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Abstract

We construct public-key cryptosystems that are secure assuming theworst-casehardness of approxi-
mating the length of a shortest nonzero vector in ann-dimensional lattice to within a smallpoly(n) factor.
Prior cryptosystems with worst-case connections were based either on the shortest vector problem for
a special classof lattices (Ajtai and Dwork, STOC 1997; Regev, J. ACM 2004),or on the conjectured
hardness of lattice problems forquantumalgorithms (Regev, STOC 2005).

Our main technical innovation is a reduction from certain variants of the shortest vector problem to
corresponding versions of the “learning with errors” (LWE) problem; previously, only aquantumreduc-
tion of this kind was known. In addition, we construct new cryptosystems based on thesearchversion of
LWE, including a very naturalchosen ciphertext-securesystem that has a much simpler description and
tighter underlying worst-case approximation factor than prior constructions.
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1 Introduction

The seminal work of Ajtai in 1996 revealed the intriguing possibility of basing cryptography onworst-case
complexity assumptions related tolattices[Ajt04]. (An n-dimensional lattice is a discrete additive subgroup
of R

n.) Since then, basic cryptographic primitives such as one-way functions and collision-resistant hash
functions (along with other notions from “Minicrypt” [Imp95]) have been based on the conjectured hardness
of important and well-studied lattice problems. Perhaps the most well-known of these, theshortest vector
problemGapSVP, is to approximate the length (typically, in the Euclidean norm) of the shortest nonzero
vector in a given lattice; another, called theshort independent vectors problemSIVP, is (essentially) to find
a full-rank set of lattice vectors that are relatively short.

For public-key encryption(and related strong notions from “Cryptomania”), however,the underlying
worst-case lattice assumptions are somewhat more subtle. The ground-breaking cryptosystem of Ajtai and
Dwork [AD97] and subsequent improvements [Reg04b, AD07] are based on a special case of the shortest
vector problem, called “unique-SVP,” in which the shortest nonzero vector of the input lattice must be signif-
icantly shorter than all other lattice vectors that are not parallel to it. Compared to other standard problems,
the complexity of unique-SVP is not as well-understood. While it does appear to be asymptotically difficult,
there is both theoretical and experimental evidence [Cai98, GN08] that it may not be as hard as problems on
generallattices, due to the extra geometric structure.

A different class of cryptosystems (and the only others known to enjoy worst-case hardness) stem from
a work of Regev [Reg05], who defined a natural intermediate problem calledlearning with errors(LWE).
The LWE problem is a generalization of the well-known “learning parity with noise” problem to larger
moduli. It is parameterized by a dimensionn, a modulusq, and an error distributionχ overZq; typically,
one considers a Gaussian-like distributionχ that is relatively concentrated around0, whereZq is represented
by the integer residues⌈− q

2⌉, . . . , ⌊
q−1
2 ⌋. In thesearchversion ofLWE, the goal is to solve for an unknown

vector s ∈ Z
n
q (chosen uniformly at random, say), given any desiredm = poly(n) independent “noisy

random inner products”

(ai , bi = 〈ai, s〉 + xi) ∈ Z
n
q × Zq, i = 1, . . . ,m,

where eachai ∈ Z
n
q is uniformly random and eachxi is drawn from the error distributionχ. In thedecision

version, the goal is merely to distinguish between noisy inner products as above anduniformsamples over
Z

n
q ×Zq. It turns out that when the modulusq is prime and polynomial inn, the search and decision variants

areequivalentvia an elementary reduction (but no such equivalence is known for largerq).
The LWE problem has turned out to be amazingly versatile. In addition to its first application in a

public-key cryptosystem [Reg05], it has provided the foundation for chosen ciphertext-secure cryptosys-
tems [PW08], identity-based encryption [GPV08], and universally composable oblivious transfer [PVW08],
as well as for strong hardness of learning results relating to halfspaces [KS06]. We emphasize that all of the
above cryptographic applications are based on thedecisionversion ofLWE.

The main technical result of [Reg05] is a remarkable connection between lattices and the learning with
errors problem, namely: thesearchversion ofLWE is at least as hard asquantumlyapproximating the prob-
lemsGapSVP andSIVP onn-dimensional lattices, in the worst case. In other words, there is a polynomial-
time quantum algorithm (a reduction) that solves standard lattice problems given access to an oracle that
solves search-LWE. This is an intriguing and nontrivial result, because despite significant research efforts,
efficient quantum algorithms for the lattice problems in question have yet to be discovered. Under the
plausible conjecture that no such algorithms exist, it thenfollows thatLWE is hard and all of the above
cryptographic constructions are secure (even against quantum adversaries).
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Due to the relative novelty of quantum computing, however, it may yet be premature to place a great deal
of confidence in such conjectures, and in any case, it is worthwhile to base hardness results and cryptographic
schemes on the weakest possible assumptions. A central question left open in [Reg05] is whether there is a
classicalreduction from lattice problems toLWE. More generally, basing a public-key cryptosystem on any
“conventional” worst-case lattice assumption has remained an elusive open question.

1.1 Results

Our main result is the first public-key cryptosystem whose security is based on the conjectured worst-case
hardness of approximating the shortest vector problem on general lattices. The core technical innovation
is aclassicalreduction from certain lattice problems to corresponding versions of the learning with errors
problem. In more detail:

• We show that thesearchversion ofLWE, for any sufficiently large modulusq ≥ 2n, is at least as hard
as approximatingGapSVP in the worst case, via a classical (probabilistic polynomial-time) reduction.
The concrete approximation factor forGapSVP has essentially the same dependence on the error
distribution as in the quantum reduction of [Reg05].

• Our main reduction additionally shows that for moduli as small as q ≥ ω(
√

n), the search version of
LWE is at least as hard as (classically) approximating anovel variantof the shortest vector problem
on general lattices in the worst case. The new problem is essentially theGapSVP problem on “higher
quality” representations of the input lattice; hence, it isno harder than standardGapSVP, yet it still
appears to be exponentially hard given the state of the art inlattice algorithms [AKS01].

By the above-mentioned equivalence between search- and decision-LWE for primeq = poly(n), our
result provides a classical (but incomparable) foundationfor the hardness of decision-LWE and the
many cryptographic applications that are based upon it.

• We construct new cryptosystems based on thesearchversion ofLWE (for any modulusq), including
a simple and natural cryptosystem that is secure underchosen-ciphertext attack.

In our basic (semantically secure) system, public keys are of size O(n2 log2 q), and the expansion
factor of ann-bit plaintext can be as small asO(log q). (The chosen ciphertext-secure cryptosystem
just incurs additionalnδ factors.) The underlying worst-case approximation factorfor GapSVP (or its
new variant) isÕ(n2 log q), and has the potential to be reduced toÕ(n1.5

√
log q) with an improved

key-generation algorithm.1

Assuming hardness of the standardGapSVP problem (and lettingq = 2O(n)), the public key size and
ciphertext expansion factor are thereforeO(n4) andO(n), respectively; these quantities match the
(amortized) Ajtai-Dwork cryptosystem based on unique-SVP [AD07].

Assuming hardness of the newGapSVP variant (and lettingq = poly(n)), the public key size and
ciphertext expansion can be as small asO(n2) and O(log n), respectively; these match the most
efficient known cryptosystems based ondecision-LWE [PVW08, GPV08].

Our chosen ciphertext-secure cryptosystem provides an alternative to a recent construction of Peikert
and Waters [PW08] based on the decision-LWE problem. In addition to the new system’s classical worst-
case foundation, other key advantages include its tighter underlying approximation factor and its relatively
simple description and analysis (the construction in [PW08] is somewhat cumbersome in both regards).

1TheÕ(·) notation hides factors that are polynomial inlog n.
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1.2 Overview

1.2.1 Conceptual Summary

We start by giving a high-level description of the common design and analysis paradigm of prior cryptosys-
tems with worst-case connections [AD97, Reg04b, Reg05, AD07]. These works consider two types of
probability distributions over some additive domain: one is the uniform distribution, while the other type
consists of “lumpy” distributions that areperiodic andconcentratedaround multiples of the period. As
a simple example, in [Reg04b] the domain is the real interval[0, 1) with addition modulo1, and lumpy
distributions are concentrated around integer multiples of 1/h for some large integerh.

The cryptosystems are constructed roughly as follows: the secret key is a period chosen at random, and
the public key consists of several samples from the corresponding lumpy distribution. A0 bit is encrypted by
letting the ciphertext be arandom subset-sumof the samples in the public key; a1 is encrypted by choosing
a uniformly randomvalue in the domain (other slight variations are also possible). Decryption simply tests
whether the ciphertext is “relatively close” to a multiple of the secret period (to decrypt as0) or not (to
decrypt as1).

Semantic security is proved by a thought experiment in whichthe public key is instead made up of
samples drawn from theuniform distribution. It so happens that encrypting under such a keyhides the
message bitstatistically(i.e., information-theoretically), because random subset sums are distributed almost
uniformly. It follows that an adversary capable of breakingthe semantic security of the cryptosystem can
likewise distinguish between the uniform and lumpy distributions.

