ &= K that are still valid

after q rounds shrinks to n′, i.e., every invalid key is

still valid with (1 − Premove(t, d))q:

n′ = (n − 1) · (1 − Premove(t, d))q

= (n − 1) · (1 − (1 −
1

2t
)d)q

A key is still valid after q rounds implies that it

complies to all (Rai

i , Ff (K, Rai

i)) tuples so far. So,

convergence of identification of a single tag increases

exponentially with the number of rounds q and the out-

put bit-size t of Ff . However, convergence decreases

exponentially with increasing d.

Please note that with the Ff protocols a valid tag

sending data to the reader will never be removed from

D. Thus, Ff is (unconditionally) complete.

In Section D.1, we will present evaluation results for

convergence rate of one Ff implementation proposal.

4.3.2. Statistical Impersonation. The adversary

might try to randomly impersonate at least one tag,

e.g., to open a door, by randomly impersonating any

valid key in the database. If the adversary tries to

impersonate any tag by sending random data with

SENDREADER in each of the q rounds, the prob-

ability that he successfully impersonates is called

Psuccess(t, d, q, n). We can compute Psuccess(t, d, q, n)
using the probability Pinvalid(t, d, q) that one key in D

is not valid after q rounds of sending random data, i.e.,

it fails on at least one round:

Pinvalid(t, d, q) : = 1 − (1 − Premove(t, d))q

= 1 − (1 − (1 −
1

2t
)d)q,

and finally

Psuccess(t, d, q, n) := 1 − Pinvalid(t, d, q)n

So, n and d exponentially weaken statistical security

against impersonation, while q and t exponentially

strengthen it.

Please refer to Section 6.1.2 for evaluation results re-

garding impersonation security of one Ff implementa-

tion proposal. Also note that d increases computational

complexity for the adversary to compute a tag’s secret

key. This will be discussed in detail in Section 5.2.

5. Authentication protocols with

good algebraic properties

In this section, we present a framework for algebraic

reasoning about the Ff family of protocols.

We first show a class of algebraic attacks that can be

applied to the DPM-protocol and, based on this, show

why the Ff -family is generally able to withstand these

attacks. The proposed attack relies on linearization

techniques and key compaction.

In Section 5.1, we show that any t ≥ 1 bit output

keyed-hashing function f can be linearized using a

potentially larger, linearized key. A careful analysis of

the dimension of the vector space generated with the

coefficients of the linearized form allows a compaction

of the key. This result can be generalized to the larger

class of Ff keyed-hashing functions. Therefore, any

instance of Ff is equivalent to an inner-product of

a random-vector and a key-vector each of length at

most l symbols. In Appendix B, we present as an

example, how this can be exploited as an algebraic

attack and show its theoretic efficiency against the

DPM-protocol [37]. Further practical evaluations, in

particular on a “secure” instance of Ff , can be found

in Section 6.2.

5.1. Key Linearization and

“Expansion-Compaction”

We first show that small fan-in keyed hash functions

can be expanded-compacted, i.e., first expanded into a

linearized expression and then compacted in a smaller

expression that captures all security properties of the

original keyed hash function.

Lemma 5.1: Any function f : GF (2mt) ×

GF (2mt) → GF (2t) can be linearized into:

1) f(k, r) =
∑s

j=1
uj(r)vj(k) where s < 2mt, and

uj(r), vj(k) are multivariate polynomials from

GF (2t)m → GF (2t),
2) the vectors (u1(r), · · · , us(r)) generate a vector

space of dimension s,

3) it is sufficient for an adversary to know the

linearized key (v1(k), · · · , vs(k)) to compute

f(k, r).

See Appendix A for the proof.

Lemma 5.1 can be generalized to Ff functions

composed of l functions f as follows. Note that now

the dimension of the vector space V becomes (ls) or

l(s − 1) + 1.

Theorem 5.2: Let Ff (K, R) be a t bit keyed-

hashing function (GF (2mt) × GF (2mt))l → GF (2t)
defined as Ff (K, R) =

∑l

i=1
f(ki, ri) where f :

GF (2mt) × GF (2mt) → GF (2t) and K =
(k1, . . . , kl), R = (r1, . . . , rl) ∈ (GF (2mt))l.

Ff (K, R) can be linearized into:

1) Ff (K, R) =
∑L

j=1
ERjEKj where L = ls or

L = l(s − 1) + 1, (s < 2mt, ERj = u(rj) ∈

GF (2t), EKj = v(kj) ∈ GF (2t),
2) the vectors (ER1, · · · , ERL) generate a vector

space of dimension L,

3) it is sufficient for an adversary to know the

expanded key (EK1, · · · , EKL) to compute

Ff (K, R).

See Appendix A for the proof.

(EK1, . . . , EKL) is called the expanded-compacted

key of a tag’s original secret key K.

5.2. Algebraic attacks on d-choice low cost

authentication protocols

As of Theorem 5.2, we now can (without loss of

generality) focus on linearized Ff functions, i.e., any

function can be rewritten as the dot product K · R,

Ff (K, R) = K · R, with K, R ∈ GF (2Lmt).
Let K, R be to such vectors of L symbols of (mt)

bits each. K denotes a key and R a random input. (K ·
R) ∈ GF (2t) denotes the dot product. Following the

introduction of Ff in Section 3, consider the following

protocol P:

Algorithm 1: Protocol P

for round i = 1 to q do

R1
i , R

2
i , ..., R

d
i ∈random GF (2lmt);

ai ∈random [1, . . . , d];
Oi = K · Rai

i ;

send(R1
i , R

2
i , . . . , R

d
i , Oi);

The attack is now as follows: an adversary drawing

one tag into quality-time can derive the following and

only the following equations (because we are operating

in a field):

(K · R1

1
− O1) · (K · R2

1
− O1) · · · (K · Rd

1
− O1) = 0

(K · R1

2
− O2) · (K · R2

2
− O2) · · · (K · Rd

2
− O2) = 0

.

.

.
.
.
.

(K · R1
q − Oq) · (K · R2

q − Oq) · · · (K · Rd
q − Oq) = 0

(5)

(Note that with multiple calls to SENDTAG, the adver-

sary will usually get more than q rounds of output and

derive more than q equations.)

Generally, the adversary can compute K by solving

this system of equations. However, we will now show

that with a careful choice of l,m, t, d solving this sys-

tem of equations becomes computationally infeasible.

Each equation of system (5) can be expanded in a

sum of monomials of degree at most d. Each equation

in round i can be rewritten as:
∑

1≤j≤d
1≤c1≤c2≤···≤cj≤l

Ci,c1c2···cj
kc1

kc2
· · · kcj

= (Oi)
d

(6)

The adversary linearizes monomials of degree > 1,

by substituting each with a new variable, i.e., a new

monomial of degree 1. We now call Γ the matrix

of coefficients Ci,c∗ , and O is the vector of (Oi)
d.

Ordering the linearized monomials according to a

lexicographic order and renaming their vector as Y ,

we obtain the following equation:

Γ · Y = O (7)

To get the key bits K, the adversary computes Y
by inverting matrix Γ. The complexity of inversion

depends on the number of (linearized) monomials.

Theorem 5.3 bounds the total number of possible

monomials U . U represents the number of columns

in matrix Γ.

Theorem 5.3:

d
∑

j=1

(

l

j

)

≤ U ≤

d
∑

j=1

(

l + j − 1

j

)

(8)

See Appendix A for the proof.

Corollary 5.4: As long as d ≤ l/2, U increases

exponentially with d. Therefore, an adversary needs an

exponential number (in d) of equations and spends an

exponential computational effort to compute the tag’s

key.

See Appendix A for the proof.

In conclusion, security of an Ff -instance against

algebraic attacks rises exponentially with rising d.

However, with a small d and small key sizes lmt, an

adversary can use the above attack to easily compute

all secret key bits. Thus, we applied this attack to the

DPM-protocol which uses d = 1, lmt = 117. Due

to space restrictions, you can find all the details of

attacking DPM in Appendix B. We also experimentally

evaluated this attack on DPM and a secure implemen-

tation proposal for Ff . The results of the evaluation

can be found in Section 6.2.1.

5.3. Learning Parity with Noise (LPN)

One could argue that the adversary might look at

each of the t output bits of Ff , try to reduce this

to a problem similar to Learning Parity with Noise

(LPN [24]) and use an efficient method to compute

key bits.

In principle, this is true, as sending d random

numbers R and one output(-bit) Ff (K, Rai

i) on one of

these Rs in each round is similar to sending Rs as well

as output bits that are flipped with a certain bias. Yet,

we are convinced that by carefully choosing an appro-

priate key size lmt and picking a non-linear function

f will make attacks as in [27] infeasible: generally,

the time- and memory complexity of these attacks rise

with 2O(
|K|

log |K|
)
, |K| being the key size. However to

apply LPN-based attacks, the adversary will have to

linearize a non-linear f first. This will introduce new

monomials such that the key size “virtually” increases

– in the case of Ff , if you rewrite a non-linear f as

a linear one, f(k, r) =
∑s

j=1
uj(r)vj(k), as shown

above, key size |K| will become |K| = l · s, s < 2mt.

