
Non-Malleable Obfuscation

Ran Canetti∗ Mayank Varia†

Abstract

Existing definitions of program obfuscation do not rule out malleability attacks, where an adversary
that sees an obfuscated program is able to generate another (potentially obfuscated) program that is
related to the original one in some way.

We formulate two natural flavors of non-malleability requirements for program obfuscation, and
show that they are incomparable in general. We also construct non-malleable obfuscators of both flavors
for some program families of interest. Some of our constructions are in the Random Oracle model,
whereas another one is in the common reference string model. We also define the notion of verifiable
obfuscation which is of independent interest.
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1 Introduction

The problem of program obfuscation has recently received a lot of attention in cryptography. Informally, the
goal of obfuscation is to transform a program in such a way that its code becomes unintelligible while its
functionality remains the same. This intuitive idea was formalized in [1] using a simulation-based definition.

In [1] it is shown that there do not exist generic algorithms that obfuscate any program family. These
results are extended in [7, 8]. However, positive results have been shown for some program families of
interest, such as the family of “point circuits,” which accept a single input string (that is explicitly given
in the circuit description) and reject all other inputs [2, 5, 12, 17]. These constructions can be generalized
to form obfuscators for two more families: “multi-point circuits,” which accept a constant number of input
strings, and “point circuits with multibit output,” which store a hidden string that is revealed only for a single
input value [4]. Finally, a slightly different definition of obfuscation has been formulated [9, 10] in which it
is possible to obfuscate the family of re-encryption programs [10].

However, the question of malleability attacks on obfuscations has not been addressed. In fact, many of
the above constructions are malleable. We provide an overview of the definition of obfuscation and then
describe its malleability concerns.

Virtual black-box obfuscation. At a high level, the concept of “obfuscating” a program is to produce
a new program with the same functionality but with “garbled” code. Of course, it is impossible for the
garbled code to hide all useful information, because at the very least one can run the program and observe
its input-output behavior. In this way, access to the code of a program must be at least as useful as access to
an oracle for the program. At a high level, obfuscation ensures the converse: that access to the code of an
obfuscated program is no more useful than access to the oracle.

The formalization of this idea provided by [1], called the virtual black-box property, considers two
different worlds. In the real world, an efficient adversary has access to the code of an obfuscated program,
and attempts to learn a single-bit predicate about the underlying program. Now consider an imaginary world
in which the code of an obfuscated program is not provided, but rather only oracle access to the program is
provided. Obfuscation ensures that there exists an efficient algorithm known as a simulator that can learn
the same predicate in the imaginary world that the adversary learns in the real world.

Malleability concerns. If an adversary has access to obfuscated code, obfuscation guarantees that she
cannot “understand” the underlying program. However, suppose the adversary instead uses the obfuscated
code to create a new program in such a way that the she controls the relationship between the input-output
functionality of the two programs.

Intuitively, one might expect that virtual black-box obfuscation already prevents malleability attacks.
The simulator only has oracle access to the obfuscated code, so any program that it makes can only depend
on the input-output functionality of the obfuscated code at a polynomial number of locations. Therefore, ob-
fuscation should guarantee that the adversary is also restricted to these trivial malleability attacks. However,
the virtual black-box definition in [1] does not carry this guarantee. Upon close inspection, the problem is
that the virtual black-box definition only considers adversaries and simulators that output a single bit, not
adversaries and simulators that output programs.

A naïve solution to this problem is to extend the virtual black-box definition to hold even when the
adversary and simulator output long strings. However, in this case obfuscation becomes unrealizable for
any family of interest: given the adversary that outputs its input, a corresponding simulator has oracle
access to a program and needs to write the code for such a program, which is usually impossible.

In this paper, we demonstrate two different ways to incorporate non-malleability guarantees into obfus-
cation. Both non-malleability definitions extend the virtual black-box definition by allowing the adversary
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and simulator to produce multiple bit strings, but only in a restricted manner. There are many subtleties
involved in constructing a proper definition, such as deciding the appropriate restrictions to impose on the
adversary and simulator, and creating relations to test the similarities between the adversary’s input and
output programs. We defer treatment of these important details to Sections 3.1 and 3.2. Here, we motivate
and describe the two definitions at a high level.

Functional non-malleability. Imagine that Alice, Bob, and Charles are three graduate students in an office
that receives a new computer. The department’s network administrator wishes to configure the computer
to allow the grad students root access to the computer. The administrator receives the students’ desired
passwords, and she needs to write a login program that accepts these three passwords and rejects all other
inputs. The administrator knows that she has to be careful in designing the login program because the
students will have root access to the computer so they can read the program code. As a result, she forms
the login program using an obfuscator for the family of three-point circuits, which ensures that a dictionary
attack is the best that the graduate students can do to learn their officemates’ passwords.

However, obfuscation does not ally all of the administrator’s fears, because the students will have root
access to the computer so they can alter the login program as well. The administrator would like to prevent
tampering of the login program, but the virtual black-box definition does not provide this guarantee. For
instance, suppose Alice wants to remove access to the computer for exactly one of her officemates. There
exist obfuscators of the three-point circuit [4] such that Alice can always succeed in this attack. (We describe
one such obfuscator in the Constructions section below.)

Intuitively, the goal of obfuscation is to turn a program into a “black box,” so the only predicates that
Alice can learn from the program are those she could learn from a black box. We extend this intuition to
cover modifications as well. We say that an obfuscator is functionally non-malleable if the only programs
that Alice can create given obfuscated code are the programs she could create given black-box access to the
obfuscated code.

This definition provides a guarantee on the possible attacks Alice can apply. For instance, if Alice
only has black-box access to the login program, then there is no way for her to remove exactly one of her
officemates with certainty. In this sense, functional non-malleability provides stronger security for Bob and
Charles because it protects all aspects of their access to the computer, whereas the virtual black-box property
only protects their passwords.

We wish to define functional non-malleability using a simulation-based definition: for every adversary
that receives obfuscated code and uses it to create a new program, there exists a simulator that only has
oracle access to the obfuscated code and produces a program that is functionally equivalent to the adver-
sary’s program. However, this definition is too strong: given the trivial adversary that outputs its input, the
simulator gets oracle access to a program and needs to output the code of this program, which is usually
impossible. But it is unfair to demand that the simulator do this much work. After all, the adversary’s input
is a program but the simulator’s input is just an oracle. At the very least, the adversary can output a program
that uses its input program in a black-box manner, and the simulator should have the same ability. We get
around this by allowing the program that the simulator outputs to have oracle access to the obfuscated code.

Verifiable non-malleability. Functional non-malleability is a nice property for obfuscators, but there are
some scenarios where even this does not suffice. For example, suppose that Alice wishes to play an April
fools’ prank on her officemates by altering the login program to accept their old passwords appended to the
string “Alice is great.” Alice only knows her own password, so she cannot run the obfuscator to produce
this modified program. Nevertheless, she can write the following program: “on input a string s, check that s
begins with ‘Alice is great,’ and if so, remove it from s and send the rest of the string to the administrator’s
login program.” Functional non-malleability does not prevent this prank. In fact, it is impossible to prevent
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this prank because Alice only uses the obfuscated login program in a black-box manner.
Still, this attack is not “perfect”: after Alice performs this attack, the new login program “looks” very

different from a program that the network administrator would create. As a result, we may not be able
to prevent Alice from performing her prank, but we may be able to detect Alice’s modification afterward
and restore the original program. Alice’s job is now harder, since she has to modify obfuscated code in
such a way that the change is undetectable. We say that an obfuscator is verifiably non-malleable if the only
programs Alice can create that pass the verification procedure are the programs she could create given black-
box access to the obfuscated code. This approach gives us hope to detect attacks that we cannot prevent,
although it requires a stronger model in which a verification procedure routinely audits the program.

In the setting of our example, one simple way to achieve non-malleability is for the network adminis-
trator to digitally sign every program she makes, and for the verification procedure to check the validity of
the signature attached to an obfuscated program before running it. By the existential unforgeability of the
signature scheme, Alice cannot make any modifications, so the non-malleability goal is achieved.

However, this solution requires that the verification procedure can find and store the network administra-
tor’s verification key, which may not be practical. We want the non-malleability guarantee to be an intrinsic
property of the obfuscation, without relying on an external public key infrastructure. As a result, in this
paper we consider “public” verifiers that depend only on the obfuscation algorithm, and not on the party
performing the obfuscation. Specifically, an algorithm V is a verifier for a given obfuscator if V accepts
programs generated by the obfuscator. We stress that V does not receive any party-specific information
(such as public keys), so it does not depend on the person that runs the obfuscator.

Verifiability has interesting applications in and of itself, as we describe in the Discussion section below,
but in this paper we only use it to create a simulation-based definition of verifiable non-malleability. The
definition guarantees that an adversary cannot maul obfuscated code into a new program that passes the
verification test unless there exists a simulator that can perform the same attack given only oracle access
to the obfuscated code. (Note that the adversary must create a new program and not simply output the
obfuscated code it receives.) Because we hope to detect attacks that operate in a black-box manner (which
we could not hope to prevent in the functional setting), we no longer give the simulator the extra help that we
gave it in the definition of functional non-malleability. Instead, the simulator must output a fully-functional
program that does not have an oracle.

Comparison. We show that both forms of non-malleability imply the virtual black-box property. Intu-
itively, this relationship holds because an adversary that outputs programs should easily be able to encode
a single bit of information. As a result, all known impossibility results regarding the virtual black-box
property continue to hold for both types of non-malleability [1, 7].

Additionally, we compare the two flavors of non-malleability. The goal of functional non-malleability
is to prevent as many malleability attacks as possible, whereas the goal of verifiable non-malleability is
to detect as many attacks as possible. Intuitively, these goals are incomparable: the verifiable definition
is stronger because we can detect more attacks than we can prevent, but on the other hand it is weaker
because the model requires its participants to understand and apply the verification algorithm. We justify
this intuition by showing that in the random oracle model, the two definitions of non-malleability are indeed
incomparable.

Constructions. In the random oracle model, we show that the obfuscator for point circuits in [12] satisfies
both functional and verifiable non-malleability. Next, we study the family of multi-point circuits, which
accept a constant number of inputs. One idea to obfuscate the program that accepts values x1, . . . , xm is as
follows:
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1. Use several instantiations of a single point circuit obfuscator in order to create obfuscated programs
P1, P2, . . ., Pm, where each Pi accepts only the value xi

2. Create the program P that contains P1 through Pm as subroutines, and on input x, iteratively feeds x
into the Pi and accepts if any one of these programs accept.

This methodology is known as concatenation, and it is shown in [4] that concatenation preserves obfusca-
tion. That is, given any obfuscator for the family of single-point circuits, concatenation produces an obfus-
cator for the family of multi-point circuits. However, concatenation does not preserve non-malleability. The
program P stores the subroutines P1 through Pm in a readily identifiable way, so an adversary can modify
one accepted point by changing one of the subroutines. This is true even if the obfuscator for the family of
single point circuits is non-malleable.

In the verifiable setting, we resolve the problem with concatenation by using a self-signing technique
to ensure that the subroutines are not modified. The verification algorithm associated with this construction
runs the verification algorithm for the signature scheme. This approach does not suffice in the functional
setting, where the self-signing technique is useless because there is no guarantee that anybody checks the
signature. Instead, we “glue” the acceptable points together in such a way that any attempt to change the
obfuscated code destroys information on all of the points simultaneously.

We also give a construction that does not use random oracles. Instead, it uses the common reference
string model, in which a sequence of bits is chosen uniformly at random and published in a public location
that all participants can access. (Note that this is different from a public key infrastructure because the CRS
is not tied to the specific identity of the party performing the obfuscation.) We construct a verifiably non-
malleable obfuscation for the family of point circuits by providing any (potentially malleable) obfuscation
along with a non-malleable NIZK proof of knowledge [14, 15] that the obfuscator knows the point that is
accepted.

Informally, a non-malleable NIZK proof of knowledge considers an adversary that can request multiple
proofs for statements of its choice and then produces a new proof. The non-malleability guarantee requires
that the adversary knows a witness to its constructed proof, so it cannot simply modify the old proofs to
prove a new statement.

Intuitively, our construction is verifiably non-malleable because an adversary can only make a program
that passes the verification test if she knows its functionality, so she cannot produce a program that is related
to a given obfuscated point circuit or else she would learn information about the obfuscated circuit, which is
impossible by the virtual black-box property. However, the actual proof turns out to be delicate. Using proof
techniques from [2], we achieve a somewhat weaker variant of verifiable non-malleability. Specifically, we
show that for a large class of relations, no adversary can perform a modification that satisfies the relation
with noticeable probability.