Finally, the core technical component is a reduction demonstrating that the two kinds of distributions are
computationally indistinguishable, assuming the worst-case hardness of some lattice problem.Essentially,
the reduction takes a lattice as input and produces samples from one of the two kinds of distributions,
depending on the geometric properties of the lattice. Crucially, in order to guarantee that the reduction
produces samples from the specific kinds ofstructuredlumpy distributions that are used in the cryptosystem,
it has so far been necessary to impose additional geometric constraints on the reduction’s input. This is why
prior works have relied on specialized assumptions, e.g., relating to unique-SVP.

Our Approach. We retain the use of uniform and (a certain kind of) lumpy distributions, and give a reduc-
tion that samples from one of the two types. Our cryptosystems, on the other hand, depart substantially from
the previous design and analysis paradigm: public keys in our systems are instead drawn from theuniform
distribution, whereas lumpy distributions are used only inthesecurity proofto show statistical hiding. The
principal advantage of this approach is that itsignificantly relaxes the structural propertiesrequired of the
lumpy distributions: first, because they no longer need to support decryption, and more importantly, because
they never need to be sampled in the “real world” at all! This makes additional geometric constraints on
the reduction’s input unnecessary, and allows for a security proof under worst-case assumptions on general
lattices.

Several natural questions immediately arise about this approach, such as: What is the supporting secret
key for a uniformly-distributed public key? How does one encrypt and decrypt? And how do the lumpy
distributions induce statistically secure encryption? Weaddress these issues in the following more technical
overview.
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1.2.2 New Cryptosystems

Here we describe new cryptosystems based on the search-LWE problem. At their heart is a certain collection
of injective (i.e., one-to-one) trapdoor functions. This collection appeared in a recent work of Gentry, Peik-
ert, and Vaikuntanathan [GPV08], and is closely related to an earlier proposal by Goldreich, Goldwasser,
and Halevi [GGH97]. In this work, we prove that the collection is one-way under classical worst-case
assumptions, and we establish additional properties that are useful in constructing cryptosystems.

The description of a functiongA from the collection is a matrixA ∈ Z
n×m
q made up ofm uniformly

random and independent columnsai ∈ Z
n
q , for some large enoughm. A random input togA comes in two

parts: a uniformly randoms ∈ Z
n
q , and an error vectorx ∈ Z

m
q whose entriesxi are chosen independently

from the error distributionχ of theLWE problem. The function is defined simply as

b = gA(s,x) = Ats + x ∈ Z
m
q .

Note that in the output vectorb, each entrybi = 〈ai, s〉 + xi, so inverting the function is syntactically
identical to solving search-LWE given m noisy inner products (note thatx is easily computed onces is
known, and vice versa). Moreover, ifgA is one-way, then there is a generic hard-core predicateh(s) for
gA(s,x) [GL89].

As shown in [GPV08], the functiongA has atrapdoor that enables efficient recovery of the inputs from
b, so long as the error distributionχ is sufficiently concentrated. Concretely, the trapdoorT is a “good”
basis for a certain lattice defined byA, which can be generated together with anA having the desired
(almost-)uniform distribution [Ajt99, AP08]. The inversion algorithm uses the trapdoor basisT in a simple
rounding algorithm to recovers.

Using this collection of trapdoor functions, it is straightforward to construct a basic semantically secure
cryptosystem. The secret and public keys areT andA (respectively), as above. An encryption of a message
bit µ consists ofb = gA(s,x) for randoms andx as above, as well asµ ⊕ h(s). The decryption algorithm
uses the trapdoorT to recovers from b, recomputes the predicateh(s), and recovers the messageµ.

Improved efficiency and chosen-ciphertext security. One of our technical results is that the functiongA

actually admits a very simple hard-core predicate, namely,theparity of any coordinatesi ∈ Zq of s (when
q is even). Moreover, we show how to extend this hard bit intoℓ simultaneouslyhard bits, by lifting the
LWE problem from dimensionn to n + ℓ − 1 via an elementary reduction. This results in an “amortized”
cryptosystem that can encrypt messages of length, say,ℓ = n bits using public keys and ciphertexts that
are only a constant factor larger than in the basic system. (Similar amortization techniques for other lattice-
based cryptosystems were also recently proposed in [PVW08,AD07].) As a further optimization, we also
show that the output ofgA can be represented in a “coarser” groupZ

m
q′ for some modulusq′ = poly(n),

which reduces the ciphertext size by an almost-linear factor in n whenq is large (e.g.,q = 2n).
To construct cryptosystems that are secure under chosen-ciphertext attacks, we rely on a recent approach

of [PW08] and additional perspectives of Rosen and Segev [RS08]. The key observation is thatk indepen-
dently chosen functionsgA1

, gA2
, . . . , gAk

remain one-way even when evaluated on thesameinput s (but
independent error vectorsx1, . . . ,xk), assuming the hardness of search-LWE given k · m samples. (This
fact was also observed independently by Goldwasser and Vaikuntanathan [GV08], for the same purpose.)
For injective trapdoor functions, one-wayness under such “correlated inputs” immediately yields chosen-
ciphertext security, as shown in [RS08]. At the same time, our proof of one-wayness under correlation
follows by showing that the functions have “lossy” counterpartsa la [PW08], as we now explain.
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1.2.3 Classical Hardness ofLWE

Here we give a simplified description of our worst-caseGapSVP to LWE reduction, which conveys all the
essential ideas (we refer the reader to Section 3 for full details). The input to the reduction is some arbitrary
n-dimensional latticeΛ (represented by a basis), and the goal is to approximateGapSVP given access to
an oracle that solves the search-LWE problem onm samples. That is, the reduction should determine if the
minimum distance ofΛ (i.e., the length of its shortest nonzero vector) is “small”or “large,” where these
quantities are separated by somepoly(n) multiplicative gap (and in between, any answer is acceptable).

Abstractly, the reduction first invokes a certain sampling procedure over thedual latticeΛ∗ to generate
independenta1, . . . ,am ∈ Z

n
q according to some (unknown) distribution. Concretely, theprocedure samples

vectorsyi ∈ Λ∗ from a Gaussian-likedistribution (as first used in [Reg04b], and refined in subsequent
works [MR07, Reg05, GPV08]), and letsai identify the residue class of(Λ∗/qΛ∗) ≡ Z

n
q containingyi. The

reduction then chooses a random secrets ∈ Z
n
q and error termsxi from χ, and gives the noisy inner products

(ai, bi = 〈ai, s〉 + xi) to theLWE oracle. If the oracle correctly producess as its solution, the reduction
outputs “large,” otherwise it outputs “small.”

When the minimum distance ofΛ is large, theai are distributed essentiallyuniformly over Z
n
q ; this

follows by a bound on thesmoothing parameterof Λ∗ due to Micciancio and Regev [MR07]. Therefore, the
input provided to the oracle is faithful to theLWE distribution, the oracle solves fors by hypothesis, and the
reduction outputs “large” as desired.

The case of small minimum distance is more interesting, and constitutes the chief novelty of our ap-
proach and analysis. In this case, the distribution of theai is lumpy, in the following sense: there is some
(unknown) nonzeros′ ∈ Z

n
q such that the distribution of〈ai, s

′〉 mod q is relatively concentrated around
0. (Concretely,s′ is the coefficient vector, reduced moduloq, of a short vector inΛ). For a sufficiently
wide error distributionχ overZq, the noisy inner products thenstatistically hidethe reduction’s choice of
s, i.e., it is about as likely to bes + s′, conditioned on the view of the oracle. The oracle must therefore
guess incorrectly with noticeable probability, and the reduction outputs “small” as desired. (Using a more
technical argument, we also show that a particularpredicateon s is essentially uniform, hence hard-core,
conditioned on the view.)

Additional details. The modulusq must be large enough so that in the lumpy case, the distribution of
〈ai, s〉 is well-concentrated relative to the size ofq. The degree of concentration is dictated by the tightness
of the reduction’s main sampling algorithm, which in turn isgoverned by the “quality” of the input basis.
Using an LLL-reduced basis [LLL82] (which may be computed inpolynomial time), the valueq = 2n

suffices. However, if the reduction is given a basis of betterquality, then a smallerq may be used; this is
where the new variant ofGapSVP comes into play.

The reduction we have outlined above, while technically correct, is still not quite as strong as we would
like. This is because in the lumpy case, the amount of noise required to hides growswith the number of
samplesm that the oracle uses, whereas ideally it should be independent of m. This is important for op-
timizing the underlying worst-case approximation factors(especially for chosen-ciphertext security, which
uses more samples), and is also needed for theLWE search/decision equivalence for primeq = poly(n).

To address this issue, our reduction actually generates each pair(ai, bi) together at oncefor any desired
number of samples, by adding noisea priori to a known vectorv ∈ Λ in the input lattice, rather thana
posteriori to the inner products〈ai, s〉. When the minimum distance is large, theLWE oracle can be used to
recoverv, whereas when the minimum distance is small,v is statistically hidden. In the end, our reduction
relies heavily upon the classical component of Regev’s reduction [Reg05], though in our case theai are
generated by a classical sampling algorithm of [GPV08] rather than by a quantum step, and we follow a
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different approach for solvingGapSVP.

