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Abstract

Extraction of uniform randomness from (noisy) non-uniform sources is an important prim-
itive in many security applications, e.g. (pseudo-)random number generators, privacy-
preserving biometrics, and key storage based on Physical Unclonable Functions. Generic
extraction methods exist, using universal hash functions. There is a trade-off between the
length of the extracted bit string and the uniformity of the string. In the literature there
are proven lower bounds on this length as a function of the desired uniformity. The best
known bound involves a quantity known as smooth min-entropy. Unfortunately, there
exist at least three definitions of smooth entropy. In this paper we compare three of these
definitions, and we derive improved lower bounds on the extractable randomness.

We also investigate the use of almost universal hash functions, which are slightly worse
at extracting randomness than universal hash functions, but are preferable in practice
because they require far less nonvolatile memory. We show that using them has negligible
effect on the extractable randomness.

1 Introduction

1.1 Randomness extraction from non-uniform noisy sources

Many cryptographic applications require input bitstrings to be uniformly distributed and
exactly reproducible. Cryptographic keys, for instance, have to be uniformly random in order
to prevent efficient attacks; they have to be reproducible in order to allow for decryption of
encrypted data, verification of signatures, successful authentication etc. Even a single bit
error in a key causes failure.

Physical sources of randomness, however, are neither uniform nor noise-free. Consider for
example biometric measurements. The patterns in fingerprints and iris scans do not follow a
uniform distribution, and they are never exactly re-obtained when a measurement is repeated.
Measurement noise can be due to many factors, e.g. differences in lighting conditions or
sensor alignment, physiological changes, difference between sensors etc. Another class of
physical sources that has received a lot of attention recently are the Physical Unclonable
Functions (PUFs), also known as Physical One-Way Functions, Physical Random Functions
and Physically Obscured Keys. PUFs can be regarded as ‘non-biological biometrics’ in the
sense that an identification/authentication string or secret key is derived from measuring
an intrinsic property of an object. Many types of physical system for use as a PUF have
been described in the literature, for instance three-dimensional multiple scattering of laser
light [12], reflection of laser light from paper fibers [2], randomized dielectric properties in
protective coatings on integrated circuits [17], radiofrequent responses from pieces of metal
wire [4] or thin-film resonators [19], delay times in chip components [3] and start-up values
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of SRAM cells [7]. Even typed passphrases can be regarded as a non-uniform noisy source in
view of possible typing mistakes.

For security and/or privacy reasons it is often necessary to apply a one-way hash function
to the measurement of the biometric/PUF, in analogy with the /etc/passwd file in UNIX.
The storage of biometric/PUF data is assumed to be public; the hashing step hides the
measurement data. However, as the measurements are noisy, it is not possible to directly
apply a hash function; a single bit error in the input causes roughly 50% of the output bits
to flip. Hence, an error-correction step is required first (‘information reconciliation’). This
is not trivial, since the redundancy data has to be stored publicly and may reveal too much
privacy-sensitive information. Similarly, if PUF data is to be used as a cryptographic key,
then it should be thoroughly noise-corrected first. Here, too, it is crucial that the publicly
stored redundancy data does not reveal secrets (in this case the extracted key).

After information reconciliation, the step of privacy amplification is applied, mapping a
non-uniform random string to a shorter, almost uniform string. The requirement of uniformity
is obvious in the case of key extraction. Interestingly, extracting uniform bitstrings is also
desirable in biometric identification and PUF-based anti-counterfeiting, applications where
the identifiers are not considered to be secret. A uniform string is the most efficient way
of storing the entropy present in a measurement. Furthermore, database search speed is
improved. Apart from biometrics and PUF applications, the subject of privacy amplification
is highly relevant to other areas, e.g. true random number generation.

The concept of a Fuzzy Extractor [5, 6], also known as a helper data scheme [11], was intro-
duced as a primitive that achieves both information reconciliation and privacy amplification1.
The publicly stored enrolment data (a.k.a. secure sketch or helper data) suffices to repro-
ducibly reconstruct a string from noisy measurements, yet leaks only a negligible amount of
information about the measurement or the extracted key. An overview of privacy-preserving
biometrics, PUFs and fuzzy extraction is given in [18].

1.2 Lower bound on the extractable information

It is, of course, important to know which key length is safe to extract from a source. ‘Safe’
here means that the key’s distribution is sufficiently close to uniform.

Let X denote the noisy measurement, and Y the helper data sufficient to reduce the
errors to a tolerable level. The quantity ℓε

ext(X|Y ) is defined as the maximum achievable
key length that can be extracted from X, given that the adversary knows Y , such that
the distribution of the key is ε-close to uniform. (This statement is made more precise in
Section 2.) Similarly, a quantity ℓε

ext(X) is defined in the case of a noise-free source X. In [14]
Renner and Wolf provided a lower bound on ℓε

ext(X|Y ) in terms of the smooth min-entropy
of X given Y . Loosely speaking, ‘smoothening’ of a probability distribution means probing a
small neighborhood of it; the smooth entropy is the entropy of a point in this neighborhood.
(This is made more precise in Section 2.)