Discussion on verifiable obfuscation. The concept of verifiable obfuscation is useful even in situations
where malleability is not a concern. For example, suppose you create a new computer program that solves
an important problem. You wish to profit from your research by selling this program to others, but you also
want to protect the algorithm that you discovered. Therefore, you sell an obfuscated version of the program
to your customers. This protects your intellectual property, but another problem has presented itself. Your
customers do not wish to install the obfuscated program on their computers because they no longer have any
guarantees about what this program does. For all they know, the program could contain a virus, and because
the program is obfuscated there is no hope for a virus checker to detect the presence of a virus. Hence, you
need a verification algorithm that proves to your customers that you are selling them a program from the
proper family.
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Future work. First, the constructions in this paper use the random oracle model or common reference
string model. It remains an open question to construct a non-malleable obfuscator (of either flavor) without
trusted setup.

Second, we provide a verifiably non-malleable obfuscation of single point circuits in the common refer-
ence string model for a large class of relations. Unfortunately, extending this construction to the multi-point
setting is insufficient, as it only succeeds for a small class of relations. It remains open to find a better
construction in the multi-point setting.

Organization. In Section 2, we provide an overview of virtual black-box obfuscation [1, 7]. In Section
3, we provide rigorous definitions of the two notions of non-malleability in the standard model, and then
extend the definitions to the random oracle and common reference string models. In Sections 4 and 5, we
present non-malleable obfuscators of both flavors for the family of multi-point circuits.

2 Obfuscation

In [1], [7], and other works, an obfuscator is defined as a compiler that takes a circuit as input and returns
another circuit. The output circuit should be equivalent in functionality to the input circuit, but the output
circuit should be unintelligible in the sense that any information that can be obtained from the output cir-
cuit can also be obtained with oracle access to the circuit. In this paper we will be mainly interested in
obfuscation with dependent auxiliary information, as defined in [7].

Definition 1 (Obfuscation with respect to dependent auxiliary information). Let C = {Cn} be a family
of polynomial-size circuits, where Cn denotes all circuits of input length n. A probabilistic polynomial time
algorithm O is an obfuscator for the family C operating over randomness R = {Rn} if the following three
conditions are met.

• Approximate functionality: There exists a negligible function ε such that for every n, every circuit
C ∈ Cn, and for all x ∈ {0, 1}n,

Pr [r ← Rn, D ← O(C, r) : C(x) = D(x)] > 1− ε(n).

If this probability is always 1, then we say that O has exact functionality.

• Polynomial slowdown: There exists a polynomial p such that for every n, circuit C ∈ Cn, and ran-
domness r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).

• Virtual black-box: For every polynomial q and every PPT adversary A, there exists a PPT simulator
S such that for all sufficiently large n, for all C ∈ Cn, and for all auxiliary information z ∈ {0, 1}∗,∣∣Pr [A(O(C), z) = 1]− Pr

[
SC(1n, z) = 1

]∣∣ <
1

q(n)
,

where the first probability is taken over the coin tosses of A andO, and the second probability is taken
over the coin tosses of S. Furthermore, we require that A and S operate in time polynomial in the
length of their first input.

We define obfuscation without auxiliary information in the same manner, except that the auxiliary in-
formation is removed from the virtual black-box definition. Unless otherwise specified, in this paper we
assume that obfuscations are secure with respect to dependent auxiliary information.
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3 Definitions

In this section, we rigorously define one of the the two variants of non-malleable obfuscation.

3.1 Functionally non-malleable obfuscation

We obtain functionally non-malleable obfuscation by generalizing the virtual black-box definition to allow
the adversary and simulator to output programs instead of bits. Intuitively, a functionally non-malleable
obfuscation has the property that an adversary, given the obfuscated code to a program, can only make a
related program if it could have already done so given only black-box access to the program.

This is problematic in general, because the simulator cannot emulate all programs that the adversary can
produce. For example, consider the adversary that outputs its input. Then, the simulator has oracle access to
a circuit and has to produce a program that is functionally equivalent to its oracle. This is impossible unless
the circuit is learnable with oracle queries, in which case the entire concept of obfuscation is uninteresting.
To make the definition meaningful, we allow the program that the simulator produces to make oracle queries
to the original circuit as well.

To capture the effectiveness of an adversary’s modification, we introduce a polynomial-time computable
relation E that receives the adversary’s input program and output program. The adversary succeeds in the
modification if E accepts it. The definition of non-malleability ensures that for every relation E, the simu-
lator can perform a successful modification with the approximately the same probability as the adversary.

One technical concern about the relation E is the manner in which it receives the adversary’s input and
output programs. The goal of functional non-malleability is to compare the functionality of these programs,
and not their underlying code, so E should operate in the same manner when given functionally equivalent
inputs. Our definition resolves this issue by giving the relation a “canonical” member of the family that
is equivalent to the adversary’s output program. (See the Discussion section below for more detail on this
issue.)

Additionally, in many situations, the adversary knows some a-priori useful information on the obfuscated
program, so we allow dependent auxiliary information in the definition of non-malleability. For instance,
in the motivating example from the Introduction in which Alice wishes to modify a login program, she
possesses the knowledge of her own password.

Throughout this work, the adversaries and simulators are assumed to be non-uniform.

Definition 2 (Functional equivalence). We say that two circuits C1 and C2 are functionally equivalent, and
write C1 ≡ C2, if for all inputs x it holds that C1(x) = C2(x).

Definition 3 (Functionally non-malleable obfuscation). Let C and D be families of circuits, and let O
be a PPT algorithm. We say that O is an obfuscator for C that is functionally non-malleable over D if the
following three conditions hold:

• Almost exact functionality: There exists a negligible function ε such that for every n and every circuit
C ∈ Cn, Pr [r ← Rn : O(C, r) ≡ C] > 1− ε(n).

• Polynomial slowdown: There exists a polynomial p such that for every n, circuit C ∈ Cn, and ran-
domness r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).

• Functional non-malleability: for every polynomial ρ and PPT adversary A, there exists a PPT simula-
tor S such that for all sufficiently large n, for all circuits C ∈ Cn, for all polynomial time computable
relations E : Cn ×Dn → {0, 1} (that may depend on the circuit C), and for all auxiliary information
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z ∈ {0, 1}∗,

|Pr [P ← A(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1]

− Pr
[
Q← SC(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and E(C,D) = 1

]
| < 1

ρ(n)
,

where the probabilities are over the coin tosses of A, O, and S. We require that A and S run in time
polynomial in the length of their first inputs.

If D = C, we simply say that O is a functionally non-malleable obfuscator for C.

3.1.1 Discussion.

We make several remarks about this definition.

Almost exact functionality. The functionality requirement here is stronger than the one used in Definition
1 above. Approximate functionality only guarantees that an obfuscated program O(C, r) is “close” in
functionality to C. However, O(C, r) might never have the same functionality as C does (for any choice of
r). By contrast, almost exact functionality requires that the two circuits have identical functionality for most
choices of r.

We remark that most of the constructions in this paper satisfy exact functionality.

Bivariate relation. In this definition, the bivariate relation E is allowed to depend on the choice of circuit
C ∈ Cn. Thus, restricting attention to univariate relations E(D) results in an equivalent definition. We use
a bivariate relation only to emphasize the fact that E depends on both C and D.

Possible definitions for E. As mentioned above, an important feature of the definition is that E only
depends on the functionality of the adversary’s output P and simulator’s output QC , and not on the code of
these circuits. We found three possible ways to enforce this condition on E.

First, we can constrain E to receive only oracle access to the program P or QC . As a result, it follows
immediately that E only depends on the functionality of these two programs, and not on their underlying
code. Unfortunately, this definition is too weak, because there are many natural predicates that cannot be
tested by relations of this type.

For instance, consider the family of point circuits, where Iw is the circuit that accepts only the string
w. Suppose the adversary is given an obfuscation of the point circuit Ix and wishes to create a new point
circuit Iy such that the first bit of x and y are equal. No polynomial-time relation E (even ones that know x,
since E can depend on x) can test the adversary’s probability of success given only oracle access to Iy. We
believe that relations of this type are meaningful, and therefore we want a definition that can test for them.

Second, we can give the relation E full access to the code of P or QC , but restrict our attention to
relations that have identical output when given two functionally equivalent programs. Specifically, we only
consider relations E such that given any programs C ∈ Cn, D ∈ Dn, and P , P ′ such that D ≡ P ≡ P ′, it
follows that E(C,P ) = E(C,P ′). This definition does allow E access to the code of its input programs.
The advantage of this definition is that E finally gets access to the code of the programs. The disadvantage
is that the condition we impose on relations is very restrictive. As a result, it is still impossible to compute
many relations, such as the one described in the previous paragraph.

Specifically, the virtual black-box definition guarantees that any program E(Ix,O(Iy)) cannot compute
whether x and y have the same first bit with probability greater than 1

2 . Thus, the condition that we impose
on E is that it has the same probability of success even when it is given Ix and Iy as inputs, in which case E
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has enough information to perform the computation with probability 1 but has to fail 1
2 of the time anyway

in order to be consistent with the condition.
Third, we can allow all polynomial-time relations E, but instead of providing the code of P or QC as

input to E, we provide the code of a functionally equivalent member in Dn. This is the option we use in
Definition 3 above, because it clearly satisfies the requirement that E only depend on the functionality of
the adversary and simulator’s output, and it is a stronger definition that can test for many relations that the
previous two definitions cannot. For these reasons, we choose to use relations of this type in the definition
of functional non-malleability.

One technical point to keep in mind is that the relation E takes the description of circuits in Cn and Dn

as input. As a result, this definition is dependent upon the representation of the circuits in these families,
and not just the functionality of these circuits. Therefore, we should choose a representation of the circuit
families that enables relations to extract important information easily from the description of a circuit.

As a result, we define the families of multi-point circuits as follows. Given distinct w1, w2, . . . , wm ∈
{0, 1}n, let I{w1,...,wm} be the circuit that stores w1, . . . , wm in some canonical, explicit manner, and on
input x returns 1 if and only if x = wi for some i. In particular, relations can extract the strings w1, . . . , wm

from the description of I{w1,...,wm} in polynomial time. Then, let Pm
n be the set of all m-point circuits on

n bits, and let Pm = {Pm
n }n∈N be the family of m-point circuits. In particular, P1 is the family of point

circuits.

Output family D. According to our definition, an adversary succeeds only if it outputs a circuit that is
equivalent to a circuit in the family D. The most natural family to choose is D = C, but we allow D to be
different from C in order to consider a wider range of adversaries. For instance, maybe C is the family of
point circuits, but we are concerned with adversaries that produce two-point circuits as output as well. The
definition of functional non-malleability allows us to form a larger family D to acknowledge this.

Of course, there is no reason to stop there: we may also be concerned with an adversary that produces a
three-point circuit, or a four-point circuit, or any function for that matter. In fact, the presence of the circuit
family D in the definition seems restrictive. It would be nice if our definition simultaneously covered all
possible outputs of the adversary, and not just those in a specific family. In other words, we would like to
have an obfuscator that is functionally non-malleable when D is the family of all circuits.

Unfortunately, this is not possible for many circuit families of interest, such as the case where C is the
family of point circuits. Intuitively, the family of all circuits is so big that it allows A to output the obfuscated
code that it receives as input, which the simulator cannot do.

Theorem 4. Let Dn is the set of all circuits with input length n and binary output, and let D = {Dn}. Let
C be a circuit family with the following two properties:

1. C is not learnable, so for every simulator S, there exists a circuit C ∈ Cn such that the circuit S, with
only oracle access to C, cannot output the description of a circuit that is equivalent in functionality
to C except with negligible probability.

2. Given a circuit C ∈ Cn and a circuit P that is equivalent to a member of Cn, one can test in polynomial
time whether C ≡ P .

Then, there are no obfuscators O for C that are functionally non-malleable over D.

Proof. Suppose that there exists an obfuscatorO for C that is functionally non-malleable overD. Informally,
we will derive a contradiction by creating an adversary that takes its input program O(C), views it as a
string s, and encodes the string in a circuit D ∈ Dn in a readily identifiable way. By unlearnability, the
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simulator cannot construct the code of any program that is functionally equivalent to C, which establishes
the separation.

One simple choice is to make the circuit D = Is, that is, D is the point circuit that accepts only the string
s. Unfortunately, this naive idea does not work due to a technical constraint, namely that D is supposed to
be a circuit inDn, and hence D should have n bits of input. However, the circuit Is requires |s| bits of input,
which is usually greater than n. Instead, we form a circuit D ∈ Dn whose truth table is determined by s in
such a way that s can be recovered by performing a small number of executions of D.

