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Abstract

In this paper, we propose a new threshold scheme for the Digital Signature
Standard (DSS) using Asmuth-Bloom secret sharing based on the Chinese Re-
mainder Theorem (CRT). To achieve the desired result, we first show how to
realize certain other threshold primitives using Asmuth-Bloom secret sharing,
such as joint random secret sharing, joint exponential random secret sharing,
and joint exponential inverse random secret sharing. We prove the security of
our scheme against a static adversary. To the best of our knowledge, this is the
first provably secure threshold DSS scheme based on the CRT.

Keywords: Asmuth-Bloom secret sharing, threshold cryptography, function
sharing, DSS.

1 Introduction

Threshold cryptography deals with the problem of sharing a highly sensitive secret
among a group of n users so that the secret can be reconstructed only when a sufficient
number t of them come together. This problem is known as the secret sharing problem
and several secret sharing schemes (SSS) have been proposed in the literature (e.g., [1,
3, 16]).

Threshold cryptography also deals with the function sharing problem. A function
sharing scheme (FSS) requires distributing the function’s computation according to
the underlying SSS such that each part of the computation can be carried out by a dif-
ferent user and then the partial results can be combined to yield the function’s value
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without disclosing individual secrets. The FSSs in the literature, e.g., [4, 5, 15, 17],
proposed for various cryptosystems, traditionally used Shamir’s SSS [16] until a recent
work by Kaya and Selcuk [11] showed how to use the Asmuth-Bloom SSS [1] for func-
tion sharing. In that paper [11], they propose threshold RSA signature/encryption,
ElGamal encryption, and Paillier encryption schemes by using the Asmuth-Bloom
SSS.

The Digital Signature Standard (DSS) is the current US government standard for
digital signatures. Sharing DSS is an interesting problem and a neat solution was
given by Gennaro et al. [8], based on Shamir’s SSS.

In this paper, we propose a new threshold scheme for DSS with the Asmuth-Bloom
SSS. We follow the approach of Gennaro et al. [8] and show how similar primitives
can be achieved based on Asmuth-Bloom secret sharing. Obtaining these primitives
with Asmuth-Bloom secret sharing turns out to be a challenging task. We use the
approximate-and-correct approach of [11] to compute the correct function output
values from the partial results. The proposed scheme is provably secure up to t − 1
corrupted users, and 2t + 2 users are required to generate a DSS signature. To the
best of our knowledge, this is the first provably secure threshold DSS scheme based
on the Chinese Remainder Theorem (CRT).

The paper is organized as follows: In Section 2, we give an overview of DSS. We
discuss the Asmuth-Bloom SSS in detail in Section 3 and our modifications on the
basic scheme in Section 4. We describe our threshold DSS scheme in Section 5, prove
its security in Section 6, and discuss its efficiency in Section 7. We conclude the paper
in Section 8.

2 Digital Signature Standard

DSS [7] is based on the ElGamal signature scheme [6], where the ElGamal signature
is slightly modified to obtain fixed-length outputs even though the size of the prime
modulus p may increase. The DSS signature scheme can be summarized as follows:

• Key Generation Phase: Let p and q be large prime numbers, where q|(p − 1)
and let g ∈ Z∗p be an element of order q. The private key α ∈R Z∗q is chosen
randomly and the public key β = gα mod p is computed.

• Signing Phase: The signer first chooses a random ephemeral key k ∈R Z∗q and
then computes the signature (r, s), where

r = (gk
−1

mod p) mod q,
s = k(w + αr) mod q

for a hashed message w ∈ Zq.
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• Verification Phase: The signature (r, s) is verified by checking

r
?= (gws

−1
βrs

−1
mod p) mod q,

where s−1 is computed in Z∗q .

3 The Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom SSS [1] shares a secret d among n parties by modular arithmetic
such that any t users can reconstruct the secret by the CRT. The scheme presented
below is a slightly modified version, by Kaya and Selcuk [11], in order to obtain better
security properties.

• Dealing Phase: To share a secret d among a group of n users, the dealer does
the following:

1. A set of relatively prime integers m0 < m1 < . . . < mn are chosen, where
m0 is a prime and

t∏
i=1

mi > m0
2
t−1∏
i=1

mn−i+1. (1)

2. Let M denote
∏t
i=1mi. The dealer computes y = d + Am0, where A is a

positive integer generated randomly subject to the condition that 0 ≤ y <
M .

