
The Generic Hardness of Subset Membership Problems under the
Factoring Assumption

Tibor Jager and Jörg Schwenk

Chair for Network and Data Security
Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany
{tibor.jager,joerg.schwenk}@rub.de

February 13, 2009

Abstract. We analyze a large class of subset membership problems related to integer factorization. We
show that there is no algorithm solving these problems efficiently without exploiting properties of the
given representation of ring elements, unless factoring integers is easy. Our results imply that problems
with high relevance for a large number of cryptographic applications, such as the quadratic residuosity
and the subgroup decision problems, are generically equivalent to factoring.

Keywords: Cryptographic assumptions, subset membership, quadratic residuosity, subgroup decision
problem, generic ring algorithms.

1 Introduction

The security of asymmetric cryptographic systems relies on assumptions that certain computational
problems, mostly from number theory and algebra, are intractable. Since it is unknown whether
these assumptions hold in a general model of computation (such as the Turing machine model), it is
instructive to analyze these assumptions in a restricted, but still meaningful model of computation.
A natural and quite general class of algorithms is considered in the generic ring model. This model
captures all algorithms solving problems defined over an algebraic ring without exploiting specific
properties of a given representation of ring elements. Such algorithms work in a similar way for
arbitrary representations of ring elements, thus are generic.1 The generic model is useful to study
the intrinsic hardness of and relationship between fundamental problems of high cryptographic
relevance.

Of course a lower complexity bound in the generic model does not immediately imply a lower
bound in the standard model, since there may be algorithms solving a given problem significantly
faster by exploiting specific properties of the given representation of ring elements. Nevertheless, the
analysis of cryptographic assumptions in the generic model is not only of theoretical interest, but
also for the design of cryptanalytic algorithms: a lower complexity bound for a certain computational
problem in the generic model implies that any algorithm solving the considered problem more
efficiently must exploit properties of a given representation of ring elements.

1.1 Our Contribution

We analyze a large class of subset membership problems over Zn. This includes the well-known
quadratic residuosity and subgroup decision problems. We show that solving these problems with
generic ring algorithms is as hard as factoring n. This implies that the quadratic residuosity and
the subgroup decision problems are generically equivalent to factoring n. For the subgroup decision
1 See Appendix A for a comparison between the generic group and the generic ring model

problem we show that the equivalence holds even if the algorithm has access to an oracle solving
the Diffie-Hellman problem. In contrast to previous work reducing integer factorization to solving a
computational problem [Bro05, LR06, AJR08, AM08], we reduce factoring to decisional problems
in Zn.

We also show that interpreting a proof in the generic ring model as evidence towards the
assumption that solving a problem is hard in the standard model has to be done with care. Though
this seems self-evident, we are not aware of any non-trivial example in the literature. We provide an
example for a practical problem with cryptographic relevance which is easy to solve in the standard
model, but provably hard for generic ring algorithms. Concretely, we show that computing the
Jacobi symbol is hard w.r.t. generic ring algorithms.

We consider generic ring algorithms that may exploit the full algebraic structure of Zn by
performing the operations addition, subtraction, multiplication, and multiplicative inversion modulo
n. Our results hold in the general case where n is the product of at least two different odd primes,
thus include the classical case where n = pq with p, q prime and p 6= q.

1.2 Related Work

Previous work considering fundamental cryptographic assumptions in restricted models of compu-
tation was targeted only on the discrete logarithm and the RSA problem. Starting with Shoup’s
seminal paper [Sho97], it was proven that solving the discrete logarithm problem, the Diffie-Hellman
problem, and related problems [MW98, Mau05, RLB+08] are hard with respect to generic group
algorithms. Damg̊ard and Koprowski showed the generic intractability of root extraction in groups
of hidden order [DK02].

Brown [Bro05] reduced the problem of factoring integers to solving the low-exponent RSA
problem with straight line programs, which are a subclass of generic ring algorithms. Leander and
Rupp [LR06] augmented this result to generic ring algorithms, where the considered algorithms
may only perform the operations addition, subtraction and multiplication modulo n, but not mul-
tiplicative inversion operations. Recently, Aggarwal and Maurer [AM08] extended this result from
low-exponent RSA to full RSA and to generic ring algorithms that may also compute multiplicative
inverses. Boneh and Venkatesan [BV98] have shown that there is no straight line program reducing
integer factorization to the low-exponent RSA problem, unless factoring integers is easy.

The notion of generic ring algorithms has also been applied to study the relationship between
the discrete logarithm and the Diffie-Hellman problem and the existence of ring-homomorphic
encryption schemes [BL96, MR07, AJR08].

2 Preliminaries

2.1 Notation

For a set A and a probability distribution D on A, we denote with a D← A the action of sampling an
element a from A according to distribution D. We denote with U the uniform distribution. When
sampling k elements a1, . . . , ak

D← A, we assume that all elements are chosen independently.
Throughout the paper we let n be the product of at least two different primes, and denote with

n =
∏k

i=1 p
ei
i the prime factor decomposition of n such that gcd(pei

i , p
ej

j) = 1 for i 6= j. We denote
with ◦ ∈ {+,−, ·} the binary operators Zn × Zn → Zn mapping (a, b) 7→ a ◦ b mod n, and with /
the binary operator Zn × Z∗n → Zn mapping (a, b) 7→ ab−1 mod n. We use the usual infix notation
for +,−, · and /. We write a ≡n b shorthand for a ≡ b modulo n.

Let P = (S1, . . . , Sm) be a sequence. Then |P | denotes the length of P , i.e. |P | = m. For k ≤ m
we denote with Pk the subsequence (S1, . . . , Sk) of P . For sequences Pk, P with |Pk| ≤ |P | we
denote with Pk v P that Pk is a subsequence of P such that Pk consists of the first |Pk| elements
of P .

2.2 Subset Membership Problems

Definition 1 (Subset Membership Problem). Let C ⊆ Zn and V ⊆ Zn be subsets of Zn such
that V ⊆ C ⊆ Zn. The subset membership problem defined by (C,V) is: given x U← C, decide whether
x ∈ V.

Whenever considering a subset membership problem in the following we assume that |V| > 1.

2.3 Uniform Closure

By the Chinese Remainder Theorem, for n =
∏k

i=1 p
ei
i the ring Zn is isomorphic to a direct product

of rings Zp
e1
1
× · · · × Zp

ek
k

. Let φ be the isomorphism Zp
e1
1
× · · · × Zp

ek
k
→ Zn, and for C ⊆ Zn let

Ci := {y mod pei
i | y ∈ C} for 1 ≤ i ≤ k.

Definition 2 (Uniform Closure). We say that U [C] ⊆ Zn is the uniform closure of C ⊆ Zn, if

U [C] = {y ∈ Zn | y = φ(y1 . . . , yk), yi ∈ Ci for 1 ≤ i ≤ k}.

A simple example is given in Appendix B. In particular note that C ⊆ U [C], but not necessarily
U [C] ⊆ C. The following lemma follows directly from the above definition.