The technique of smoothening has been used before in many papers (e.g. [8]) under
a variety of names. In [1], a random variable is said to have “ǫ-HILL-type pseudoentropy
at least k” if there exists a random variable X ′ with min-entropy at least k such that the
(computational) distance between X and X ′ is at most ǫ. However, Renner and Wolf actually
defined the smooth min- entropy of X as a uniquely determined quantity (by taking the

1In this setting there is no additional source of randomness to aid the privacy amplification.
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maximum value for k), which can then be studied in its own right. The lower bound given in
[14] is

ℓε
ext(X|Y ) ≥ H

ρ
∞(X|Y ) − 2 log

1

ε − ρ
. (1)

Here ρ ∈ [0, ε) is the ‘radius’ of the smoothening neighborhood, and H
ρ
∞ is the smooth min-

entropy. This bound is sharper than previous results, which do not have the smoothening
degree of freedom.

Eq. (1) should be read as a maximization of the right-hand size of (1) over the smoothening
parameter ρ. A nonzero ρ increases the term H

ρ
∞(X|Y ), but gives a penalty in the logarithmic

term. The optimal ρ depends on the probability distribution of X,Y .
It is important to note that this bound is not just of theoretical interest. It guarantees

that well-known generic privacy amplification methods (universal hash functions) yield a key
that is ε-close to uniformity as long as the key length does not exceed the r.h.s. of (1). This is
relevant even when a tailor-made privacy amplification scheme should give a better result; in
practice it may be difficult to find such a scheme or to implement it on a constrained device,
and one has to resort to hash functions. Hence, a sharp lower bound on ℓε

ext has practical
implications.

While the result (1) is very useful, some unsatisfactory issues remain. Unfortunately, at
least three different definitions of smooth entropy appear in the literature [14, 15, 9, 13, 10],
and it is not immediately clear if they are equivalent. While it seems that they can be used
interchangeably as far as chain rules and similar inequalities are concerned, the consequences
for bounds such as (1) are less evident.

Furthermore, the definition of smoothening employed in [14] involves distributions that
are not normalized. While that is not a problem in itself, it can lead to technical difficulties
when smooth entropies are applied in a context that requires normalizaton.

1.3 Contributions and outline

In this paper we address the issue of the multiple definitions of smooth entropy, and we
provide lower bounds on extractable randomness that are tighter than previously stated in
the literature.

We introduce notation and give a list of definitions in Section 2.1. We then present a
number of useful lemmas in Section 2.2. Two of these are novel, concerning the leftover hash
lemma in the case of un-normalized distributions.

Our main results are stated in Section 3. We first prove a sharper lower bound on the
extractable randomness in the unconditional case (Theorem 1). The improvement has two
causes:

a. We use Rényi entropy of order 2 (H2) instead of min-entropy. In this way the bound
is written in terms of the quantity that naturally appears in the leftover hash lemma,
without losses from further inequalities. The use of H2 is not new in itself, nor is
the smooth variant H

ρ
2. However, bounds involving smooth entropy have always been

formulated in terms of min-entropy.

b. We make use of the leftover hash lemma for un-normalized distributions. This has the
effect of reducing the penalty term − log(ε − ρ)2 to − log ε(ε − ρ).
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We illustrate the improvement in graphs. For low-entropy sources, the relative improvement
in the amount of extracted random bits is significant.

We prove a bound (Theorem 2) for the conditional case that is sharper than (1). It is
formulated in terms of the smooth average conditional Rényi entropy of order two. The
average conditional Rényi entropy (H̃2) is the natural quantity appearing in the leftover hash
lemma.2 The improvement that we obtain here is due only to this, without the above-
mentioned effect (b).

We compare three of the existing definitions of smooth entropy regarding their impact
on provable bounds on randomness extraction. It turns out that they are not all equivalent
in this respect. The two definitions with un-normalized distributions give identical results.
However, the ‘normalized’ version of smoothening yields less sharp bounds. The underlying
reason is that the normalization constraint effectively doubles the statistical distance between
a distribution and its smoothened version, as compared to un-normalized smoothening.

The results above are based on the existence of universal families of hash functions. In
Section 4 we study the case of almost universal families of hash functions [16]. These do not
achieve the same amount of privacy amplification, but require significantly less nonvolatile
storage to implement and are therefore often preferable in practice. We show that their use
has a negligible effect on the extractable randomness.

2 Preliminaries

In Section 2.1 we first introduce the notation that will be used in the rest of the paper.
Then we list a number of definitions in order to specify precisely which notions of distance,
entropies, smoothening and extractability we are talking about.

Throughout this paper we make an effort to use notation which explicitly shows which
variables are operated on by a mapping. In particular, the notation always makes it evident
that an entropy is a function of a distribution (as opposed to a random variable). For in-
stance, for a random variable X with distribution P, we always write H(P) for the entropy
instead of the more usual notation H(X). This will sometimes lead to awkward superscripts,
but it is a price worth paying for the improved clarity. Clarity is especially needed when
smooth entropies are handled. A smoothened distribution is not necessarily normalized; this
makes it difficult to write statements like “variable X has distribution Q”. In order to avoid
such awkwardness we concentrate on statements about distributions. We formulate all the
definitions in such a way that they apply to normalized as well as un-normalized distributions.

In Section 2.2 we list some lemmas that are necessary to prove our results.

2.1 Notation and definitions

We denote stochastic variables by capitals, specific values by lowercase letters, and spaces
by calligraphic symbols. Distributions are written in mathbold font. E.g. X ∈ X , X ∼ P,
Prob[X = x] = P(x). The notation PX denotes the space of non-negative functions on X .