Given a non-linear f , this key size can become much

higher than |K| = (lmt), which makes LPN-attacks

infeasible.

6. Implementation Proposal

One suitable instance of the f function could be

f∆(ki, ri) as proposed in the following. The system

parameters are d = 8, t = 4, m = 1, l = 64, q = 60.

The LFSR has an internal state of σ = 64 bits. This

means it has to be initially seeded with a truly random

64 bit value – the initially exchanged N0 and Rd
0

of

Section 3.2.4 will be used as the LFSR’s internal state.

So, f∆ works on inputs ki, ri ∈ GF (24) and outputs

an element in GF (24), f∆ : GF (24) × GF (24) →

GF (24). The output of f∆ is represented as 4 output

bits, i.e., f∆(ki, ri) = {f∆1
, f∆2

, f∆3
, f∆4

}. These

output bits are separately defined as follows:

f∆1
(ki,i, ri,i) := ri,1ki,1 + ri,2ki,2 + ri,3ki,3

+ri,4ki,4 + ri,1ri,2ki,1ki,2

+ri,2ri,3ki,2ki,3 + ri,3ri,4ki,3ki,4

f∆2
(ki,i, ri,i) := ri,4ki,1 + ri,1ki,2 + ri,2ki,3

+ri,3ki,4 + ri,1ri,3ki,1ki,3

+ri,2ri,4ki,2ki,4 + ri,1ri,4ki,1ki,4

f∆3
(ki,i, ri,i) := ri,3ki,1 + ri,4ki,2 + ri,1ki,3

+ri,2ki,4 + ri,1ri,2ki,1ki,4

+ri,2ri,3ki,2ki,4 + ri,3ri,4ki,1ki,3

f∆4
(ki,i, ri,i) := ri,2ki,1 + ri,3ki,2 + ri,4ki,3

+ri,1ki,4 + ri,1ri,3ki,3ki,4

+ri,2ri,4ki,2ki,3 + ri,1ri,4ki,1ki,2

Again, ki,j , ri,j denote the jth bit of the ith key-

/random symbol. As you can see, f∆ is non-linear in

both, the bits of the key symbol and the bits of the

output symbol.

Computation of f∆(ki, ri) can be implemented quite

efficiently: per output bit of f∆, 13 multiplications in

GF (2) (boolean AND) and 6 additions (boolean XOR)

are required. Using figures as stated in [4], one output

bit can be implemented in 34.5 NAND-gates, so f∆

can be implemented using a total of 138 gates, which

is very cheap.

To compute Ff∆
out of the outputs of f∆, we need

a 4 bit register to store temporary data, which comes

in at 48 NAND-gates. The LFSR with σ = 64 bits of

state requires 768 NAND-gates. We can get along with

only one LFSR to derive the Rs and Ns, if we use the

LFSR alternately. Therefore, we have to store both, the

current Rd
i and Ni, 1 ≤ i ≤ q of round i, in RAM. So,

a total of 128 bits of RAM, i.e., 192 NAND-gates are

required for this. Finally, K and K ′ need to be wired

to f∆, which uses a total of 512 gates.

The above, including gates for storage of the keys,

sums up to a total of 1, 658 gates. This is far less

than current implementations of strong hash functions

alone, e.g., SHA-1 with already ≈ 10, 000 [6], not

even taking storage of the secret key into account.

We clearly confirm that our computation of Ff∆
with

1, 658 gates is naive, because you typically need some

kind of “multiplexing” logic around Ff∆
, but we

estimate the total gate count to be ≈ 2, 000 for Ff∆
.

In conclusion, Ff∆
is feasible to implement on today’s

RFID-tags.

6.1. Properties of Ff∆

Before we present the attack evaluation on first the

DPM-protocol and finally the Ff∆
implementation pro-

posal, we show that f∆ holds the statistical properties

as of Section 4.2.

6.1.1. Distinguishability and Balanced ouput. The

f∆-function proposed above holds both properties of

(4), Theorem 4.3, in Section 4.2. Consider any two key

symbols k &= k′ ∈ GF (24) of larger keys K &= K ′,

then we will show that there exists at least one pair of

random numbers r, r′ such that f∆(k, r)+f∆(k′, r) =
h1, f∆(k, r′) + f∆(k′, r′) = h2, and h1 &= h2.

• If k &= k′, then they differ in at least one bit, i.e.,

the ith bit. Consider r to be r := (0, 0, 0, 0), all

bits of r are zero. Looking only at the ith output

bit f∆i
the following equation holds, f∆i

(k, r)+
f∆i

(k′, r) = h1i
= 0. The ith bit of h1 is 0.

• Consider r′ to be r′
1

:= 1, r′j := 0, j &= 1, so the

first bit of r′ is 1, the rest is 0. Looking only at the

ith output bit f∆i
the following equation holds,

f∆i
(k, r′) + f∆i

(k′, r′) = h2i
= ki + k′

i = 1 &=
h1i

.

So, h1 &= h2.

In conclusion f∆ holds both properties of Theorem 4.3,

and keys can generally be distinguished with Ff∆
–

there are no equivalence classes in Ff∆
.

To ensure a balanced output as of Section 4.2.1, we

show that for a non-negligible fraction of key symbols

k, f∆(k, r) spans a vector space of dimension 4. Con-

sider only the 4 key symbols (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1) – they make of 25% of all key

symbols. For such a key symbol k, all bits besides the

ith are set to 0. We construct the 4 random symbols

r′, r′′, r′′′, r′′′′: with r′, all bits are 0, and the ith bit is

1. With r′′, all bits are 0, and the (ith − 1) mod 4 bit

is 1. With r′′′, all bits are 0, and the (ith − 2) mod 4
bit is 1. With r′′′′, all bits are 0, and the (ith−3) mod

4 bit is 1. Consequently, {f(k, r′), f(k, r′′), f(k, r′′′),
f(k, r′′′′)} gives, {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1)} , a basis for a 4-dimensional vector-space.

Using the above system parameters for Ff∆
, and

according to [27], the LPN-bias ǫ = 1 − (1

d
+

1

2

d−1

8
) ≈ 44%. Linearization of f∆ will introduce 3

new monomials per key symbol, such that |K| rises to

64 · 4 + 3 = 448 bits. This will result in a time- and

memory complexity between ≫ 266 and ≪ 2130, cf.,

[27].

Due to space restrictions, and as the security of Ff∆

is of primary interest here, we moved the evaluation

of Ff∆
’s convergence rate and the required amount of

data sent to the reader to Appendix D.

6.1.2. Statistical Impersonation Security. Simply

converging to a single key is not yet sufficient from a

security perspective. As of Section 4.3.2, the adversary

might try to randomly send data to the reader and try

to get accepted as one valid tag. Figure 3 therefore

shows the probability Psuccess that the adversary can

successfully impersonate himself as at least one tag to

the reader using a database size n = 216. For different

t, the x-axis varies the number of rounds q. For

comparison, Fig. 4.3.2 shows statistical impersonation

security of DPM [37] with d = 1. You can see that with

t = 4, higher impersonation security is achieved com-

pared to DPM. Generally with rising t, impersonation

becomes more difficult for the adversary, however, at

the cost of more computations on the tag and the reader

for the increased t. Rising t will also imply more data

to be exchanged between tag and reader. More on this

in Appendix D.2.

To keep probability of statistical impersonation low,

e.g., Psuccess ≈ 2−64, we therefore choose q = 60.

6.1.3. LFSR Security. We do not care about the

secrecy of the LFSR’s internal state, but require the

LFSR only to protect Ff∆
against chosen-plaintext

attacks. The period of the LFSR must be long enough

to produce (lmt)·d·q = 122880 bits of pseudo-random

output: in each of the q rounds, d random numbers

are required, each of lmt bits. We assume an LFSR

with a public, characteristic, primitive polynomial over

2
-20

2
-40

2
-60

2
-80

2
-100

2
-120

2
-140

 10 20 30 40 50 60 70

P
ro

b
a
b
ili

ty
 o

f
Im

p
e
rs

o
n
a
ti
o
n
 P

s
u
c
c
e
s
s

Number of rounds q

DPM
t=3
t=4
t=5
t=6
t=7
t=8

Figure 3. Impersonation security, n = 216, d = 8

GF (264) to produce a maximum-length period. An

LFSR with σ = log
2
122880 + 1 ≈ 17 bits of internal

state is already sufficient to produce such a period.

However, to evade chosen-plaintext-exploits based on

birthday-paradox, we set σ = 64. Together with d = 8,

this will give sufficient security.

The reader will not accept Rd
0

= (0 . . . 0), i.e., all

64 bits of Rd
0

being zero as initial state of the LFSR

to avoid trivial pseudo-randomness. If the tag draw

such an LFSR, which is unlikely as it happens with

probability 2−64, it will draw another random number.