Lemma 1. Sampling y U← U [C] uniformly random from U [C] is equivalent to sampling yi uniformly
and independently from Ci for 1 ≤ i ≤ k and setting y = φ(y1, . . . , yk).

2.4 Straight Line Programs

A straight line program over ring R is a generic ring algorithm performing a fixed sequence of
operations, without branching, that outputs an element of R. Straight line programs can be seen
as a subclass of generic ring algorithms. The following definition is a simple extension of [Bro05,
Definition 1] to straight line programs that may also compute multiplicative inverses.

Definition 3 (Straight Line Programs). A straight line program P of length m over Zn is a
sequence of tuples

P = ((i1, j1, ◦1), · · · , (im, jm, ◦m))

where −1 ≤ ik, jk < k and ◦i ∈ {+,−, ·, /} for i ∈ {1, . . . ,m}. The output P (x) of straight line
program P on input x ∈ Zn is computed as follows.

1. Initialize L−1 := 1 ∈ Zn and L0 := x.
2. For k from 1 to m do:

– if ◦k = / and Ljk
6∈ Z∗n then return ⊥,

– else set Lk := Lik ◦ Ljk
.

3. Return P (x) = Lm.

We say that each triple (i, j, ◦) ∈ P is a SLP-step.

For notational convenience, for a given straight line program P we will denote with Pk the straight
line program given by the sequence of the first k elements of P , with the additional convention that
P−1 = 1 and P0(x) = x for all x ∈ Zn.

2.5 Some Lemmas on Straight Line Programs over Zn

In the following we will state a few lemmas on straight line programs over Zn that will be useful
for the proof of our main theorem.

Lemma 2. Suppose there exists a straight line program P such that for x, x′ ∈ Zn holds that
P (x′) 6=⊥ and P (x) =⊥. Then there exists Pj v P such that Pj(x′) ∈ Z∗n and Pj(x) 6∈ Z∗n.

Proof. P (x) =⊥ means that there exists an SLP-step (i, j, ◦) ∈ P such that ◦ = / and Lj = Pj(x) 6∈
Z∗n. However, P (x′) does not evaluate to ⊥, thus it must hold that Pj(x′) ∈ Z∗n.

The following lemma provides a lower bound on the probability of factoring n by evaluating
a certain straight line program P with y

U← U [C] and computing gcd(n, P (y)), relative to the
probability that P (x′) 6∈ Z∗n and P (x) ∈ Z∗n for randomly chosen x, x′

U← C.
Lemma 3. For any straight line program P and C ⊆ Zn holds that

Pr
[
P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′

U← C
]
≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← U [C]

]
.

Similar to the above, the following lemma provides a lower bound on the probability of factoring
n by computing gcd(n, S(y) − T (y)) with y

U← C for two given straight line programs P and Q,
relative to the probability Pr[(P (x) ≡n Q(x) and P (x′) 6≡n Q(x′)) | x, x′ U← C].
Lemma 4. For any pair (P,Q) of straight line programs and C ⊆ Zn holds that

Pr
[
P (x) ≡n Q(x) and P (x′) 6≡n Q(x′) | x, x′ U← C

]
≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)−Q(y)) 6∈ {1, n} | y U← U [C]

]
.

Proofs for Lemma 3 and 4 are given in Appendix C and D, respectively. We also discuss the intuition
behind these lemmas in Appendix E.

2.6 Generic Ring Algorithms

Similar to straight line programs, generic ring algorithms perform a sequence of ring operations
on the input values 1 ∈ Zn and x. However, while straight line programs perform the same fixed
sequence on ring operations to any input value, generic ring algorithms can decide adaptively which
ring operation is performed next. The decision is made either based on equality checks, or on coin
tosses. Moreover, the output of generic ring algorithms is not restricted to ring elements.

We formalize the notion of generic ring algorithms in terms of a game between an algorithm A
and a black-box O, the generic ring oracle. The generic ring oracle receives as input a secret value
x ∈ Zn. It maintains a sequence P , which is set to the empty sequence at the beginning of the
game, and implements two internal subroutines test() and equal().
– The test()-procedure takes as input an tuple (j, ◦) ∈ {−1, . . . , |P |}×{+,−, ·, /}. The procedure

returns false if ◦ = / and Pj(x) 6∈ Z∗n, and true otherwise.
– The equal()-procedure takes as input a tuple (i, j) ∈ {−1, . . . , |P |} × {−1, . . . , |P |}. The proce-

dure returns true if Pi(x) ≡ Pj(x) mod n and false otherwise.

In order to perform computations, the algorithm submits SLP-steps to O. Whenever the algo-
rithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /}, the oracle runs test(j, ◦). If test(j, ◦) = false, the oracle
returns the error symbol ⊥. Otherwise (i, j, ◦) is appended to P . Moreover, the algorithm can query
the oracle to check for equality of computed ring elements by submitting a query (i, j, ◦) such that
◦ ∈ {=}. In this case the oracle returns equal(i, j). We measure the complexity of A by the number
of oracle queries.

3 Subset Membership Problems in the Generic Ring Model

Let (C,V) be subsets of Zn defining a subset membership problem. We formalize the notion of
subset membership problems in the generic ring model in terms of a game between an algorithm A
and a generic ring oracle Osmp. Oracle Osmp is defined exactly like the generic ring oracle described
in Section 2.6, except that Osmp receives a uniformly random element x U← C as input. We say that
A wins the game, if x ∈ V and AOsmp(n) = 1, or x 6∈ V and AOsmp(n) = 0.

Note that any algorithm for a given subset membership problem (C,V) has at least the trivial
success probability Π(C,V) := max{|V|/|C|, 1 − |V|/|C|} by guessing, due to the fact that x is
sampled uniformly from C. For an algorithm solving the subset membership problem given by
(C,V) with success probability Pr[S], we denote with

Adv(C,V)(AOsmp(n)) := |Pr[S]−Π(C,V)|

the advantage of A.

Theorem 1. For any generic ring algorithm A solving a given subset membership problem (C,V)
over Zn with advantage Adv(C,V)(AOsmp(n)) by performing m queries to Osmp, there exists an algo-
rithm B that outputs a factor of n with success probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

by running A once and performing O(m3) additional operations in Zn, m gcd-computations on
dlog2 ne-bit numbers, and sampling m random elements from U [C].

Proof Outline. We replace Osmp with a simulator Osim. Let Ssim denote the event that A is
successful when interacting with the simulator, and let F denote the event that Osim answers a
query of A different from how Osmp would have answered. Then Osmp and Osim are indistinguishable
unless F occurs. Therefore the success probability Pr[S] of A in the simulation game is upper bound
by Pr[Ssim] + Pr[F] (cf. the Difference Lemma [Sho06, Lemma 1]). We derive a bound on Pr[Ssim]
and describe a factoring algorithm whose success probability is lower bound by Pr[F].