As a distance measure between distributions we use the usual definition of statistical
distance, generalized to arbitrary non-negative functions.

2It was already pointed out in [6] that worst-case conditioning in the conditional min-entropy H∞(X|Y )
can be replaced by average-case conditioning.
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Definition 1 (Statistical distance) Let P, Q ∈ PX . The statistical distance between P and
Q is defined as

∆(P, Q) = 1
2

∑

x∈X
|P(x) − Q(x)|.

For (X,Y ) ∼ P, the marginal distribution of X is denoted as P1, with Prob[X = x] = P1(x) =∑
y P(x, y). Similarly, Prob[Y = y] = P2(y) =

∑
x P(x, y). The conditional probability

Prob[X = x|Y = y] is denoted as P1|2(x, y) = P(x, y)/P2(y).3 The advantage of this notation
is that marginals and conditioning can be easily written down for un-normalized distributions.

Definition 2 (Rényi entropy) Let P ∈ PX . For α ∈ (0, 1) ∪ (1,∞), the Rényi entropy of
P is defined as

Hα(P) = − 1

α − 1
log
∑

x∈X
[P(x)]α.

For 0 ≤ α ≤ β it holds that Hβ(P) ≤ Hα(P).

Definition 3 (Min-entropy) Let P ∈ PX . The min-entropy of P is defined as

H∞(P) = − log max
x∈X

P(x).

Definition 4 (Conditional Rényi entropy) Let P ∈ PX×Y . Let α ∈ (0, 1) ∪ (1,∞) be a
constant. The conditional Rényi entropy is defined as

Hα(1|2)(P) = − 1

α − 1
log max

y∈supp P2

∑

x∈X

[
P1|2(x, y)

]α
.

Definition 5 (Conditional min-entropy) Let P ∈ PX×Y . The conditional min-entropy of
P is defined as

H∞(1|2)(P) = − log max
x∈X

max
y∈supp P2

P1|2(x, y).

For (X,Y ) ∼ P the conditional min-entropy is usually denoted as H∞(X|Y ).

Definition 6 (Average conditional min-entropy) (From [6]).
Let P ∈ PX×Y . The average conditional min-entropy of P, with conditioning on the second
argument, is defined as

H̃∞(1|2)(P) = − log
∑

y∈Y
P2(y)max

x∈X
P1|2(x, y) = − log

∑

y∈Y
max
x∈X

P(x, y).

The usual notation is H̃∞(X|Y ) for (X,Y ) ∼ P.

Definition 7 (Average conditional Rényi entropy) Let P be a probability measure on
X × Y, and let (X,Y ) ∼ P. Let α ∈ (0, 1) ∪ (1,∞) be a constant. The average conditional
Rényi entropy of X given Y is defined as

H̃α(1|2)(P) = − 1

α − 1
log
∑

y∈Y
P2(y)

∑

x∈X

[
P1|2(x, y)

]α
.

3We use the convention P1|2(x, y) = 0 when P2(y) = 0.
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The following two definitions are somewhat awkward, but they allow us to generalize
stochastic variables like f(X) to the case of un-normalized distributions.

Definition 8 (Induced action on a distribution) Let f : R×X → {0, 1}ℓ be a function,
with the first argument drawn uniformly random from R. Let P ∈ PX . We define the induced
action of f on P as a mapping f∗ : PX → PR×{0,1}ℓ , with

(f∗P)(r, t) = Prob[R = r, f(R,X) = t] =
1

|R|
∑

x∈X : f(r,x)=t

P(x).

Definition 9 (Induced action on a joint distribution) Let F : R × X → {0, 1}ℓ be a
function, with the first argument drawn uniformly random from R. Let P ∈ PX×Y . We define
the induced action of F on P as a mapping F ∗ : PX×Y → PY×R×{0,1}ℓ , with

(F ∗P)(y, r, t) = Prob[Y = y,R = r, F (R,X) = t] =
1

|R|P2(y)
∑

x∈X : F (r,x)=t

P1|2(x, y).

Next we show three different notions of smooth entropy that appear in the literature. They
differ in the sort of modifications to the probability distribution that are allowed. In order to
distinguish between them we introduce the terms ‘strictly bounded’, ‘loosely bounded’ and
‘normalized’.

Definition 10 (Strictly bounded vicinity of a distribution) (From [10])
Let P be a probability measure on X . Let ρ ≥ 0. We define the strictly bounded ρ-vicinity of
P as

Bρ
strict(P) =

{
Q ∈ PX : ∀x∈X Q(x) ≤ P(x) and

∑

x∈X
Q(x) ≥ 1 − ρ

}
.

Note that Q ∈ Bρ(P) with Q 6= P is not a probability measure.

Definition 11 (Normalized vicinity of a distribution) Let P be a probability measure
on X . Let ρ ≥ 0. The normalized ρ-vicinity of P is defined as

Bρ
norm(P) =

{
Q ∈ PX : ∆(Q, P) ≤ ρ and

∑

x∈X
Q(x) = 1

}
.

Definition 12 (Loosely bounded vicinity of a distribution) Let P be a probability mea-
sure on X . Let ρ ≥ 0. The loosely bounded ρ-vicinity of P is defined as

Bρ
loose(P) =

{
Q ∈ PX : ∆(Q, P) ≤ ρ

2
and

∑

x∈X
Q(x) ≤ 1

}
.