3. The share of the ith user, 1 ≤ i ≤ n, is yi = y mod mi.

• Combining Phase: Let S be a coalition of t users gathered to construct the
secret. Let MS denote

∏
i∈Smi.

1. Let MS\{i} denote
∏
j∈S,j 6=imj and M ′S,i be the multiplicative inverse of

MS\{i} in Zmi , i.e., MS\{i}M
′
S,i ≡ 1 (mod mi). First, the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

2. The users compute

y =

(∑
i∈S

ui

)
mod MS

and then obtain the secret d by computing

d = y mod m0.
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According to the Chinese Remainder Theorem, y can be determined uniquely in
ZMS

since y < M ≤MS for any coalition S of size t.
It is shown in [11] that the Asmuth-Bloom version presented here is perfect in the

sense that no coalition of size smaller than t can obtain any information about the
secret:

Theorem 1 (Kaya and Selcuk [11]) For a passive adversary with t − 1 shares,
every integer in Zm0 is a secret candidate. Furthermore, every candidate for the
secret is equally likely, i.e., the probabilities Pr(d = d′) and Pr(d = d′′) are equal for
all d′, d′′ ∈ Zm0.

Proof 2 Suppose the adversary corrupts t− 1 users and just observes the inputs and
outputs of the corrupted users without controlling their actions, i.e., the adversary is
honest in user actions but curious about the secret. Let S′ be the adversarial coalition
of size t − 1, and let y′ be the unique solution for y in ZMS′ . According to (1),
M/MS′ > m0, hence y′+jMS′ is smaller than M for j < m0. Since gcd(m0,MS′) = 1,
all (y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0, and there are m0 of them. That
is, d can be any integer from Zm0.

For each value of d, there are either bM/(MS′m0)c or bM/(MS′m0)c+ 1 possible
values of y consistent with d, depending on the value of d. Note that M/(MS′m0) >
m0 � 1, Hence, for two different integers in Zm0, the probabilities of d equals these
integers are same and hence, d values are equally likely.

Quisquater et al. [14] showed that when moduli mi are chosen as consecutive
primes 1 ≤ i ≤ n, the scheme has better security properties. In this paper, we assume
that all mi are selected as consecutive primes. We also assume that m0 � n and
n ≥ 2t+ 2.

4 The Modified Asmuth-Bloom SSS

In the literature, the sequence, m0 < m1 < . . . < mn, satisfying (1), is called a (t, n)
Asmuth-Bloom sequence. An interesting property of these sequences, which will be
used in our scheme, is given in Lemma 3.

Lemma 3 An (dn/2e, n) Asmuth-Bloom sequence is a (k, n) Asmuth-Bloom sequence
for all k such that 1 ≤ k ≤ n.

Proof 4 Let (1) be satisfied with t = dn/2e. Let k < t. Rewriting (1) as

k∏
i=1

mi

t∏
i=k+1

mi > m0

k−1∏
i=1

mn−i+1

t∏
i=k+1

mn−i+2
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and observing mi ≤ mn−i+2 for k + 1 ≤ i ≤ t,

k∏
i=1

mi > m0

k−1∏
i=1

mn−i+1 (2)

follows. Now let t = dn/2e and k > t. Since (1) is satisfied and mi ≥ mn−i+2 for
t+ 1 ≤ i ≤ k,

t∏
i=1

mi

k∏
i=t+1

mi > m0

t−1∏
i=1

mn−i+1

k∏
i=t+1

mn−i+2

and hence, (2) holds as well.