Given a circuit C ∈ Cn and the empty auxiliary input z = ∅, let A be the adversary that takes its input
program P = O(C) and views it as a binary string s. Then, A appends a termination character ⊥ to s, so s
is now a string with a ternary alphabet. Next, A applies a standard ternary-to-binary encoding of the string
s into a new string s′. Now, A forms the circuit D ∈ Dn whose truth table equals the string s′ concatenated
with the all 0s string. Note that the truth table for D is 2n bits long, whereas the length of the string s′ is
only polynomially large in n, so for sufficiently large n the entire string s′ can be encoded into the truth
table for D. Finally, A outputs the circuit D.

Let E(C,D) be the relation that does the following:

1. It queries D on enough input values to recover the string s′, stopping once it views the encoded version
of the ⊥ symbol.

2. It decodes s′ into the string s and views it as the binary representation of a program. In this way, E
has recovered the program P .

3. Return 1 if and only if P is equivalent to its first input C, which by assumption it can test in polynomial
time.

Note that the adversary always encodes a circuit that is equivalent in functionality to C, so it passes the rela-
tion test with probability 1. On the other hand, the circuit family C is not learnable, so for every simulator S,
there exists a circuit C ∈ Cn such that S passes the relation test with only negligible probability. Therefore,
A does not have a satisfactory simulator, so the functional non-malleability property is not true. Therefore,
O is not an obfuscator for C that is functionally non-malleable over D, as desired.

The key step in this proof is showing a bijection between integers s and members of the family of all
circuits. Because the integer s is less than t = maxC∈Cn{2p(|C|)}, the impossibility result extends to any
family D such that every Dn has an efficient ordering of at least t circuits (where p is the polynomial from
the polynomial slowdown property). If C is a family of polynomial-size circuits, then t � 22n

so the
impossibility result extends to families D that are much smaller than the family of all circuits.

Comparison to virtual black-box obfuscation. Now that we have introduced a new definition of ob-
fuscation, it is natural to compare it to the old one. Specifically, the new definition introduces one new
requirement, the functional non-malleability property. We show that this property implies the virtual black-
box property (at least for reasonable choices of the circuit family D), which justifies our terminology of
using the word “obfuscation” in Definition 3.

This result is not clear a-priori since the notion of success for the adversary is more restricted in the
functional non-malleability definition. The result is significant, however, as it immediately implies that
all impossibility results pertaining to the virtual black-box property immediately carry over to the non-
malleability setting [1, 7].

Theorem 5. Let C and D be circuit families, and let O a PPT algorithm such that the following conditions
hold:

9



1. O is an obfuscator for C that is functionally non-malleable over D (as defined in Definition 3).

2. For sufficiently large n, at least one of the following is true:

• Dn is non-trivial, in the sense that there exist two circuits D0, D1 ∈ Dn such that D0 6≡ D1.

• Cn is trivial, in the sense that all of the circuits in Cn have the same functionality.

Then, O satisfies the virtual black-box requirement for C. As a result, O is an obfuscator for C with respect
to dependent auxiliary information (as defined in Definition 1).

The outline of the proof is rather simple. Given an adversary A with binary output, we construct a
new adversary A′ (that is not constrained to binary output) in the following manner. Let D0 and D1 be
two distinct circuits in Dn, and without loss of generality suppose that there is some input value x such
that D0(x) = 0 and D1(x) = 1. Then, A′ emulates an execution of A until it returns a bit b, upon which
A′ outputs the circuit Db. In essence, the adversary A′ uses its ability to output programs in order to
communicate a single bit of information.

By functional non-malleability, there exists a simulator S′ corresponding to A′. Now we reverse the
above procedure and form a simulator S with binary output as follows: S emulates an execution of S′

until it outputs a circuit C, and then S outputs the single bit C(x). We claim that S is a simulator for A
that satisfies the virtual black-box requirement. This seems plausible because S extracts the single bit of
information that A′ and S′ were trying to communicate. Indeed, if S′ was an “ideal” simulator that always
outputs D0 or D1 with the same probabilities that A′ does, then it is trivially easy to show that S satisfies
the virtual black-box property.

However, even though A′ always outputs one of D0 or D1, it is not true that the same must be true of S′,
so the above proof technique fails. In fact, it is not immediately clear that the output of S′ must be equivalent
to any member of Dn. Luckily, this statement turns out to be true, and it suffices to prove the theorem.

Proof. Let A be an adversary with binary output and let ρ be a polynomial. We need to construct a simulator
S for A that satisfies the virtual black-box property. We prove this statement in two cases.

First, consider all n such that Dn is non-trivial. In this case, there exist two circuits D0, D1 ∈ Dn that
do not have the same functionality. That is, there exists at least one input value x such that D0(x) 6= D1(x).
Because the outputs are not equal, they differ in at least one bit position i, and without loss of generality we
assume that D0(x) equals 0 in this bit position whereas (D1(x))i = 1.

We use A to form an adversary A′ (that is not constrained to binary output) in the following manner: A′

stores A, D0, and D1 in some readily identifiable way (by nonuniformity), and on inputO(C) and auxiliary
information z, the circuit A′ operates as follows.

1: emulate an execution of A(O(C), z) until it returns a bit b
2: return the program Db

The functional non-malleability property applied to the adversary A′ and polynomial 2ρ guarantees the
existence of a simulator S′ such that for all sufficiently large n, for all C ∈ Cn, for all auxiliary information
z ∈ {0, 1}∗, and for all PPT relations E,

|Pr
[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1

]
− Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and E(C,D) = 1

]
| < 1

2ρ(n)
. (1)

Finally, we construct a simulator S with binary output that nonuniformly stores x and i and operates as
follows, when given auxiliary information z and access to an oracle C:

1: S emulates an execution of (S′)C(1n, z) until it returns a string s
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2: if s is not the valid encoding of a circuit then
3: return 0
4: end if
5: let Q be the circuit that is represented by s
6: return the bit (QC(x))i

We now show that this simulator S satisfies the virtual black-box property.
In order to analyze this claim, we must understand the behavior of S′. Even though A′ always outputs

either D0 or D1, the simulator S′ does not have to do the same. In fact, it is not immediately clear how
often S′ outputs any member of Dn. Luckily, S′ almost always outputs a member of Dn, which we prove
by using the inequality (1) on two relations.

First, let Ẽ be the relation that nonuniformly stores x and i and operates as follows: Ẽ(C,D) returns 1
if and only if D(x)i = 1. In particular, the output of Ẽ is independent of the choice of C. Then, for all n,
all C ∈ Cn, all z ∈ {0, 1}∗,

Pr [A(O(C), z) = 1] = Pr
[
A′(O(C), z) outputs D1

]
= Pr

[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1

]
.

The first equality is an immediate consequence of the construction of A′, and the second equality follows
from the fact that A′ always outputs either D0 or D1, and of the two only D1 satisfies the relation. Using
this equality, along with the precise behavior of the relation Ẽ, functional non-malleability states that for all
sufficiently large n, for all C ∈ Cn, and for all auxiliary information z,

|Pr [A(O(C), z) = 1]

− Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 1

]
| < 1

2ρ(n)
. (2)

Second, let Ê be the relation such that Ê(C,D) = 1 if and only if D(x)i = 0. Using the same analysis
as above, it follows that

∣∣Pr [A(O(C), z) = 0]− Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 0

]∣∣ <
1

2ρ(n)
.

Because A is an adversary with binary output, Pr [A(O(C), z) = 1] + Pr [A(O(C), z) = 0] = 1. Ap-
plying the triangle inequality to the previous two inequalities, it follows that

|Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 1

]
+ Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 0

]
− 1| < 1

2ρ(n)
.

Of course, for any circuit D and input x, it is always the case that either (D(x))i = 1 or (D(x))i = 0. As a
result, the above inequality simplifies to

Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC

]
> 1− 1

2ρ(n)
.

Therefore, with very large probability, S′ outputs a valid encoding of a circuit that is equivalent to a member
of Dn.
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Finally, by the construction of S from S′, it is easy to see that

Pr
[
SC(1n, z) = 1

]
= Pr

[
Q← (S′)C(1n, z) : (QC(x))i = 1

]
.

Furthermore, we showed that Q fails to be equivalent to a member of Dn with small probability, so∣∣Pr
[
SC(1n, z) = 1

]
− Pr

[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and (D(x))i = 1

]∣∣ <
1

2ρ(n)
.

Applying the triangle inequality to this inequality and (2) yields∣∣Pr [A(O(C), z) = 1]− Pr
[
SC(1n, z) = 1

]∣∣ <
1

ρ(n)
,

so S satisfies the virtual black-box property as desired.
Now we prove the theorem for values of n such that Cn and Dn are both trivial. In this case, we claim

that for every adversary A with binary output, for every z ∈ {0, 1}∗, for sufficiently large n, and for every
C,C ′ ∈ Cn, ∣∣Pr [A(O(C), z) = 1]− Pr

[
A(O(C ′), z) = 1

]∣∣
is negligible. If this is true, then it is easy to construct a simulator S for A: the simulator simply chooses
a circuit C ∈ Cn arbitrarily, obfuscates it, and emulates an execution of A on the obfuscated circuit. It is
straightforward to check that this simulator satisfies the virtual black-box property.

Suppose for the sake of contradiction that the claim is not true. Therefore, there exist an adversary A, a
polynomial ρ, and auxiliary information z ∈ {0, 1}∗ such that for infinitely many n, there exist two circuits
C,C ′ ∈ Cn such that ∣∣Pr [A(O(C), z) = 1]− Pr

[
A(O(C ′), z) = 1

]∣∣ >
1

ρ(n)
.

Now form an adversary A′ (that is not constrained to binary output) as follows. Arbitrarily choose a
circuit D1 ∈ Dn, and let D0 be a circuit that is not equivalent to D1, and hence not equivalent to any
member of Dn. By nonuniformity, the adversary A′ stores A, D0, and D1 in some readily identifiable way.
The circuit A′ operates as follows, upon receiving O(C) and z as input:

1: emulate an execution of A(O(C), z) until it returns a bit b
2: return Db

Let Ē be the relation that always accepts. As a result,

Pr
[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
= Pr [A(O(C), z) = 1]

because D1 is equivalent to a member of Dn but D0 is not. Hence, by our assumption above, it follows that
for infinitely many n, there exist two circuits C,C ′ ∈ Cn and a polynomial ρ such that

|Pr
[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
− Pr

[
P ← A′(O(C ′), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C ′, D) = 1

]
| > 1

ρ(n)
.

However, for any simulator S′,

Pr
[
Q← (S′)C(1n) : ∃D ∈ Dn s.t. D ≡ QC and Ē(C,D) = 1

]
= Pr

[
Q← (S′)C′

(1n) : ∃D ∈ Dn s.t. D ≡ QC′
and Ē(C ′, D) = 1

]
12



information-theoretically because C and C ′ are functionally equivalent. Applying the triangle inequality to
the previous two equations, it must be the case that either

|Pr
[
P ← A′(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
− Pr

[
Q← (S′)C(1n) : ∃D ∈ Dn s.t. D ≡ QC and Ē(C,D) = 1

]
| > 1

2ρ(n)

or the same is true of C ′. As a result, S′ fails to satisfy the functional non-malleability requirement. This is
true for all possible S′, so O is not functionally non-malleable over D, which is a contradiction.

It is simple to check that the proof goes through even if the auxiliary input z is constrained to be the
null string. As a result, functional non-malleability without auxiliary information implies virtual black-box
without auxiliary information. Similarly, the proof goes through if both the functional non-malleability and
virtual black-box properties are modified such that the difference in probabilities of success for the adversary
and simulator is required to be negligible.

3.2 Verifiably non-malleable obfuscation

In this section, we formalize another notion of non-malleability as motivated in the Introduction. We begin
by developing the concept of verifiable obfuscation.

Definition 6 (Verifier). Given a pair of PPT algorithms O and V and a circuit family C, we say that V is
a verifier for O applied to C if there exists a negligible function ε such that for all n and for all C ∈ Cn,
Pr [V (O(C)) = 1] > 1− ε(n), where the probability is taken over the randomness of V and O.

IfO is an obfuscator for the family of circuits C, then we say that the pair (O, V ) constitutes a verifiable
obfuscator for C.

We do not place any restrictions on V when its input is not the result of the obfuscator applied to a circuit
in the family. In particular, given any obfuscator O, the pair of algorithms (O, 1) is a verifiable obfuscator,
where 1 is the algorithm that accepts all inputs. In many cases, however, we can create much better verifi-
cation algorithms. For example, the (r, rx) construction of [2] can simply be verified by checking whether
r and rx are elements in the desired group G of prime order, because there is a unique discrete log of rx so
the program does implement a point circuit as desired.