1.3 Discussion and Open Problems

Note that the (simplified) reduction above essentially chooses a functiongA under an unknown distribution
on A, evaluates it on a known input, and checks whether the oraclerecovers that same input. The uniform
distribution onA induces an injective (trapdoor) function, whereas a lumpy distribution induces a function
that statistically hides its input. This is essentially thenotion of alossy trapdoor functionfrom [PW08],
but in a slightly relaxed sense: in our case, there is nosingle, fully-specified(and efficiently-sampleable)
distribution that induces a lossy function — butany lattice with small minimum distance does so.

It is worth pointing out explicitly how our reduction avoidsquantum computation. Recall that theLWE

oracle solves for a secrets (alternately, a vectorv in the input lattice) that the reduction chooses itself.
In [Reg05], this allowed the quantum part of the reduction to“uncompute”s and create a useful quantum
state, but it was unclear whether such an oracle was of any useclassically. Here we avoid quantum computa-
tion by introducing, as a complementary case, a lattice withsmall minimum distance that statistically hides
the reduction’s random choices. In this case, the inputs provided to the oracle (in particular, theais) arenot
faithful to theLWE distribution, but this is of absolutely no consequence! We mention that related forms
of statistical hiding via small minimum distance have also appeared in the context of interactive proofs for
lattice problems [GG00, MV03] and algorithms for the shortest vector problem [AKS01].

Currently, our core reductions arenon-adaptive(all queries to theLWE oracle can be prepared in ad-
vance), and seem to be limited to solving thedecisionversionGapSVP of the shortest vector problem. It
would be very interesting if the reductions could be made “iterative” and/or extended to solvesearchprob-
lems such asSIVP, like the quantum reduction of [Reg05] and prior reductionsfor “Minicrypt” primitives
(e.g., [Ajt04, MR07]). Another open problem is to design a reduction that solves thesearchversion of the
shortest vector problem; such a result would be quite surprising, because even the prior reductions mentioned
above have also been limited to the decision version.

Finally, we believe that it may be very fruitful to study the complexity of our new variant ofGapSVP

(and related lattice problems), in which a gap of intermediate quality is already promised and a tighter
approximation is desired.

2 Preliminaries

We denote the set of real numbers byR and the set of integers byZ. For a positive integern, define
[n] = {1, . . . , n}. We extend any real functionf(·) to any countable setA by definingf(A) =

∑

x∈A f(x).
The main security parameter throughout the paper isn, and all other quantities are implicitly functions

of n. We use standardO(·), o(·), Ω(·), andω(·) notation to describe the growth of functions, and write
f(n) = Õ(g(n)) if f(n) = O(g(n)·logc n) for some fixed constantc. We letpoly(n) denote an unspecified
polynomial functionf(n) = O(nc) for some constantc. A function f(n) is negligible, writtennegl(n), if
f(n) = o(n−c) for every constantc. We say that a probability isoverwhelmingif it is 1 − negl(n).

Vector spaces. By convention, all vectors are in column form and are named using bold lower-case letters
(e.g.,x), andxi denotes theith component ofx. Matrices are named using bold capital letters (e.g.,X),
andxi denotes theith column vector ofX. We identify a matrixX with the (ordered) set of its column
vectors. For a setS ⊆ R

n, point x ∈ R
n, and scalarc ∈ R, we defineS + x = {y + x : y ∈ S} and

cS = {cy : y ∈ S}.
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The Euclidean (orℓ2) norm onR
n is ‖x‖ =

√

∑

i x
2
i . The open unit ballBn ⊂ R

n (in theℓ2 norm) is

defined asBn = {x ∈ R
n : ‖x‖ < 1}.

For any (ordered) setS = {s1, . . . , sn} ⊂ R
n of linearly independent vectors, letS̃ = {s̃1, . . . , s̃n}

denote itsGram-Schmidt orthogonalization, defined iteratively as follows: let̃s1 = s1, and for eachi =
2, . . . , n, let s̃i be the projection ofsi onto span⊥(s1, . . . , si−1), i.e., s̃i = si −

∑i−1
j=1 µi,j s̃j , whereµi,j =

〈si, s̃j〉/〈s̃j , s̃j〉. Observe that‖s̃i‖ ≤ ‖si‖ for all i.

Probability. For a probability distributionX over a domainD, let fX : D → R denote its density
function. LetXn denote then-fold product distribution overDn, which has density functionfXn(x) =
fn

X(x) := fX(x1) · · · fX(xn). The statistical distancebetween two distributionsX and Y over D (or
two random variables having those distributions) is definedas ∆(X,Y ) = maxA⊆D |fX(A) − fY (A)|.
Statistical distance is a metric on probability distributions; in particular, it obeys the triangle inequality.
Applying a (possibly randomized) functiong cannot increase the statistical distance:∆(g(X), g(Y )) ≤
∆(X,Y ). The uniform distribution overD is denotedU(D).

Let X andY be two distributions, and letD be a probabilistic algorithm. We say that theadvantageof
D in distinguishingX from Y is |Pr[D(X) = 1] − Pr[D(Y ) = 1]|. We say that two ensembles{Xn} and
{Yn} of distributions indexed byn arecomputationally indistinguishableif every probabilistic polynomial-
timeD has negligible advantagenegl(n) in distinguishingXn from Yn.

For anyr > 0, define the one-dimensional Gaussian functionρr : R → R with parameterr as

ρr(x) = exp(−π(x/r)2).

(We taker = 1 when it is omitted.) The total measure associated toρr is
∫

Rn ρr(x) dx = r, so we can define
a continuous Gaussian probability distribution overR by its density functionDr(x) = ρr(x)/r (as before,
we may omitr). These extend toRn in the usual way asρn

r (x) = ρr(x1) · · · ρr(xn) = exp(−π(‖x‖/r)2)
andDr(x) = ρr(x)/rn. We also define the Gaussian norm distributionS

(n)
r , which is obtained by sampling

a vectorx ∈ R
n from Dn

r and outputting‖x‖.
The Gaussian distributionDn

r is spherically symmetric, so forx distributed according toDn
r and any

unit vectoru ∈ R
n, 〈u,x〉 is distributed according toDr. Forx ∈ R distributed according toDr and any

t ≥ 1, a standard tail inequality says that|x| < r · t except with probability at mostexp(−πt2). In addition,
for x ∈ R

n distributed according toDn
r , we have‖x‖ < r

√
n except with probability at most2−n.

It is possible to sample efficiently fromDr (henceDn
r ) to within any desired level of precision. It

is possible to sample efficiently fromU(Bn) by first choosing anx according toDn to select a random
direction, then scalingx to have (Euclidean) normr ∈ [0, 1) with probability proportional torn−1. For
simplicity, we use real numbers in this work and assume that we can sample fromDn

r exactly; all the
arguments can be made rigorous by using a suitable amount of precision.

To prove the hardness of search-LWE, we need the following lemma about the statistical distancebe-
tween the uniform distributions over twon-dimensional balls whose centers are relatively close.

Lemma 2.1([GG00]). For any constantsc, d > 0 and anyz ∈ R
n with ‖z‖ ≤ d andd′ = d ·

√

n/(c log n),
we have∆(U(d′ · Bn), U(z + d′ · Bn)) ≤ 1 − 1/poly(n).

2.1 Learning with Errors

Let T = R/Z be the additive group on the real interval[0, 1) with modulo1 addition. For positive integers
n andq ≥ 2, a vectors ∈ Z

n
q , and a probability distributionφ on T, defineAs,φ to be the distribution on
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Z
n
q ×T obtained by choosing a vectora ∈ Z

n
q uniformly at random, choosing an error terme ∈ T according

to φ, and outputting(a, 〈a, s〉/q + e), where the addition is performed inT.
We are primarily concerned with error distributionsφ overT that are derived from Gaussians. Forα > 0,

defineΨα to be the distribution onT obtained by taking a sample from the one-dimensional GaussianD
(1)
α

and reducing modulo1. At times we consider an error distributionφ that is itself a random variable, e.g.,
Ψβ for β chosen according to some distribution. We point out such cases explicitly when they arise, but
retain the same notation as whenφ is a fixed distribution.

Definition 2.2. For an integer functionq = q(n) and an error distributionφ on T, the goal of thelearning
with errorsproblemLWEq,φ in n dimensions is to finds ∈ Z

n
q (with overwhelming probability) given access

to any desiredpoly(n) number of samples fromAs,φ for some arbitrarys.