To adapt the original scheme for the threshold DSS, first, we use such an (dn/2e, n)
sequence. Note that this sequence can be used for any (k, n) Asmuth-Bloom SSS
where M =

∏k
i=1mi. Second, we multiply the right side of (1) by n and obtain the

inequality
t∏
i=1

mi > nm0
2
t−1∏
i=1

mn−i+1. (3)

Note that Lemma 3 is also valid for this equation. Lastly, we change the definition of
M to

M =

⌊∏t
i=1mi

n

⌋
. (4)

The last two modifications, (3) and (4), were proposed by Kaya and Selcuk [12] to
make secure joint random secret sharing (Joint-Rss) practical, which is a primitive
we use for the proposed threshold DSS scheme. On the other hand, using an (dn/2e, n)
Asmuth-Bloom sequence will be useful for the joint zero sharing primitive (Joint-
ZS), in which we require a (2t, n) sequence with the same mi, 1 ≤ i ≤ n, as used in
the other primitives where the threshold is t.

This modified scheme was proven secure in [12], with a proof similar to that of
Theorem 1:

Theorem 5 (Kaya and Selcuk [12]) The modified secret sharing scheme with the
new M and Eq. (3) is perfect in the sense that the probabilities Pr(d = d′) and
Pr(d = d′′) are equal for all d′, d′′ ∈ Zm0.

4.1 Arithmetic Properties of the Modified Asmuth-Bloom SSS

Suppose several secrets are shared with common parameters t, n, and moduli mi for
1 ≤ i ≤ n, chosen according to (3). The shareholders can use the following properties
to obtain new shares for the sum and product of the shared secrets.
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Proposition 6 Let d1, d2, · · · , dn be secrets shared by the Asmuth-Bloom SSS with
common parameters t, n, and moduli mi for 1 ≤ i ≤ n. Let yij be the share of the ith
user for secret dj. Then, for D = (

∑n
i=1 di) mod m0 and Yi = (

∑n
j=1 yij) mod mi,

we have D t← (Y1, Y2, · · · , Yn), i.e., by using t of Y1, Y2, · · · , Yn, the secret D can be
constructed.

Proof 7 For Y =
∑n

i=1(di +Aim0), we have Yi ≡ Y mod mi. Note that due to (4),
Y < nM < MS for any coalition S where |S| ≥ t. Hence, a coalition S of t users can
construct Y ∈MS and obtain D = Y mod m0.

Note that if the modification in (4) is not applied, the shares (Y1, Y2, · · · , Yn) can
still be used to construct D = (

∑n
i=1 di) mod m0. However, in this case, instead of

t, we require at least t+ 1 of them to obtain the smallest integer Y that satisfies all
the congruences Y ≡ Yi (mod mi) for 1 ≤ i ≤ n. Note that Y < nM since we have n
secrets di, 1 ≤ i ≤ n, in the summation, and for each di, the corresponding y used in
the dealing phase of the Asmuth-Bloom SSS is smaller than M . Hence, if a coalition
S wants to obtain Y , it requires that MS ≥ nM and this is true for all coalitions S
of cardinality t+ 1 if (4) is not applied. As next proposition shows, such an increase
still occurs when we consider the product of two secrets.

Proposition 8 Let d1, d2 be secrets shared by the Asmuth-Bloom SSS with common
parameters t, n and moduli mi for 1 ≤ i ≤ n. Let yij be the share of the ith user
for secret dj. Then, for D = d1d2 mod m0 and Yi = yi1yi2 mod mi, we have D

2t←
(Y1, Y2, · · · , Yn).

Proof 9 For Y =
∏2
i=1(di +Aim0), we have Yi ≡ Y mod mi. Note that Y < M2 <

MS for any coalition S where |S| ≥ 2t. Hence, a coalition S of 2t users can construct
Y ∈MS and obtain D = Y mod m0, since Y = D+Am0 for A = A1A2+A1d2+A2d1.

5 Sharing DSS

To obtain a threshold DSS scheme, first the dealer generates the private key α and
shares it among the users by a (t, n) Asmuth-Bloom secret sharing scheme with m0 =
q. Then a signing coalition S can sign a message in a threshold fashion without
requiring a trusted party. Note that anyone can obtain the secret key α and forge
signatures if he knows k for a valid signature (r, s). Hence, r = (gk

−1
mod p) mod q

must be computed in a way that no one obtains k.
Our approach for this problem can be summarized as follows: First the users in

the signing coalition S will share a random k value by using the joint random secret
sharing primitive, Joint-RSS, in which each user of S contributes to the sharing
of k. Note that this procedure only generates the shares for k, not k itself. Next,
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the Joint-Exp-Inverse primitive is called to compute r = (gk
−1

mod p) mod q.
Last, the signature will be obtained by using r and the shares of k and α.