3.1 Introducing a Simulation Oracle

We replace oracle Osmp with a simulator Osim. Osim receives x U← C as input, but never uses this
value throughout the game. Instead, all computations are performed independent of the challenge
value x. Note that the original oracle Osmp uses x only inside the test() and equal() procedures. Let
us therefore consider an oracle Osim which is defined exactly like Osmp, but replaces the procedures
test() and equal() with procedures testsim() and equalsim().

– The testsim()-procedure samples xr
U← C and returns false if ◦ = / and Pj(xr) 6∈ Z∗n, and true

otherwise (even if Pj(xr) =⊥).
– The equalsim()-procedure samples xr

U← C and returns true if Pi(xr) ≡ Pj(xr) mod n and false
otherwise (even if Pi(xr) =⊥ or Pj(xr) =⊥).

Note that the simulator samples m random values xr, r ∈ {1, . . . ,m}. Also note that all com-
putations of A are independent of the challenge value x when interacting with Osim. Hence, any
algorithm A has at most trivial success probability in the simulation game, and therefore

Pr[Ssim] ≤ Π(C,V).

3.2 Bounding the Probability of Simulation Failure

We say that a simulation failure, denoted F , occurs if Osim does not simulate Osmp perfectly.
Observe that an interaction of A with Osim is perfectly indistinguishable from an interaction with
Osmp, unless at least one of the following events occurs.

1. The testsim()-procedure fails to simulate test() perfectly. This means that testsim() returns false
on a procedure call where test() would have returned true, or testsim() returns true where test()
would have returned false. Let Ftest denote the event that this happens on at least one call of
testsim().

2. The equalsim()-procedure fails to simulate equal() perfectly. This means that equalsim() has
returned true where equal() would have returned false, or equalsim() has returned false where
equal() would have returned true. Let Fequal denote the event that this happens at at least one
call of equalsim().

Since F implies that at least one of the events Ftest and Fequal has occurred, it holds that

Pr[F] ≤ Pr[Ftest] + Pr[Fequal].

In the following we will bound Pr[Ftest] and Pr[Fequal] separately.

Bounding the Probability of Ftest. The testsim()-procedure fails to simulate test() only if either
testsim() has returned false where test() would have returned true, or testsim() has returned true
where test() would have returned false. A necessary condition2 for this is that there exists Pj v P
and xr ∈ {x1, . . . , xm} such that

(Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n),

or
(Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n) or (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n).

We can simplify this condition a little by applying Lemma 2. The existence of Pj v P and xr such
that (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n) implies the existence of Pk v P such that k < j and (Pk(xr) 6∈
Z∗n and Pk(x) ∈ Z∗n). An analogous argument holds for the case (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n).
Hence, testsim()-procedure fails to simulate test() only if there exists Pj v P such that

(Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or (Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n).

Proposition 1.

Pr[Ftest] ≤ 2m(m+ 2) max
0≤j≤m

{
Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]}

We prove Proposition 1 in Appendix F.

Bounding the Probability of Fequal The equalsim()-procedure fails to simulate equal() only
if either equalsim() has returned false where equal() would have returned true, or equalsim() has
returned true where equal() would have returned false. A necessary3 condition for this is that there
exist Pi, Pj v P and xr ∈ {x1, . . . , xm} such that

(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or (Pi(x) ≡n Pj(x) and (Pi(xr) =⊥ or Pj(xr) =⊥))
2 The condition is not sufficient, because algorithm A need not have queried a division by Pj in its r-th query.
3 The condition is not sufficient, because algorithm A need not have queried (i, j, =) in its r-th query.

or

(Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x)) or (Pi(xr) ≡n Pj(xr) and (Pi(x) =⊥ or Pj(x) =⊥)).

Again we can apply Lemma 2 to simplify this a little: the existence of Pj ∈ P and xr such that
(Pj(xr) =⊥ and Pj(x) 6=⊥) implies the existence of Pk ∈ P such that (Pk(xr) 6∈ Z∗n and Pk(x) ∈
Z∗n). Analogous arguments hold for the other cases where one straight line program evaluates to ⊥.
Hence, equalsim()-procedure fails to simulate equal() only if there exist Pi, Pj v P or Pk v P such
that

(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x))

or
(Pk(xr) 6∈ Z∗n and Pk(x) ∈ Z∗n) or (Pk(x) 6∈ Z∗n and Pk(xr) ∈ Z∗n).

Proposition 2.

Pr[Fequal] ≤ 2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

+ 2m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

Proposition 2 is proven in Appendix G.

Bounding the Probability of F . Summing up, we obtain that the total probability of F is at
most

Pr[F] ≤ Pr[Ftest] + Pr[Fequal]

≤ 2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

+ 4m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

3.3 Bounding the Success Probability of any Generic Ring Algorithm

Since all computations of A are independent of the challenge value x in the simulation game, any
algorithm has only the trivial success probability when interacting with the simulator. Thus the
success probability of any algorithm when interacting with the original oracle is bound by

Π(C,V) + Adv(C,V)(AOsmp) = Pr[S] ≤ Pr[Ssim] + Pr[F] ≤ Π(C,V) + Pr[F],

which implies
Adv(C,V)(AOsmp) ≤ Pr[F].

3.4 The Factoring Algorithm

Consider a factoring algorithm B running A, recording the sequence of queries A issues, and pro-
ceeding as follows.

– Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /} in its r-th query, the algorithm
samples y U← U [C] and computes gcd(Pk(y), n) for 0 ≤ k ≤ r.

– Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {=} in its r-th query, the algorithm samples
y

U← U [C] and computes gcd(Pk(y)− Pl(y), n) for −1 ≤ k < l ≤ r.

Running time. By assumption, A submits m queries. Thus, the algorithm evaluates O(m2)
straight line programs. Each query can be evaluated by performing at most m steps, which yields
O(m3) operations in Zn. Moreover, the algorithm samples m random values y from U [C] and
performs m gcd-computations on dlog2 ne-bit numbers.

Success probability. B evaluates any straight line program Pk with a uniformly random element
y of U [C]. In particular, B computes gcd(Pk(y), n) for y U← U [C] and the straight line program
Pk v P satisfying

Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]

= max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

Let γ1 := max0≤k≤m{Pr[Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′
U← C]}, then by Lemma 3 algorithm B

finds a factor in this step with probability at least γ1

(
|C|
|U [C]|

)2
.

Moreover, B evaluates any pair Pi, Pj of straight line programs in P with a uniformly random
element y U← U [C]. So in particular B evaluates gcd(Pi(y)−Pj(y), n) with y U← U [C] for the pair of
straight line programs Pi, Pj v P satisfying

Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

= max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

.

Let γ2 := max−1≤i<j≤m{Pr[Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′
U← C]}, then by Lemma 4

algorithm B succeeds in this step with probability at least γ2

(
|C|
|U [C]|

)2
.

So, for γ := max{γ1, γ2}, the total success probability of algorithm B is at least

γ

(
|C|
|U [C] |

)2

.