The above definition ofLWE is for a “worst-case” search problem. As shown in [Reg05], itis equivalent
(up to a polynomial factor in the number of samples used) to an“average-case” version in which the goal
is to find auniformly randoms ∈ Z

n
q with non-negligibleprobability givenAs,φ (where the probability

is taken over all the randomness in the experiment). This equivalence follows by a simple reduction from
arbitrarys to uniformly randoms′ ∈ Z

n
q [Reg05, Lemma 4.1], and the ability to verify a correct valueof

s′ once it is found [Reg05, Lemma 3.6]). Specifically, supposeW is an oracle that solves the average-case
version ofLWE. To find an arbitrarys with overwhelming probability givenAs,φ, we transform it intoAs′,φ

for a uniformly randoms′ = s+ t by choosing randomt ∈ Z
n
q and mapping pairs(a, b) to (a, b+ 〈a, t〉/q).

By invoking W , we obtain a candidate solutioñs, check whether̃s = s′, and outputs = s̃ − t if so. By
repeating a polynomial number of times, we finds with overwhelming probability.

For a functionπ : Z
n
q → {0, 1}ℓ, we say thatπ is hard-corefor LWEq,φ (in n dimensions) if, given

access toAs,φ for uniformly randoms ∈ Z
n
q , π(s) is computationally indistinguishable fromU({0, 1}ℓ).

Whenℓ = 1, this is equivalent (via standard reductions) to saying that no probabilistic polynomial-time
algorithm computesπ(s) with probability better than1/2 + negl(n). We are interested in a particular
candidate collection of hard-core functions forLWE. Forevenq and anyℓ ≥ 1, define

hℓ : Z
≥ℓ
q → {0, 1}ℓ as hℓ(s) = h(s1) ◦ · · · ◦ h(sℓ),

whereh(s) for s = s̄+qZ ∈ Zq denotes theparity of the integer residuēs ∈ Z, and◦ denotes concatenation.
(Note that becauseq is even, any choice of residuēs for s has the same parity.)

2.2 Lattices

An n-dimensionallattice is a discrete additive subgroup ofR
n. Equivalently, letB = {b1, . . . ,bn} ⊂ R

n

consist ofn linearly independent vectors; the latticeΛ generated by thebasisB is

Λ = L(B) = {Bc =
∑

i∈[n]
ci · bi : c ∈ Z

n}.

(Technically, this is the definition of afull-rank lattice, which is all we will be concerned with in this work.)
Theminimum distanceλ1(Λ) of Λ (in theℓ2 norm) is the length of its shortest nonzero vector:λ1(Λ) =

min0 6=x∈Λ‖x‖. It is well-known (and easy to prove) that for any basisB of Λ, the minimum distance
λ1(Λ) ≥ mini‖b̃i‖.

Thedual latticeof Λ, denotedΛ∗, is defined asΛ∗ = {x ∈ R
n : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}. By symmetry,

it can be seen that(Λ∗)∗ = Λ. If B is a basis ofΛ, it can be seen that the dual basisB∗ = (B−1)t is in fact
a basis ofΛ∗. The following standard fact relates the Gram-Schmidt orthogonalizations of a basis and its
dual (a proof can be found in [Reg04a, Lecture 8]).
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Lemma 2.3. Let {b1, . . . ,bn} be an (ordered) basis, and let{d1, . . . ,dn} be its dual basis in reversed
order (i.e.,di = b∗

n−i+1). Thend̃i = b̃i/‖b̃i‖2 for all i ∈ [n]. In particular, ‖d̃i‖ = 1/‖b̃i‖.

Computational problems. We are mainly interested in the shortest vector problem on lattices.

Definition 2.4 (Shortest Vector Problem). For a functionγ(n) ≥ 1, an input toGapSVPγ is a pair(B, d),
whereB is a basis of ann-dimensional latticeΛ = L(B) andd > 0 is a real number. It is a YES instance
if λ1(Λ) ≤ d, and is a NO instance ifλ1(Λ) > γ(n) · d.

Note that given an oracle forGapSVPγ , the minimum distanceλ1 of any lattice can be computed to
within a factor of (say)2γ by binary search on the valued.

We now define a variant of the shortest vector problem, which is the problem that our main worst-case
to average-case reductions will be based upon.

Definition 2.5. For functionsζ(n) ≥ γ(n) ≥ 1, an input toGapSVPζ,γ is a pair(B, d), where:

• B is a basis of ann-dimensional latticeΛ = L(B) for whichλ1(Λ) ≤ ζ(n),

• mini‖b̃i‖ ≥ 1, and

• 1 ≤ d ≤ ζ(n)/γ(n).

It is a YES instance ifλ1(Λ) ≤ d, and is a NO instance ifλ1(Λ) > γ(n) · d.

A few remarks about this definition are in order. First, note that the second conditionmin‖b̃i‖ ≥ 1
implies thatλ1(Λ) ≥ 1, and is without loss of generality by scaling the basisB. Similarly, the last condition
1 ≤ d ≤ ζ(n)/γ(n) is without loss of generality, because the instance is trivially solvable whend lies
outside that range.

The first condition is the interesting one. For anyζ(n) ≥ 2(n−1)/2, GapSVPζ,γ is actuallyequivalentto
the standardGapSVPγ problem, because an arbitrary basisB′ of Λ can be reduced in polynomial time using

the LLL algorithm [LLL82] to another basisB of Λ so thatλ1(Λ) ≤ ‖b1‖ ≤ 2(n−1)/2 · mini‖b̃i‖. (In fact,
alternate parameters and analysis of the LLL algorithm imply that we can even takeζ(n) ≈ (2/

√
3)n.) For

smaller functionsζ(n), particularlyζ(n) = poly(n), the condition is nontrivial and more interesting. The
nature of the problem is to approximate the minimum distanceto within a gapγ(n), given a promise that it
lies within a looser range having a gapζ(n). The promise could be made efficiently verifiable by restricting
to “high quality” bases that contain (or guarantee the existence of) a vector of length at mostζ(n), though
this could potentially make the problem easier. To our knowledge, none of the lattice algorithms in the
literature are able to solveGapSVPζ,γ for γ(n) < ζ(n) = poly(n) in time better than exponential2Ω(n),
even when the promise is verifiable efficiently, and even when, say,ζ(n) = 2γ(n).

Gaussians on lattices. Micciancio and Regev [MR07] introduced a lattice quantity called thesmoothing
parameter, and related it to the minimum distance of the dual lattice.

Definition 2.6. For ann-dimensional latticeΛ and positive realǫ > 0, thesmoothing parameterηǫ(Λ) is
defined to be the smallestr such thatρ1/r(Λ

∗\{0}) ≤ ǫ.

Lemma 2.7([MR07, Lemma 3.2]). For anyn-dimensional latticeΛ, we haveη2−n(Λ) ≤ √
n/λ1(Λ

∗).
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For ann-dimensional latticeΛ, real r > 0, andc ∈ R
n, define thediscrete Gaussian probability

distribution overΛ (with parameterr, centered atc) as:

∀x ∈ Λ, DΛ,r,c(x) =
ρr(x − c)

ρr(Λ − c)
.

(As above,r andc are taken to be1 and0, respectively, when omitted.) Note that the denominator inthe
above expression is merely a normalization factor.

Our reductions use, as a subroutine, an efficient algorithm that generates samples from discrete Gaussian
distributions.

Proposition 2.8 ([GPV08, Theorem 4.1]). There is a probabilistic polynomial-time algorithm that, given
any n-dimensional lattice basisB, anyr ≥ maxi‖b̃i‖ · ω(

√
log n), and an arbitraryc ∈ R

n, outputs a
sample from a distribution that is withinnegl(n) statistical distance ofDL(B),r,c.

To demonstrate a particular hard-core predicate forLWE, we also need the following simple (but new,
to our knowledge) fact about discrete Gaussians.

Lemma 2.9. Let B be a basis of ann-dimensional latticeΛ = L(B), and letv = Bz ∈ Λ be a nonzero
lattice vector whoseith coefficientzi is odd. Let r ≥ ‖v‖ · ω(

√
log n), let c ∈ R

n be arbitrary, and let
x = Bz′ be a random variable having distributionDΛ,r,c. Then theparity of coefficientz′i (i.e.,z′i mod 2)
is negligibly close to uniform over{0, 1}.

We remark that the lemma easily generalizes to any prime modulus p, where forzi 6= 0 mod p and
r ≥ p · ‖v‖ · ω(

√
log n), we have thatz′i mod p is negligibly close to uniform overZp.

Proof. Define a basisB′ of a sublatticeΛ′ = L(B′) ⊂ Λ asb′
i = 2bi andb′

j = bj for all j 6= i. Then we
havev = Bz 6∈ Λ′, andΛ = Λ′∪ (Λ′ +v). Observe that forx = Bz′ ∈ Λ, the parity ofz′i is zero ifx ∈ Λ′,
and is one ifx ∈ Λ′ + v.

For x distributed according toDΛ,r,c, the probability thatz′i is even or odd is therefore proportional to
P0 = ρr(Λ

′−c) or P1 = ρr(Λ
′ +v−c), respectively. A routine argument (using techniques from [MR07])

shows that forr ≥ ‖v‖ ·ω(
√

log n), the quantitiesP0 andP1 are within a(1±negl(n)) factor of each other,
which proves the claim. We defer a complete proof to the full version.