Now we create a definition of non-malleability for verifiable obfuscators. As before, we consider an
adversary that takes an obfuscated circuit as input and outputs a program. In this model, the adversary
succeeds only if the outputted program passes the verification test and is related to the input program. Our
definition of non-malleability requires that a simulator succeeds with approximately the same probability,
so it must also output a program that passes the verification test. In particular, we no longer give an oracle
to the program constructed by the simulator. A formal definition follows.

Definition 7 (Verifiable non-malleability). Let C and D be a families of circuits such that C ⊆ D, and let
O and V be PPT algorithms. We say that (O, V ) is an obfuscator for C that is verifiably non-malleable over
D if the following four conditions hold:

• Verification: V is a verifier for O applied to C.

• Almost exact functionality: There exists a negligible function ε such that for every n and every circuit
C ∈ Cn, Pr [r ← Rn : O(C, r) ≡ C] > 1− ε(n).

• Polynomial slowdown: There exists a polynomial p such that for every n, circuit C ∈ Cn, and ran-
domness r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).
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• Verifiable non-malleability: for every polynomial ρ and PPT adversary A, there exists a PPT simulator
S such that for all sufficiently large n, for all circuits C ∈ Cn, for all polynomial time computable
relations E : Cn × Cn → {0, 1}, and for all auxiliary information z ∈ {0, 1}∗,

|Pr [P ← A(O(C), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1]

− Pr
[
Q← SC(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and E(C,D) = 1

]
| < 1

ρ(n)
,

where A and S run in time polynomial in the length of their first inputs.

If D = C, we simply say that (O, V ) is a verifiably non-malleable obfuscator for C.

We remark that the definition subjects the simulator to the verification test, although it is reasonable
to weaken the definition by removing this requirement. We choose the stronger definition because it puts
the adversary and simulator on more equal footing and because all of our constructions satisfy the stronger
notion. Additionally, the remarks pertaining to functional non-malleability also apply here:

1. Restricting attention to univariate relations E(D) results in an equivalent definition.

2. For many circuit families C, it is impossible to achieve verifiable non-malleability if D is the family
of all circuits. The proof of this statement is identical to the proof of Theorem 4 in the functional
non-malleability case.

3. Verifiable non-malleability also implies the virtual black-box property. (This holds even if neither
property allows auxiliary input, or if both properties require only negligible difference in the success
probabilities of the adversary and simulator.)

Theorem 8. Let C and D be circuit families such that C ⊆ D, and let O and V be a pair of PPT algorithms
such that (O, V ) is an obfuscator for C that is verifiably non-malleable over D. Then,O satisfies the virtual
black-box requirement for C. As a result, (O, V ) is a verifiable obfuscator for C.

This proof is very similar to the one in the functional non-malleability setting, with two major differ-
ences. First, the condition that C ⊆ D makes the technical conditions from Theorem 5 unnecessary here:
it is always true that either Dn is non-trivial or Cn is trivial. Second, in the previous proof, we created an
adversary A′ that outputs one of two circuits D0, D1 ∈ Dn. In the verifiable setting, this no longer suffices,
because A′ only succeeds if it outputs a circuit that passes the verification test. The only circuits that are
guaranteed to pass the verification test with high probability are valid obfuscations of circuits in Cn, so we
set A′ to output circuits of this form.

Proof. Let A be an adversary with binary output and let ρ be a polynomial. We need to construct a simulator
S for A that satisfies the virtual black-box property. We prove this statement in two cases.

First, consider all n such thatDn is non-trivial, in the sense that there exist two circuits inDn that do not
have the same functionality. Choose a circuit C1 ∈ Cn arbitrarily, and by non-triviality there exists a circuit
D0 ∈ Dn such that D0 6≡ C1. That is, there exists at least one input value x and one bit position i such that
(D0(x))i 6= (C1(x))i. Let c = (C1(x))i.

We use A to form an adversary A′ that is not constrained to binary output in the following manner. By
nonuniformity, A′ stores A, D0, and C1 in some readily identifiable way. On input O(C) and auxiliary
information z, the circuit A′ operates as follows:

1: emulate an execution of A(O(C), z) until it returns a bit b
2: if b = 1 then

14



3: return an obfuscation of C1

4: else
5: return D0

6: end if
In particular, if A outputs 1, then A′ outputs a well-formed obfuscation of a circuit in Cn, whereas if A

outputs 0, then A′ outputs a circuit in Dn with different functionality.
The verifiable non-malleability property applied to the adversary A′ and polynomial 2ρ guarantees the

existence of a simulator S′ such that for all sufficiently large n, for all C ∈ Cn, for all auxiliary information
z ∈ {0, 1}∗, and for all PPT relations E,

|Pr
[
P ← A′(O(C), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1

]
− Pr

[
Q← (S′)C(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and E(C,D) = 1

]
| < 1

2ρ(n)
. (3)

Finally, we construct a simulator S with binary output that nonuniformly stores V , x, i, and c and
operates as follows, when given auxiliary information z and access to an oracle C:

1: emulate an execution of (S′)C(1n, z) until it returns a string s
2: if s is not the valid encoding of a circuit then
3: return 0
4: end if
5: let Q be the circuit that is represented by s
6: if V (Q) = 0 or (Q(x))i 6= c then
7: return 0
8: else
9: return 1

10: end if
We now show that this simulator S satisfies the virtual black-box property.
Let Ẽ be the relation that nonuniformly stores x and i and operates as follows: Ẽ(C,D) returns 1 if

and only if D(x)i = c. In particular, the output of Ẽ is independent of the choice of C. Then, for all n, all
C ∈ Cn, all z ∈ {0, 1}∗,

Pr [A(O(C), z) = 1] = Pr
[
A′(O(C), z) outputs an obfuscation of C1

]
as an immediate consequence of the construction of A′. As a result, we claim that

|Pr [A(O(C), z) = 1]

− Pr[P ← A′(O(C), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ẽ(C,D) = 1]|

is negligible. To see this, first note that by the exact functionality of O and the fact that Cn ⊆ Dn, it follows
that A′ always outputs a program that is equivalent to a member of Dn. Furthermore, by definition the
verifier V always accepts an obfuscation of C1. There is only one small technical problem: in the case that
C ≡ C1, the output of A′ might equal its input, which is not allowed in the definition of verifiable non-
malleability. However, A′ uses fresh randomness in its obfuscation of C1, so it can only output the program
O(C) with negligible probability.

Next, using (3) and the behavior of the relation Ẽ, it follows that for all sufficiently large n, for all
C ∈ Cn, and for all auxiliary information z,

|Pr [A(O(C), z) = 1]

− Pr
[
Q← (S′)C(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and (D(x))i = c

]
| < 1

2ρ(n)
. (4)
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Second, let Ê be the relation such that Ê(C,D) = 1 if and only if D(x)i = 1 − c. Using the same
analysis as above, it follows that

∣∣Pr [A(O(C), z) = 0]− Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ Q and (D(x))i = 1− c

]∣∣ <
1

2ρ(n)
,

where the only difference from before is that the behavior of V (D0) is unclear, whereas the behavior of
V (O(C1)) is known. Applying the triangle inequality to the previous two inequalities, and using the fact
that A always outputs either 0 or 1, it follows that

Pr
[
Q← (S′)C(1n, z) : ∃D ∈ Dn s.t. D ≡ Q

]
> 1− 1

2ρ(n)
.

Finally, by the construction of S from S′, it is easy to see that

Pr
[
SC(1n, z) = 1

]
= Pr

[
Q← (S′)C(1n, z) : V (Q) = 1 and (Q(x))i = c

]
.

Furthermore, we showed that Q fails to be equivalent to a member of Dn with small probability, so

|Pr
[
SC(1n, z) = 1

]
− Pr

[
Q← (S′)C(1n, z) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and (D(x))i = c

]
| < 1

2ρ(n)
.

Applying the triangle inequality to this inequality and (4) yields∣∣Pr [A(O(C), z) = 1]− Pr
[
SC(1n, z) = 1

]∣∣ <
1

ρ(n)
,

so S satisfies the virtual black-box property as desired.
Now we prove the theorem for all n such that Dn is trivial, meaning that all of the circuits in Dn have

the same functionality. In this case, we claim that for every adversary A with binary output, for every
z ∈ {0, 1}∗, for sufficiently large n, and for every C,C ′ ∈ Cn,∣∣Pr [A(O(C), z) = 1]− Pr

[
A(O(C ′), z) = 1

]∣∣
is negligible. If this is true, then it is easy to construct a simulator S for A: the simulator simply chooses
a circuit C ∈ Cn arbitrarily, obfuscates it, and emulates an execution of A on the obfuscated circuit. It is
straightforward to check that this simulator satisfies the virtual black-box property.

Suppose for the sake of contradiction that the claim is not true. Therefore, there exist an adversary A, a
polynomial ρ, and auxiliary information z ∈ {0, 1}∗ such that for infinitely many n, there exist two circuits
C,C ′ ∈ Cn such that ∣∣Pr [A(O(C), z) = 1]− Pr

[
A(O(C ′), z) = 1

]∣∣ >
1

ρ(n)
.

Now form an adversary A′ (that is not constrained to binary output) as follows. Arbitrarily choose a
circuit C1 ∈ Cn, and let D0 be a circuit that is not equivalent to C1, and hence not equivalent to any member
of Dn. By nonuniformity, the adversary A′ stores A, D0, and C1 in some readily identifiable way. The
circuit A′ operates as follows, upon receiving O(C) and z as input:

1: emulate an execution of A(O(C), z) until it returns a bit b
2: if b = 1 then
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3: return an obfuscation of C1

4: else
5: return D0

6: end if
Let Ē be the relation that always accepts. As a result,

|Pr [A(O(C), z) = 1]
− Pr

[
P ← A′(O(C), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
|

is negligible, because C1 is equivalent to a member of Dn and passes the verification test, whereas D0 is
not equivalent to a member of Dn. The only problem is that the output of A′ might equal its input, but this
occurs with negligible probability.

Hence, by our assumption above, it follows that for infinitely many n, there exist two circuits C,C ′ ∈ Cn
and a polynomial ρ such that

|Pr
[
P ← A′(O(C), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
−Pr

[
P ← A′(O(C ′), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C ′, D) = 1

]
| > 1

2ρ(n)
.

However, for any simulator S′,

Pr
[
Q← (S′)C(1n) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and Ē(C,D) = 1

]
= Pr

[
Q← (S′)C′

(1n) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and Ē(C ′, D) = 1
]

information-theoretically because C and C ′ are functionally equivalent. Applying the triangle inequality to
the previous two equations, it must be the case that either

|Pr
[
P ← A′(O(C), z) : P 6= O(C), V (P ) = 1, and ∃D ∈ Dn s.t. D ≡ P and Ē(C,D) = 1

]
− Pr

[
Q← (S′)C(1n) : V (Q) = 1 and ∃D ∈ Dn s.t. D ≡ Q and Ē(C,D) = 1

]
| > 1

4ρ(n)

or the same is true of C ′. As a result, S′ fails to satisfy the functional non-malleability requirement. This is
true for all possible S′, so O is not functionally non-malleable over D, which is a contradiction.

3.3 Non-malleability in models with setup assumptions

In this section, we modify the non-malleability definitions to fit within the random oracle and common
reference string models.

3.3.1 Random oracle model

In the random oracle model, every algorithm has access to a length-preserving permutation R : {0, 1}n →
{0, 1}n chosen uniformly at random from the set of such permutations. The changes to the functional and
verifiable non-malleability properties from Definitions 3 and 7 are detailed below.

Definition 9 (Functional non-malleability in the random oracle model). An algorithm O satisfies the
functional non-malleability property in the random oracle model if for every polynomial ρ and PPT adver-
sary A, there exists a PPT simulator S such that for all sufficiently large n, for all circuits C ∈ Cn, for all
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polynomial time computable relations E : Cn × Dn → {0, 1} (that may depend on the circuit C), and for
all auxiliary information z ∈ {0, 1}∗,

|Pr
[
P ← AR(O(C)R, z) : ∃D ∈ Dn s.t. D ≡ PR and ER(C,D) = 1

]
− Pr

[
Q← SC,R(1n, z) : ∃D ∈ Dn s.t. D ≡ QC,R and ER(C,D) = 1

]
| < 1

ρ(n)
,

where the probabilities are over the coin tosses of A, O, and S, as well as the choice of R : {0, 1}n →
{0, 1}n from the uniform distribution over all permutations. As before, we require that A and S run in time
polynomial in the length of their first inputs.