Likewise, the tag will not accept N0 = (0 . . . 0) from

the reader.

6.2. Attack Evaluation

Based on the above procedure, we implemented

both, the algebraic attack as well as SAT-solving of

1.) the DPM protocol and 2.) Ff∆
as proposed above.

6.2.1. Attack on DPM. The algebraic attack on DPM

could be implemented in a straightforward fashion by

setting up a system of linear equations as described in

Section B and solving this using MatLab.

SAT-Solving. Recently, a lot of attention has

been drawn to the use of SAT-solvers in cryptography,

cf. [3, 10–12, 16, 17, 30, 32–34]. Therefore, we also

used a SAT-solver, MiniSat [19], to attack DPM and

Ff∆
. Basically, the idea of using a SAT-solver is to the

convert equations that the adversary can set up to a

Conjunctive Normal Form (CNF) and then use a SAT-

solver to solve the CNF. Due to space restrictions, the

details of applying SAT-solvers as well as an overview

of the important SAT-parameters which appeared to

have the best impact on performance can be found in

Appendix C.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

A
v
e
ra

g
e
 C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
in

)

Number of Bits

DPM, Algebraic Attack
DPM, SAT-Solving

Ff!
, Algebraic Attack
Ff!

, SAT-Solving

Figure 4. Time to break DPM and Ff∆

Figure 4 shows the results of the attacks on DPM-

privacy using an Intel Xeon, 1.86GHz, 16GByte of

RAM (RAM was never an issue during the attacks,

even with MiniSat). You can see the number of key

bits on the x-axis and the required time (in minutes) to

break privacy, i.e., an equivalent key, on the y-axis. Per

sampling point, we ran 20 different instances. Relative

standard deviation was < 20% with the algebraic

attack and, due to its indeterministic nature, up to 80%
with MiniSat.

Even with lmt = 256 key bits, we could compute

an equivalent key in a couple of minutes using the

algebraic attack. MiniSat, however, appears to be in-

ferior than our algebraic attack. With key sizes > 57
bits, MiniSat did not finish in a “reasonable” amount

of time.

We infer from this that SAT-solving appears not

to be appropriate for computing keys of HMAC-like

systems where the system of equations is very dense,

cf., [3] – as with DPM (sparsity/density β ≈ 50%).

In the case of the DPM-protocol, there is also the

additional SHA-1 brute-forcing step of Section B.4

necessary to finally compute the right key (and not

only an equivalent one). For deriving this “right” key

K, based on one equivalent key K ′ computed as above,

the adversary has to try all possible 2l−1 equivalent

keys of K ′ – K will be among those equivalent keys.

So, 2l−2 SHA-1 computations on average are required

for this step. With lmt = 117 key bits, l = 39, and 237

SHA-1 operations are necessary. On our machine run-

ning OpenSSL 0.9.8b, 237 SHA-1 HMAC-operations

h(K|R1|N |K) with a total 4 · 117 = 468 bits of input

can be executed in around 2 days. This shows that

computing the secret key is totally feasible with the

DPM-protocol, allowing not only to break privacy, but

also impersonation.

6.2.2. Attack on Ff∆
. Both, the algebraic attack and

SAT-solving was applied to Ff∆
. Results are also

shown in Fig. 4. With key sizes > 24 bits, MiniSat did

not finish in any reasonable amount of time. For the

algebraic attack, we used Maple to set up the system

of linear equations and solved this with MatLab. With

12 bits of key size, Maple had to generate ≈ 212

linearized equations with a total number of ≈ 212

monomials – it did not finish in any reasonable amount

of time. For a 256 bit key, there will be ≫ 232

monomials and equations in matrix Γ, cf., Section 5.2.

The computational complexity of inverting this matrix

is ≈ 232·3 = 296. We claim that this will render

attacks against the key to break authenticity or privacy

infeasible.

While there might be optimizations to the algebraic

attack, we believe they will not improve the computa-

tional complexity by a significant amount.

7. Related Work

Many recently proposed solutions for RFID-

authentication and -privacy require usage of a strong,

but expensive cryptographic hash function on the tag.

Also, most of these protocols have been shown to be

insecure or leak privacy.

For example in [41], the tags just sends the HMAC

of the reader’s challenge, keyed with the pairwise

secret key, back to the reader. To protect against replay

attacks, challenges need to be of ascending order,

otherwise the tag rejects the challenge. So in addition

to an HMAC, a non-volatile state is required on the

tag which, in many scenarios, might not be feasible or

simply too expensive for a tag. This protocol is also

prone against DoS-attacks and has been shown to leak

privacy, see [25].

The protocol of [46] uses a strong and expensive

hash function and an HMAC-like computation for

identification of a tag. This, however, does not protect

against replay attacks from the adversary: as there is

no nonce from the reader involved in the protocol,

an adversary receives always the same response on

subsequent SENDTAG calls with the same tag. This

helps the adversary to identify a single tag breaking

privacy, cf., [35].

Using a tree-based setup, [35] distributes O(log n)
secret keys to each tag. This authentication with

O(log n) complexity, i.e., “walking down” the tree of

secrets until one tag is uniquely defined. Yet, besides

requiring a complex hash function, the amount of

memory required on a tag for this scheme might be

infeasible in many scenarios. Also, privacy of this

scheme is weak, as shown in [2]. Finally in contrast to

Ff this scheme is not secure against tag compromise,

as tags share some of the secrets of other tags. To

overcome these weaknesses, [2] proposes the OSK/AO

protocol using hash-chains, an idea originally proposed

in [36]. Yet, OSK/AO is also known to leak privacy,

cf., [25], requires an expensive hash function and a

state on the tag.

With the HB+ protocol of [24], the tag XORs a

biased “noise-bit” to the response before sending the

response to the reader. The reader can then compute the

tag’s original response by solving the Learning Parity

with Noise (LPN) problem. Yet, this scheme and also

many variants are known to be insecure or leak privacy,

cf., [23, 27]. Also note that with HB+ and all variants

based on LPN-schemes [45], there will always be a

potentially non-negligible probability that a valid tag

gets rejected by the reader – HB+ is not complete.

There has been also some work on algebraic at-

tacks against the DPM-protocol. In [42], an algebraic

technique to compute 2/3 of all key bits is proposed,

[40] independently discovered the 2
2m+1 equivalence

classes in DPM. These papers can bee seen as special

cases of the algebraic reasoning we are providing in

this paper to indicate the security of Ff . The paper

at hand is a generalization of the above papers, addi-

tionally discussing security against SAT-solving, which

applies to all variants of DPM-like privacy-preserving

authentication protocols.

8. Conclusion

In this paper, we presented the Ff family of privacy-

preserving authentication protocols together with an

algebraic framework to indicate its security. Ff uses

a simple, round-based setup, where the tags sends the

results of evaluating random numbers using with small

fan-in functions, to the reader. The main advantage

of Ff is its extreme low cost: compared to related

work, it does not require a cryptographically strong,

expensive hash function. Ff can be implemented on

a tag using less than 2, 000 gates, yet offering 64 bit

security against statistical impersonation attacks, ≫ 66

bit against LPN, and 96 bit against algebraic attacks.

Also, our experiments indicate that SAT-solving attacks

are computationally infeasible. Generally, Ff offers

arbitrary, user-adjustable levels of soundness and iden-

tification rate, and even unconditional completeness.

References

[1] Automated Reasoning Group UCLA. Rsat home-
page, 2008. http://reasoning.cs.ucla.edu/rsat/.

[2] G. Avoine, E. Dysli, and P. Oechslin. Reducing
time complexity in rfid systems. In Proceedings
of Selected Areas in Cryptography, pages 291–
306, Kingston, Canada, 2005. ISBN 978-3-540-
33108-7.

[3] G. Bard, N. Courtois, and C. Jefferson. Efficient
methods for conversion and solution of sparse
systems of low-degree multivariate polynomials
over gf(2) via sat-solvers. In ECRYPT work-
shop on Tools for Cryptanalysis, Krakow, Poland,
2007. http://eprint.iacr.org/2007/024/.

[4] L. Batina, J. Lano, N. Mentens, B. Preneel,
I. Verbauwhede, and S. rs. Energy, performance,
area versus security trade-offs for stream ciphers.
In Proceedings of ECRYPT Workshop, SASC –
The State of the Art of Stream Ciphers, pages
302–310, Brugge, Belgium, 2004.

[5] M. Burmester, B. de Medeiros, and R. Motta. Ro-
bust, anonymous rfid authentication with constant
key-lookup. In Proceedings of ACM Symposium
on Information, Computer and Communications
Security, pages 283–291, Tokyo, Japan, 2008.
ISBN 978-1-59593-979-1.

[6] Y. Choi, M. Kim, T. Kim, and H. Kim. Low
power implementation of sha-1 algorithm for rfid
system. In Proceedings of Tenth International
Symposium on Consumer Electronics, pages 1–5,
St. Petersburg, Russia, 2006. ISBN 1-4244-0216-
6.