3 Classical Hardness ofLWE

In this section we show that certain versions of the learningwith errors problem are at least as hard as
classically solving corresponding versions of the shortest vector problem. In Section 3.1 we give a reduction
establishing the hardness ofLWE in its search version. This proves that the injective trapdoor functions
from [GPV08] are indeed one-way, hence have a generic hard-core predicate that can be used to encrypt a
single bit at a time. In Section 3.2 we give a more technical proof showing thatLWE admits aspecificnatural
hard-core predicate, which has the advantage that it can be easily extended into manysimultaneouslyhard
bits (as shown in Section 4.1); this leads to more efficient multi-bit cryptosystems.

3.1 Hardness of Search-LWE

Theorem 3.1. Let α = α(n) ∈ (0, 1) be a real number andγ = γ(n) ≥ n/(α
√

log n). Letζ = ζ(n) ≥ γ
andq = q(n) ≥ (ζ/

√
n) · ω(

√
log n).
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There is a (classical) probabilistic polynomial-time reduction from solvingGapSVPζ,γ in the worst case
(with overwhelming probability) to solvingLWEq,Ψα with non-negligible probability (for uniformly random
s ∈ Z

n
q ) using a polynomial number of samples.

Note thatGapSVPζ,γ is potentially hard in the worst case wheneverζ > γ, so Theorem 3.1 allows for a
choice ofq as small as

q > (γ/
√

n) · ω(
√

log n) = ω(
√

n/α).

We also mention that using results from [Pei08], Theorem 3.1can easily be generalized to work forGapSVPζ,γ

in anyℓp norm,2 ≤ p ≤ ∞, for essentially the same approximation factorγ.
Our proof of Theorem 3.1 relies on the core classical component of Regev’s reduction.

Proposition 3.2([Reg05, Lemma 3.4]). Let ǫ = ǫ(n) be a negligible function,q = q(n) ≥ 2 be an integer,
α = α(n) ∈ (0, 1) and φ = Ψα, andΛ be anyn-dimensional lattice. There is a classical probabilistic
polynomial-time reductionR that solvesCVPαq/(

√
2r) onΛ in the worst case (with overwhelming probabil-

ity), given:

1. an oracleW that solvesLWEq,φ with non-negligible probability (for uniformly randoms ∈ Z
n
q ) using

a polynomial number of samples, and

2. an oracle that samples fromDΛ∗,r for a given numberr ≥
√

2q · ηǫ(Λ
∗).

For completeness, we give a brief description of the reduction claimed in Proposition 3.2 (however, this
is not required to understand the proof of Theorem 3.1 and maybe safely skipped). It is given a basisB of
Λ and a pointx ∈ R

n within distanceαq/(
√

2r) of some vectorv ∈ Λ. Supposes = B−1v mod q is the
coefficient vector ofv reduced moduloq. To generate a sample fromAs,φ, the reduction obtains a sampley

from DΛ∗,r, letsa = (B∗)−1y = Bty mod q, and outputs

(a , b = 〈y,x〉/q + e) ∈ Z
n
q × T,

wheree ∈ R is a small extra error term chosen from a continuous Gaussian. Omitting many details, this
faithfully simulates theLWE distribution for two reasons: first,a is essentially uniform overZn

q since
r ≥ q · ηǫ(Λ), and second,

〈y,x〉 ≈ 〈y,v〉 = 〈Bty,B−1v〉 = 〈a, s〉 mod q.

The oracleW solves fors = B−1v mod q by hypothesis, and the entire vectorv can be obtained by
iterating the procedure as described in [Reg05, Lemma 3.5].

We stress that the precise error distribution in the〈y,x〉 term requires some care to analyze precisely;
the exact distance betweenx andv and the extra error terme both play an important role. The details are not
relevant at this point, though they will be more important later on in Section 3.2 when we analyze specific
hard-core predicates.

Proving the theorem. We are now ready to prove Theorem 3.1. Essentially, the reduction works as
follows: given a latticeΛ, it perturbs a pointv ∈ Λ, invokes the reductionR from Proposition 3.2 on
the perturbed point, and checks whetherR successfully recoversv. Whenλ1(Λ) is large,R must indeed
recoverv by hypothesis. Whenλ1(Λ) is small,v is statistically hiddenandR must guess incorrectly with
some non-negligible probability. (The same basic principle underlies the interactive proofs of Goldreich and
Goldwasser [GG00], where here the reductionR is playing the role of the unbounded prover.)
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Proof of Theorem 3.1.The input to our reduction is an instance ofGapSVPζ,γ , i.e., a pair(B, d) where

min‖b̃i‖ ≥ 1, the minimum distanceλ1(L(B)) ≤ ζ, and1 ≤ d ≤ ζ/γ. Let Λ = L(B).
The reduction runs the following procedure some large number N = poly(n) times.

1. Choose a pointw uniformly at random from the balld′ · Bn whered′ = d ·
√

n/(4 log n), and let
x = w mod B.

2. Invoke the reductionR from Proposition 3.2 onΛ andx with parameter

r =
q ·

√
2n

γ · d ,

where the required oracle for sampling fromDΛ∗,r is implemented by the algorithm from Proposi-
tion 2.8 on the reversed dual basisD of B. Letv beR’s output.

If v 6= x− w in any of theN iterations, thenaccept. Otherwise,reject.
We now analyze the reduction. First recall thatmaxi‖d̃i‖ = 1/mini‖b̃i‖ ≤ 1, and the parameter

r =
q ·

√
2n

γ · d ≥ q ·
√

2n

ζ
≥ ω(

√

log n)

by hypothesis ond andq, so the algorithm from Proposition 2.8 correctly samples from a distribution that
is within negligible statistical distance ofDΛ∗,r.

Now consider the case when(B, d) is a NO instance, i.e.,λ1(Λ) > γ · d. Then by Lemma 2.7, we have

ηǫ(Λ
∗) ≤

√
n

γ · d

for ǫ(n) = 2−n = negl(n). Thereforer ≥
√

2q · ηǫ(Λ
∗) as required by Proposition 3.2. Now because

x − w ∈ Λ, the distance fromx to Λ is at most

d′ = d ·
√

n

4 log n
≤ α · γ · d√

4n
=

αq√
2r

,

by hypothesis onγ and the definition ofr. Moreover,λ1(Λ) > γ · d > 2d′, therefore the reduction from
Proposition 3.2 must returnv = x − w in each of the iterations (with overwhelming probability),and the
reduction rejects as desired.

Finally, consider the case when(B, d) is a YES instance, i.e.,λ1(Λ) ≤ d. Let z ∈ Λ have norm
‖z‖ = λ1(Λ). Consider an alternate experiment in which ofw is replaced byw′ = z + w for w chosen
uniformly from d′ · Bn, sox′ = w′ mod B andR is invoked onx′. Then by Lemma 2.1 and the fact that
statistical distance cannot increase under any randomizedfunction, we have

Pr[R(x) = x − w] ≤ 1 − 1/poly(n) + Pr[R(x′) = x′ − w′]

≤ 2 − 1/poly(n) − Pr[R(x′) = x′ − w].

But now notice thatx′ = z+w = w mod B, sox′ is distributed identically tox in the real experiment, and
can replacex in the above expression. Rearranging, it follows thatPr[R(x) = x − w] ≤ 1 − 1/poly(n).
Then for a sufficiently largeN = poly(n), we havev 6= x − w in at least one iteration and the reduction
accepts, as desired.
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3.2 Hard-Core Predicate

Here we demonstrate a particular hard-core predicate forLWE (assuming the worst-case hardness ofGapSVP),
namely, theparity of the first entrys1 of the secrets ∈ Z

n
q . (By symmetry, it follows that the parity ofany

single entrysi is hard-core).
Our strategy is similar to the one used above in the proof of Theorem 3.1, but is more technically

involved. Given a latticeΛ, the reduction perturbs a pointv ∈ Λ (this time using a sufficiently wide
Gaussian), uses the perturbed point to simulate anLWE distribution to an oracleP that predicts the predicate,
and checks whetherP ’s output matches a corresponding predicate onv. Whenλ1(Λ) is large, the simulation
is faithful to anLWE distribution andP ’s prediction is correct (with non-negligible advantage over1/2) by
hypothesis. Whenλ1(Λ) is small, the predicate onv is (almost) uniform conditioned onP ’s input, henceP
has essentially no advantage over1/2.

For technical reasons, we need to impose two extra conditions on theLWEq,φ problem in order to make
the proof work. The first is thatq must be aneveninteger; otherwise, the notion of parity inZq is ill-defined.
The second is that the noise distributionφ = Ψβ is itself is a random variable; more precisely, the parameter
β is chosen from a certain distribution and kept secret (and fixed). This condition is an artifact of the main
proof technique in the context of hard-core predicates; we elaborate below.