The strictly bounded version appeared in [14] (unnumbered definition). The loosely bounded
version appeared in [13] (Definition 3.2.1). The normalized version was used in [9]. (Yet
another definition features in [15], but we will not discuss it here.)

For all three types of vicinity, the smooth entropy is defined analogously. In the definitions
below, the subscript ‘type’ denotes the type of vicinity. The result (1) from [14] was formulated
in terms of the ‘strictly bounded’ vicinity.
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Definition 13 (Smooth Rényi entropy) Let P be a probability measure on X . Let ρ ≥ 0
be a constant. The smooth Rényi entropy of P is defined as

H
ρ,type
α (P) = max

Q∈Bρ
type(P)

Hα(Q).

Definition 14 (Smooth conditional Rényi entropy) Let P be a probability measure on
X × Y. Let ρ ≥ 0 and α ∈ (0, 1) ∪ (1,∞) be constants. The ρ-smooth conditional Rényi
entropy of order α of P is defined as

H
ρ,type
α(1|2)(P) = max

Q∈Bρ
type(P)

− 1

α − 1
log max

y∈supp P2

∑

x∈X

[
Q(x, y)

P2(y)

]α

.

Definition 15 (Smooth conditional min-entropy) Let P be a probability measure on X×
Y. Let ρ ≥ 0 be a constant. The smooth conditional min-entropy is defined as

H
ρ,type
∞(1|2)(P) = max

Q∈Bρ
type(P)

− log max
y∈supp P2

max
x∈X

Q(x, y)

P2(y)
.

The usual notation is H
ρ
∞(X|Y ) for (X,Y ) ∼ P. Note that the smooth entropies in Definitions

14 and 15 cannot be written as a maximization maxQ of some expression in Q only. It will
turn out that we need such a property later on; hence we introduce the following definition.

Definition 16 (Smooth average conditional Rényi entropy) Let P be a probability mea-
sure on X × Y. Let ρ ≥ 0 and α ∈ (0, 1) ∪ (1,∞) be constants. The ρ-smooth average
conditional Rényi entropy of order α of P is defined as

H̃
ρ,type
α(1|2)(P) = max

Q∈Bρ
type(P)

H̃α(1|2)(Q).

The smooth average conditional min-entropy follows by setting α = ∞. Next we give the
formal definition of extractable randomness. This quantity plays a central role in Section 3.

Definition 17 (Extractable randomness) (Modification of Def.3 in [14]).
Let X ∈ X and Y ∈ Y be random variables, with (X,Y ) ∼ P. For any ε > 0 we say that a
finite set Z is ε-allowed if there exists a function F : X → Z such that

∆(Y F (X), Y Z) ≤ ε,

where Z is a random variable uniformly distributed on Z, independent of X and Y . The
ε-extractable randomness of X conditioned on Y is defined as

ℓε
ext(X|Y ) = max {log |Z| : Z is ε-allowed} .

Note that the definition in [14] contains an extra random variable. The definition of ex-
tractable randomness in the unconditional case follows from Def. 17 by omitting Y .

Lower bounds on the extractable randomness are proven using universal hash functions.
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Definition 18 (Universal family of hash functions) Let R, X and T be finite sets. Let
{Φr}r∈R be a family of hash functions from X to T . The family {Φr}r∈R is called universal
iff, for R drawn uniformly from R, it holds that

Prob[ΦR(x) = ΦR(x′)] ≤ 1/|T |

for all x, x′ ∈ X with x′ 6= x.

Following Shoup [16] we give the definition of a more general class of hash functions.

Definition 19 (Almost universal family of hash functions) Let η ≥ 0 be a constant.
Let R, X and T be finite sets. Let {Φr}r∈R be a family of hash functions from X to T . The
family {Φr}r∈R is called η-almost universal iff, for R drawn uniformly from R, it holds that

Prob[ΦR(x) = ΦR(x′)] ≤ η

for all x, x′ ∈ X with x′ 6= x.

Note that a 1/|T |-almost universal family of hash functions is universal. The above defined
classes of hash functions play a central role in this paper: They are used in Lemmas 4 and 5
in Section 2.2, on which our main resuts are based.

2.2 Lemmas

Lemma 1 (Jensen’s inequality for concave functions) Let ϕ be a real concave func-
tion. Let n be a positive integer. Let a1, . . . , an be positive weights and x1, . . . , xn be real
numbers. Then

ϕ

(∑n
i=1 aixi∑n
i=1 ai

)
≥
∑n

i=1 aiϕ(xi)∑n
i=1 ai

.

Lemma 2 (Exercise 8.36 in [16]) Let q1, . . . , qm be real numbers satisfying
∑m

s=1 qs = 1.
Then it holds that

m∑

s=1

q2
s ≥ 1

m
.