[7] S. Cook. The complexity of theorem-proving
procedures. In Proceedings of ACM Symposium
on Theory of Computing, pages 151–158, Shaker
Heights, USA, 1971.

[8] S. Cook and D. Mitchell. Satisfiability Problem:
Theory and Applications, chapter Finding Hard
Instances of the Satisfiability Problem: A Survey,
pages 1–17. American Mathematical Society,
1997. ISBN 0821804790.

[9] C. Cooper. On the rank of random matrices.
Random Structures and Algorithms, 16(2):209–
232, 2000. ISSN 1042-9832.

[10] N. Courtois and G. Bard. Algebraic cryptanalysis
of the data encryption standard. In Lecture Notes
in Computer Science, Cryptography and Coding,
pages 152–169, 2007. 978-3-540-77271-2.

[11] N. Courtois, G. Bard, and D. Wagner. Algebraic
and slide attacks on keeloq. In Fast Software En-
cryption, Luxembourg City, Luxembourg, 2008.
http://eprint.iacr.org/2007/062.

[12] N. Courtois, K. Nohl, and S. O’Neil. Algebraic
attacks on the crypto-1 stream cipher in mifare
classic and oyster cards, 2008. http://eprint.iacr.
org/2008/166.pdf.

[13] I. Damgård and M. Østergaard. Rfid security:
Tradeoffs between security and efficiency. In

Proceedings of RSA Conference, pages 318–332,
San Francisco, USA, 2006. http://eprint.iacr.org/
2006/234.pdf.

[14] DIMACS. Satisfiability suggested format,
1993. http://www.satlib.org/Benchmarks/SAT/
satformat.ps.

[15] D. Dobkin. The RF in Rfid: Passive UHF Rfid
in Practice: Passive UHF RFID in Practice.
Elsevier, 2007. ISBN 0750682094.

[16] T. Eibach, E. Pilz, and S. Steck. Comparing
and optomising two generic attacks on bivium.
SASC 2008 – The State of the Art of Stream
Ciphers, 2008. http://www.ecrypt.eu.org/stvl/
sasc2008/SASCRecord.zip.

[17] T. Eibach, E. Pilz, and G. Vlkel. Attacking
bivium using sat solvers. In International Confer-
ence on Theory and Applications of Satisfiability
Testing, SAT 2008, pages 63–76, Guangzhou,
China, 2008. ISBN 978-3-540-79718-0.

[18] EPCglobal. Epcglobal standards and technology,
2008. http://www.epcglobalinc.org/standards/.

[19] N. En and N. Srensson. An extensible sat-
solver. In Proceedings of Theory and Appli-
cations of Satisfiability Testing, pages 502–518,
Santa Margherita Ligure, Italy, 2004. ISBN 978-
3-540-20851-8.

[20] N. En and N. Srensson. The minisat page, 2008.
http://minisat.se/MiniSat.html.

[21] M. Feldhofer and C. Rechberger. A case against
currently used hash functions in rfid protocols.
In Proceedings of OTM 2006 Workshops, pages
372–381, Montpellier, France, 2006. ISBN 978-
3-540-48269-7.

[22] M. Feldhofer and J. Wolkerstorfer. Strong crypto
for rfid tags – a comparison of low-power hard-
ware implementations. In Proceedings of Interna-
tional Symposium on Circuits and Systems, pages
1839–1842, New Orleans, USA, 2007. ISBN 1-
4244-0921-7.

[23] H. Gilbert, M. Robshaw, and H. Sibert. Active
attack against hb+: a provably secure lightweight
authentication protocol. IEE Electronic Letters,
41(21):1169–1170, 2005. ISSN 0013-5194.

[24] A. Juels and S. Weis. Authenticating pervasive
devices with human protocols. In Proceedings of
Annual International Cryptography Conference,
pages 293–308, Santa Barbara, USA, 2005. ISBN
3-540-28114-2.

[25] A. Juels and S. Weis. Defining strong privacy
for rfid. In PerCom Workshops, pages 342–347,
White Plains, USA, 2007. ISBN 978-0-7695-
2788-8.

[26] A. Lenstra and E. Verheul. Selecting crypto-
graphic key sizes. In Proceedings of International
Workshop on Practice and Theory in Public
Key Cryptography, pages 446–465, Melbourne,
Australien, 2000. Springer Verlag. ISBN 3-540-
66967-1.

[27] E. Levieil and P.-A. Fouque. An improved lpn
algorithm. In Proceedings of Conference on
Security and cryptography for networks, pages
348–359, Maiori, Italy, 2006. ISBN 3-540-38080-
9.

[28] L. Levin. One-way functions and pseudorandom
generators. In Proceedings of the seventeenth
annual ACM symposium on Theory of computing,
pages 363–365, Providence, USA, 1985. ISBN
0-89791-151-2.

[29] G. Lowe. A hierarchy of authentication speci-
fications. In Proceedings of Computer Security
Foundations Workshop, pages 31–43, Rockport,
USA, 1997.

[30] F. Massacci. Using walk-sat and rel-sat for
cryptographic key search. In Proceedings of the
Sixteenth International Joint Conference on Arti-
ficial Intelligence, pages 290–295, 1999. ISBN
1-55860-613-0.

[31] M. Matsui. Linear cryptanalysis method for des
cipher. In Proceedings of Workshop on the the-
ory and application of cryptographic techniques
on Advances in cryptology, EUROCRYPT, pages
386–397, Lofthus, Norway, 1994. ISBN 3-540-
57600-2.

[32] C. McDonald, C. Charnes, and J. Pieprzyk. An
algebraic analysis of trivium ciphers based on the
boolean satisfiability problem, 2007. http://eprint.
iacr.org/2007/129.

[33] C. McDonald, C. Charnes, and J. Pieprzyk. At-
tacking bivium with minisat, 2007. http://www.
ecrypt.eu.org/stream/papersdir/2007/040.pdf.

[34] I. Mironov and L. Zhang. Applications of sat
solvers to cryptanalysis of hash functions. In Pro-
ceedings of International Conference of Theory
and Applications of Satisfiability Testing – SAT
2006, pages 102–115, Seattle, USA, 2006. ISBN
3-540-37206-7, http://eprint.iacr.org/2006/254.

[35] D. Molnar and D. Wagner. Privacy and security
in library rfid: issues, practices, and architectures.
In Proceedings of Conference on Computer and
Communications Security, pages 210–219, Wash-
ington, USA, 2004. ISBN 1-58113-961-6.

[36] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryp-
tographic approach to privacy-friendly tags. In
Proceedings of RFID Privacy Workshop, Cam-
bridge, USA, 2003. http://www.rfidprivacy.us/
2003/agenda.php.

[37] R. D. Pietro and R. Molva. Information confine-
ment, privacy, and security in rfid systems. In
Lecture Notes in Computer Science, Volume 4734,
pages 187–202, 2007. ISBN 978-3-540-74834-2.

[38] SAT Competitions. The international sat competi-
tions web page, 2008. http://www.satcompetition.
org/.

[39] C. Sinz. Sat-race, 2008. http://www-sr.
informatik.uni-tuebingen.de/sat-race-2008/
results.html.

[40] M. Soos. Analysing the molva and di pietro
private rfid authentication scheme. In RFID-
Sec, Budapest, Hungary, 2008. http://events.iaik.
tugraz.at/RFIDSec08/.

[41] G. Tsudik. Ya-trap: yet another trivial rfid authen-
tication protocol. In Proceedings of International
Conference on Pervasive Computing and Com-
munications Workshops, Pisa, Italy, 2006. ISBN
0-7695-2520-2.

[42] T. van Deursen, S. Mauw, and S. Radomirovic.
Untraceability of rfid protocols. In Proceedings
of 2nd Workshop on Information Security Theory
and Practices. Smart Devices, Convergence and
Next Generation Networks, pages 1–15, Seville,
Spain, 2008. ISBN 978-3-540-79965-8.

[43] T. van Deursen and S. Radomirovic. Attacks on
rfid protocols, 2008. http://eprint.iacr.org/2008/
310.

[44] S. Vaudenay. On privacy models for rfid. In Pro-
ceedings of International Conference on the The-
ory and Application of Cryptology and Informa-
tion Security, pages 68–87, Kuching, Malaysia,
2007. ISBN 978-3-540-76899-9.

[45] S. Weis. Hb+ protocol information page, 2008.
http://saweis.net/hbplus.shtml.

[46] S. Weis, S. Sarma, R. Rivest, and D. Engels.
Security and privacy aspects of low-cost radio
frequency identification systems. In Security in
Pervasive Computing, pages 201–212, Boppard,
Germany, 2003. ISBN 3-540-20887-9.

Appendix A.

Proofs of Sections 4 and 5

Theorem 4.1

Proof: Done separately for “⇐” and “⇒”.

1.) “⇐”: Proof by induction over l > 1.