When reducing to thesearchproblemLWEq,Ψα, the main step in the reduction from Proposition 3.2
above actually generates samples from a distributionAs,Ψβ

for someunknownβ ≤ α. The reduction then
emulatesAs,Ψβ′

for many different values ofβ′ ≥ β by adding different amounts of extra noise toAs,Ψβ
. In

at least one of these instances,β′ is sufficiently close toα that the oracle forLWEq,Ψα is obliged to return the
correct solutions. Because candidate solutions to theLWE problem can be checked efficiently, the reduction
can therefore recognize the corrects and continue on.

When attempting to prove that a predicateπ is hard-corefor LWEq,Ψα , however, this kind of strategy
breaks down. Here we have an oracle that predictsπ(s) givenAs,Ψα , but it appears that the correct value
of π(s) cannotbe recognized efficiently on its own. So even though the reduction may emulate different
instances ofAs,Ψβ′

, it has no way of checkingwhichof the oracle’s predictions is correct (and the oracle may
intentionally give bad predictions under noise distributions other thanΨα). Our solution to this difficulty
is to strengthen the hypothesis by requiring the oracle to predict π(s) under error distributionΨβ, where
β itself is a random variable that emerges from the main reduction technique. The distribution ofβ is
somewhat unnatural, but presents no problems in usage.

Theorem 3.3. Letα = α(n) ∈ (0, 1) be a real number andγ = γ(n) ≥ ω(n
√

log n/α). Letζ = ζ(n) ≥ γ
andq = q(n) ≥ (ζ/

√
n) · ω(

√
log n) be aneveninteger.

There is a classical probabilistic polynomial-time reduction from solvingGapSVPζ,γ in the worst case
(with overwhelming probability) to distinguishingh1(s) from U({0, 1}) (with non-negligible advantage)
givenAs,Ψβ

, for s ∈ Z
n
q chosen uniformly at random and (secret)β =

√

α2/2 + l2, wherel is distributed

according toS(n)

α/
√

2n
.

In other words,h1 is hard-core forLWEq,Ψβ
assuming thatGapSVPζ,γ is hard in the worst case.

We start with a couple of elementary reductions that make theproof of Theorem 3.3 simpler. First, define
a variant problemGapSVP′

ζ,γ whose input, just as forGapSVPζ,γ, is a pair(B, d) such thatλ1(L(B)) ≤
ζ(n), mini‖b̃i‖ ≥ 1, and1 ≤ d ≤ ζ(n)/γ(n). It is a YES instance if there exists az ∈ Z

n such thatz1 is
oddand‖Bz‖ ≤ d; it is a NO instance ifλ1(L(B)) > γ(n) · d.

Lemma 3.4. For any ζ(n) ≥ γ(n) ≥ 1, there is a deterministic polynomial-time Cook reduction from
GapSVPζ,γ to GapSVP′

ζ,γ.
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Proof. Given an input instance(B, d) of GapSVPζ,γ, the reduction generatesn instances(B(i), d) for i ∈
[n] as described below, and invokes theGapSVP′

ζ,γ oracle on each of them. If the oracle accepts any of the
instances, the reduction accepts, otherwise it rejects.

The instances(B(i), d) are defined as follows: fori = 1, let B(1) = B. For i = 2, . . . , n, let b(i)
i =

bi + b1, and letb(i)
j = bj for all j 6= i. Observe thatL(B(i)) = L(B) and that the Gram-Schmidt

orthogonalizations ofB andB(i) are identical, for everyi ∈ [n]. Therefore, the instances(B(i), d) satisfy
the requirements of theGapSVP′ problem.

If (B, d) is a NO instance ofGapSVP, then by the first observations above, every(B(i), d) is a NO
instance ofGapSVP′.

If (B, d) is a YES instance ofGapSVP, then there exists somez ∈ Z
n such thatBz is a shortest

nonzero vector inL(B) (i.e.,‖Bz‖ ≤ d) and ani ∈ [n] such thatzi is odd; for if not, thenz ∈ (2Z)n and
Bz/2 ∈ L(B) is nonzero and shorter thanBz, a contradiction. We claim that(B(i), d) is a YES instance of
GapSVP′. If z1 is odd, then we may takei = 1 and the claim holds trivially. Now suppose thatz1 is even.
Lettingz′ ∈ Z

n be such thatB(i)z′ = Bz, we havez′1 = z1 − zi, which is odd, and the claim follows.

Next, observe thatAs,φ for anarbitrary s ∈ Z
n
q can be transformed intoAs′,φ for a uniformly random

s′ = s + t ∈ Z
n
q , simply by choosingt ∈ Z

n
q uniformly at random and mapping each pair(a, b) to

(a, b + 〈a, t〉/q) ∈ Z
n
q × T. Moreover,h1(s′) = h1(s) ⊕ h1(t) whenq is even. Therefore, if we have an

oracleD that distinguishesh1(s) from uniform with advantageδ givenAs,φ for uniform s ∈ Z
n
q , then we

have an efficient predictorP that computesh1(s) with probability1/2 + δ givenAs,φ for arbitrary s ∈ Z
n
q .

The final tool we need is a technical lemma relating to the generation of samples from anLWE distribu-
tion.

Lemma 3.5 ([Reg05, Proof of Lemma 3.8]). Let ǫ = ǫ(n) be a negligible function,q = q(n) ≥ 2 be an
integer, andα = α(n) ∈ (0, 1) be a real number. LetB be a basis for ann-dimensional latticeΛ = L(B),
let r ≥

√
2q · ηǫ(Λ), and letx ∈ R

n be at distanced′ from somev ∈ Λ.
Consider the following experiment: lety be drawn fromDΛ∗,r and lete ∈ R be drawn fromD1

α/
√

2
.

Then the distribution of
(a = Bty mod q , b = 〈y,x〉/q + e) ∈ Z

n
q × T

is within negligible statistical distance ofAs,Ψβ
, wheres = B−1v mod q andβ =

√

α2/2 + (d′r/q)2.

We are now ready to prove the theorem.

Proof of Theorem 3.3.By Lemma 3.4, we can say that the input to our reduction is an instance ofGapSVP′
ζ,γ,

i.e., a pair(B, d) wheremin‖b̃i‖ ≥ 1, the minimum distanceλ1(L(B)) ≤ ζ, and1 ≤ d ≤ ζ/γ. Let
Λ = L(B).

By the discussion above, we may hypothesize a predictorP that computesh1(s) with probability1/2+δ
for some non-negligibleδ = δ(n) given As,Ψβ

for arbitrary s ∈ Z
n
q , andβ chosen as described in the

theorem statement.
The reduction runs the following procedure some large number N = poly(n) times.

1. Choose a pointw ∈ R
n from distributionDn

d·ω for

ω =
α · γ
2n

= ω(
√

log n),

let x = w mod B, and letv = x − w ∈ Λ.
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2. Invoke the hypothesized predictorP , simulating each desired sample from theLWE distribution as
follows: using the algorithm from Proposition 2.8 on the reversed dual basis ofB, sampley from
DΛ∗,r for

r =
q ·

√
2n

γ · d .

Next, samplee ∈ R from D1
α/

√
2

and giveP the pair

(a = Bty mod q , b = 〈y,x〉/q + e) ∈ Z
n
q × T.

3. WhenP outputs a prediction, check whether the prediction equalsh1(s), wheres = B−1v mod q.

If P ’s prediction is correct in at least(1/2 + δ/2)N of the iterations, thenreject, otherwiseaccept.
We now analyze the reduction. Just as in the proof of Theorem 3.1, for the definition ofr above, the

algorithm from Proposition 2.8 correctly samples from a distribution that is within negligible statistical
distance ofDΛ∗,r.

Now consider the case when(B, d) is a NO instance ofGapSVP′, i.e., λ1(Λ) > γ · d. Just as in the
proof of Theorem 3.1, we haver ≥

√
2q · ηǫ(Λ

∗) as required by Lemma 3.5. Now becausev = x−w ∈ Λ,

the distance betweenx andv is d′ = ‖w‖, which means thatd′r/q is distributed according toS(n)
t , where

t = d · ω · r/q = α/
√

2n.

By Lemma 3.5, it follows that the reduction simulatesAs,Ψβ
(up to negligible statistical distance), where

s = B−1v mod q and β =
√

α2/2 + l2, and l is distributed according toS(n)

α/
√

2n
. By hypothesis,P

predictsh1(s) with probability negligibly close to1/2 + δ, so by a standard application of the Chernoff
bound (for sufficiently largeN = poly(n)), P predicts correctly in at least(1/2 + δ/2)N iterations, and
the reduction rejects as desired.

Finally, consider the case when(B, d) is a YES instance ofGapSVP′, i.e., there exists az ∈ Z
n such that

z1 is odd and‖Bz‖ ≤ d. Observe that Step 2, which provides all the input to the predictor P , depends only
on the fixed value ofx and additional randomness that is independent ofw. Also observe that conditioned on
the fixed value ofx, the random variablev = x−w ∈ Λ is distributed according toDΛ,d·ω,x. By Lemma 2.9,
the parity of the first entry ofB−1v is negligibly close to uniform, conditioned on the entire fixed input toP .
Becauseq is even, the predicateh1(s) is also negligibly close to uniform, andP ’s prediction is correct with
probability at most1/2 + negl(n). By the Chernoff bound,P predicts correctly in fewer than(1/2 + δ)N
iterations, and the reduction accepts as desired.