Note that the secret α is shared with a (t, n) Asmuth-Bloom SSS. Similar to
the underlying secret sharing scheme, the proposed scheme is secure against a static
adversary, who can corrupt at most t − 1 users. On the other hand, the required
number of users in a signing coalition is 2t+2. Below, S denotes the signing coalition
of size 2t + 2. Without loss of generality, we assume S = {1, 2, . . . , 2t + 2}. We will
first describe the primitive tools we used in the proposed CRT-based threshold DSS
scheme. Note that for each primitive, S is the set of participants for that primitive.

5.1 Joint Random Secret Sharing

In a Joint-RSS scheme, each user in the signing coalition S contributes something
to the share generation process and obtains a share for the resulting random secret,
as described below. A verifiable version of this scheme can be found in [12].

1. Each user j ∈ S chooses a random secret dj ∈ Zm0 and shares it as dj
t←

(y1j , y2j , · · · , y(2t+2)j), where yij is the share of the ith user.

2. The ith user computes

Yi =

2t+2∑
j=1

yij

 mod mi.

By Proposition 6, D t← (Y1, Y2, . . . , Y2t+2), i.e., D can be obtained by using t of
Y1, Y2, . . . , Y2t+2. Since the Asmuth-Bloom SSS is perfect, D is t-out-of-(2t+ 2)
secure where

D =

(
2t+2∑
i=1

di

)
mod m0,

i.e., t− 1 users cannot obtain any information on D.

5.2 Joint Zero Sharing

In a Joint-ZS scheme, each user in the signing coalition S contributes something
to the zero sharing process and obtains a share for the resulting zero, as described
below:

1. Each user j ∈ S shares 0 2t← (y1j , y2j , · · · , y(2t+2)j) by using a (2t, n) Asmuth-
Bloom SSS, where yij = Ajm0 mod mi is the share of the ith user for some
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Ajm0 < M . As described in Section 4, due to Lemma 3, the sequence m0 <
m1 < . . . < mn can be used by changing

M =

⌊∏2t
i=1mi

n

⌋

instead of (4).

2. The ith user computes

Yi =

2t+2∑
j=1

yij

 mod mi.

By Proposition 6, 0 2t← (Y1, Y2, . . . , Y2t+2).

Even though the shared value is known to be zero in a Joint-ZS procedure, from
an adversary’s point of view, each Aj for j ∈ S, and hence Y =

∑
j∈S Aj , remains

unknown. Note that 0 ≤ Ajm0 < M and for an adversarial coalition S′, there are
M/MS′ candidates for each Ajm0, j ∈ S. Hence, there are at least⌊∏2t

i=1mi

nm0MS′

⌋
>

t∏
i=1

mi (5)

candidates for each Aj . Considering |S′| = t − 1, an adversary cannot find each Aj
and hence Y .

5.3 Computing gd mod p

For threshold DSS, we need to share and compute gd mod p for a jointly shared secret
d ∈ Zq. The scheme Joint-Exp-RSS described below, constructs an intermediate
value for Fd = gd mod p. This intermediate value will later be corrected through a
separate correction process.

1. To compute Fd = gd mod p for a jointly shared secret d, S uses Joint-RSS to
generate and share d as d t← (y1, y2, . . . , y2t+2), with m0 = q.

2. Each user i ∈ S computes

ui,d = (yiMS\{i}M
′
S,i) mod MS ,

where M ′S,i is the inverse of MS\{i} mod mi, and broadcasts

fi,d = gui,d mod p.
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3. The intermediate value for gd mod p is computed as

Fd′ =
∏
i∈S

fi,d mod p.

Observe that d = ((
∑

i∈S ui) mod MS) mod q, whereas this construction process
computes Fd′ = gd

′
mod p for d′ =

∑
i∈S ui mod q. Since there are 2t + 2 users in S

and ui < MS for all i, d = d′ − δdMS mod q for some integer 0 ≤ δd ≤ 2t+ 1.