For the induction basis, l = 2, we take K #= K ′.

This implies that at least one symbol of K is different

from its corresponding symbol in K ′. So, w.l.o.g., we

assume k1 #= k′
1
. Now, as of (2), ∃r1 : f(k1, r1) =

f(k′
1
, r1) and ∃r′

1
: f(k1, r

′
1
) #= f(k′

1
, r′

1
). Then, for

all possible random symbols r2 either Ff (K, r1r2) #=
Ff (K, r1r2) or Ff (K, r′

1
r2) #= Ff (K ′, r′

1
r2) which

proves the claim for l = 2.

As the induction hypothesis, the theorem is true for

any l ≤ n where n > 1.

Inductive Step: We consider K #= K ′ each of size

l = n + 1 symbols. Since K #= K ′, there is at

least one symbol of K which is different from its

corresponding symbol in K ′. For convenience, and

w.l.o.g., we assume it is the first one, k1 #= k′
1
. As

of (2), this implies

∃r1 ∈ GF (2m) such that f(k1, r1) = f(k′
1
, r1)

∃r′
1
∈ GF (2m) such that f(k1, r

′
1
) #= f(k′

1
, r′

1
)

There are now two cases:

• either (k2 . . . kl) = (k′
2
. . . k′

l), then

∀(r2, . . . , rl) ∈ GF (2mn) :

Ff (k2, . . . , kl, r2, . . . , rl)

= Ff (k′
2
, . . . , k′

l, r2, . . . , rl)

which implies that

∀(r2, . . . , rl) ∈ GF (2mn)

Ff (K, R) #= Ff (K ′, R),

where R = (r′
1
, r2, . . . , rl),

• or (k2, . . . , kn) #= (k′
2
, . . . , k′

n), then we can

apply the induction hypothesis on this n-length

keys to get:

∃(r2, . . . rl) ∈ GF (2mn)

Ff (k2, . . . , kl, r2, . . . rl) #= Ff (k′
2
, . . . , k′

l, r2, . . . rl)

which implies that

Ff (K, R) #= Ff (K ′, R) where R = (r1, r2 . . . rl).

2.) “⇒”: We prove by contradiction. Assume, (2) does

not hold. We will construct two keys Kv,K ′
v that

will violate the first part of the theorem’s equivalence.

Assuming (2) not to hold means that there exists

k1 #= k′
1
∈ GF (2m) such that either

∀r ∈ GF (2m), f(k1, r) = f(k′
1
, r)

or

∀r ∈ GF (2m), f(k1, r) #= f(k′
1
, r).

We separately present Kv,K ′
v for each case:

• ∀r ∈ GF (2m), f(k1, r) = f(k′
1
, r),

we define Kv := (k1, . . . k1) and K ′
v :=

(k′
1
, . . . k′

1
). Since k1 #= k′

1
, Kv #= K ′

v , but

∀R ∈ GF (2lm) : Ff (Kv, R) = Ff (K ′
v, R).

• ∀r ∈ GF (2m), f(k1, r) #= f(k′
1
, r),

we define Kv := (k1, k1, k3, . . . , kl) and K ′
v :=

(k′
1
, k′

1
, k′

3
, . . . k′

l) where k≥3, k
′
≥3

can be any

symbol in GF (2m). Since k1 #= k′
1
, Kv #= K ′

v

but since for all r, r′ in GF (2m), f(k1, r) +
f(k1, r

′) = f(k′
1
, r) + f(k′

1
, r′), then ∀R ∈

GF (2lm) : Ff (Kv, R) = Ff (K ′
v, R).

Theorem 4.2

Proof: By induction over l.

Basis (l = 1): In this case, K = k1 and K ′ =
k′
1
, F (K, R) = f(k, r), and F (K ′, R) = f(k′, r). If

k1 = k′
1
, the interval bounding the distinguishability

probability becomes [− 1

2
, 3

2
], which is always true. If

k1 #= k′
1
, HD(K, K ′) is equal to 1, and the Theorem

hypothesis gives Pr[F (K, R) != F (K ′, R)] ∈ [12 −

δ, 1
2 + δ] ⊆ 1

2 − 2δ, 1
2 + 2δ].

Inductive Step: Let the induction hypothesis be

that the theorem is true for l, and let K, K ′ be two

keys of length l+1 symbols. Denote by Kl (resp. K ′l),

the subkeys (k1, . . . , kl) and (k′
1, . . . , k

′
l), respectively.

If kl+1 = k′
l+1: then HD(K, K ′) = HD(Kl,K ′l)

and Pr[F (K, R) != F (K ′, R)] = Pr[F (Kl, R) !=
F (K ′l, R)]. Since, from the induction hypothe-

sis Pr[F (Kl, Rl) != F (K ′l, Rl)] ∈ [12 −

(2δ)HD(Kl,K′l), 1
2 + (2δ)HD(Kl,K′l)], then it is trivial

that the desired property is true for l + 1.

If kl+1 != k′
l+1: from the initial assumption

about the function f , ∃ǫ1 ∈ [−δ, δ] such that

Pr[f(kl+1, rl+1) != f(k′l+1, rl+1)] = 1
2 + ǫ1.

From the induction hypothesis, ∃ǫ2 ∈

[−(2δ)HD(Kl,K′l), (2δ)HD(Kl,K′l)] such that

Pr[F (Kl, Rl) != F (K ′l, Rl)] = 1
2 + ǫ2. We

also have (from the definition of F):

Pr[F (K, R) != F (K ′, R)]

=

Pr[F (Kl, Rl) + f(kl+1, rl+1) != F (K ′l, R)

+f(k′
l+1, r

′
l+1)]

Because F and f functions take only 0 and 1

values, and the ri are independent random variables,

the following holds:

Pr[F (K, R) != F (K ′, R)]

=

Pr[F (Kl, Rl) != F (K ′l, R)] · Pr[f(kl+1, rl+1) =

f(k′l+1, rl+1)] + Pr[F (Kl, Rl) = F (K ′l, R)]

·Pr[f(kl+1, rl+1) != f(k′l+1, rl+1)]

=

(1
2 + ǫ2)(

1
2 − ǫ1) + (1

21ǫ2)(
1
2 + ǫ1)

= 1
2 − 2ǫ1ǫ2

Since,

ǫ1 ∈ [−δ, δ], ǫ2 ∈ [−(2δ)HD(Kl,K′l), (2δ)HD(Kl,K′l)],

and HD(K, K ′) = HD(Kl,K ′l) + 1, then we obtain

the final result:

Pr[F (K, R) != F (K ′, R)]

∈

[12 − (2δ)HD(K,K′), 1
2 + (2δ)HD(K,K′)]

Theorem 4.3

Proof: Assume that there are two keys, K, K ′

∈ GF (2lmt) such that ∀R ∈ GF (2lmt), F (K, R) =
F (K ′, R), we will show that K = K ′. Looking at the

ith components ki and k′
i, we can rewrite F (K, R) =

F (K ′, R):

∀ri ∈ GF (2mt),∀rj ∈ GF (2mt)
{

f(ki, ri) + f(k′
i, ri) =

∑

j "=i f(kj , rj) +
∑

j "=i f(k′
j , rj)

}

(9)

By construction, we know that for function f , if

ki != k′
i, then ∃h1, h2 ∈ GF (2t), h1 != h2, and

r, r′ ∈ GF (2mt) such that, f(ki, r) + f(k′
i, r) = h1

and f(ki, r
′) + f(k′

i, r
′) = h2. However, from Equa-

tion 9, this implies
∑

j "=i f(kj , rj) +
∑

j "=i f(k′
j , rj)

being equal to h1 and h2 simultaneously, which is

impossible. Therefore, ki has to be equal to k′
i.

Theorem 4.4

Proof: The proof is a straightforward general-

ization of Theorem 4.2, since it is sufficient that

F (K, R) differs from F (K ′, R) on at least one out

of t bits of output. Note that a tighter bound on the

distinguishability probability can be obtained, if we

consider the output as a single symbol of t bits.

Lemma 5.1

Proof: Let us view k ∈ GF (2mt) as a vector

(k1, · · · km) over GF (2t). The function f(k, r) can be

interpolated into a multivariate polynomial of degree

m(2t − 1) in the ki. In the case of t = 1, this is

the same as the Algebraic Normal Form (ANF) of f .

One way to make it explicit would be to use Lagrange

interpolation.

The Lagrange interpolation gives a sum of polyno-

mials each of degree m(2t − 1) in ki. Developing the

polynomial into a sum of monomials in the ki, we

obtain:

f(k, r) =
∑

0≤i1,i2,··· ,im,i′
1
,i′

2
,··· ,i′

m
≤2t−1 Ci1,i2,··· ,im,i′

1
,i′

2
,··· ,i′

m

·r
i′
1

1 r
i′
2

2 · · · r
i′
m

m ki1
1 ki2

2 · · · kim

m ,

where Ci1i2···im,i′
1
,i′

2
,··· ,i′

m
is uniquely defined by func-

tion f .