Relating the success probability of B to the advantage of A. Using the above definitions
of γ1, γ2, and γ, the fact that Adv(C,V)(AOsmp(n)) ≤ Pr[F], and the derived bound on Pr[F], we
can obtain a lower bound on γ by

Adv(C,V)(AOsmp(n)) ≤ Pr[F] ≤ 4m(m+ 1)γ1 + 2m(m2 + 3m+ 1)γ2 ≤ 2m(m2 + 5m+ 3)γ,

which implies the inequality

γ ≥
Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

.

Therefore the success probability of B is at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

.

4 The Generic Quadratic Residuosity Problem and Factoring

Let us denote with QRn ⊆ Zn the set of quadratic residues modulo n, i.e.

QRn := {x ∈ Z∗n | x ≡ y2 mod n, y ∈ Z∗n}.

Let (x | n) denote the Jacobi symbol [Sho05, p.287] and let Jn := {x ∈ Zn | (x | n) = 1} be the set
of elements of Zn having Jacobi symbol 1. Recall that QRn ⊆ Jn, and therefore given x ∈ Zn\Jn it
is easy to decide that x is not a quadratic residue by computing the Jacobi symbol.

Definition 4 (Quadratic Residuosity Problem). The quadratic residuosity problem is the
subset membership problem given by C = Jn and V = QRn.

4.1 The Generic Quadratic Residuosity Problem is Equivalent to Factoring

Given the factorization of n, solving the quadratic residuosity problem in Zn is easy, also for
generic ring algorithms. Thus, in order to show the equivalence of generic quadratic residuosity and
factoring, we have to prove the following theorem.

Theorem 2. Suppose there exist a generic ring algorithm A solving the quadratic residuosity prob-
lem in Zn with advantage Adv(C,V)(AOsmp(n)) by performing m ring operations. Then there exists
an algorithm B finding a factor of n with probability at least

Adv(C,V)(AOsmp(n))
8m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-computations on
dlog2 ne-bit numbers, and sampling m random elements from Z∗n.

Proof. The cardinality |Jn| of the set of elements having Jacobi symbol 1 depends on whether n is
a square in N.

|Jn| =

{
φ(n)/2, if n is not a square in N,
φ(n), if n is a square in N,

where φ(·) is the Euler totient function [Sho05, p.24]. Note also that U [Jn] = U [C] = Z∗n. Therefore
it holds that |Jn| = |C| ≥ φ(n)/2 and |U [C] | = |Z∗n| = φ(n). Thus we can apply Theorem 1, using
that (

|C|
|U [C] |

)2

=
(
|Jn|
|Z∗n|

)2

≥
(
φ(n)/2
φ(n)

)2

=
1
4
.

4.2 Computing the Jacobi Symbol with Generic Ring Algorithms

Showing that solving a certain subset membership problem with generic ring algorithms is at least
as hard as factoring n may be considered as evidence towards the conjecture that solving the
considered problem is also hard in a general model of computation (such as the Turing machine
model). While it is true that a proof in the generic model shows that a cryptographic hardness
assumption is not totally wrong, in the sense that the problem is not easy to solve for a restricted
but meaningful class of algorithms, interpreting a proof in the generic ring model as evidence for
the standard model has to be done with care. For the generic group model there exists a number
of examples of problems which are hard in the generic model, but significantly easier without the

restriction to generic algorithms. Though it seems self-evident that such problems exist in the
generic ring model as well, we are not aware of any non-trivial example in the literature.

In the following we provide such an example for a problem which is closely related to the
quadratic residuosity problem, namely the problem of computing the Jacobi symbol. There exist
simple efficient algorithms computing the Jacobi symbol that are not generic, cf. [Sho05, p.288].
However, let us consider the subset membership problem (C,V) with C = Z∗n and V = Jn. The
following theorem states that there is no efficient generic algorithm solving this problem, unless
factoring n is easy.

Theorem 3. Suppose there exist a generic ring algorithm A solving the subset membership problem
given by (C,V) with C = Z∗n and V = Jn with advantage Adv(C,V)(AOsmp(n)) by performing m ring
operations. Then there exists an algorithm B finding a factor of n with probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-computations on
dlog2 ne-bit numbers, and sampling m random elements from Z∗n.

Proof. Again we can apply Theorem 1, this time using that U [Z∗n] = Z∗n, and(
|C|
|U [C] |

)2

=
(
|Z∗n|
|Z∗n|

)2

= 1

5 The Generic Subgroup Decision Problem and Factoring

Let n = pq and let G be a cyclic group of order n. Then there exists a subgroup Gp ⊆ G of order p.

Definition 5 (Subgroup Decision Problem). The subgroup decision problem is the subset
membership problem (C,V) with C = G and V = Gp.

Clearly solving the subgroup membership problem is easy if the factorization of n is given. In the
following we will show that solving the subgroup membership problem is equivalent to factoring n
with respect to generic algorithms, even if the algorithm has access to an oracle solving the Diffie-
Hellman problem in G. We are not able to apply the framework described in Section 3 directly,
because we had to require that the challenge is sampled uniformly from C. Therefore we introduce a
different technique that is more specific, but works for challenges chosen according to an distribution
D such that Pr[x ∈ V | x D← C] ≈ 1/2.

5.1 The Subgroup Decision Problem in the Generic Model

Recall that any cyclic group of order n is isomorphic to the additive group of integers (Zn,+). Now,
since we are going to consider generic algorithms, we may assume that the algorithm operates on
the group G = (Zn,+), of course without exploiting any property of this representation.4 Assuming
an oracle DH solving the Diffie-Hellman problem in G, we observe that this operation corresponds
to the multiplication in Zn. Hence, the group G together with oracle DH exhibits the same algebraic
structure as the ring Zn.
4 Technically, we assume that the generic group oracle uses the group (Zn, +) for the internal representation of

group elements.

By the Chinese Remainder Theorem, the ring Zn is isomorphic to the direct product Zp × Zq.
Let φ : Zp ×Zq → Zn denote this isomorphism. The subgroup Gp of G with order p consists of the
elements Gp = {φ(xp, 0) | xp ∈ Zp}. So for generic ring algorithms the subgroup decision problem
can be stated as: given x ∈ Zn, decide whether x ≡ 0 mod q.

In order to model the generic subgroup decision problem, consider an oracle Osdp which is
defined exactly like the generic ring oracle described in Section 2.6, except that it does not provide
the operation /. Osdp receives an element x ∈ Zn as input, where x is constructed as follows: sample
(xp, xq) U← Zp×Zq and bit b U← {0, 1} uniformly random, and let x := φ(xp, bxq). An algorithm can
query the oracle for the (inverse) group operation by submitting a query (i, j, ◦) with ◦ ∈ {+,−}.
The Diffie-Hellman oracle is queried by submitting (i, j, ◦) with ◦ ∈ {·}.