5.4 Computing gk
−1

mod p

In DSS, we need to compute r = gk
−1

mod p in such a way that neither k nor k−1

is known by any user. The Joint-Exp-Inverse procedure described below uses
the Joint-RSS, Joint-ZS, and Joint-Exp-RSS primitives and computes r without
revealing k:

1. S uses Joint-RSS to jointly share random secrets k t← (k1, k2, . . . , k2t+2), a t←
(a1, a2, . . . , a2t+2), and uses Joint-ZS to distribute shares for zero, i.e., 0 2t←
(z1, z2, . . . , z2t+2).

2. S constructs v = (ak) mod m0 from shares vi = (aiki+zi) mod mi, i ∈ S. Note
that v 2t+1← (v1, v2, . . . , v2t+2), as described in Section 4.1.

3. S uses Joint-Exp-RSS to obtain

Fa′ =
∏
i∈S

fi,a =
∏
i∈S

gui,a ≡ ga′ ≡ ga+δaMS mod p and

Fk′ =
∏
i∈S

fi,k =
∏
i∈S

gui,k ≡ gk′ ≡ gk+δkMS mod p.

S also computes

Fa′k′ =
∏
i∈S

fi,ak =
∏
i∈S

Fa′
ui,k ≡ ga′k′ ≡ g(a+δaMS)(k+δkMS) mod p

≡ gvFa′δkMSFk′
δaMSg−δaδkM

2
S mod p.

4. S checks the following equality

Fa′k′
?= gvFa′

jkMSFk′
jaMSg−jajkM

2
S mod p (6)

for all 0 ≤ ja, jk ≤ 2t+ 1 and finds the (ja = δa, jk = δk) pair that satisfies this
equality. Once δa is found,

Fa = ga mod p = Fa′g
−δaMS mod p

can be computed.
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5. The signing coalition S computes

gk
−1

mod p = Fa
(v−1) mod p.

In Step 2 of Joint-Exp-Inverse, it is stated that 2t + 1 of v1, v2, . . . , v2t+2 are
required to compute v = (ak) mod m0. This is because, instead of constructing a
and k and then multiplying them, in step 2, each user computes his share vi =
(aiki + zi) mod mi for v, and they compute v by using the combining phase of the
Asmuth-Bloom SSS given in Section 3. With this approach, neither a or k is revealed,
and hence the proposed scheme remains secure. Note that the required number of
shares for a and k are both t. Hence, by Proposition 8, 2t shares are sufficient to
compute ak from aiki, j ∈ S. However, such an approach may reveal some information
on a and k. Let Y (v) be the smallest integer such that

v = Y (v) mod m0 and

aiki = Y (v) mod mi for i ∈ S,

which will be revealed in the combining phase. Note that with this approach Y (v) =
Y (a)Y (k) and one may obtain some information on Y (a) and Y (k). On the other hand,
if the coalition S uses the shares (aiki + zi) mod mi to compute v, Y (v) will be equal
to Y (a)Y (k) +Y (z). Since the number of candidates for Y (z) is equal to that in (5), we
avoid this problem. But this time, as described in Section 4.1, the number of required
vi values to compute v increases by one and becomes 2t+ 1.

Step 4 of Joint-Exp-Inverse computes Fa = ga mod p from the intermediate
value Fa′ . Note that the (ja, jk) pair, 0 ≤ ja, jk ≤ 2t+ 1, found for (6) is unique with
overwhelming probability, given that (2t+ 2)2 � q.

5.5 Threshold DSS Scheme

The phases of the proposed threshold DSS scheme are described in Fig. 1:
Let Y (α), Y (k), and Y (z) be the smallest integers, such that

α = Y (α) mod m0, k = Y (k) mod m0, 0 = Y (z) mod m0,

αi = Y (α) mod mi, ki = Y (k) mod mi and zi = Y (z) mod mi, for i ∈ S.

Since α and k are jointly shared with threshold t, due to Proposition 6, they can be
constructed with t shares. Hence, both Y (α) and Y (k) are less than

∏t
i=1mi. On the

other hand, Y (z) requires 2t + 1 of the shares z1, . . . , z2t+2, hence, Y (z) <
∏2t+1
i=1 mi.