Proof: 0 ≤∑s(qs − 1
m)2 =

∑
s q2

s − 2
m

∑
s qs +

∑
s 1/m2 =

∑
s q2

s − 1
m . �

Lemma 3 (Generalization of Theorem 8.36 in [16] to un-normalized distributions.) Let Q ∈
PZ such that

∑
z∈Z Q(z) = 1 − α. Then the statistical distance between Q and the uniform

distribution U can be bounded as

∆(Q, U) ≤ 1
2

√
|Z|
∑

z∈Z
Q2(z) − 1 + 2α. (2)

Proof: Define D = ∆(Q, U) and qz := |Q(z) − 1
|Z| |/2D satisfying

∑
z qz = 1. Application of

Lemma 2 yields 1
|Z| ≤

1
4D2 [

∑
z Q2(z) − 2

|Z|
∑

z Q(z) +
∑

z |Z|−2] = 1
4D2 [

∑
z Q2(z) − 2

|Z|(1 −
α) + 1

|Z| ]. Rearranging the inequality gives (2). �
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Lemma 4 (Leftover hash lemma in the unconditional case) (Generalization of The-
orem 8.37 in [16] to un-normalized distributions.)
Let α ∈ [0, 1) be a constant. Let X be a finite set. Let Q ∈ PX satisfy

∑
x∈X Q(x) = 1−α. Let

f : R×X → {0, 1}ℓ be an η-almost universal hash function (see Def. 19), with η = (1+δ)2−ℓ,
and with r drawn uniformly random from R. Let f∗Q be the induced action of f on Q, as
given in Def. 8. Then

∆(f∗Q, UR ⊗ Uℓ) ≤ 1
2

√
α2 + δ + 2ℓ−H2(Q), (3)

where UR stands for the uniform distribution on R and Uℓ stands for the uniform distribution
on {0, 1}ℓ.

A proof is given in Appendix A.

Lemma 5 (Leftover hash lemma in the conditional case) (Generalization of exercise
8.71 in [16] to un-normalized distributions.)
Let β ∈ [0, 1) be a constant. Let Q ∈ PX×Y such that

∑
x∈X ,y∈Y Q(x, y) = 1 − β. Let

F : R×X → {0, 1}ℓ be an η-almost universal hash function, with η = (1 + δ)2−ℓ, and with r
drawn randomly from R. Let F ∗Q be the induced action of F on Q as given in Def. 9. Then

∆(F ∗Q, Q2 ⊗ UR ⊗ Uℓ) ≤ 1
2

√
1 − β

√
δ + 2ℓ−eH2(1|2)(Q).

We provide a proof in Appendix B. Remark: Lemmas 4 and 5 can also be formulated with
H∞ instead of H2, since H2(Q) ≥ H∞(Q).

Lemma 6 Let P be a probability measure on X . Let ρ ≥ 0. Then for any Q ∈ Bρ
strict(P)

∆(P, Q) ≤ 1
2ρ.

Proof: ∆(P, Q) = 1
2

∑
x∈X |P(x) − Q(x)| = 1

2 [1 −
∑

x∈X Q(x)] ≤ 1
2ρ. �

Lemma 7 Let P be a probability measure on X ×Y. Let ρ ≥ 0. Then for any Q ∈ Bρ
strict(P)

∆(P2, Q2) ≤ 1
2ρ.

Proof: ∆(P2, Q2) = 1
2

∑
y |
∑

x P(x, y) −∑x Q(x, y)| = 1
2{1 −∑xy Q(x, y)} ≤ 1

2ρ. �

Lemma 8 Let P be a probability measure on X ×Y. Let ρ be a constant. Then it holds that

H̃
ρ,type
2(1|2) (P) ≥ H

ρ,type
∞(1|2)(P).

Proof: We use that H̃
ρ,type
2(1|2) (P) ≥ H̃

ρ,type
∞(1|2)(P). Moreover,

H̃
ρ,type
∞(1|2)(P) = max

Q∈Bρ
type(P)

H̃∞(1|2)(Q) = max
Q∈Bρ

type(P)
− log

∑

y∈Y
Q2(y)max

x∈X
Q1|2(x, y)

= max
Q∈Bρ

type(P)
− log

∑

y∈Y
max
x∈X

Q(x, y)

= max
Q∈Bρ

type(P)
− log

∑

y∈supp P2

P2(y)max
x∈X

Q(x, y)

P2(y)

≥ max
Q∈Bρ

type(P)
− log max

y∈supp P2

max
x∈X

Q(x, y)

P2(y)
= H

ρ,type
∞(1|2)(P). �
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3 Main result

We prove two theorems regarding the lower bound on extractable randomness (see Def. 17).
Both provide an improved bound in terms of the ‘strictly bounded’ type of smooth entropy.
The first theorem addresses the unconditional case. The second theorem addresses the con-
ditional case. The proofs are based on the existence of universal families of hash functions
(see Def. 18). The more general (and more easy to implement) case of almost universal hash
functions is treated in Section 4.

Theorem 1 Let X ∼ P be a random variable. Let ε > 0 be a constant. Then

ℓε
ext(X) ≥ max

ρ∈[0,ε)

[
H

ρ,strict
2 (P) + 2 − log

1

ε(ε − ρ)

]
.

Theorem 2 Let P be a probability measure on X × Y, and (X,Y ) ∼ P. Let ε > 0. Then

ℓε
ext(X|Y ) ≥ max

ρ∈[0,ε)

[
H̃

ρ,strict
2(1|2) (P) + 2 − 2 log

√
1 − ρ

ε − ρ

]
.

Proof of Theorem 1: Consider Q̂ ∈ Bρ
strict(P) achieving H2(Q̂) = H

ρ,strict
2 (P). We explicitly

use the fact that
∑

x∈X Q̂(x) = 1 − ρ. Consider a strong extractor f : X × R → {0, 1}ℓ,

with ℓ = H
ρ,strict
2 (X) + 2 − log 1

ε(ε−ρ) and distance from uniformity ε − ρ/2. The existence of

such an extractor is guaranteed by Lemma 4 (taking δ = 0 since we consider universal hash
functions, and substituting α = ρ). It is readily verified that substitution of ℓ into (3) yields
statistical distance ε − ρ/2 from uniformity.