We say that the algorithm wins the game, if x ∈ Gp and AOsdp(n) = 1, or x 6∈ Gp and
AOsdp(n) = 0. We define the advantage of an algorithm A solving the subgroup decision problem
with probability Pr[S] as

Adv(AOsdp(n)) :=
∣∣∣∣Pr[S]−

(
1
2

+
1
q

)∣∣∣∣ .
Remark 1. If we would also allow to query the oracle for operation / (which corresponds to an
“inverse Diffie-Hellman oracle” in the above setting), then there would be a simple algorithm
determining whether x ∈ Gp by returning true iff division by x fails. Interestingly, we will show
that there is no generic algorithm making similar use of a standard Diffie-Hellman oracle, unless
factoring n is easy. Therefore a further consequence of the theorem presented in the following section
is that a standard Diffie-Hellman oracle does not imply a inverse Diffie-Hellman oracle in general,
unless factoring is easy.

Remark 2. The subgroup decision problem was introduced in [BGN05] for groups with bilinear
pairing. Essentially such a pairing can be added to the generic model by allowing the algorithm to
perform a single multiplication operation,5 as done in [BB08]. By providing a Diffie-Hellman oracle,
we do not restrict the algorithm to a fixed number of multiplications. Hence, our proof includes the
problem stated in [BGN05] as the special case where only a single multiplication is allowed.

5.2 The Subgroup Decision Problem is Generically Equivalent to Factoring

It is easy to see that there exists a generic algorithm solving the subgroup decision problem, if the
factorization of the group order is known. In order to show the equivalence of the generic subgroup
decision and factoring, it remains to reduce factoring integers to the generic subgroup decision
problem. In the sequel we show that solving the subgroup decision problem in groups of order n
is as hard as factoring n, even if the algorithm has access to an oracle solving the Diffie-Hellman
problem.

Theorem 4. Suppose there exist a generic ring algorithm A solving the subgroup membership
problem in G with advantage Adv(AOsdp(n)) by making m queries to an oracle performing the
(inverse) group operation and solving the Diffie-Hellman problem. Then there exists an algorithm
B finding a factor of n with probability at least Adv(AOsdp(n)) by running A once and performing
O(m3) additional operations in Zn and m gcd-computations on dlog2 ne-bit numbers.

Proof. Let us consider an interaction of A with an oracle Op which is defined as follows. Op works
similar to Osdp, but performs all computations in Zp. That is, the equal()-procedure returns true
on input (i, j) iff Pi(x) ≡ Pj(x) mod p. Note that now all computations are performed in the

5 Plus some minor technical details to distinguish between different groups.

Zp-component of the decomposition Zp × Zq of Zn, hence the algorithm receives no information
on whether x ≡ 0 mod q. Thus in the simulation game any algorithm has only trivial success
probability Pr[Ssim] = 1/2 + 1/q.

Now consider an interaction of A with oracle Osdp. Either this interaction is indistinguishable
from an oracle Op, in which case the algorithm has only trivial success probability, or there exist
Pi, Pj v P with such that Pi(x) ≡ Pj(x) mod p, but Pi(x) 6≡ Pj(x) mod n. In this case a factor of
n is found by computing gcd(Pi(x)− Pj(x), n). Note that

1
2

+ Adv(C,V)(AOsdp(n)) ≥ Pr[Ssim] + Pr[F] ⇐⇒ Adv(C,V)(AOsdp(n)) ≥ Pr[F]

Thus, n is factored this way by running A, recording P and computing gcd(Pi(x) − Pj(x), n) for
all −1 ≤ i < j ≤ m with probability at least Adv(C,V)(AOsdp(n)).

The above proof generalizes from n = pq to n =
∏k

i=1 p
ei
i for all subgroups with prime-power order

pei
i in a straightforward manner.

6 On the Analysis of Computational Problems in the Generic Ring Model

In Section 3 we have constructed a simulator for a generic ring oracle for the ring Zn. When in-
teracting with the simulator, all computations are independent of the secret challenge value x.
Therefore we have been able to conclude that any generic algorithm has only the trivial probability
of success in solving certain decisional problems (namely the considered subset membership prob-
lems) when interacting with the simulator. Moreover, we have shown that any algorithm that can
distinguish between simulator and original oracle can be turned into a factoring algorithm with
(asymptotically) the same running time.

In contrast to decisional problems, where the algorithm outputs a bit, our construction of the
simulator can also be applied to prove the generic hardness of computational problems where the
algorithm outputs a ring element. Let us sketch two possibilities. One is to formulate a suitable
subset membership problem which reduces to the considered computational problem and then
apply Theorem 1. Another possibility is to use our construction of the simulator to bound the
probability of a simulation failure relative to factoring. In order to bound the success probability
in the simulation game, it remains to show that there exists no straight line program solving the
considered problem efficiently under the factoring assumption. Hence, under the assumption that
factoring n is hard, there exists an efficient generic ring algorithm for a certain computational (in
the sense that the algorithm has to compute a certain ring element) problem over Zn if and only
if there exists an efficient straight line program. This was proven independently (and in a different
way) by Aggarwal and Maurer [AM08, Lemma 7].

7 Conclusion and Open Problems

We have shown that generic ring algorithms are not able to solve certain subset membership prob-
lems over Zn without essentially factoring n. Moreover, we gave an example for a very practical
problem which is hard in the generic ring model, but easy in general. Remarkably, in contrast to
previous work we have reduced integer factorization to solving decisional problems over Zn.

Though our results cover a large class of problems with high cryptographic relevance, there are
still problems where the generic equivalence to factoring is an open question. One such problem
is, for instance, Paillier’s decisional composite residuosity problem [Pai99]. We consider it as an
interesting question whether it is possible to prove the assumption that this problem is (generically)
equivalent to factoring.

Acknowledgements We would like to thank Andy Rupp and Sven Schäge for helpful discussions,
and the program committee members of Eurocrypt 2009 for valuable comments.

References

[AJR08] Kristina Altmann, Tibor Jager, and Andy Rupp. On black-box ring extraction and integer factorization.
In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 437–
448. Springer, 2008.

[AM08] Divesh Aggarwal and Ueli Maurer. Factoring is equivalent to generic RSA. Cryptology ePrint Archive,
Report 2008/260, 2008. http://eprint.iacr.org/ (to be published at EUROCRYPT 2009).

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in
bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to cryptography
(extended abstract). In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer
Science, pages 283–297. Springer, 1996.

[Bro05] Daniel R. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology ePrint Archive, Report
2005/380, 2005. http://eprint.iacr.org/.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring. In
Kaisa Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes in Computer Science, pages 59–71.
Springer, 1998.

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and signature schemes in
general groups. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer
Science, pages 256–271. Springer, 2002.

[LR06] Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding generic ring
algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in
Computer Science, pages 241–251. Springer, 2006.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor, IMA Int.
Conf., volume 3796 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[MR07] Ueli Maurer and Dominik Raub. Black-box extension fields and the inexistence of field-homomorphic
one-way permutations. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture Notes in
Computer Science, pages 427–443. Springer-Verlag, 2007.