4 Public-Key Cryptosystems

Here we construct public-key cryptosystems (for multi-bitmessages) that are based on the search version of
LWE. We start in Section 4.1 by showing how to extend the particular hard-core predicate forLWE (shown
in Section 3.2) into many simultaneously hard bits. Then in Section 4.2 we construct a semantically secure
cryptosystem, followed in Section 4.3 by an extension that enjoys chosen-ciphertext security.
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4.1 Simultaneous Hard-Core Bits forLWE

Lemma 4.1. Let ℓ = poly(n), q = q(n) ≥ 2 be even, andφ be a distribution (itself possibly a random
variable) onT. If h1 is hard-core forLWEq,φ in n dimensions, thenhℓ is hard-core forLWEq,φ in n + ℓ− 1
dimensions.

More precisely, there is an efficient reduction from distinguishing h1(s) from U({0, 1}) (with non-
negligible advantage) givenAs,φ for uniformly randoms ∈ Z

n
q to distinguishinghℓ(s′) from U({0, 1}ℓ)

(with non-negligible advantage) givenAs′,φ for uniformly randoms′ ∈ Z
n+ℓ−1
q .

Proof. We proceed by a hybrid argument. If someD distinguishes betweenhℓ(s′) and Uℓ given As′,φ

(for uniform s′ ∈ Z
n+ℓ−1
q ) with non-negligible advantageδ = δ(n), then there is somej ∈ [ℓ] such that

D distinguishes betweenhj−1(s′) ◦ Uℓ−j+1 andhj(s′) ◦ Uℓ−j given As′,φ with non-negligible advantage
δ′(n) = δ(n)/ℓ.

We describe a reduction that, givenAs,φ for uniformly randoms ∈ Z
n
q and an input bith, usesD to

distinguish whetherh is h1(s) or U1. The reduction choosessl ∈ Z
j−1
q andsr ∈ Z

ℓ−j
q uniformly at random,

and letsh′ = hj−1(sl) ◦ h ◦ Uℓ−j ∈ {0, 1}ℓ. It invokesD on h′, simulatingAs′,φ in the manner described
below, and copiesD’s output.

Letting s′ = sl ◦ s ◦ sr, we see thats′ is distributed uniformly overZn+ℓ−1
q . It is also apparent that if

the reduction’s input bith is uniform, thenh′ is distributed ashj−1(s′) ◦ Uℓ−j+1, whereas ifh = h1(s),
thenh′ is distributed ashj(s′) ◦ Uℓ−j. Therefore the reduction distinguishes between these two cases with
non-negligible advantageδ′.

The reduction simulatesAs′,φ usingAs,φ as follows. Given a pair(a, b = 〈a, s〉/q + x) ∈ Z
n
q × T from

As,φ, it choosesal ∈ Z
j−1
q andar ∈ Z

ℓ−j
q uniformly at random and outputs the pair

(al ◦ a ◦ ar , 〈al, sl〉/q + b + 〈ar, sr〉/q) = (a′, b′ = 〈a′, s′〉/q + x) ∈ Z
n+ℓ−1
q × T.

It is apparent thata′ is distributed uniformly overZn+ℓ−1
q , thus, the simulation is faithful toAs′,φ.

4.2 Trapdoor Functions and Basic Cryptosystem

Here we recall the collection ofLWE-based injective trapdoor functions given in [GPV08], which build on
ideas due to Goldreich, Goldwasser, and Halevi [GGH97]. Forcompleteness, and due to some modifications
and enhancements, we present a full description of the collection along with proofs of correctness and
security. We then design a semantically secure cryptosystem around these trapdoor functions.

For consistency and simplicity of notation, we continue usen as the main parameter and hypothesize
ℓ ≥ 1 simultaneous parity bits forLWE in n dimensions, with the understanding that this is based on a single
parity predicate for theLWE problem inn − ℓ + 1 dimensions by Lemma 4.1.

4.2.1 Generation

The first component is a special algorithm for generating a (nearly) uniform matrixA ∈ Z
n×m
q that serves

as the index of the public functiongA, together with a trapdoorT made up of vectors whose lengths are
bounded by some relatively smallL.2 Ajtai [Ajt99] gave the first such generation algorithm foroddq, which
yielded a boundL = m2.5; recently, Alwen and Peikert [AP08] improved the algorithmto yield a tighter

2As described in more detail in [Ajt99, GPV08],T can be seen as a full-rank set of short vectors in a certain lattice defined by
A; however, that interpretation is not too important for thiswork.
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boundL ≈ m for arbitrary q (recall that we use an evenq in Theorem 3.3 and Lemma 4.1 for our particular
choice of hard-core functions).

Proposition 4.2([Ajt99, AP08]). For any positive integersn andq ≥ 3, anyδ > 0 andm ≥ (2 + δ)n lg q,
there is a probabilistic polynomial-time algorithm that outputs a pair(T ∈ Z

m×m,A ∈ Z
n×m
q ) such that:

the distribution ofA is within negligible statistical distance of uniform overZ
n×m
q , T is nonsingular (over

the rationals),‖ti‖ ≤ L = O(m log m) for everyi ∈ [m], andAT = 0 mod q.

4.2.2 Evaluation

On indexA and inputss ∈ Z
n
q , x ∈ T

m, compute

b = Ats/q + x ∈ T
m.

Round each entry ofb to the nearest multiple of1/q′ modulo1, i.e., letb′ = ⌊q′ · b⌉/q′ ∈ T
m. Output

gA(s,x) = b′, which may alternately be represented asq′ · b′ ∈ Z
m
q′ .

Lemma 4.3. Let π : Z
n
q → {0, 1}ℓ be a function (e.g.,π = hℓ) andφ be a distribution (itself possibly a

random variable) overT. If π is hard-core forLWEq,φ, thenπ is hard-core for the collection{gA} under
the input distribution wheres ∈ Z

n
q is uniformly random andx is drawn fromφm.

Proof. The proof follows immediately from the fact thatA is negligibly close to uniform, and that an
adversary given samples(ai, bi) from As,φ can round off eachbi ∈ T to the nearest multiple of1/q′ to
simulate the outputb′ of gA(s,x).

4.2.3 Inversion

A standard counting argument reveals that a uniformly random matrixA ∈ Z
n×m
q is full-rank (i.e., its rows

are linearly independent moduloq) except with probability at mostqn/2m, which is negligible inn when
m ≥ (1 + δ)n lg q. For the remainder of the paper we implicitly assume that such anA is full-rank.

Observe thatA+ = At(AAt)−1 ∈ Z
m×n
q is theright inverseof A moduloq, becauseAA+ = In, the

n-dimensional identity matrix moduloq. (Note that the Gram matrixAAt is invertible moduloq because
A is full-rank.) Therefore, giveny ∈ T

m wherey = (Ats)/q mod 1 for somes ∈ Z
n
q , we can recovers

by computing
(A+)t(q · y) = (AA+)ts = s mod q.

To invertb′ = gA(s,x) ∈ T
m given the trapdoorT, treatb′ as an element ofRm and compute

y = T−t · ⌊Tt · b′⌉ mod 1,

and recovers from y as described above. (The exact value ofx cannot always be recovered fromb′ due to
rounding, but it is not needed in our applications.)

Lemma 4.4. Let q′ = q′(n) ≥ 2L
√

m and α = α(n) ≤ 1/(L · ω(
√

log n)). Then for anys ∈ Z
n
q and

for x chosen fromΨm
β for anyβ ≤ α, the inversion algorithm onb′ = gA(s,x) correctly outputss with

overwhelming probability over the choice ofx.
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Proof. We start with a few facts that we later use to analyze the rounding step. First, letw ∈ R
m be such

that |wi| ≤ 1/(2q′) for all i ∈ [m]. Then for alli ∈ [m], we have

|〈ti,w〉| ≤ ‖ti‖ · ‖w‖ ≤ L ·
√

m/(2q′) ≤ 1/4

by the Cauchy-Schwarz inequality and by hypothesis on‖ti‖ andq′. Second, supposex′ ∈ R
m is distributed

according toDm
β for someβ ≤ α. Then for alli ∈ [m], the inner product〈ti,x

′〉 is distributed according
to Dr for r = ‖ti‖ · β ≤ 1/ω(

√
log n) by hypothesis on‖ti‖, α, andβ. By the tail bound on Gaussian

distributions,|〈ti,x
′〉| < 1/4 except with probabilityexp(−Ω(1/r2)) = negl(n).

Now consider the inversion algorithm onb′ = gA(s,x) wherex is chosen fromΨm
β . By the definition

of gA, there existw ∈ R
m with |wi| ≤ 1/(2q′) for all i ∈ [m] and anx′ distributed according toDm

β such
that

b′ = (Ats)/q + x′ + w mod Z
m.