Now consider V , the space generated by vectors

(Ci1i2···im,i′
1
,i′

2
,··· ,i′

m
r

i′
1

1 r
i′
2

2 · · · r
i′
m

m),

0 ≤ i1, i2, · · · , im, i′1, i
′
2, · · · , i′m ≤ 2t − 1

whose coordinates are the coefficients of mono-

mials with non-zero degree. V has 2mt − 1 co-

ordinates. Let s < 2mt be the dimension of V

and (u1(r), · · · , us(r)) be a basis. Rewriting the

Ci1i2···im,i′
1
,i′

2
,··· ,i′

m
r

i′
1

1 r
i′
2

2 · · · r
i′
m

m as a linear combina-

tion of the basis ui(r), the polynomial interpolation of

f(k, r) can be compacted into a sum of s terms:

f(k, r) =

s
∑

j=1

uj(r)vj(k) (10)

where vj(k) results from the linear combination of the

monomials in 10.

By definition of the basis (ui(r))1≤i≤s, the vec-

tors (u1(r), · · · , us(r)) generate a vector space of

dimension s. Finally using Equation (10), it is clear

knowledge of the key (k1, . . . , km) is equivalent to

knowledge of its expanded form (v1(k), . . . , vs(k)).

Theorem 5.2

Proof: From Lemma 5.1, we have:

f(k, r) =

s
∑

j=1

uj(r)vj(k)

For a given f function, we consider the following two

cases: (1) one function vj(k) = c is a constant function

of k, (2) all function vj(k) are non-constants. These

are the only two possible cases, because if two (or

more) functions vj , and vj′ were constants, then:

uj(r)vj(k) + uj′(r)vj′(k) = [uj(r)c + uj′(r)c′]

= u′′
j (r) · v′′(k)

where v′′(k) is a constant function of the key, and

more importantly, the f would have been compacted

to (s − 1). Therefore, at most one vj function is a

constant.

In case (1), w.l.o.g, we can assume that function

vs(k) = c is the constant function. Thus,

Ff (K, R) =

l
∑

i=1

f(ki, ri)

=

l
∑

i=1

s
∑

j=1

uj(ri)vj(ki)

=

l
∑

i=1

s−1
∑

j=1

uj(ri)vj(ki) +

l
∑

i=1

us(ri) · c

We can write Ff (K, R) =
∑L

h=1 ERhEKh, where

L = l(s − 1) + 1, ERh = uj(ri) and EKh = vj(ki),
for h = (i − 1)(s − 1) + j, and ERl(s−1)+1 =
∑l

i=1 us(ri) · c; EKl(s−1)+1 = 1.

In case (2),

Ff (K, R) =

l
∑

i=1

f(ki, ri)

=

l
∑

i=1

s
∑

j=1

uj(ri)vj(ki)

We can write Ff (K, R) =
∑L

h=1 ERhEKh, where

L = ls, ERh = uj(ri) and EKh = vj(ki), for h =
(i − 1)s + j.

In both cases, from the properties of ui(ri), we

can deduce that (ER1, . . . , ERL) generate a vector

space of dimension L. Finally, knowing the values of

vector (EK1, . . . , EKL), would allow an adversary to

compute function Ff , because the ERh are public and

depend only on the publicly known random input.

Theorem 5.3

Proof:

• The number of monomials of degree j, 1 ≤ j ≤

d, where each key symbol is used at most once,

e.g., k1 · · · kj , is
(

l
j

)

. This number can already be

reached in a field where the maximum order of

an element is 1: for example in GF (2). Thus, this

is a lower bound.

• The number of monomials of degree j, 1 ≤ j ≤ d,

where each key symbol is used at most j times,

e.g., k1 is used 3 times in k3
1 · k2 · · · kj−2, is

(

l+j−1
j

)

. In the general case, this is an upper

bound.

In conclusion, we derive these bounds on U :

d
∑

j=1

(

l

j

)

≤ U ≤

d
∑

j=1

(

l + j − 1

j

)

(11)

Corollary 5.4

Proof: A lower bound on
(

l
d

)

is given by:

(

l

d

)

=

d−1
∏

i=0

l − i

d − i
≥

(

l

d

)d

(12)

Because:

∀i, d, l : 0 ≤ i ≤ d − 1 < l

⇒

(l − i) · d ≥ (d − i) · l

Inequalities (11) and (12) imply U ≥
∑d

j=1

(

l
j

)

≥

∑d

j=1

(

l
j

)j

, hence the number of monomials of the

system rises exponentially with d. On a side note,

inverting matrix Γ will require U linearly independent

observations. Assuming that the random input values

R
j
i lead to a random matrix Γ, then using only a small

number of extra equations, e.g., less than 5, we can

obtain with overwhelming probability a maximum rank

matrix Γ, cf., [9].

Appendix B.

Example: Attacking the DPM-Function

In the following, we will show that DPM-protocol

as introduced in [37] will fail against the algebraic

attack of Section 5.1. The adversary will be able to

compute a tag’s expanded-compacted key, which is

sufficient to spoil authenticity, soundness, and privacy

of the protocol.

First, we will “expand-compact” fDPM of Sec-

tion B.1. This results in an expression for the

expanded-compacted version of the tag’s original key.

Sections B.1 and B.4 describe, how an adversary can

finally compute this expanded-compacted key for one

tag based only on the observations he makes during

quality-time.

B.1. Expanding-Compacting fDPM

FfDPM
(K, R) is used during authentication, with

fDPM(ki, ri)

=

M(ki,1 + ri,1, ki,2 + ri,2, ki,3 + ri,3)

=

(ri,2 + ri,3)ki,1 + (ri,1 + ri,3)ki,2 + (ri,1 + ri,2)ki,3+

ki,1ki,2 + ki,1ki,3 + ki,2ki,3+

ri,1ri,2 + ri,1ri,3 + ri,2ri,3

=

(ri,2 + ri,3)ki,1 + (ri,1 + ri,3)ki,2 + (ri,1 + ri,2)ki,3+

M(ki,1, ki,2, ki,3) + M(ri,1, ri,2, ri,3).

All operations are in GF(2), and M is the majority

function. Informally, FfDPM
can be described as the

XOR of all the majorities of 3 key bits XOR 3 random

bits, respectively.

The coefficients of the fDPM(ki, ri) polynomial

with unknowns (ki,1, ki,2, ki,3) form vectors that gen-

erate a space of dimension 3: coefficient (ri,1+ri,2) of

ki,3 is a linear combination of coefficients (ri,2 + ri,3)
of ki,1 and (ri,1 + ri,3) of ki,2: (ri,1 + ri,2) = (ri,2 +
ri,3) + (ri,1 + ri,3) and thus

(ri,2 + ri,3)ki,1 + (ri,1 + ri,3)ki,2 + (ri,1 + ri,2)ki,3

=

(ri,2 + ri,3)(ki,1 + ki,3) + (ri,1 + ri,3)(ki,2 + ki,3).

One of the coefficients, M(ki,1, ki,2, ki,3), is inde-

pendent of ri,1, ri,2, ri,3 and therefore always equal

to 1. Finally, M(ri,1, ri,2, ri,3) is a constant term

independent from (ki,1, ki,2, ki,3). Therefore, the di-

mension of the space generated by the coeffi-

cients of FfDPM
(K, R) :=

∑l

i=1
fDPM(ki, ri) =∑L

i=1
ERi · EKi, with

ER1 · EK1 := (r1,2 + r1,3)(k1,1 + k1,3)

ER2 · EK2 := (r1,1 + r1,3)(k1,2 + k1,3)

. . .

ER2l−1 · EK2l−1 := (rl,2 + rl,3)(kl,1 + kl,3)

ER2l · EK2l := (rl,1 + rl,3)(kl,2 + kl,3)

ER2l+1 · EK2l+1 := 1 ·

l∑

i=1

M(ki,1, ki,2, ki,3)

is L = (2l + 1).

Actual computation of one tag’s expanded-

compacted key can now be done by setting up and

solving a system of linear equations as described in

Section B.2.

B.2. Computing Equivalent Keys

Generally, the DPM-protocol can be seen as an

instance of the Ff family of protocols with d =
1, t = 1,m = 1: In each round of the q rounds of

identification, the tag sends the pair Ai = (Ri ⊕ K),
bi = FfDPM

(K, Ai), with Ai = ((αi)1 = (ri)1 ⊕

k1, . . . , (αi)l = (ri)l ⊕ kl) ∈ GF (2lmt), (αi)j ∈

GF (2mt) to the reader that can therewith identify the

tag’s key K step-by-step. Note that there is no replay-

protection in DPM during these identification rounds.

The authors of [37] propose a key size of 117 bits for

good security, i.e., t = 1,m = 3, l = 39.