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups. In Kaisa Nyberg,
editor, Advances in Cryptology - EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer Science,
pages 72–84, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,
editor, EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

[RLB+08] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-Reza Sadeghi. Sufficient
conditions for intractability over black-box groups: Generic lower bounds for generalized DL and DH
problems. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer Science,
pages 489–505. Springer, 2008.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
Advances in Cryptology - EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer Science,
pages 256–266, 1997.

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University
Press, 2005.

[Sho06] Victor Shoup. Sequences of games: A tool for taming complexity in security proofs, 2006. URL:
http://eprint.iacr.org/2004/332.

A Comparing the Generic Ring Model to the Generic Group Model

The generic ring model (GRM) is an extension of the generic group model (GGM) (see [Sho97], for
instance). Despite many similarities to the GGM, showing the hardness of computational problems

in the GRM seems to be more involved than standard proofs in the GGM. The reason is that a
typical proof in the GGM (cf. [Sho97, Mau05, LR06], for instance) introduces a simulation game
where group elements are replaced with polynomials that are (implicitly) evaluated with some group
elements corresponding to a given problem instance. A key argument in these proofs is that, by
construction of the simulator, the degree of these polynomials cannot exceed a certain small bound
(often degree one or two). Following Shoup’s seminal work [Sho97], a lower bound on the success
probability of any generic group algorithm for the given problem is then derived by bounding the
number of roots of these polynomials by applying the Schwartz Lemma [Sch80, Sho97]. Usually the
bound is useful if the number of roots is sufficiently small. Rupp et al. [RLB+08] have even been
able to describe sufficient conditions for the generic hardness of discrete log type problems, that
essentially make sure that there is no possibility to compute polynomials with “too large” degree.

In the GGM the number of roots of polynomials is kept small by performing only addition
operations on polynomials of degree one in the simulation game (sometimes also a small bounded
number of multiplications, for instance when the model is extended to groups with bilinear pairing
map, as done in [BB08]). However, in the generic ring model we explicitly allow for multiplication
operations, and we do not want to bound the number of allowed multiplication explicitly, in order
to keep the model as general as possible. Thus, by repeated squaring an algorithm may compute
polynomials of exponential degree. In this case applying the Schwartz Lemma does not yield a
useful bound on the number of roots.6

It seems that the additional structure provided by a ring, due to the existence of two algebraic
operations, makes proofs in the generic ring model more challenging. For instance, this is one reason
why the optimality of an algorithm for the black-box field extraction problem described by Boneh
and Lipton [BL96] is still unknown. It is an interesting open question whether there may exist more
efficient algorithms, as an efficient algorithm would imply the equivalence of the discrete logarithm
problem and the Diffie-Hellman problem. At the same time this would imply the inexistence of
field-homomorphic encryption schemes.

B A Simple Example for U [C]

Let p, q be different primes, n = pq, and φ be the isomorphism Zp × Zq → Zn. For x ∈ Zn let
xp := x mod p and xq := x mod q. Consider the subset C ⊆ Zn such that

C = {a, b, c} = {φ(ap, aq), φ(bp, bq), φ(cp, cq)}.

The uniform closure U [C] of C is the set

U [C] = {φ(dp, dq) | dp ∈ {ap, bp, cp}, dq ∈ {aq, bq, cq}}.

C Proof of Lemma 3

C.1 Helping Lemma

Let us first state a simple lemma which will be useful for the proofs of Lemma 3 and Lemma 4.

Lemma 5. For k ∈ N and µi ∈ [0, 1] with i ∈ {1, . . . , k} holds that(
1−

k∏
i=1

(1− µi)

)k

≥
k∏

i=1

µi

6 There are also some technical obstacles when using the standard technique with polynomials for proofs in the
generic ring model, which are one reason why we used the notion of straight line programs instead.

Proof. The inequality holds obviously for k = 1. Assuming the inequality holds for k, the step
k → k + 1 proceeds as follows.(

1−
k+1∏
i=1

(1− µi)

)k+1

=

(
1−

k+1∏
i=1

(1− µi)

)k(
1−

k+1∏
i=1

(1− µi)

)

≥

(
1−

k∏
i=1

(1− µi)

)k

(1− (1− µk+1))

hyp.
≥

k∏
i=1

µi · µk+1 =
k+1∏
i=1

µi

C.2 Proving Lemma 3

For notational convenience, let us define Γ (P) := Pr[P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′
U← C] and

Λ(P) := Pr[gcd(n, P (y)) 6∈ {1, n} | y U← U [C]]. Thus, in order to prove Lemma 3 we have to show
that the inequality (

|U [C] |
|C|

)2

Λ(P) ≥ Γ (P)

holds. To this end, we will proceed as follows.

1. We define a helping function νi(P).
2. We express Γ (P) and Λ(P) in terms of νi(P). More precisely, we will upper bound Γ (P) by an

expression in νi(P) and lower bound Λ(P) by an expression in νi(P).
3. Then we can apply Lemma 5 to shows that resulting inequality holds.

Defining a helping function. Recall that we denote with n =
∏k

i=1 p
ei
i the prime factor decom-

position of n. Let
νi(P) := Pr

[
P (x) ≡ 0 mod pi | x

U← U [C]
]

be the probability that P (x) ≡ 0 mod pi for some prime pi dividing n and x
U← U [C]. Recall

that φ : Zp
e1
1
× · · · × Zp

ek
k
→ Zn is a ringisomorphism, and P performs only ring operations

in Zn. Therefore P implicitly performs all operations on each component Zp
ei
i

separately (and

independently). Moreover, sampling x U← U [C] is equivalent to sample φ(x1, . . . , xk) with xi chosen
independently and uniform from Ci for 1 ≤ i ≤ k (cf. Lemma 1). Thus we can express the probability
that P (x) ∈ Z∗n for x U← U [C] as

Pr
[
P (x) ∈ Z∗n | x

U← U [C]
]

=
k∏

i=1

(
1− Pr

[
P (x) ≡ 0 mod pi | x

U← U [C]
])

=
k∏

i=1

(1− νi(P)).

Bounding Γ (P) in terms of νi(P). For independently sampled x, x′, we have

Γ (P) = Pr
[
P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′

U← C
]

= Pr
[
P (x) 6∈ Z∗n | x

U← C
]
· Pr

[
P (x) ∈ Z∗n | x

U← C
]

Note that, since C ⊆ U [C], it holds that

Pr
[
P (x) ∈ Z∗n | x

U← C
]
≤ Pr

[
P (y) ∈ Z∗n | y

U← U [C]
]
· Pr

[
y ∈ C | y U← U [C]

]−1

= Pr
[
P (y) ∈ Z∗n | y

U← U [C]
] |U [C] |
|C|

and

Pr
[
P (x) 6∈ Z∗n | x

U← C
]
≤ Pr

[
P (y) 6∈ Z∗n | y

U← U [C]
]
· Pr

[
y ∈ C | y U← U [C]

]−1

= Pr
[
P (y) 6∈ Z∗n | y

U← U [C]
] |U [C] |
|C|

=
(

1− Pr
[
P (y) ∈ Z∗n | y

U← U [C]
]) |U [C] |

|C|
.