Thus,
Tt · b′ = (AT/q)t · s + Tt · (x′ + w) mod L(Tt).

Observe that(AT/q) is an integer matrix by hypothesis onT, andL(Tt) ⊆ Z
m becauseT is an integer

matrix. Therefore,

⌊Tt · b′⌉ = (AT/q)t · s + ⌊Tt · (x′ + w)⌉ = Tt(Ats/q) mod L(Tt),

where the second inequality is with overwhelming probability over the choice ofx′ by the bounds established
above. Finally, we see thaty = T−t · ⌊Tt · b′⌉ = (Ats/q) mod Z

m, and the inversion algorithm recovers
s from y.

We remark that the inversion algorithm presented above works in parallel by rounding each entry of
Tt ·b′ independently. Aniterativerounding scheme akin to the “nearest-plane” algorithm of Babai [Bab86]
can also be used, and succeeds (with overwhelming probability) wheneverα(n) ≤ 1/(L̃·ω(

√
log n)), where

L̃ = maxi‖t̃i‖ is the norm of the longest vector in theGram-Schmidt orthogonalizationof T. (The proof is
virtually identical to the one given above.)

4.2.4 Cryptosystem and Analysis

Using the above collection of trapdoor functions, a public-key cryptosystem based onGapSVPζ,γ (for γ
determined below) is conceptually straightforward: to encrypt, evaluategA on a suitably random input, and
mask the message by a hard-core function applied to the input. To decrypt, invertgA to recover the input
and remove the mask.

In detail, set the parameters as follows. Letq = (ζ/
√

n) · ω(
√

log n) be even, letm = (2 + δ)n lg q
for someδ > 0, let q′ = 2L

√
m = poly(n), and letα = 1/(L · ω(

√
log n)). Recall thatGapSVPζ

γ is
equivalent toGapSVPγ whenζ(n) = 2n/2, which implieslog q = O(n). The other most interesting case is
whenζ(n) = poly(n), which implieslog q = O(log n).

• To generate a key pair, sample a function indexA (the public key) with its trapdoorT (the secret
key).

• To encrypt, chooses ∈ Z
n
q uniformly at random andx according toΨm

β for β =
√

α2/2 + l2, where

l is distributed according toS(n−ℓ+1)

α/
√

2(n−ℓ+1)
. The encryption of messageµ ∈ {0, 1}ℓ is

(b′ = gA(s,x) , c = hℓ(s) ⊕ µ).
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• To decrypt a ciphertext(b′, c) usingT, invertb′ to finds and outputhℓ(s) ⊕ c.

The size of the public keyA isO(mn log q) = O(n2 log2 q) bits, and the trapdoorT has sizeO(m2 log m).
The size of the ciphertext is dominated byb′, which requiresO(m log q′) = O(n log q log n) bits. By taking
(say)ℓ = n/2, the ciphertext is therefore anO(log q log n) factor larger than the plaintext.

Proposition 4.5. The cryptosystem described above is complete and semantically secure, assuming that
GapSVPζ,γ is hard in the worst case for someγ(n) = Õ(n2 log q).

Proof. Correctness of decryption (with overwhelming probabilityover the encryption randomness) is im-
mediate by the fact thatβ ≤ α with overwhelming probability, and by Lemma 4.4. Semantic security
(assuming the worst-case hardness ofGapSVPζ,γ) follows directly from the fact thathℓ is hard-core forgA

under the input distribution used for encryption, which follows by the sequence of Lemma 4.3, Lemma 4.1,
and Theorem 3.3. We may therefore take the underlying worst-case approximation factorγ to be

γ(n) = Õ(n/α) = Õ(L · n) = Õ(n2 log q).

Note that an improved boundL (or its Gram-Schmidt counterpart̃L as described in Section 4.2.3 above)
yields a tighter approximation factorγ. For example, ifL (or L̃) were improved to the asymptotically
optimalO(

√
m), the factorγ could be reduced tõO(n1.5

√
log q).

4.3 Chosen-Ciphertext Security

To construct a cryptosystem that enjoys security under chosen-ciphertext attacks, we use a paradigm recently
proposed by Peikert and Waters [PW08], and additional perspectives due to Rosen and Segev [RS08]. We
discuss all the important technical ideas here, but defer a complete description and proof to the full version.

The main observation is that anyk = poly(n) independently chosen functionsgA1
, . . . , gAk

remain
one-way (assumingLWE is hard) even when evaluated on thesameinput s and independentx1, . . . ,xk

(respectively) from the appropriate error distributionφ. This is because the indicesA1, . . . ,Ak and outputs
b′

1 = gA(s,x1), . . . ,b
′
k = gA(s,xk) can be assembled simply by drawingk · m samples fromAs,φ. Simi-

larly, the functionhℓ(s) remains hard-core given all these values, if it was hard-core forLWE in the first place.
(We remark that these facts were also observed independently by Goldwasser and Vaikuntanathan [GV08],
who construct similar chosen ciphertext-secure cryptosystems.) Essentially, the properties described above
constitute security under “correlated inputs,” as defined in [RS08].3

There is a simple (and black-box) chosen ciphertext-securecryptosystem based on any collection of
injective trapdoor functions that is secure under a suitable form of input correlation (including the one
described above). Crucially, the proof of security requires the functions to beinjective. More precisely,
the following properties must hold with overwhelming probability over the choice of functiong from the
collection:

1. Each valuey in the range hasat most onelegal preimagex underg.

2. Given anyy and any candidate preimagex (and the description ofg), one can efficiently check whether
x is the legal preimage ofy (without knowledge of the trapdoor).

3. Given anyy and the trapdoor forg, the inverteralwaysfinds the legal preimagex of y (if it exists).

3These observations can also be used to construct a relaxed kind of “all-but-one” function as defined in [PW08], but we find the
terminology of correlated inputs to be more natural in this context.
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These properties ensure that for anyy (possibly constructed adversarially), the following two algorithms
behaveidentically: (1) on inputx, y, accept ifx is the preimage ofy; (2) on inputy and the trapdoor, run
the inverter to get somex, and accept ifx is indeed the preimage ofy. This identical behavior is the crux of
the security proof.

Making our functions injective. Note that in the above description of the trapdoor functionsgA, any
values ∈ Z

n
q is a potential preimage ofb′ ∈ T

m, under the (possibly very unlikely) error vectorx = b′ −
(Ats)/q ∈ T

m. Therefore, we need to restrict the notion of a legal preimage and prove that it satisfies the
three properties listed above. In particular, must carefully deal with the behavior of the inversion algorithm
on arbitrary (possibly adversarial) valuesb′ ∈ T

m, as opposed to those generated honestly. We stress that
in our context, the error componentx of the input need not be considered as part of the preimage, because
it is not needed to check validity, nor is it used in the encryption.

We now define the notion of legal preimages for a functiongA, which depends on the parameterα =
α(n) ∈ (0, 1) associated with the collection, and some arbitraryt = t(n) = ω(

√
log n). Define the absolute

value|·| onT = [0, 1) as|x| = min{x, 1 − x}, and extend it coordinate-wise toTm.

Definition 4.6. We say thats ∈ Z
n
q is a legal preimage ofb′ ∈ T

m undergA if and only if every entry of
∣

∣b′ − (Ats)/q
∣

∣ is strictly less thanα · t.

Let q′ ≥ 1/(α · t). First, we observe thats is indeed a legal preimage of an honestly-generatedb′ =
gA(s,x), with overwhelming probability over the choice ofx from anyΨm

β whereβ ≤ α (this is required
for completeness of the cryptosystem). Indeed, for everyi ∈ [m], we have|xi| < α · t/2 with overwhelming
probability by the Gaussian tail bound, and after the rounding step,

∣

∣b′i − bi

∣

∣ ≤ 1/(2q′) ≤ α · t/2.

Proposition 4.7. The three properties listed above are satisfied under Definition 4.6.

Proof. Property 2 holds trivially by definition. Property 1 followsby a simple fact that holds with all but
qn/2m = negl(n) probability over the choice ofA: for every nonzeros ∈ Z

n
q , (Ats)/q mod 1 has at least

one entry with absolute value greater than1/4. (This can be seen by analyzing the probability for any fixed
nonzeros, then invoking the union bound.) Then forα < 1/(8t), everyb′ has at most one legal preimage
by the triangle inequality.

For Property 3, we observe that for anyb′ that has a legal preimages, there is a vectorw ∈ R
m such

that‖w‖ ≤ √
m · α · t and

b′ = (Ats)/q + w mod Z
m.

Then by following the proof of Lemma 4.4 (without the randomized componentx′), we see that the inversion
algorithmalwayscorrectly recoverss as long asα ≤ 1/(L · √m · t) = 1/(L · √m · ω(

√
log n)). Note

that the parameterα here is smaller than the one in Lemma 4.4 by a factor of
√

m, due to the “worst-case”
inversion requirement. This allows for an underlying worst-case approximation factor

γ(n) = Õ(n/α) = Õ(L · n ·
√

m) = Õ(n2.5 log1.5 q).
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