Since w, r < m0, we have

Y (k)
(
w + rY (α)

)
+ Y (z) < m0

t∏
i=1

mi

(
t∏
i=1

mi + 1

)
+

2t+1∏
i=1

mi,
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• Key Generation Phase: Let α ∈R Z∗q be the private signature key. The

dealer sets m0 = q and shares α
t← (α1, α2, . . . , αn).

• Signing Phase: To sign a hashed message w ∈ Zq, the signing coalition
S of size 2t+ 1 first computes

r = (gk
−1

mod p) mod q

by, Joint-Exp-Inverse described in Section 5.4. To compute

s = k(w + rα) mod q,

each user i ∈ S computes

si = (ki(w + rαi) + zi) mod mi

and broadcasts it where the shares 0
2t+1← (z1, z2, . . . , z2t+2) are obtained

by using the primitive Joint-ZS. Then the signature s is computed by
using the reconstruction process for the Asmuth-Bloom SSS with 2t+2
shares.

• Verification Phase is the same as the standard DSS verification.

Figure 1: CRT-based threshold DSS signature.

which can be computed by a coalition of size 2t+ 2 by Proposition 8 and Section 4.1.
Hence, s 2t+2← (s1, s2, . . . , sn), i.e., s can be computed by 2t + 2 partial signatures si,
i ∈ S.

6 Security Analysis

Here we will prove that the proposed threshold DSS signature scheme is secure (i.e.
existentially non-forgeable against an adaptive chosen message attack), provided that
the DSS signatures are unforgeable. Throughout the paper, we assume a static adver-
sary model where the adversary controls exactly t− 1 users and chooses them at the
beginning of the attack. In this model, the adversary obtains all secret information of
the corrupted users and the public parameters of the cryptosystem. She can control
the actions of the corrupted users, ask for partial signatures of the messages of her
choice, but she is the static in the sense that she cannot corrupt another user in the
course of an attack.

To reduce the problem of breaking the DSS signature scheme to breaking the
proposed threshold DSS scheme, we will simulate the protocol with no information
on the secret where the output of the simulator is indistinguishable from an actual
run of the protocol from the adversary’s point of view. The input to the simulator
is the hashed message w, its signature (r, s), the public key β, and the secret shares
of the corrupted users, i.e., αi ∈ SB, where SB denotes the corrupted (bad) user set.
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Let SG be the set of good users in S and let

r∗ = gws
−1
βrs

−1
mod p.

The simulator is given in Fig. 2.
To prove that the outcome of the simulator is indistinguishable, we first need to

state the following assumption:

Assumption 10 (Gennaro et al. [8]) Let G be the subgroup generated by g. Choose
u, v at random, uniformly distributed and independently, in Zq. The following proba-
bility distributions on G×G,

(gu mod p, gv mod p) and
(
gu mod p, gu

−1
mod p

)
,

are computationally indistinguishable.

We used this assumption in Lemma 11 to prove the security of the overall scheme. A
similar assumption is also used in [13] to prove the security of the proposed anonymous
fingerprinting scheme. And in [2], Bao et al. prove that if the Computational Diffie-
Hellman (CDH) assumption holds, there is no probabilistic polynomial time Turing
machine that outputs gx

−1
on inputs g and gx with non-negligible probability. Note

that the CDH assumption states that there is no probabilistic polynomial-time Turing
machine that outputs gxy on inputs g, gx, and gy with non-negligible probability.
The decisional version of the CDH is called the Decisional Diffie-Hellman (DDH)
assumption. The DDH assumption states that the following probability distributions
on G×G×G,

(gu, gv, guv) and (gu, gv, gz) ,

are computationally indistinguishable where u, v, z are random, uniformly distributed,
and independent in Zq.

Lemma 11 The outcome of the simulator in Fig.2 is indistinguishable from the CRT-
based threshold DSS signature from a static adversary’s point of view.

Proof 12 1. As shown in Theorem 5, the modified SSS is perfect, i.e., the proba-
bilities Pr(d = k) and Pr(d = k) are equal for k, k ∈ Zm0, where d is the shared
secret, k is the shared value in real protocol, and k is the shared value in the
simulation. The same argument is also true for a.