First note as of Section 4.1.1 that there are in-

distinguishable, i.e., equivalent keys with fDPM and

FfDPM
. As a result, the adversary can never compute

the “whole” key, but only 2

3
of the key bits. However,

we will see later that the remaining key bits can be

easily brute-forced. Independently, [42] comes to the

same conclusion, such that [42] can be viewed as a

special case of the generic algebraic reasoning on the

Ff type of protocols that we do throughout Section 5.

The adversary calls LAUNCH multiple times during

quality time to initiate new protocol runs with some

randomly drawn tag Tvtag . To behave in compliance

with the protocol, he gives Tvtag some nonce N in each

protocol run by calling SENDTAG. The oracle returns

with the Tvtag’s reply, i.e., q pairs {Ai, bi} from each

protocol round.

Now, the adversary sets up a system of equations

using these pairs. After observing w pairs, he generates

the following system of equations with K the unknown

key bits:

FfDPM
(K, A1) = b1

FfDPM
(K, A2) = b2

. . .

FfDPM
(K, Aw) = bw.

The adversary receives only q pairs per protocol run.

As w is going to be much larger than q, the adversary

has to call LAUNCH and SENDTAG multiple times to

get a total of w pairs from the same tag.

This system of equations can be simplified to a

system of linear equations, using the linearization and

expanding-compaction technique as described above.

So, for one observation (Ai, bi), FfDPM
(K, Ai) =∑l

j=1 (ERi)jEKj = bi holds. Here, EK =
EK1, . . . , EKL is the expanded-compacted key of the

Tvtag’s original key K.

For the ithth observation (Ai, bi), the adversary has

∑L

j=1 (ERi)jEKj =

((αi)1,2 + (αi)1,3) · (k1,1 + k1,3)+

((αi)1,1 + (αi)1,3) · (k1,2 + k1,3)+

1 · M(k1,1, k1,2, k1,3)+

M((αi)1,1, (αi)1,2, (αi)1,3)

+

((αi)2,2 + (αi)2,3) · (k2,1 + k2,3)+

((αi)2,1 + (αi)2,3) · (k2,2 + k2,3)+

1 · M(k2,1, k2,2, k2,3)+

M((αi)2,1, (αi)2,2, (αi)2,3)

+

. . .

+

((αi)l,2 + (αi)l,3) · (kl,1 + kl,3)+

((αi)l,1 + (αi)l,3) · (kl,2 + kl,3)+

1 · M(kl,1, kl,2, kl,3)+

M((αi)l,1, (αi)l,2, (αi)l,3)

=
∑l

j=1 ((αi)j,1 + (αi)j,3)(kj,1 + kj,3)+
∑l

j=1 ((αi)j,1 + (αi)j,3)(kj,2 + kj,3)+

1 ·
∑l

j=1 M(kj,1, kj,2, kj,3)+
∑l

j=1 M((αi)j,1, (αi)j,2, (αi)j,3)

= bi

Now, the adversary solves the following system of

linear equations

M · EK = B.

M is the matrix of coefficients of EK. As of Theorem

5.2, M can only have rank L = (2l + 1). Therefore,

the adversary collects w := L = (2l + 1) linear inde-

pendent observations to make up a (2l + 1)× (2l + 1)
matrix M, with j = {1 . . . l},

Mi,2(j−1)+1 := (αi)j,2 + (αi)j,3,

Mi,2(j−1)+2 := (αi)j,1 + (αi)j,3

Mi,2l+1 := 1.

So, column Mi,2(j−1)+1 represents (ki,1 + ki,3),
Mi,2(j−1)+2 represents (ki,2 + ki,3), and Mi,2l+1 rep-

resents
∑l

j=1 M(kj,1, kj,2, kj,3).
Finding and guaranteeing a total of L = (2l + 1)

linear independent observations turns out to be simple:

See the proof of Corollary 5.4 and [9]. The adversary

queries the tag only a little bit more than L times,

e.g., w := (L + 5) times, to get L linear independent

observations with overwhelming probability.

B is a vector of dimension (2l + 1),

Bi := bi+

l∑

j=1

M((αi)j,1, (αi)j,2, (αi)j,3), 1 ≤ i ≤ 2l+1}.

This system of linear equations can be solved ef-

ficiently, with polynomial complexity, using simple

Gaussian elimination. This results in computing:

(I) (k1,1 +k1,3), (k1,2 +k1,3), . . . , (kl,1 +kl,3), (kl,2 +
kl,3),

(II)
∑l

j=1 M(kj,1, kj,2, kj,3).
Equivalent Key. Finally, to compute an equiva-

lent key K ′ of Tvtag’s original key, cf., Section 4.1.1,

the adversary sets the first (l − 1)mt third key bits

of every key symbol to 0: {k1,3 := 0, k2,3 :=
0, . . . , kl−1,3 := 1}. This yields key bits {k1,1, k1,2,

k2,1, k2,2, . . . , kl,1, kl,2}.

Now all key bits, besides the last key bit kl,3, are

known. This last one is set to

• either 1, iff∑l−1
j=1 M(kj,1, kj,2) + M(kl,1, kl,2, 1)

=
∑l

j=1 M(kj,1, kj,2, kj,3) = (II),
• or 0, iff∑l−1

j=1 M(kj,1, kj,2) + M(kl,1, kl,2, 0) = (II)

As you can see, the above attack against fDPM does

not only allow the adversary to compute the expanded-

compacted key EK of a tag’s original key K, but even

one equivalent key K ′ of K. So, EKi = k′

i for K ′ =
k′

1, . . . , k
′

l.

Please refer to Section 6.2 for practical evaluation

results, i.e., timing results, indicating the effectiveness

of the above attack, even for large key sizes.

B.3. Breaking Privacy

According to the privacy definition of Section 2.2.2,

the adversary should not have a higher, more than

negligible probability of linking subsequent protocol

runs of two tags to one tag compared to simply

guessing whether it was the same tag or not, i.e., 50%.

The adversary calls DRAWTAG to receive one tag

Tvtag for quality time. During this quality time, he

computes an equivalent key K for Tvtag using the

above attack. Afterwards, he calls FREE Tvtag to free

this tag, he again calls DRAWTAG to receive a second

tag Tvtag′ for quality time and computes an equivalent

key K ′ for Tvtag′ . The adversary can now decide,

whether Tvtag and Tvtag′ are the same tags or not as

follows.

If keys K and K ′ are not-equivalent, i.e., by invert-

ing an even number of 3 bit symbols, he knows for sure

(100%) that Tvtag was not the same tag as Tvtag′ . If

the keys are equivalent, he guesses with 50% whether

Tvtag is the same as Tvtag′ .

With a key size of (lmt) bits, m = 1, t = 3, there are

2l−1 equivalent keys in each of the 22l+1 equivalence

classes of the DPM-function. So, in n 2l−1

23l out of n

cases, Tvtag′ gives a key K ′ which is equivalent to K.

In these cases, the adversary wins with 50%. In the

remaining n 23l
−2l−1

23l out of n cases, Tvtag′ is a non-

equivalent tag, and the adversary wins with 100%.

More formally,

Pwin =
n 2l−1

23l

n
·50%+

n 23l
−2l−1

23l

n
·100% = 1−

1

22l+2
.

For l > 1, this becomes much better than a guessing

adversary with 50%. In [37], the authors propose to use

l = 39.

B.4. Finding the “Right” Key

After computation of the expanded-compacted key

for an Ff instance, the user can successfully imperson-

ate the tag or break privacy as explained in the previous

section.

However, in the original DPM-protocol [37], there

is an additional step required after q identifications

rounds with FfDPM
to protect against replay attacks.

This is basically an HMAC: h(K|R1|N |K) is sent

from the tag to the reader, with N being the nonce

received from the tag, R1 the first random number of

the tag, and h a secure hash function, e.g., SHA-1. The

reader compares the HMAC h(K|R1|N |K) with the

HMAC computed using the key(s) he finally identified

in his database during the preceding q rounds. So, if the

adversary computes only an equivalent key K ′ to the

tag’s original key K, but not K itself, the verification

of above HMACs will fail for the reader, and the

adversary’s key will be rejected, RESULT will be 0.

However, the adversary can easily brute-force K

using K ′: As of Section 4.1.1, two keys K "= K ′

are equivalent for FfDPM
, if an even number of key

symbols (“triplets”) is inverted from K to K ′. There-

fore, there are a total of 2l−1 keys equivalent to K

(including K itself). To find out the correct K, the

adversary has to additionally do a total of 2l−2 SHA-

1 computations on average for all equivalent keys of

K ′. Each of generated equivalent key K ′

equiv of K ′ is

hashed with h(K ′

equiv|R1|N |K ′

equiv) and presented to

the reader with a call to SENDREADER. The adversary

does this until RESULT= 1, i.e., if K ′

equiv = K.

These SHA-1 computations during quality time have

to be taken into account and have also been evaluated

in Section 6.2.

Appendix C.