When f is applied to Q̂, the result is a string of length ℓ, with uniformity ε − ρ/2. What
happens when f is applied to P? Then the uniformity is bounded as follows,

∆(f∗P, UR ⊗ Uℓ) ≤ ∆(f∗P, f∗Q̂) + ∆(f∗Q̂, UR ⊗ Uℓ) (4)

≤ ∆(UR ⊗ P, UR ⊗ Q̂) + (ε − ρ/2) (5)

≤ ρ/2 + (ε − ρ/2) = ε. (6)

In (4) we used the triangle inequality. In (5) we used the uniformity property of the extrac-
tor f . Finally in (6) we applied Lemma 6. �

Proof of Theorem 2: Consider Q̂ ∈ Bρ
strict(P) achieving H̃2(1|2)(Q̂) = H̃

ρ,strict
2(1|2) (P). The exis-

tence of such a Q̂ follows directly from Def. 16. Next we explicitly use that
∑

x∈X ,y∈Y Q̂(x, y) =

1− ρ. Consider a strong extractor F : X ×R → {0, 1}ℓ, acting on the source Q̂, extracting a

string of length ℓ = H̃
ρ,strict
2(1|2) (P) + 2 − 2 log

√
1−ρ

ε−ρ that has uniformity ε − ρ. The existence of

such a strong extractor F is guaranteed by Lemma 5 (again setting δ = 0, and substituting
β = ρ). What happens when F is applied to P instead of Q̂? We first apply the triangle
inequality,

∆(F ∗P, P2 ⊗ UR ⊗ Uℓ) ≤ ∆(F ∗P, F ∗Q̂) + ∆(F ∗Q̂, P2 ⊗ UR ⊗ Uℓ). (7)

The first term in (7) is bounded by using the fact that conditioning reduces the statistical
distance,

∆(F ∗P, F ∗Q̂) ≤ ∆(UR ⊗ P, UR ⊗ Q̂) = ∆(P, Q̂) ≤ 1
2ρ. (8)
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The last term in (7) is bounded by using one more triangle inequality.

∆(F ∗Q̂, P2 ⊗ UR ⊗ Uℓ) ≤ ∆(F ∗Q̂, Q̂2 ⊗ UR ⊗ Uℓ)

+∆(Q̂2 ⊗ UR ⊗ Uℓ, P2 ⊗ UR ⊗ Uℓ) (9)

≤ (ε − ρ) + ∆(Q̂2, P2) (10)

≤ ε − 1
2ρ. (11)

In (10) we used the uniformity property of F . In (11) we applied Lemma 7. It follows that

∆(F ∗P, P2 ⊗ UR ⊗ Uℓ) ≤ ε. �

Compared to the proof of Theorem 1 there is one extra ingredient: the extra triangle inequality
required to handle the distance between the marginals P2 and Q̂2.

3.1 Extractable randomness in the unconditional case

3.1.1 Comparison of Theorem 1 with prior results

• The smooth Rényi entropy of order 2 (Hρ,strict
2 ) is larger than the smooth min-entropy

(Hρ,strict
∞ ) that features in (1). Fig. 1 shows for a simple example distribution that the

difference can be several bits.

• The smoothening ‘ penalty’ paid in the logarithm term is less severe than the −2 log(ε−
ρ) penalty in (1), as is shown in Fig. 2. The difference is −2 log(ε − ρ) + log ε(ε − ρ) =
− log(1 − ρ/ε), which can amount to several bits in practice.

For low-entropy sources, the relative improvement due to these two differences can be sub-
stantial.

smooth min-entropy

smooth Renyi order 2

k=10; Β=7; s=16

0.02 0.04 0.06 0.08 0.10
Ρ

7.5

8.0

8.5

9.0

9.5

10.0

ðbits

smooth min-entropy

smooth Renyi order 2

k = 20; Β = 7; s = 4096

0.005 0.010 0.015 0.020 0.025
Ρ

17.5

18.0

18.5

19.0

19.5

20.0

ðbits

Figure 1: Comparison of H
ρ,strict
∞ (X) and H

ρ,strict
2 (X) in a toy example: X ∈ {0, 1}k, s ele-

ments have probability p1 = 2−k(1+β), and the remaining 2k −s elements all have probability
p2 = (1 − sp1)/(2

k − s).
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1
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Figure 2: Comparison of the penalty terms in the unconditional case.

3.1.2 Effect of different smoothening definitions

What changes when another version of smooth entropy is considered? The two smoothening-
related parts of the proof are the use of the un-normalized version of the leftover hash lemma
(Lemma 4), and the final step (6), where the statistical distance between Q and P enters. Let

us first consider the loosely bounded H
ρ,loose
2 (P). Here, just as in the ‘strict’ case, the norm of

Q̂ is 1− ρ, and ∆(P, Q̂) is 1
2ρ. Hence, in terms of H

ρ,loose we get exactly the same statements
as in Theorem 1.

Next we consider the ‘normalized’ H
ρ,norm
2 . Now we have to use α = 0 in Lemma 4 since

Q̂ is normalized. Furthermore we have ∆(P, Q̂) ≤ ρ from definition 11 as opposed to 1
2ρ in

the other two cases. Following all the steps of the above proof yields the following result.