Definition 10 (Verifiable non-malleability in the random oracle model). The pair (O, V ) satisfies the
verifiable non-malleability property in the random oracle model if for every polynomial ρ and PPT adversary
A, there exists a PPT simulator S such that for all sufficiently large n, for all circuits C ∈ Cn, for all
polynomial time computable relations E : Cn × Cn → {0, 1}, and for all auxiliary information z ∈ {0, 1}∗,

|Pr
[
P ← AR(O(C)R, z) : P 6= O(C)R, V R(PR) = 1, and ∃D ∈ Dn s.t. D ≡ PR and ER(C,D) = 1

]
− Pr

[
Q← SC,R(1n, z) : V (QR) = 1 and ∃D ∈ Dn s.t. D ≡ QR and ER(C,D) = 1

]
| < 1

ρ(n)
,

where A and S run in time polynomial in the length of their first inputs.

Note that the relation E and verifier V in these definitions receives the same random oracle that the
adversary and simulator receive. As a result, the definitions impose a nonprogrammability restraint on the
simulator because E and V collectively serve as an “environment” (in the UC-sense [3]) that can try to
detect any differences in the behavior of the adversary and simulator.

3.3.2 Common reference string model

In the common reference string model, a long string Σ is generated by a trusted party with each bit being
chosen independently and uniformly at random. In this paper, we only explore verifiable non-malleability
in the CRS model. We augment the definition to allow all algorithms in the real world access to the string
Σ. In the simulated world, S is allowed to choose Σ.

Definition 11 (Verifiable non-malleability in the common reference string model). The pair (O, V ) sat-
isfies the verifiable non-malleability property in the common reference string model if for every polynomial
ρ and PPT adversary A, there exists a PPT simulator S such that for all sufficiently large n, for all cir-
cuits C ∈ Cn, for all polynomial time computable relations E : Cn × Cn → {0, 1}, and for all auxiliary
information z ∈ {0, 1}∗,

|Pr [P ← A(O(C), z, Σ) : P 6= O(C), V (P,Σ) = 1, and ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1]

−Pr
[
(Q,Σ)← SC(1n, z) : |Σ| = l(n), V (Q,Σ) = 1, and ∃D ∈ Dn s.t. D ≡ Q and E(C,D) = 1

]
| < 1

ρ(n)
,

where A, S, and V run in time polynomial in the length of their first inputs. The first probability is taken
over the random coin tosses of A and O along with the uniformly random choice of Σ, and the second
probability is taken over the random coin tosses of S.

Note that in the real execution of the adversary, the verifier receives the same common reference string
as the adversary, but in the simulated world, S chooses the CRS for the verifier.
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3.4 Comparison of non-malleability definitions

The virtual black-box property can be incorporated into the random oracle model in the same way as the non-
malleability properties were, and both flavors of non-malleability still imply the virtual black-box property
in the random oracle model. However, the the two types of non-malleability are fundamentally different
extensions of the virtual black-box definition.

Theorem 12. In the random oracle model, the definitions of functional and verifiable non-malleability are
incomparable. Specifically,

1. There exists a circuit family C and a functionally non-malleable obfuscator O for C such that no
verifier V makes the pair (O, V ) a verifiably non-malleable obfuscator for C.

2. There exists a circuit family C and a verifiable obfuscator (O, V ) for C such thatO is not a functionally
non-malleable obfuscator for C.

Proof. The two statements are immediate consequences of Theorems 15 and 18, respectively.

4 Constructions of functionally non-malleable obfuscators

In this section, we present a functionally non-malleable obfuscator for the family of multi-point circuits in
the random oracle model. We begin with the single-point case.

4.1 Single-point circuits

Algorithm 1 describes an obfuscator OP1 for the family of point circuits P1 [12].

Algorithm 1 Obfuscator OP1 for the family of point circuits
Input: a circuit of the form Iw

1: extract the point w and choose randomness r ← {0, 1}3|w|
2: compute t = R(w ◦ r), where ◦ denotes the string concatenation operation
3: output a description of the following circuit, which stores r and t in some clearly identifiable manner

and which we denote Φr,t: “on input a string x, output 1 if R(x ◦ r) = t and 0 otherwise”

Theorem 13. In the random oracle model, the algorithm OP1 is a functionally non-malleable obfuscator
for the family of point circuits P1.

Proof. The exact functionality of OP1 follows from the fact that R is a permutation. Polynomial slowdown
clearly holds because the runtime of Φr,t is linear in its input length. It remains to prove the functional
non-malleability property.

To prove that OP1 is functionally non-malleable, we need to construct a simulator S for any adversary
A. We informally explain S here and give a complete description of S in Algorithm 2.

The simulator has auxiliary information z and oracle access to the point circuit Iw. It makes a fake
obfuscated program Φr,t by choosing r and t uniformly at random, and then emulates an execution of
AR(Φr,t, z). In addition, S examines all of A’s random oracle queries. There are three cases to consider:

1. If A queries R on the input w◦r, then the adversary A found the hidden point w, but now the simulator
has too. As a result, the simulator aborts this emulation of A, forms a valid obfuscation of Iw, runs A
on it, and outputs the resulting program.
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Algorithm 2 Algorithm for the simulator SR,Iw(1n, z) in the proof of Theorem 13
Input: inputs N and z, along with access to oracles R and C

1: set n← |N |
2: choose random r ← {0, 1}3n and t← {0, 1}4n

3: repeat
4: emulate one step of the execution of A(Φr,t, z)
5: if A queries its random oracle on input value q then
6: if R(q) = t then
7: return ⊥
8: else if |q| 6= 4n or the last 3n bits of q are not equal to r then
9: respond to the query with R(q)

10: else
11: set y to the first n bits of q
12: if C(y) = 1 then
13: abort this emulation
14: emulate A(Φr,R(y◦r)), responding to all oracle queries accurately, then goto step 21
15: else
16: respond to the query with R(q)
17: end if
18: end if
19: end if
20: until A halts
21: set P to the output of the emulation A(Φr,t, z) from step 20, or the output of A(Φr,R(x◦r)) from step 12
22: use P , r, and t to develop the program Q, which for legibility is written below
23: return a description of Q

Algorithm 3 Algorithm for program QR,Iw in the proof of Theorem 13
Input: a string x

1: repeat
2: emulate one step of the execution of PR(x)
3: if A queries its random oracle on input value q then
4: if R(q) = t then
5: choose a random value s← {0, 1}4n and respond to the oracle query with s
6: else if |q| 6= 4n or the last 3n bits of q are not equal to r then
7: respond to the query with R(q)
8: else
9: set y to the first n bits of q

10: if C(y) = 1 then
11: respond to the query with t
12: else
13: respond to the query with R(q)
14: end if
15: end if
16: end if
17: until P halts
18: return the value that the emulation of P outputs
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2. If A queries the value s = R−1(t), then A has discovered that our obfuscation is fake. In this case,
the simulator fails. However, t is chosen uniformly at random and independently of A and z, so this
case only occurs with negligible probability.

3. On any other query q, S responds honestly with R(q).

Note that S either responds to oracle queries honestly or aborts the emulation of A.
Once the emulation of A terminates, it outputs a program P . Then, the simulator S has to output a

program QR,Iw . We explain here how QR,Iw operates and provide a complete description in Algorithm 3.
The circuit QR,Iw runs PR but continues to examine oracle calls. Once again, there are three cases to

consider:

1. If P queries R on the input w ◦ r, then Q answers the query with t.

2. If P queries the value s = R−1(t), then Q answers the query with a random value in {0, 1}4n.

3. Otherwise, Q gives the correct response to P .

Now we analyze the above simulator and show that it satisfies the functional non-malleability requirement .
We break the analysis of the simulator into cases based on the random oracle queries made by the emulated
adversary. If the emulated adversary ever queries the correct password, then the emulation becomes perfect.
Additionally, the emulated adversary runs in polynomial time, so it can only invert the random oracle and
make the query s = R−1(t) with negligible probability. Therefore, it suffices to restrict our attention to the
case in which neither of these situations occurs.

Let E be any relation that only makes polynomially-many oracle queries, and define

pA = Pr
[
C ← AR(O(Iw), z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ CR and ER(Iw, Iw′) = 1

]
pS = Pr

[
D ← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ DR,Iw and ER(Iw, Iw′) = 1

]
as the probabilities of success for the real adversary and simulator, respectively. We will show that |pA − pS |
is negligible in n.

Perform the following “mental experiment:” let R′ be a different random oracle permutation in which

R′(w ◦ r) = t, R′(s) = R(w ◦ r),

and R′ agrees with R on all other values. (See Figure 1 for a diagram.) If R′ really were the random oracle,
then the “fake” obfuscation Φr,t would actually be a valid obfuscation of Iw. As a result,

pA = Pr
[
C ← AR′

(Φr,t, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ CR′
and ER′

(Iw, Iw′) = 1
]

.

Furthermore, by assumption A never queries the oracle at the two locations in which R and R′ differ.
Hence, A must act the same in both cases, so the program P returned by the emulation of AR on the “fake”
obfuscation is identical to the program returned by AR′

when given a real obfuscation.
Consider a new simulator S′ that operates just like S, except that after it finishes its emulation of the

adversary, it simply returns the program P that the emulated adversary outputs. Then,

pA ≈ Pr
[
P ← (S′)R,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR′

and ER′
(Iw, Iw′) = 1

]
,

where the symbol ≈ is used to denote the fact that the two probabilities may differ by the negligible proba-
bility that the emulated adversary queries its random oracle on s = R−1(t), forcing the simulator to abort.
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s • //
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//________ • t

Figure 1: Pictorial representation of the actions of the actual random oracle R (solid line) and the two
imaginary oracles R′ (dotted line) and R′′ (dashed line). The domain and range are both {0, 1}4|w|. The
three random oracles operate identically on all other values.

Of course, the simulator S constructed above does not return P , but rather a related program Q that
makes a few modifications to random oracle queries. These modifications are precisely the ones that make
PR′ ≡ QR, except in the case that P queries the value s = R−1(t). Because this happens with negligible
probability,

pA ≈ Pr
[
Q← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER′

(Iw, Iw′) = 1
]

.

Next, let R′′ be an oracle in which R′′(w ◦ r) = t, and R′′ agrees with R on all other values. (See
Figure 1 for a diagram.) In other words, R′′ and R′ differ only on the input s. We consider the difference in
functionality between ER′

and ER′′
. Because the adversary, simulator, and relation E all run in polynomial

time, they only query the value s with negligible probability. Therefore,

pA ≈ Pr
[
Q← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER′′

(Iw, Iw′) = 1
]

.

Finally, we claim that there is only a negligible difference in functionality between ER and ER′′
. This

claim is information-theoretic: R and R′′ only differ on input w ◦ r, which has at least 3n bits of entropy,
but the relation E only receives 2n bits of information as input (namely, the values w and w′). As a result,
using any list encoding scheme, the adversary and simulator only have negligible probability of transmitting
the value r to the relation E. If the relation does not query the value w ◦ r, then the behavior of ER and
ER′′

is identical. As a result,

pA ≈ Pr
[
Q← SR,Iw(1n, z) : ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER(Iw, Iw′) = 1

]
= pS ,

as desired.
Hence, OP1 is a functionally non-malleable obfuscator for P1, and in fact the definition is achieved in a

strong sense in which the simulator S is independent of the choice of the polynomial ρ.

4.2 Multi-point circuits

Constructing a functionally non-malleable obfuscator for the family of multi-point circuits Pm is signifi-
cantly more difficult. Roughly speaking, the principal issue is that the obfuscated program must “bundle
together” the m points in a way that would prevent the adversary from changing any point in the bundle
without applying the exact same change to all points in the bundle. For instance, simply concatenating
m obfuscations of a single-point function (even obfuscations that are individually non-malleable) does not
suffice because an adversary will be able to change some of the points at will. Instead, the code of the pro-
gram must be a “house of cards” in the sense that an adversary cannot change the code without destroying
information about all of the accepted points simultaneously.

This is a difficult task to achieve, so we first demonstrate some warm-up examples in which the obfus-
cator receives special abilities.
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First warm-up. In this example, we assume the existence of an m-to-1 random oracle, although this may
easily be constructed from a permutation. Additionally, we augment the model by making two unrealistic
assumptions.

1. Rather than receiving a list of accepted points {w1, . . . , wm}, the obfuscator chooses these points
on her own from the uniform distribution. An obfuscator of this type may still be useful in several
situations, such as the motivating scenario from the Introduction in which m graduate students wish
to share a computer. The students may allow the network administrator to choose passwords for them,
as long as the passwords are chosen uniformly.

2. The obfuscator receives a special auxiliary input consisting of a random point t and all m preimages
of t under the random oracle. Nobody else in the world receives this auxiliary input (which can be
thought of as “trapdoor” information on the random oracle).