Therefore

Γ (P) ≤ Pr
[
P (y) ∈ Z∗n | y

U← U [C]
] (

1− Pr
[
P (y) ∈ Z∗n | y

U← U [C]
])(|U [C] |

|C|

)2

=
k∏

i=1

(1− νi(P))

(
1−

k∏
i=1

(1− νi(P))

)(
|U [C] |
|C|

)2

. (1)

Bounding Λ(P) in terms of νi(P). We can find a factor of n by computing gcd(n, P (y)), if
P (y) ≡ 0 mod pi for at least one prime pi dividing n, and P (y) 6≡ 0 mod n. Using similar arguments
as above, we can therefore express Λ(P) in terms of νi(P) as

Λ(P) = Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← C

]
≥ 1−

k∏
i=1

Pr
[
P (y) ≡ 0 mod pi | y

U← U [C]
]
−

k∏
i=1

(
1− Pr

[
P (y) ≡ 0 mod pi | y

U← U [C]
])

= 1−
k∏

i=1

νi(P)−
k∏

i=1

(1− νi(P)). (2)

Putting things together. Combining (1) and (2), we see that the inequality(
|U [C] |
|C|

)2

Λ(P) ≥ Γ (P)

holds if inequality

1−
k∏

i=1

νi(P)−
k∏

i=1

(1− νi(P)) ≥
k∏

i=1

(1− νi(P))

(
1−

k∏
i=1

(1− νi(P))

)
holds. The latter is equivalent to(

1−
k∏

i=1

(1− νi(P))

)2

≥
k∏

i=1

νi(P).

Applying Lemma 5, we may conclude that this inequality holds for k ≥ 2.

D Proof of Lemma 4

In the following, for straight line programs P,Q let Γ ′(P,Q) := Pr[P (x) ≡n Q(x) and P (x′) 6≡n

Q(x′) | x, x′ U← C] and Λ′(P,Q) := Pr[gcd(n, P (y) − Q(y)) 6∈ {1, n} | y U← U [C]]. Then, in order to
prove our claim, we have to show that(

|U [C] |
|C|

)2

Λ′(P,Q) ≥ Γ ′(P,Q).

The proof will proceed very similar to the proof of Lemma 3, except that we have to define a slightly
different helping function.

Defining a helping function. For n =
∏k

i=1 p
ei
i , let

ν ′i(P,Q) := Pr
[
P (y)−Q(y) ≡ 0 mod pei

i | y
U← U [C]

]
.

Thus, for two straight line programs P,Q, the function ν ′i determines the probability that P (y)−
Q(y) ≡ 0 mod pei

i for uniform sampled y U← U [C]. Using similar arguments as above, we can express
the probability that P (y) ≡ Q(y) mod n for y U← U [C] as

Pr
[
P (y) ≡ Q(y) mod n | y U← U [C]

]
= Pr

[
P (y)−Q(y) ≡ 0 mod n | y U← U [C]

]
=

k∏
i=1

Pr
[
P (y)−Q(y) ≡ 0 mod pei

i | y
U← U [C]

]
=

k∏
i=1

ν ′i(P,Q).

From here the proof proceeds just like the proof of Lemma 3. We express Λ′(P,Q) and Γ ′(P,Q) in
terms of ν ′i(P,Q), and apply Lemma 5 to prove the resulting inequality.

Bounding Γ ′(P,Q) in terms of ν′
i(P,Q). Since x, x′ are sampled independently, we have

Γ ′(P,Q) := Pr
[
(P (x) ≡n Q(x) and P (x′) 6≡n Q(x′) | x, x′ U← C

]
= Pr

[
(P (x) ≡n Q(x) | x U← C

]
· Pr

[
P (x) 6≡n Q(x) | x U← C

]
.

Again, in order to be able to sample from U [C] instead of C, we use that C ⊆ U [C] to bound

Pr
[
P (x) ≡n Q(x) | x U← C

]
≤ Pr

[
P (y) ≡n Q(y) | y U← U [C]

] |U [C] |
|C|

and

Pr
[
P (x) 6≡n Q(x) | x U← C

]
≤ Pr

[
P (y) 6≡n Q(y) | y U← U [C]

] |U [C] |
|C|

.

Therefore

Γ ′(P,Q) = Pr
[
(P (x) ≡n Q(x) | x U← C

]
· Pr

[
P (x) 6≡n Q(x) | x U← C

]
≤Pr

[
P (y) ≡n Q(y) | y U← U [C]

]
· Pr

[
P (y) 6≡n Q(y) | y U← U [C]

](|U [C] |
|C|

)2

= Pr
[
P (y) ≡n Q(y) | x U← U [C]

] (
1− Pr

[
P (y) ≡n Q(y) | y U← U [C]

])(|U [C] |
|C|

)2

=
k∏

i=1

ν ′i(P,Q)

(
1−

k∏
i=1

ν ′i(P,Q)

)(
|U [C] |
|C|

)2

. (3)

Bounding Λ′(P,Q) in terms of ν′
i(P,Q). As above, we can find a factor of n by computing

gcd(n, P (y)), if P (y) ≡ 0 mod pei
i for at least one prime power pei

i dividing n, and P (y) 6≡ 0 mod n.
Thus we can express Λ′(P,Q) in terms of ν ′i(P) as

Λ′(P,Q) = Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← U [C]

]
≥ 1−

k∏
i=1

ν ′i(P,Q)−
k∏

i=1

(1− ν ′i(P,Q)). (4)

Putting things together. Combining (3) and (4), we see that(
|U [C] |
|C|

)2

Λ′(P,Q) ≥ Γ ′(P,Q)

holds if

1−
k∏

i=1

ν ′i(P,Q)−
k∏

i=1

(1− ν ′i(P,Q)) ≥

(
k∏

i=1

ν ′i(P,Q)

)(
1−

k∏
i=1

ν ′i(P,Q)

)
holds. The latter inequality is equivalent to(

1−
k∏

i=1

ν ′i(P,Q)

)2

≥
k∏

i=1

(1− ν ′i(P,Q)).

By Lemma 5 the claim follows now for k ≥ 2 by letting µi := 1− ν ′i(P,Q).

E The Intuition behind Lemma 3 and 4

Simplifying a little, Lemma 3 and 4 state essentially7 that: if we are given a straight line program
mapping “many” inputs to zero and “many” inputs to a non-zero value, then we can find a factor of
n by sampling y U← U [C] and computing gcd(n, P (y)). At a first glance this seems counterintuitive.