SAT-Solving

By using SAT-solvers, in theory, the problem of

solving a system of multivariate equations is trans-

formed into an equivalent boolean Satisfiability (SAT)

problem. If there is a satisfying solution for the

SAT-problem’s variables, then this is also a solution

for the variable assignments of the original system

of multivariate equation. So, the idea is to convert

ANF-equations into boolean Conjunctive Normal Form

(CNF) and then use a SAT-solver.

Although the k-SAT-problem with k > 2 is NP-

complete, it does not mean that on average some

instances cannot be computed quickly [7, 8]. Thus,

there has been much research and competitions on

fast, indeterministic SAT-solvers, cf., SAT-Race [39]

or SAT-Competition [38]. The anticipated benefit of

transforming multivariate algebraic equations to a SAT-

problem for cryptography is to get a “good” instance of

a SAT-problem that can be solved by an indeterministic

SAT-solver quickly.

C.1. Conversion

In the following, we will present some of the impor-

tant details of the conversion process and summarize

its main issues. For further information, refer to the

list of papers cited above.

Linearization. First of all, based on the plaintext

and ciphertext observations an adversary can poten-

tially make, linearized equations in ANF are set up.

Once more, linearization is important, because other-

wise conversion of high-degree monomials into CNF

would result in exponentially growing clause-length,

which is believed to extremely increase SAT-solving

computation time [3]. All resulting ANF equations are

rewritten such that they are of the form
∑

i ui = 1,

for all linearized monomials ui that have coefficients

1 ∈ GF (2). The set S of left-hand-side algebraic

expressions of the above equations will be converted

to CNF.

Grouping. Before the actual conversion of S, it is

however suggested in, e.g., [33], to replace frequently

re-appearing groups of monomials in S by introducing

new variables. So in general, if there is a group of

monomials ui + · · ·+uj in many expressions of S, this

group is substituted in S by a new variable t, and the

expression {1 + t + ui + · · · + uj} is added to S. We

implemented this by replacing groups of monomials

appearing more often than a certain percentage p in

the equations. The result of this replacement is to

increase the sparsity of expressions. Sparse expression,

i.e., consisting only of a small amount of monomials,

reduce CNF clause-length, total number of clauses, and

therewith SAT-solving time.

Elimination of variables. It is also suggested

to replace some of the variables in S by their defi-

nition [3]. If there is an expression {ui +ui+1 + · · · +
uj} ∈ S, then, e.g., ui is replaced inside every other

expression in S, where it occurs, by 1+ui+1+· · · +uj .

Therewith, ui is effectively eliminated from SAT-

solving which should speed up the solving process.

However, this reduces the sparsity of the expression

and results in more and longer CNF-clauses. As a

result, this might also have negative effects on com-

putation time and has therefore to be evaluated, cf.,

Section 6.2.

Guessing. Experiments in [16, 32] indicate that

it is worthwhile to systematically bute-force some of

the variables, i.e., key bits, before using SAT-solvers.

This is often called “guessing”, which is misleading,

as it has not much to do with a random choice of

variable assignments. With lmt being the total key

size, the adversary randomly picks (u ≪ lmt) key bits

ki, . . . , ki+u−1. The adversary iterates over all possible

2u assignments for the key bits. In each iteration, the

adversary adds {1+ki+ai, · · · , 1+ki+u−1+ai+u−1},

with his current assignments ai, · · · , ai+u−1 ∈ GF (2),
to the set of algebraic expressions S. If the SAT-solver

returns unsatisfiable for an assignment, the adversary

knows that this assignment was wrong and proceeds

with the next iteration – until the right solution is

found. It can be expected that 2u invocations of a SAT-

solver with (lmt−t) key bits is faster than 1 invocation

of a SAT-solver with lmt key bits.

Cutting. Eventually, S is converted to a boolean

CNF, using the convention 1 ≡ True, 0 ≡

False. As the conversion of XORs in ANF ex-

pressions has exponential complexity in terms of

resulting CNF clause-length, the ANF expressions

are typically cut before conversion: an expression

u1 + u2 + · · · + uk + uk+1 + · · · + ua is split into

multiple expressions {u1 + u2 + · · · + t1, 1 + t1 +
uk+1 + · · ·+u2k−2, 1+ t2 +u2k−1 + · · · }, where each

expression consists of at most k monomials, and new

variables ti are introduced [3]. Here, k is called the

cutting number. Without cutting, clauses would rise to

2n−1 literals [17], if n is the number of monomials in

an expression in S which quickly becomes a memory

and computation problem.

Finally, as today’s SAT-solvers, e.g., MiniSat [19,

20] or RSAT [1] require a special input format, DI-

MACS format [14], CNF-clauses have to be converted

into this format.

This concludes the description of SAT-solving’s

theoretical background. Section 6.2 presents practical

evaluation results on attacks against DPM as well as

another, more secure instance of the Ff -family and

compare the performance of SAT-attacks with those of

the new algebraic attack.

C.2. Parameters used for attacking DPM

The optimal grouping threshold p was p = 77%, the

optimal cutting number was 4. We also shuffled [3]

each DIMACS input to MiniSat 16 times, to get good

performance results. Interestingly, neither guessing of

variables, nor elimination of single variables had a pos-

itive impact on performance. We can only explain this

by pointing at the very dense system of equations we

have in DPM, e.g., “random matrices” with β ≈ 50%,

while [3, 10] assumes density of equations to be very

low with β ≤ 1%. We also overdefined the system of

equations as proposed in [3], i.e., provided more than

lmt equations. MiniSat performed best with 2 · lmt

equations.

Appendix D.

Ff∆
properties

D.1. Convergence Rate

With d = 8, t = 4, we get Premove(4, 8) ≈ 60%.

Figure 5(a) shows convergence of Ff∆
with various

database sizes n. The x-axis varies the number of

rounds q within Ff∆
, the y-axis shows the number

 1

 10

 100

 1000

 10000

 65536

 0 5 10 15 20

V
a
lid

 k
e
y
s
 i
n
 d

a
ta

b
a
s
e

Number of rounds q

n=1,000
n=65,536=2

16

n=500,000
n=1,000,000

n=10,000,000

(a) Convergence of Ff∆
, t = 4, varying n

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70

A
m

o
u
n
t

o
f

D
a
ta

 (
B

it
s
)

re
q
u
ir
e
d

Number of rounds q

EPC class 1 limit
random Rs

DPM
t=3
t=4
t=8

(b) Amount of data for one protocol-run

Figure 5. Convergence and communication overhead for Ff family of protocols, d = 8

of valid keys after q rounds. So for example, with

n = 216, the reader converges to a single entry in its

database already after q ≈ 17 rounds with a valid tag.

This means that the reader has on average identified a

valid tag after 17 rounds – resulting in completeness

for Ff∆
. Even with huge databases, for example 107

tags, Ff∆
converges quite quickly in q = 22 rounds.

As you can see, the reader on average identifies a tag

exponentially fast in the number of rounds q.

Again, please note again that within this process a

valid tag will never be removed. Although, it required

some rounds to converge, Ff∆
is always complete,

contrary to related work, cf., HB+ [45] based protocols.

D.2. Communication Overhead for Ff∆

The amount of data that can be transferred during

one protocol run is limited. In general, data rates

between tag and reader vary and depend on many

factors. We assume the data rate between tag and

reader to be ≈ 70 Kbps of, cf., [15], and the tag being

in communication distance for ≈ 1 second. So, the

tag can at most transfer 70 Kbit to the reader. Without

deterministic derivation of the Rs, however, a lot of

random data is sent from the tag: in round i, the tag

sends {R1

i , . . . , R
d
i }, each of them (lmt) bits, and it

sends one Ff (Rj
i ,K) which is an additional t bits.

Figure 5(b) shows the amount of data that has to be

sent for one protocol-run with q rounds. The horizontal

represent today’s EPC class-1 data volume limit of

70 Kbit and should not be crossed. Otherwise, an

authentication would take longer as 1 second, i.e., a

“user” carrying the RFID-tag would need to hold his

tag closely to the reader for a couple of seconds.

As this might be unrealistic in many scenarios,

where users are supposed to quickly swipe their tags

closely to the reader, sending d random numbers in

each round can not be afforded. You can see the

required amount of data for d = 8 random numbers

sent per round in Figure 5(b) entitled with “random

Rs”. This curve represents Ff∆
as above using t =

4, lmt = 256. You can see that already for q ≈ 17
there is too much data required to be sent during one

second of authentication, but t = 4, q = 17 does not

provide much security as shown above, cf., Fig. 4.3.2.

The other curves, t = 3, 4, 8 represent the amount

of volume transferred between tag and reader when

using deterministic derivation of the Rs, e.g., with the

LFSR. As you can see, even with q = 60 rounds as

proposed and t = 4, Ff∆
requires less data volume

than the EPC class-1 limit, by orders of magnitude.

In conclusion, the amount of data sent with Ff∆
is

feasible in today’s RFID-systems.

To put things into perspective, Fig. 5(b) also shows

the amount of data required for DPM (here, d = 1,

117 key bits). DPM requires more data than Ff∆
for

any number of rounds q.