In this setting, the obfuscator can do the following.
1: choose a target point t← {0, 1}n uniformly at random
2: compute the m inverses of t, and denote them as w1, . . . , wm

3: output the following program, which stores t in some easily identifiable way: “on input x, accept iff
R(x) = t

4: distribute passwords to the appropriate entities
Note that the output of this algorithm is clearly an m-point circuit, since the random oracle is m-to-1.

Furthermore, the only information stored by the program is t. This value “glues” together all m passwords,
in the sense that an adversary cannot modify t without destroying all of the information about every password
simultaneously.

Second warm-up. While the above protocol is clean and simple, it operates using unrealistic assumptions,
which we would like to remove. In the next warm-up, we return to the setting in which the obfuscator
receives a set of accepted points {w1, . . . , wm}, rather than being able to choose them on her own. However,
the obfuscator is still able to invert the random oracle at a single point t.

Suppose the obfuscator starts as before by computing the m preimages of t under the random oracle,
which we denote by w′1, w

′
2, . . . , w

′
m. It would be nice if the real accepted points wi were equal to the w′j ,

for then the obfuscator could use the first warm-up to complete her task, but unfortunately this is not the
case.

As it stands, the obfuscator needs a way to “link” the real accepted points to the fake ones. One such
link is a polynomial. Specifically, view the wi and w′i as elements of a finite field, and let q be the unique
degree m − 1 polynomial over this field such that q(wi) = w′i for all i. Then, the obfuscator creates the
program “on input x, accept if and only if R(q(x)) = t.” We show the algorithm pictorially in Figure 2.

•w1 q // •w′1
R

TTTTT

**TTTTTT
...

... • t

•wm q // •w′m

Rjjjjj

44jjjjjj

Figure 2: Pictorial representation of the obfuscated m-point program in the second warm-up.

In this algorithm, the polynomial q “glues” together m passwords, in the sense that it is not possible
for an adversary to change the polynomial without destroying information on all the points simultaneously,
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except for those points that the adversary already knows. There are two technical issues that prevent this
algorithm from being an obfuscator.

1. There is no randomness in the obfuscation. That is, if the obfuscator receives the same set of pass-
words twice, then she will output the same program both times. As shown in [2], a deterministic
algorithm inherently cannot be an obfuscator.

2. The obfuscator’s program does not preserve functionality. By construction, it accepts all of the wi,
but it accepts additional values too. In particular, it accepts all points x such that q(x) equals any of
the w′i, and there are up to m(m− 1) such points.

Luckily, both of these issues can be resolved simultaneously with a simple change to the algorithm. The
obfuscator needs to choose a long random string r, and apply the previous algorithm to the strings {w1 ◦
r, . . . , wm ◦ r} instead of just the passwords {w1, . . . , wm}. As a result, the obfuscator outputs a program
of the form “on input x, accept if and only if R(q(x ◦ r)) = t.” With overwhelming probability, the other
inverses of the polynomial q will not be strings that end in r, so the obfuscation will have exact functionality.

Recall that the obfuscator still receives special “trapdoor” information about the inverses of t under the
random oracle. As a result, an adversary cannot run the obfuscation algorithm on her own, so her only hope
of creating an obfuscated multi-point circuit is to modify a program provided by the obfuscator. Fortunately,
it can be proved that this algorithm is a functionally non-malleable obfuscator for the family of multi-point
circuits Pm in the “trapdoor” random oracle model.

Full protocol for m = 2. Now we remove the second unrealistic assumption and return to the traditional
random oracle model, in which the obfuscator does not receive any special information about the inverses
of the random oracle. We formally present a functionally non-malleable obfuscator in the m = 2 case, and
then extend it to arbitrary values of m.

In the second warm-up, R played two roles. In addition to its use as a random oracle, it also serves
as a sort of trapdoor one-way function because the obfuscator receives a special inversion power. In this
protocol, we separate the two duties into the following objects:

1. A random oracle permutation R that is invertible, so every algorithm has access to R−1 as well. This
can be constructed within the standard random oracle model [6].

2. A trapdoor family of 2-to-1 one-way functions that also satisfies “second preimage resistance,” which
means that an adversary given a function f ∈ T and an element x in the domain of f cannot find the
element y such that f(y) = f(x). One example is the family of Rabin one-way functions [13]

{fN (x) = x2 mod N : ∃p, q prime s.t. N = pq}.

Every fN : Z∗N → Z
∗
N is a 4-to-1 function, although only two of the preimages of a point are really

“independent” (and the other two preimages are their additive inverses). As a result, we restrict the
domain of fN to the set {1, . . . , bN2 c}, in which case the function is 2-to-1.

The one-wayness and second preimage resistance of the Rabin family is based on the intractability of the
factoring problem.

Definition 14 (Factoring assumption). Let D(1n) be a sampling algorithm that chooses two primes p, q
uniformly at random from the set of n bit integers and outputs N = pq. Then, for every PPT algorithm A,
the probability that A(D(1n)) outputs a prime factor of its input is negligible (over the random coin tosses
of A and D).
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Additionally, we make the following change to the model. Whereas the single-point obfuscation op-
erates in the nonprogrammable random oracle model (as defined in Section 3.3), this algorithm requires a
programmable random oracle. In the single-point construction, the simulator S and the program Q that it
makes trap on random oracle queries and potentially make a change to the oracle. Fortunately, it is easy
to detect that a modification is necessary whenever the oracle query is made, so S and Q do not have to
program the random oracle.

In this construction, due to the fact that the oracle is now invertible, it is not always easy to detect ahead
of time that a random oracle query must be trapped. For instance, suppose that the simulator traps on the
oracle query R(x) and modifies its value to be y. Then, whenever an oracle query of the form R−1(y) is
made, the simulator must remember its previous modification and respond consistently with the value x.
Fortunately, the simulator can keep a table of all of its changes and pass this table to Q.

However, there is a problem whenever the circuit Q traps on a random oracle query and modifies its
value. The circuit Q may be invoked multiple times, and it keeps no state between invocations. As a result,
it has no way to remember previous modifications, so it cannot respond to future random oracle queries
consistently.

As a result, we augment the model to give Q this extra capability. Specifically, the simulator S now
outputs two programs: a circuit Q as before, and a small module MR that interfaces with the random oracle.
The module M is “always on” and has a small amount of storage space that enables it to remember any
changes made to the random oracle. Then, the circuit Q has oracle access to M instead of interfacing with
R directly.

An equivalent model is to augment the capability of Q directly by giving it a small amount of storage
space that persists between executions, with the restriction that this memory can only be used to store
changes made to the random oracle, and as a result the memory is only accessed during oracle queries. We
use this notion in our construction for simplicity, and note that Q only requires 2n bits of persistent memory.

Define F(n) to be the field Z/pZ where p is the first prime bigger than 26n. We embed strings of length
{0, 1}6n into F(n) (and vice-versa) in the natural way. We provide a pictorial representation of the obfuscator
ŌP2 in Figure 3 and then describe the full construction in Algorithm 4.

•w1 l(−◦r) // •x1 R // • y1
RabinN

WWW

++WWW
• t

•w2 l(−◦r) // •x2 R // • y2

RabinNggg

33ggg

Figure 3: Pictorial representation of the action of an obfuscated two-point program created by ŌP2 . As
before, t is the “glue” that binds the two accepted points together.

Algorithm 4 Obfuscator ŌP2 for the family of two-point circuits
Input: a circuit of the form Iw1,w2,...,wm

1: extract the points w1, w2, . . . , wm and randomize their order
2: choose strings r ← {0, 1}5n and t← {0, 1}6n uniformly
3: choose two 6n bit primes p, q uniformly at random (by sampling random integers and testing for pri-

mality), and let N ← pq
4: let y1, y2 be two square roots of t mod N such that y1 6≡ ±y2 mod N
5: let xi ← R−1(yi) ∀i
6: in the finite field F(n), find the line l such that l(wi ◦ r) = xi ∀i
7: output the program Ψr,l,N,t that operates as follows: “on input x, compute x′ ← l(x ◦ r) in the field

F (n), x′′ ← R(x′)2 in the group Z∗N , and accept iff x′′ = t”
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Theorem 15. Assume that factoring is intractable. In the random oracle model, the obfuscator ŌP2 is a
functionally non-malleable obfuscator for P2. However, ŌP2 is malleable in the verifiable sense, meaning
that no verifier algorithm V̄P2 makes the pair (ŌP2 , V̄P2) verifiably non-malleable.

Many of the ideas in the proof follow that in the single-point case, and these details are only sketched
here in order to focus on the new ideas, so the reader is encouraged to examine the proof of Theorem 13
before continuing.

Proof. The almost exact functionality of ŌP2 follows for the same reason as in the second warm-up. There
are four square roots of t in ZN , and R−1 and l−1 are bijections so there exist at most four strings s such
that R(l(s))2 = t (where all operations are formed in their appropriate groups). Two of these strings are
w1 ◦ r and w2 ◦ r, whereas the other two are uniformly random over the choice of the random oracle, and
with overwhelming probability these strings do not contain r as a substring so they do not lead to additional
accepted points. Additionally, the polynomial slowdown property is clear. It remains to prove functional
non-malleability.

Let A be an adversary, and we construct a simulator S for A. Given an input length n, auxiliary in-
put z, and access to an oracle for a two-point circuit I{w1,w2}, the simulator S constructs a “fake” ob-
fuscated program by choosing w′1, w

′
2 ∈U {0, 1}n uniformly at random and running the obfuscator on

I{w′
1,w′

2} to construct a program of the form Ψr,l,N,t together with the primes p, q such that N = pq. Then,

SR,R−1,I{w1,...,wm} emulates an execution of AR,R−1
(Ψr,l,N,t, z) and traps on A’s oracle queries.

When A makes an oracle query of the form R(x), the simulator computes v = l−1(x) and queries its
oracle I{w1,w2} on the first n bits of the string v. If the oracle accepts, then S has found an accepted point,
so it aborts this emulation of the adversary, replaces one of the fake accepted points with the real one, and
restarts the emulation. Otherwise, S responds to the random oracle query honestly. Similarly, when A
makes an oracle query of the form R−1(y), the simulator computes v = R−1(l−1(x)) and queries its oracle
to test whether v encodes a new accepted point.

Note that S restarts the adversary at most twice. Eventually, the emulation of A halts and outputs a
program PR,R−1

. If S found both accepted points w1 and w2, then the final “fake” obfuscation is in fact
a real obfuscation so the emulation of the adversary is perfect. Therefore, S simply outputs the program
Q = P . Otherwise, S outputs the program Q that continues to run P but traps on its random oracle queries
in the same manner as described above. If a new accepted point w is found, then Q alters the random oracle
so that R(l(w ◦ r)) is sent to one of the fake square roots y′1 or y′2 (whichever has not been used yet as an
image of a real accepted point). Additionally, Q stores the value w so it can respond to future random oracle
queries R(l(w ◦ r)) or R−1(y′i) consistently. This requires 2n bits of persistent memory.

This concludes the explanation of the simulator S and its output circuit Q. Now we analyze these circuits
and prove that they satisfy functional non-malleability for the adversary A. Let Ψr,l,N,t be a fake obfuscation
constructed by the simulator (who also knows y1 and y2 as a result) in its final emulation of the adversary,
and consider a “mental experiment” in which we replace the random oracle R with a fake oracle R′ such
that R′ differs from R only on the four values

R′(l(wi ◦ r)) = yi, R′(R−1(yi)) = R(l(wi ◦ r)).

Then, R′ has the uniform distribution (since there is a bijection between choices for R and R′), and we claim
that the emulated adversary cannot distinguish whether its random oracle is R or R′.

If the adversary has already queried on both accepted points (and thus the simulator had to restart twice),
then R = R′. Now suppose A has been restarted exactly once because it made a query that involved w1.
Then, R and R′ agree on the values involving w1 so they only differ on two values. By assumption, this is
the last restart so A never makes a query of the form R(l(w2◦r)). It remains to show that A never makes the
query R(l(w2 ◦r)) or R−1(y2). The worrisome issue here is that A may possess some auxiliary information
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on w2, so we prove the claim in a very strong setting in which we assume that A knows the value w2 exactly,
but just does not bother to query the random oracle on this value.

Lemma 16. Given w1 ∈ {0, 1}n, let Cw1 be the distribution over obfuscated two-point circuits C =
ŌP2(I{w1,w′

2}) for w′2 ∈U {0, 1}n chosen uniformly. Suppose that there exists a choice of w1, w2 ∈ {0, 1}n
and a PPT algorithm B such that

Pr
C←Cw1 ,R

[BR,R−1
(w1, w2, C, y1) = y2]

is noticeable, where C = Ψr,l,N,t is chosen from Cw1 and y1, y2 are two square roots of t mod N such
that y1 6≡ ±y2 mod N and B never queries its random oracle on R(l(w2 ◦ r)). Then, there exists a PPT
algorithm F (in the standard model) that can break the factoring assumption.