2. In the real protocol, the set of shares (v1, v2, . . . , v2t+2) is a valid sharing for a
uniformly distributed value v. In the simulation, (v1, v2, . . . , v2t+2) also yields
a uniformly distributed value v. Hence, the distribution of the shares vi, i ∈ S,
is identical to the distribution of vi, i ∈ S. Note that, if the joint zero-sharing
procedure is not used, i.e., if the shares of v are not randomized, the secrecy of
a and k is not preserved.
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1. By simulating the good users in SG, with the Joint-RSS procedure, the simulator
shares random values for each user in SG. It also obtains the good users’ shares from
the corrupted users in SB . Note that all of these values are known by the simulator
because |SG| ≥ t, which is the threshold. Let a, k ∈ Zq be the shared values in this

step, i.e., k
t← (k1, k2, . . . , k2t+2) and a

t← (a1, a2, . . . , a2t+2). After that, 0 is shared

by using the procedure Joint-ZS, i.e., 0
2t← (z1, z2, . . . , z2t+2). For the rest of the

simulation, let δa =
⌊∑

i∈S ui,a

MS

⌋
and δk =

⌊∑
i∈S ui,k

MS

⌋
.

2. By using the second step of Joint-Exp-Inverse , v = ak is computed. Let Fa′ =

r∗
v

gδaMS . The simulator uses ai values to compute fi,a = gaiMS\iM
′
S,i mod MS mod p

for all i ∈ SG but one. For the last user, fi,a is selected such that

∏
i∈SG

fi,a ≡ Fa′

 ∏
i∈SB

fi,a

−1

mod p. (7)

These fi,a values are then broadcast.

3. By using the construction phase of Joint-Exp-RSS, Fk′ =
∏
i∈S fi,k mod p is com-

puted. Let

Fa′k′ = F ′a
δ

k
MSFk′

δaMSg−δaδk
M2

Sgv mod p.

The simulator uses ki values to compute fi,ak = Fa′
kiMS\iM

′
S,i mod MS mod p for all

i ∈ SG but one. For the last user, fi,ak is selected such that

∏
i∈SG

fi,ak ≡ Fa′k′

 ∏
i∈SB

fi,ak

−1

mod p.

These fi,ak values are then broadcasted and after that the correction phase is com-
pleted.

4. Let si = (ki (w + αir) + zi) mod q for i ∈ SB , where zis are obtained from the
execution of a Joint-ZS with threshold 2t + 1. The simulator chooses a random
integer Us smaller than

m0

t∏
i=1

mi

(
t∏
i=1

mi + 1

)
+

2t+1∏
i=1

mi,

such that Us ≡ si mod mi for i ∈ SB and Us ≡ s mod m0. Then it computes
si = Us mod mi for i ∈ SG and broadcasts them. After these steps, the signature
(r, s) is computed.

Figure 2: Simulator for the threshold DSS protocol.
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In the real protocol, Fa′ = ga+δaMS mod p, where a is random and δa is another
random value independent from a. The simulation computes Fa′ = gk

−1v+δaMS mod
p. Since v is uniformly random, k−1v is also uniformly random. The simulator
uses the exact δa value determined in Step 2 so its distribution is identical to
that of δa. Hence, the distribution of Fa′ and Fa′ values are identical.

In the simulation, ais are used to compute fi,a = gaiMS\iM
′
S,i mod MS mod p, and

in computing of fi,a = gui,a, thanks to perfectness, the share ai can be any integer
from Zq. Hence, the distributions of fi,as and fi,as are indistinguishable for the
users in S \ {j}. However, for the last user j of SG, the simulator chooses a
specific fj,a to satisfy (7). We will show that without fj,a, the rest of the fi,as for
i ∈ S \ {j} yield a random value in the group generated by g. Let S′ = S \ {j}.
Consider ∑

i∈S′
ui,a =

∑
i∈S′

aiMS\{i}M
′
S,i mod MS .

Since the threshold for a is t and |S′| > t, the following equation is satisfied:

a =

((∑
i∈S′

ui,a

)
mod MS′

)
mod q.