ℓε
ext(X) ≥ max

ρ∈[0,ε)

[
H

ρ,norm
2 (P) + 2 − 2 log

1

ε − ρ

]
. (12)

How does this compare to Theorem 1? For most4 distributions P, the smooth entropies
H

ρ,norm
2 (P) and H

ρ,strict
2 (P) will be roughly the same, since both definitions of smoothening

allow one to remove an amount ρ from the highest probabilities P(x). The logarithmic penalty
term of (12), however, is more severe: log 1

(ε−ρ)2 ≥ log 1
ε(ε−ρ) . Hence Theorem 1 gives a sharper

bound.

3.2 Extractable randomness in the conditional case

3.2.1 Comparison of Theorem 2 with prior results

• The expression H̃
ρ,strict
2(1|2) (P) is larger than H

ρ,strict
∞(1|2)(P) (see Lemma 8) for two reasons. (a)

Rényi entropy of order 2 is larger than min-entropy (see Fig. 1); (b) taking the average
over y is more favorable than taking the worst-case y.

• The factor
√

1 − ρ gives a slight improvement over (1) by reducing the penalty term.
In fact, this factor was already present in an expression for the distance between mixed
quantum states in [13] (Corollary 5.6.1 on page 88), but the consequences for extractable

4As long as P is not too close to uniform.
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randomness were never explicitly stated. In practice ρ is so small that
√

1 − ρ ≈ 1, i.e.
the improvement is negligible.

3.2.2 Effect of different smoothening definitions

We look what changes occur in the proof of Theorem 2 when the ‘strict’ smoothening is
replaced by another type. In the ‘loosely’ bounded version nothing changes, since Q̂ will
be the same (i.e. an amount ρ removed from the highest peaks), and ∆(P2, Q̂2) as well as
∆(P, Q̂) remain unchanged.

In the ‘normalized’ version, Lemma 5 must be used with β = 0, which is a slight disad-
vantage. The distances ∆(P2, Q̂2) and ∆(P, Q̂) are doubled from 1

2ρ to ρ, which is a strong
disadvantage. This yields the following result.

Theorem 3 Let P be a probability measure on X × Y, and (X,Y ) ∼ P. Let ε > 0. Then

ℓε
ext(X|Y ) ≥ max

ρ∈[0,ε)

[
H̃

ρ,norm
2(1|2) (P) + 2 − 2 log

1

ε − 2ρ

]
.

How does this compare to Theorem 2? As in the unconditional case, for most distributions

P it will hold that H̃
ρ,norm
2(1|2) (P) ≈ H̃

ρ,strict
2(1|2) (P). The penalty term is larger, since 1

ε−2ρ ≥
√

1−ρ
ε−ρ .

Hence Theorem 2 gives a sharper bound.
It must be remarked, however, that Eq. 12 and Theorem 3 can be useful in contexts where

normalization must be strictly adhered to. For instance, it regularly occurs that a distribution
Q is not exactly known, but that is guaranteed to be at most ρ-distant from some distribution
P with known properties. Bridging the gap from Q to P can be done by ‘smoothening’, but
only if the normalized version of Def. 11 is applied.

4 Reduction of storage requirements by using almost universal

instead of universal hash functions

An important practical consideration for implementing a randomness extractor is the available
nonvolatile memory in a device. As mentioned in Section 1.1, the information reconciliation
step requires storing the helper data. Furthermore, the privacy amplification step also needs
storage space. This may not be immediately obvious from the previous sections. In this step
the device needs an implementation of an appropriate hash function. The proofs of Theorems
1 and 2 require the use of a universal family of hash functions mapping an input x ∈ X to a
smaller target space T . As can be seen in Def. 18 (page 7), these hash functions are labeled
by a random variable R ∈ R; the value of R needs to be stored in the enrolment phase. Both
the helper data and the R value are ‘unique’ in the sense that they are different for each
instance of a source and for each enrolment. Hence these pieces of data are preferably stored
in flash or eeprom memory. In resource-constrained devices this type of memory is expensive.
Typical constructions of a universal family of hash functions require that log |R| is (almost)
as large as log |X |. For instance, the construction of Example 8.39 in [16] requires

#bits = log |R| = log |X | − log |T |. (13)

For highly non-uniform sources X this is prohibitive.

13



It is possible to save on nonvolatile memory by relaxing the constraints on the hash
function: By allowing small deviations from perfect universality, it becomes possible to have
a tradeoff between the quality of the privacy amplification and the space needed to store R.
Def. 19 introduces η-almost universal families of hash functions.5 There are constructions [16]
of such hash functions , with η = (1 + δ)/|T |, requiring only

log |R| = O
(

log |T | + log
log |X |
log |T | + log

1

δ

)
. (14)

Comparing (14) to (13) we see that the dependence on |X | has changed from log |X | to
log log |X |, which is much smaller. The incurred penalty log(1/δ) is manageable.

Example: Consider a case where X = {0, 1}1024 and T = {0, 1}128. For universality we
need log |R| = 896 bits of storage, while for almost universality with δ = 2−16 we only need
approximately 147 bits.

Finally we show that the reduced quality of the privacy amplification due to a finite δ
does not lead to significant worsening of the extractable randomness.