Proof. Let F be a PPT algorithm that receives as input an 6n+1-bit integer N chosen from the distribution
D(16n) in Definition 14. By nonuniformity, F stores w1 and w2. and creates a circuit C ′ as follows.

1: choose w′2 ← {0, 1}n, r ← {0, 1}5n, and x1, x2, y1 ← {0, 1}6n independently and uniformly
2: set t← (y1)2 mod N
3: in the finite field F(n), choose the line l determined by l(w1 ◦ r) = x1 and l(w′2 ◦ r) = x2

4: output the program Ψr,l,N,t

Recall that F operates in the standard model, but B requires a random oracle so F constructs one on
the fly, beginning with R(l(w1 ◦ r)) = y1 (which is a random constraint because y1 is chosen from the
uniform distribution). It is easy to see that the circuit C ′ is exactly distributed according to Cw1 subject to
this constraint on the random oracle.

Then, F emulates an execution of BR,R−1
(C,w1, w2, y1), responding to B’s oracle queries randomly

and building up a table of previous queries so it can make consistent responses, with the exception that F
fails if B ever queries R(l(w2 ◦ r)). Note that the oracle is built according to the same distribution as B
would face in the actual random oracle model.

When B halts and outputs y2, F outputs gcd{y1− y2, N}. If B succeeds (meaning y2 really is a square
root of t that is not ±y1), then F outputs a nontrivial factor of N , as desired [13] .

Returning to the proof of the theorem, the lemma shows that the emulated adversary A cannot distinguish
between R and R′ in the case that A queried exactly one accepted point w1. The proof in the case that A does
not query any any accepted points is analogous (it uses a weakening of Lemma 16 in which a fake point w′1
is chosen randomly as well). Therefore, the operation of A must be information-theoretically independent of
whether the random oracle is R or R′. But if the oracle is R′, then the “fake” obfuscation that A receives is
actually correct, so the functionality of PR′

has the same distribution as the functionality of the output of the
real adversary. Furthermore, the construction of Q modifies P in precisely the manner to ensure QR ≡ PR′

.
It remains to prove that the relation ER cannot distinguish between the real and fake random oracles,

even with access to the real random oracle. This follows by an information-theoretic argument identical to
the one used in the proof of Theorem 13 (and explained in more detail there). All of the points in which R
and R′ differ include the string r. Therefore, the relation can only distinguish the two oracles if it knows
the value of r. However, |r| = 5n, but the relation only receives 4n bits of input, so the adversary has only
negligible probability of transmitting enough information to the relation for it to reconstruct r. (This holds
even if the adversary and relation agree on a list-encoding scheme beforehand.) This completes the proof of
functional non-malleability.

Finally, we show that ŌP2 is malleable in the verifiable sense, meaning that for every verifier V̄P2 , the
pair (ŌP2 , V̄P2) is not verifiably non-malleable. We show this in the case that the auxiliary information
z = ∅ is the empty string and that E(I{w1,w2}, I{w′

1,w′
2}) is the polynomial time computable relation that
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accepts if and only if (w′1 ◦ 04n) = (w1 ◦ 04n)+1 and (w′2 ◦ 04n) = (w2 ◦ 04n)+1, where the 6n-bit strings
are embedded into F(n) in the obvious way and the additions are performed over this field.

Let c be the embedding of the 6n-bit string 0n−1104n into the field F(n). When A is given the program
Ψr,l,N,t, it computes the line l′(x) = l(x − c) and returns Ψr,l′,N,t. It is easy to check that for almost all
{w1, w2}, Ψr,l′,N,t is an obfuscation of the circuit I{w′

1,w′
2} satisfying the relation.

Furthermore, the program Ψr,l′,N,t is the output of the obfuscator when it is given the circuit I{w′
1,w′

2}
and chooses random coins r, t, and N . As a result, any verification algorithm V̄P2 must accept Ψr,l′,N,t.

In order for verifiable non-malleability to hold, there must exist a simulator S such that SR,R−1,I{w1,w2}(1n)
outputs a valid obfuscation of the circuit I{w′

1,w′
2}. But the circuit family P2 is unlearnable, so a simula-

tor that is given oracle access to I{w1,w2} cannot create any circuit that computes I{w1,w2} for almost all
{w1, w2} (except for a polynomial-sized set in which it guesses w1 and w2 correctly). As a result, the simu-
lator cannot make any circuit that computes I{w′

1,w′
2} either. Therefore, every simulator only succeeds with

negligible probability on almost every {w1, w2}, so the adversary A breaks the verifiable non-malleability
property on (ŌP2 , V̄P2). This is true for all verifiers, so the proof is complete.

General m. Most of ŌP2 generalizes immediately to the m-point case. The main issue is with the trapdoor
one-way function. In the m = 2 case we used the Rabin function because it had a special property that
allowed us to prove Lemma 16. This property was needed to prove security even for adversaries that knew
some of the wi.

In the general case, we need a trapdoor family T of m-to-1 one-way functions with a special prop-
erty that we call “mth preimage resistance”: an adversary that is given a function f ∈R T and inputs
x1, . . . , xm−1 such that f(x1) = · · · = f(xm−1) still cannot find the final value xm such that f(xm) =
f(x1). Unfortunately, we do not know of any functions with this property. Most m-to-1 one-way functions
simply iterate 2-to-1 functions using a hash-tree-like structure, and as a result it is possible to break the mth

preimage resistance property.
Note that mth preimage resistance is needed solely in order to prove Lemma 16, which is used in the

proof to show that the adversary cannot distinguish the real oracle R from a fake oracle R′. Note that if
the adversary does not have auxiliary information, then Lemma 16 is not needed because we can prove the
claim directly: if an adversary can distinguish R and R′, then it has found one of the values f−1(t) so it has
broken the one-way function.

Hence, using any trapdoor family of m-to-1 functions, we can prove that the generalization of ŌP2 to the
multi-point case satisfies functional non-malleability without auxiliary information. The full construction of
the obfuscator ŌPm is given in Algorithm 5.

Algorithm 5 Obfuscator ŌPm for the family of m-point circuits
Input: a circuit of the form Iw1,w2,...,wm

1: extract the points w1, w2, . . . , wm and randomize their order
2: choose strings r ← {0, 1}2mn+n and t← {0, 1}2mn+2n uniformly
3: choose a function-trapdoor pair (f, τ)← T
4: let y1, . . . , ym be the m preimages of t under f , and let xi ← R−1(yi) ∀i
5: in the finite field F[n], find the unique m− 1 degree polynomial q such that q(wi ◦ r) = xi ∀i
6: output the program that stores r, q, f , and t in a readily identifiable manner and on input x, accepts iff

f(R(q(x ◦ r))) = t

Note how all the variables generalize from the two-point case.

• The randomness r grows to 2mn+n bits so we can still use the information-theoretic argument in the
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proof that the relation E cannot distinguish between the real and fake oracles. Everything else grows
in size appropriately (in particular, F[n] is the finite field Zp for the first prime p ≥ 22mn+2n).

• The line l from the two-point case generalizes to the unique degree m−1 polynomial that goes through
the desired m points.

• The amount of persistent memory required for Q increases, but remains linear in n. Additionally, this
memory is still used solely for programming of the random oracle.

The proof of functional non-malleability for ŌPm follows the two-point case exactly, except for the caveat
described above, so we do not repeat the proof.

5 Constructions of verifiably non-malleable obfuscators

In this section, we present verifiably non-malleable obfuscators for P1 and Pm in the random oracle and
common reference string models.

5.1 Random oracle model

In the single-point case, the obfuscator OP1 from Algorithm 1 can also be used to create a verifiably non-
malleable obfuscation. Let VP1 be the verification algorithm that checks whether its input is a program of
the form Φr,t for some r and t such that |t| = 4/3 |r|, and accepts if and only if this is true. It is clear from
Algorithm 1 that for any w ∈ {0, 1}n, VP1 always accepts a proper obfuscation of the circuit Iw.

Theorem 17. In the random oracle model, (OP1 , VP1) is a verifiably non-malleable obfuscation for the
family of point circuits P1.

Proof. The functionality and polynomial slowdown properties are clear, so it remains to prove verifiable
non-malleability. Let A be an adversary, and we construct the simulator S for A as follows. When given
auxiliary information z and oracle access to the point circuit Iw, the simulator SR,Iw(1n, z) forms a fake
obfuscation by choosing r ∈U {0, 1}3n and t ∈U {0, 1}4n at random. Then, S emulates an execution of
A(Φr,t, z) while monitoring its random oracle calls. There are three cases to consider:

1. If A queries R on the input w◦r, then the adversary A found the hidden point w, but now the simulator
has too. As a result, the simulator can simply form an obfuscation of Iw and run A on it. In this case,
the simulation is perfect.

2. If A queries the value s = R−1(t), then A has discovered that our obfuscation is fake. In this case,
the simulator returns an abort symbol ⊥.

3. On any other query q, S allows A to access the random oracle and continue its execution.

At the end of its execution, the emulated adversary outputs a program P . Then, the simulator outputs the
same program Q = P .

Because the second case only occurs with negligible probability, and the simulation becomes perfect if
the first case ever occurs, the interesting scenario is that in which only the third case occurs. In this scenario,
the adversary A never queries the oracle on the hidden point w, nor does it discover that the obfuscation is
a forgery.
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Let E be any relation that only makes polynomially-many oracle queries, and define

pA = Pr
[
P ← AR(O(Iw), z) : P 6= O(C), V (P ) = 1, and ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR and ER(Iw, Iw′) = 1

]
pS = Pr

[
Q← SR,Iw(1n, z) : V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR,Iw and ER(Iw, Iw′) = 1

]
as the probabilities of success for the real adversary and simulator, respectively. We will show that |pA − pS |
is negligible in n.

Perform the following “mental experiment:” let R′ be a different random oracle permutation in which

R′(w ◦ r) = t, R′(s) = R(w ◦ r),

and R′ agrees with R on all other values. (See Figure 1 for a diagram.) If R′ really were the random oracle,
then the “fake” obfuscation Φr,t would actually be a valid obfuscation of Iw. As a result,

pA = Pr
[
P ← AR′

(Φr,t, z) : P 6= Φr,t, V (P ) = 1, and ∃Iw′ ∈ P1 s.t. Iw′ ≡ PR′
and ER′

(Iw, Iw′) = 1
]

.

Furthermore, by assumption A never queries the oracle at the two locations in which R and R′ differ. Hence,
A must act the same in both cases, so the program Q returned by the simulator after its emulation of AR

on the “fake” obfuscation is identical to the program P returned by AR′
when given a real obfuscation.

Therefore,

pA ≈ Pr
[
Q← SR,Iw(1n, z) : Q 6= Φr,t, V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR′

and ER′
(Iw, Iw′) = 1

]
,

where now the simulator itself chooses r and t (rather than before, where they were provided to the adver-
sary).

Next, we claim that if Q 6= Φr,t V (Q) = 1, and QR′
is a point circuit, then QR and QR′

have the same
functionality. The verification test ensures that Q has the form of a program in P1, so Q = Φr′,t′ for some
r′ and t′, and Q accepts the single point x such that x ◦ r′, when applied to its oracle, yields t. Furthermore,
the functionality of Q depends solely on the value of the random oracle at x ◦ r′.

Recall that R and R′ differ in only two input values, namely s and w ◦ r. As a result, QR and QR′
have

different functionalities if and only if x ◦ r′ = s or x ◦ r′ = w ◦ r.

1. The first case is easy to dismiss: it is infeasible for the simulator to find s, so it cannot output the final
3n bits of s as the value of r′.

2. In the second case, x = w and r′ = r. Because Φr′,t′ 6= Φr,t but r′ = r, it must be the case that
t′ 6= t. As a result, the program QR′

does not accept any points, because there is no R′(x ◦ r′) 6= t′.
This contradicts the assumption that QR′

is a point circuit.

As a result, QR and QR′
have different functionality with only negligible probability, so it follows that

pA ≈ Pr
[
Q← SR,Iw(1n, z) : V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER′

(Iw, Iw′) = 1
]

.

Finally, it remains to show that the relation E behaves similarly when given random oracle R or R′. This
is an information-theoretic argument that proceeds in exactly the same manner as in the proof of Theorem
13.