For instance, consider the case C = Zn, then we have U [C] = Zn. Assume a straight line program
P mapping half of the elements of Zn to 0, and the other half to 1. Then P maps “many” inputs
to zero and “many” inputs to a non-zero value, but clearly computing gcd(n, P (y)) for any y U← Zn

yields only trivial factors of n, hence this seems to be a counterexample to Lemma 3 and 4. However,
7 In case of Lemma 3 note that P (x) ∈ Z∗n and P (x′) 6∈ Z∗n means that P (x′) is zero modulo at least one prime factor of

n, while P (x) 6≡ 0 modulo all prime factors of n. In case of Lemma 4 observe that if we have P (x)−Q(x) ≡ 0 mod n
and P (x′)−Q(x′) 6≡ 0 mod n, then x is mapped to zero and x′ is not mapped to zero by the straight line program
S(x) := P (x)−Q(x).

in fact this is not a counterexample, since there exists no straight line program P satisfying the
assumed property, if n is the product of at least two different primes.

The reason for this is a consequence of the Chinese Remainder Theorem. Let n = pq with
gcd(p, q) = 1 (p and q not necessarily prime). By the Chinese Remainder Theorem, the ring Zn

is isomorphic to Zp × Zq. Let φ : Zp × Zq → Zn denote this isomorphism. Assume x, x′ ∈ Zn

and a straight line program P such that P (x) ≡ 0 mod n and P (x′) ≡ 1 mod n. Since φ is a
ringisomorphism and P performs only ring operations, it holds that

P (x) = φ(P (x) mod p, P (x) mod q) = φ(0, 0)

and
P (x′) = φ(P (x′) mod p, P (x′) mod q) = φ(1, 1).

The crucial observation is now that for each pair (x, x′) ∈ Z2
n, there exist c, d ∈ Zn such that

c = φ(x′ mod p, x mod q) and d = φ(x mod p, x′ mod q). Evaluating P with c or d yields

P (c) = φ(P (x′) mod p, P (x) mod q) = φ(1, 0)

or
P (d) = φ(P (x) mod p, P (x′) mod q) = φ(0, 1).

We therefore have gcd(n, P (c)) = q and gcd(n, P (d)) = p. Thus, if P has the property that P (x) =
φ(0, 0) and P (x′) = φ(1, 1) with “high” probability for x, x′ U← Zn, then we can also sample y U← Zn

such that P (y) = φ(0, 1) or P (y) = φ(1, 0) with “high” probability. A factor of n can therefore be
found by sampling y and computing gcd(n, P (y)).

Generalizing the notion described above, putting it into a more precise and formal language, and
handling some technical obstacles,8 we obtain the proofs given in Appendices C and D. Instead of
our approach based on probabilities, it is also possible to prove Lemma 3 and 4 using combinatoric
means, but this seems to require a number of case distinctions. We believe that the proofs given in
this paper are easier to verify.

F Proof of Proposition 1

By construction of the simulator, Pr[Ftest] is bound by the probability that there exists Pj v P
such that either

1. testsim() has returned false where test() would have returned true, i.e. it holds that
(a) (Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or
(b) (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n)

2. or testsim() has returned true where test() would have returned false, i.e. it holds that
(a) (Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n) or
(b) (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n)

for x U← C and one of the values x1, . . . , xm
U← C sampled by the simulator.

Note that if there exists Pj such that (Pj(x) =⊥ and Pj(xr) 6=⊥), then this implies that there
exists Pk v P with k < j such that (Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) by Lemma 2. Hence, in order

8 E.g. the fact that simulator and factoring algorithm sample from subsets of Zn (what made it necessary to define
the uniform closure of subsets of Zn).

to bound the probability of Ftest, it suffices to consider the probability that there exists a straight
line program Pj v P such that

(Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(xr) ∈ Z∗n) (5)

for x, x1, . . . , xm
U← C.

For fixed Pj we can bound this probability as follows.

Pr
[
(Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(xr) ∈ Z∗n) | x, x1, . . . , xm

U← C
]

≤mPr
[
(Pj(x′) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n) | x, x′ U← C

]
=m

(
Pr
[
Pj(x′) 6∈ Z∗n and Pj(x) ∈ Z∗n | x, x′

U← C
]

+ Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
])

=2mPr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]
.

Using this, we obtain the following bound on the probability that there exists any Pj v P satisfy-
ing (5).

Pr[Ftest] ≤ 2m
m∑

j=0

Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]

≤ 2m(m+ 1) max
0≤j≤m

{
Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]}

G Proof of Proposition 2

By construction of the simulator, Pr[Fequal] is bound by the probability that there exist Pi, Pj v P
and xr ∈ {x1, . . . , xm} such that either

1. equalsim() has returned false where equal() would have returned true, i.e. it holds that
(a) (Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or
(b) (Pi(x) ≡n Pj(x) and Pi(xr) =⊥) or
(c) (Pi(x) ≡n Pj(x) and Pj(xr) =⊥)

2. or equalsim() has returned true where equal() would have returned false, i.e. it holds that
(a) (Pi(xr) ≡n Pj(x) and Pi(x) 6≡n Pj(x)) or
(b) (Pi(xr) ≡n Pj(x) and Pi(x) =⊥) or
(c) (Pi(xr) ≡n Pj(x) and Pj(x) =⊥)

for x U← C and one of the values x1, . . . , xm
U← C sampled by the simulator.

Applying Lemma 2 to cases 1.b), 1.c), 2.b), and 2.c), we see that in order to bound the prob-
ability of Fequal, it suffices to consider the probability that there exist Pi, Pj v P or Pk v P such
that

1. equalsim() has returned false where equal() would have returned true, i.e. it holds that
(a) (Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or
(b) (Pk(x) ∈ Z∗n and Pk(xr) 6∈ Z∗n)

2. or equalsim() has returned true where equal() would have returned false, i.e. it holds that
(a) (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x)) or
(b) (Pk(xr) ∈ Z∗n and Pk(x) 6∈ Z∗n)

for x U← C and one of the values x1, . . . , xm
U← C sampled by the simulator.

Let us first consider the cases 1.a) and 2.a). For fixed Pi, Pj we can bound the probability of
1.a) and 2.a) as follows.

Pr[(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr))

or (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x)) | x, x1, . . . , xm
U← C]

≤mPr[(Pi(x) ≡n Pj(x) and Pi(x′)) 6≡n Pj(x′)

or ((Pi(x′) ≡n Pj(x′) and Pi(x) 6≡n Pj(x)) | x, x′ U← C]

=mPr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

+mPr
[
Pi(x′) ≡n Pj(x′) and Pi(x) 6≡n Pj(x) | x, x′ U← C

]
=2mPr

[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

Using the last term, the probability that there exists any pair Pi, Pj ∈ P such that 1.a) or 2.a)
holds is at most

2m
∑

−1≤i<j≤m

Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

≤2m(m+ 2)(m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

=2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

Now let us consider the cases 1.b) and 2.b). Comparing these cases to Expression (5), the proof
of Proposition 1 shows that the probability that there exists any Pk ∈ P such that 1.b) or 2.b)
holds is at most

2m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

Since Fequal implies that there exists either a pair Pi, Pj ∈ P such that 1.a) or 2.a) holds, or Pk ∈ P
such that 1.b) or 2.b) holds, we may conclude

Pr[Fequal] ≤ 2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

+ 2m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