Theorem 4 Let ε ≥ 0 be a constant. Let X ∼ P be a random variable on X . Let {Φr}r∈R be
an η-almost universal family of hash functions from X to {0, 1}ℓ, with η = (1 + δ)2−ℓ. Then
the amount of randomness that can be extracted from X using this family of hash functions
is bounded from below by

ℓε
ext(X) ≥ max

ρ∈[0,ε−δ/[4ε])

[
H

ρ,strict
2 (P) + 2 − log

1

ε(ε − ρ) − δ/4

]
.

Proof: Same as for Theorem 1, but without setting δ = 0.

Theorem 5 Let ε ≥ 0 be a constant. Let (X,Y ) ∼ P be random variables on X and Y
respectively. Let {Φr}r∈R be an η-almost universal family of hash functions from X to {0, 1}ℓ,
with η = (1+δ)2−ℓ. Then the amount of randomness that can be extracted from X, conditioned
on Y , using this family of hash functions is bounded from below by

ℓε
ext(X|Y ) ≥ max

ρ∈[0,ε−
√

δ/2)

[
H̃

ρ,strict
2(1|2) (P) + 2 − log

1

(ε − ρ)2 − δ/4

]
.

Proof: Same as for Theorem 2, but without setting δ = 0.
The effect of nonzero δ on the extractable randomness is negligible as long as δ ≪ ε2.

5 Summary

We have improved the known lower bound on the extractable entropy from non-uniform
sources in the unconditional case (Theorem 1) and in the conditional case (Theorem 2). In
the unconditional case, the improvement stems from using H2 instead of H∞ and from using an
un-normalized version of the leftover hash lemma. In the unconditional case, the improvement
comes from using the smooth average conditional Rényi entropy H̃

ρ,strict
2(1|2) , which is the best

match to the entities appearing in the leftover hash lemma.

5Exact univerality occurs at η = 1/|T |.
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We have investigated three of the definitions of smoothening with respect to their impact
on the extractable entropy bounds. It turns out that the two un-normalized versions are
equivalent in this respect, and yield a sharper bound than the normalized version.

We have studied the amount of nonvolatile memory that is needed to store the random
label (R) of the hash functions employed in privacy amplification. A significant reduction
is known to be achieved (log |X | to log log |X |) by switching from a universal family of hash
functions to an η-almost universal family. We have shown that the penalty paid in the
extractable randomness can be made vanishingly small.
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A Proof of Lemma 4

This proof follows the approach in [16], but for an un-normalized distribution Q. We use
Lemma 3, replacing Q in the lemma by f∗Q and Z by R× {0, 1}ℓ. We have to compute the
collision probability c,

c =
∑

r∈R

∑

t∈{0,1}ℓ
[ (f∗Q)(r, t) ]2 =

∑

r∈R

∑

t∈{0,1}ℓ


 1

|R|
∑

x∈X :f(r,x)=t

Q(x)




2

. (15)

We introduce the notation 〈A〉, for some predicate A, to denote 1 if A is true and 0 if A is
false. This allows us to write

c = |R|−2
∑

x,x′∈X
Q(x)Q(x′)

∑

r∈R

∑

t∈{0,1}ℓ
〈f(r, x) = t〉〈f(r, x′) = t〉

=
1

|R|
∑

x,x′∈X
Q(x)Q(x′) Prob

[
f(R,x) = f(R,x′)

]
. (16)
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In the last expression the probability is with respect to the random variable R, while x and
x′ are fixed. Next we split the x, x′ summation into a part where x′ = x and a part where
x′ 6= x, and we apply the defining property of the almost universal hash function f .

c =
1

|R|



∑

x∈X
Q2(x) +

∑

x,x′∈X :x′ 6=x

Q(x)Q(x′)Prob
[
f(R,x) = f(R,x′)

]



≤ 1

|R|



∑

x∈X
Q2(x) +

∑

x,x′∈X :x′ 6=x

Q(x)Q(x′)
1 + δ

2ℓ




=
1

|R × {0, 1}ℓ|

(
2ℓ
∑

x∈X
Q2(x) + (1 + δ)

[
(1 − α)2 −

∑

x∈X
Q2(x)

])

≤ 1

|R × {0, 1}ℓ|

(
2ℓ
∑

x∈X
Q2(x) + (1 − α)2 + δ

)
. (17)

Substitution of (17) into Lemma 3 yields Lemma 4. �

B Proof of Lemma 5

We begin by introducing the notation Q1|y ∈ PX , where Q1|y(x) := Q1|2(x, y) and
∑

x∈X Q1|y(x) =
1 for all y. The statistical distance in (5) can be expressed as

∆(F ∗Q, Q2 ⊗ UR ⊗ Uℓ) =
∑

y∈Y
Q2(y)∆(F ∗Q1|y, UR ⊗ Uℓ). (18)

We apply Lemma 4 (with α = 0, since Q1|y is normalized) to get

∆(F ∗Q1|y, UR ⊗ Uℓ) ≤ 1
2

√
δ + 2ℓ−H2(Q1|y). (19)

We substitute this into (18) and then apply Jensen’s inequality for concave functions (Lemma 1).
This yields

∆(F ∗Q, Q2 ⊗ UR ⊗ Uℓ) ≤ 1
2

√∑

y∈Y
Q2(y)

√∑

y∈Y
Q2(y)[δ + 2ℓ−H2(Q1|y)]

= 1
2

√
1 − β

√
δ(1 − β) + 2ℓ−eH2(1|2)(Q). (20)

Lemma 5 follows. �
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