However, when we try to do the same construction in the exponent,∏
i∈S′

fi,a ≡ ga+∆aMS′ mod p

for some ∆a < |S′| MS
MS′

= |S′|mj. Since ∆a is an unknown, mj > m0
2 = q2, and

gcd (q,MS′) = 1, we have ga+∆aMS′ uniformly random in the group generated
by g. Note that this is true for every S′ ⊂ S, i.e., there is no correlation between
fi,as for i ∈ S′ when ui,as are computed for a larger coalition S ⊃ S′. Hence,
the distributions of fi,a and fi,a for i ∈ S are indistinguishable.

The same argument is also true for the distributions of fi,ak and fi,ak for i ∈ S,
which are used in the following step.

3. For the correction phase in the real protocol, the values fi,ak and fi,k use the
same value ui,k in the exponent, likewise, the ones in the simulator. The cor-
rection equation used in the real protocol is

Fa′k′ = Fa′
δkMSFk′

δaMSg−δaδkM
2
Sgv mod p.

And, the simulator uses the value

Fa′k′ = Fa′
δkMSFk′

δaMSg−δaδkM
2
Sgv mod p,
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where the distribution of each value on the right side is identical to that of the
corresponding value in the real protocol. Hence, the distribution of Fa′k′ and
Fa′k′ values are identical. The distributions of the outputs of the correction
processes, i.e., δa and δk, are also identical since the simulator uses the actual
δa and δk values.

Here we need to use the DDH assumption and Assumption 10. After the cor-
rection, (Fa′, Fk′, Fa′k′) are revealed, where, in the real protocol they are equal
to (ga

′
, gk

′
, ga

′k′). The DDH assumption states that the distributions of these
two triplets are indistinguishable. Besides, Fk′ = gk

′ and, once δk is found, gk

can be computed. The users will also know r = gk
−1

, and in the real protocol
the pair (gk, gk

−1
) will be (gk, gk

−1
). Assumption 10 says that the distributions

of these two pairs are also indistinguishable.

4. In the real protocol, the set of shares (s1, s2, . . . , s2t+2) is a valid sharing for a
uniformly distributed value s. In the simulation, (s1, s2, . . . , s2t+2) also yields
the same value. The computing process of si for i ∈ SG is the same as the one
in the real protocol. Hence, the distribution of the shares si, i ∈ S, is identical
to the distribution of si, i ∈ S.

We conclude this section with a corollary of Theorem 5 and Lemma 11.

Corollary 13 Given that the standard DSS signature scheme is secure, the threshold
DSS signature scheme is also secure under the static adversary model.

7 Information Efficiency of the Proposed Scheme

An important criterion for the efficiency of a threshold scheme is the information rate,
defined as

secret size
maximum share size

.

In our scheme, the domain for the secret is Zm0 and the domains for the shares are
Zmi for 1 ≤ i ≤ n. Let |m| denote the bit size of an integer m. Since mn is the largest
modulus, the maximum share size is |mn| and the information rate of the scheme
is |m0|/|mn|. Note that, since m1, . . . ,mn are selected as consecutive primes that
satisfy (3), each mi must be greater than nm2

0.
The prime number theorem says that the density of primes less than x is 1/ lnx.

Let m1 be the first prime after nm2
0. Considering that the density of the primes

around nm2
0 is 1/ ln(nm2

0),

mn ≈ nm2
0 + (n− 1) ln (nm2

0) < n(m2
0 + 2 lnm0 + lnn).
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Therefore, the information rate of the scheme is

|m0|
|n|+ |m2

0 + 2 lnm0 + lnn|
,

and considering m0 � n, this number is close to 1/2.

8 Conclusion

In this paper, we investigated how the DSS signature function can be shared using
the Chinese Remainder Theorem. We proposed a threshold DSS signature scheme
based on Asmuth-Bloom secret sharing. The proposed scheme is secure against an
adversary who is allowed to corrupt t − 1 users, and 2t + 2 users are required to
generate a DSS signature.

The resulting scheme turns out to be less efficient than the Shamir-based threshold
DSS scheme of Gennaro et al. [8]. This is rather normal considering that traditionally,
the Asmuth-Bloom SSS has not been deemed suitable for function sharing, and CRT-
based techniques were not used in function sharing applications until the recent works
of Kaya and Selcuk [11, 12] and Iftene et al. [9, 10]. We believe that CRT-based
function sharing applications will keep improving, but more work is needed to see
them as efficient as their Shamir-based counterparts.
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