Let R′′ be another random oracle in which R′′(w ◦ r) = t, and R′′ agrees with R on all other values.
(See Figure 1 for a diagram.) In other words, R′′ and R′ differ only on the input s. Because the adversary,
simulator, and relation E all run in polynomial time, they only query the value s with negligible probability,
and therefore the difference in functionality between ER′

and ER′′
is negligible. Furthermore, R and R′′
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only differ on input w ◦ r, which has at least 3n bits of entropy, but the relation E only receives 2n bits
of information as input (namely, the values w and w′). As a result, using any list encoding scheme, the
adversary and simulator only have negligible probability of transmitting the value r to the relation E. If the
relation does not query the value w ◦ r, then the behavior of ER and ER′′

is identical. As a result,

pA ≈ Pr
[
Q← SR,Iw(1n, z) : V (Q) = 1 and ∃Iw′ ∈ P1 s.t. Iw′ ≡ QR and ER(Iw, Iw′) = 1

]
= pS ,

as desired.
Hence, (OP1 , VP1) is a verifiably non-malleable obfuscator for P1, and in fact the definition is achieved

in a strong sense in which the simulator S is independent of the choice of the polynomial ρ.

In the multi-point setting, we can concatenate m copies of OP1 and “glue” them together using a self-
signing technique, as shown in Algorithm 6. The one-time signature scheme can be constructed from any
one-way function [11] so in particular it can be constructed from the random oracle. Additionally, we assume
the existence of m independent random oracle permutations, but they can easily be constructed from a single
one.

Algorithm 6 Obfuscator OPm for the family of m-point circuits
Input: a circuit of the form Iw1,...,wm

1: extract the accepted points w1, . . . , wm and randomize their order
2: set n← |w1|
3: choose randomness r1, . . . , rm ← {0, 1}3mn independently and uniformly
4: choose a signature-verification key pair (s, v) for a one-time signature scheme with security parameter

n
5: for i = 1 to m do
6: set ti ← Ri(wi ◦ ri ◦ v)
7: end for
8: compute the signature σ = signs(t1, . . . , tm)
9: output circuit Γr1,...,rm,t1,...,tm,v,σ defined below

The circuit Γr1,...,rm,t1,...,tm,v,σ stores the ri, ti, v, and σ in plain sight and computes the following: “on
input x, for all i from 1 to m, compute Ri(x ◦ ri ◦ v) and accept if this value equals ti.” The associated
verification algorithm VPm checks the validity of the signature.

Theorem 18. In the random oracle model, (OPm , VPm) is a verifiably non-malleable obfuscation for Pm.
However, OPm is malleable in the functional sense.

Proof. It is easy to see that OPm satisfies functionality and polynomial slowdown. To prove verifiable
non-malleability, let A be an adversary and we construct a simulator S. Given auxiliary information z and
oracle access to a circuit of the form I{w1,...,wm}, the simulator SR1,...,Rm,I{w1,...,wm}(1n, z) creates a “fake”
obfuscation by choosing a signature-verification key pair (s, v) from the key generation algorithm of a one-
time signature scheme, choosing r1, . . . , rm ∈U {0, 1}3mn and t1, . . . , tm ∈U {0, 1}n+3mn+|v| at random,
computing a signature σ = signs(t1, . . . , tm), and constructing Γr1,...,rm,t1,...,tm,v,σ. Then, the simulator
emulates an execution of AR1,...,Rm(Γr1,...,rm,t1,...,tm,v,σ, z). Whenever A makes a query q to the random
oracle Ri, S acts as follows:

1. If Ri(q) = ti, then the adversary has discovered one of our “fake” accepted points. In this case, the
simulator fails. However, the ti are chosen uniformly at random and independently of A or z, so the
adversary can only find the inverse of ti under the random oracle with negligible probability.
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2. If the query q is n + 3mn + |v| bits long, then let x denote the first n bits of q. The simulator
queries its oracle to find the value I{w1,...,wm}(x). If the oracle returns 0, then S allows A to access
the random oracle and find R(q). If the oracle returns 1, then the simulator has found an accepted
point. The simulator aborts the current emulation of A, forms a new “fake” obfuscation that uses all
of the currently known accepted points along with fake values, and starts an emulation of A on this
new program.

3. On any other query q, S allows A to access the random oracle and continue its execution.

Note in particular that the simulator S either responds to A’s oracle queries honestly or aborts the emulation
of A.

We note that case 2 can happen at most m times, so the simulator will complete the emulation of A
in polynomial time. Let P denote the program that the emulation of A outputs. Then, S outputs the same
program P .

It remains to analyze the probability of success for this simulator. Although our emulation of A was on a
fake obfuscation, note that there is a set of random oracles on which the obfuscation is correct. In particular,
let R′1, . . . , R

′
m be random oracles defined as follows:

1. If the simulation found the point wi, then set R′i = Ri.

2. If the simulation did not find the point wi, then set

R′i(wi ◦ ri ◦ v) = ti, R′i(R
−1(ti)) = R(wi ◦ ri ◦ v),

and set R′i equal to Ri on all other inputs.

If the relation E and the program P that S outputs have access to the random oracles R′1, . . . , R
′
m, then the

simulation is perfect. It remains to show that substituting the real random oracles {Ri} for the fake {R′i}
only has negligible effect on the success probability of the simulator.

As long as the program P passes the verification test, it must have the form Γr′1,...,r′m,t′1,...,t′m,v′,σ′ and
the signature test must pass. Because the adversary can only forge signatures with negligible probability,
it follows that v 6= v′ with overwhelming probability. In this case, the differences between the Ri and R′i
random oracles are meaningless for the execution of P , so PR1,...,Rm ≡ PR′

1,...,R′
m .

Additionally, the relation E receives 2mn bits of information, but the randomness values r1, . . . , rm

each have 3mn bits of entropy. As a result, using any list encoding scheme, the adversary and simulator
have only negligible probability of transmitting any of the ri to the relation E. Without ri, the relation
cannot distinguish between Ri and R′i. Hence, the probability of success for the simulator changes only
by a negligible amount when we substitute ER1,...,Rm for ER′

i,...,R
′
m . Therefore, OPm is a verifiably non-

malleable obfuscator for Pm, as desired.
Next, we show thatOPm is malleable in the functional sense. We do so in the case that the auxiliary input

z = ∅ is the empty string. Let A be the adversary that when given Γr1,...,rm,t1,...,tm,v,σ as input, chooses a
random value w∗ ∈U {0, 1}n, sets t∗ = R1(w∗ ◦ r1 ◦ v), and outputs the program Γr1,...,rm,t∗,t2,...,tm,v,σ.
Note the following facts about A.

1. The signature σ is now incorrect, but in the functional setting this is okay because nobody checks the
signature.

2. If the input Γr1,...,rm,t1,...,tm,v,σ was the obfuscation of the m-point circuit I{w1,...,wm}, then the output
of A accepts m − 1 of the points in {w1, . . . , wm}. However, one of the accepted values is removed
and replaced by a random point w∗.
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Let E be the polynomial time computable relation such that

E(I{w1,...,wm}, I{w′
1,...,w′

m}) = 1 ⇐⇒ {w1, . . . , wm} ∩ {w′1, . . . , w′m} = m− 1.

Then, A outputs a program that passes this relation with overwhelming probability: the only way that A
fails is by choosing t∗ = t1 so its output circuit is equal to its input circuit, but t∗ is chosen randomly so this
only occurs with negligible probability. However, any simulator SR1,...,Rm,I{w1,...,wm}(1n) only has oracle
access to I{w1,...,wm}, and the only hope that the simulator has to create a program of the form I{w∗,w2,...,wm}
is to guess points at random and hope that it finds an accepted point wi which it can then replace. Therefore,
every simulator succeeds with only negligible probability, so the adversary A breaks the functional non-
malleability property as desired.

5.2 Common reference string model

In the common reference string model, we can only prove a slightly weaker form of verifiable non-malleability.
We first present an obfuscator in the single-point setting, where we believe the weaker non-malleability prop-
erty is meaningful. Then, we generalize the obfuscator to operate in the multi-point setting, but we also show
that the weaker form of non-malleability is insufficient in this setting.

Single-point circuits. Our construction uses two building blocks:

1. Let ÔP1 be any obfuscator for P1 without auxiliary information, such as those found in [2, 5, 17].

2. Let Π be a non-malleable NIZK proof of knowledge system [14, 15]. Informally, the proof system Π
has the property that given an adversary that sees a proof π and then creates a proof π′ with π′ 6= π,
there exists an extractor that extracts the witness to the proof of π′.

Using these building blocks, we form the obfuscator ÕP1(Iw) that outputs ÔP1(Iw) along with a proof that
it knows the point w that the obfuscation hides. The verification algorithm ṼP1 associated to ÕP1 runs the
verification algorithm of the proof system Π to check the validity of the proof.

More formally, we define an NP relation RÔP1
based on ÔP1 as follows:

RÔP1
(P,w) = 1 if and only if ∃r s.t. P = ÔP1(Iw, r).

That is, the first input to the relation must be a valid output of the obfuscator ÔP1 , and the second input must
be the unique point that is accepted by this circuit. The obfuscator ÕP1 , described in Algorithm 7, uses a
non-malleable NIZK proof of knowledge system [15] on this NP relation.

Algorithm 7 Obfuscator ÕP1 for the class of point circuits in the CRS model
Input: a circuit of the form Iw and a common reference string Σ

1: extract the accepted point w
2: choose randomness r and compute the circuit Îw = ÔP1(Iw)
3: use the NIZK proof of knowledge Π to prove that the obfuscator knows a witness w to the statement

that RÔP1
(Îw, w) = 1, and call the resulting proof πw

4: output the circuit Ĩw that is equal to Îw except that it also stores πw in some clearly visible way

Intuitively, the non-malleability of the obfuscation follows from the non-malleability of the NIZK. Un-
fortunately, the proof turns out to be quite delicate, and we can only prove a weaker version of verifiable
non-malleability.
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Definition 19 (Weakly verifiable non-malleability in the common reference string model). Let C be a
family of circuits and (O, V ) be a pair of algorithms. We say that (O, V ) is weakly verifiably non-malleable
for relation E if for every polynomial q and PPT adversary A, there exists a PPT simulator S such that for
all sufficiently large n and for all circuits C ∈ Cn,

|Pr [P ← A(O(C),Σ) : P 6= O(C), V (P,Σ) = 1, and ∃D ∈ Cn s.t. D ≡ P and E(C,D) = 1]

− Pr
[
(Q,Σ)← SC(1n) : V (Q,Σ) = 1 and ∃D ∈ Cn s.t. D ≡ Q and E(C,D) = 1

]
| < 1

q(n)
,

where the first probability is taken over the coin tosses of A andO, along with the uniformly random choice
of the common reference string Σ, and the second probability is taken over the coin tosses of S.

Note that this definition is weaker than Definition 11 in two ways: the simulator S is allowed to depend
on the relation E, and there is no auxiliary information in this definition. We can prove that our construction
satisfies this weaker variant of non-malleability for many interesting relations E.

Definition 20 (Invertible relation). A bivariate relation E is invertible if there exists a polynomial time
algorithm Ē such that for every y, Ē(y) returns a list of all x such that E(x, y) = 1.

In particular, because E is a polynomial time algorithm, it can only output a list that is polynomially
long in length. Therefore, for every y, there must be only polynomially many x such that E(x, y) = 1.

Theorem 21. Let E be an invertible relation. In the common reference string model, the pair (ÕP1 , ṼP1)
is a weakly verifiably non-malleable obfuscation for E.

First, we sketch the proof that ÕP1 is an obfuscation. As usual, functionality and polynomial slowdown
are clear, so it remains to prove the virtual black-box property. Note that we are only going to prove a weak
form of verifiable non-malleability, and Theorem 8 does not apply for the weaker notion so we have to prove
the virtual black-box property directly.

Given an adversary Ã in the common reference string model that receives a program from ÕP1 , we
construct an adversary Â that receives a program from ÔP1 as follows. The adversary Â generates a CRS Σ
along with a trapdoor that allows Â to make false proofs, and then feeds Ã its input circuit along with a fake
proof that it knows the hidden acceptable point. When the emulation of Ã halts and returns a bit, Â outputs
this bit too. It is easy to see that Â successfully breaks the virtual black-box property if and only if Ã does.
By the virtual black-box property of ÔP1 , there exists a simulator Ŝ corresponding to Â. It follows that Ŝ
also satisfies the virtual black-box property for Ã.

Now we show that ÕP1 satisfies the weaker verifiably non-malleable property for invertible relations
E. The proof is inspired by [2] and proceeds in two stages. First, we describe an intermediate property and
show that it implies weakly verifiable non-malleability. Second, we prove the intermediate property using
specific facts about P1, ÔP1 , Π, and the invertibility property of E.

Definition 22 (Almost everywhere non-malleability). Let C be a circuit family and (O, V ) be a verifiable
obfuscation for C. The obfuscation is almost everywhere non-malleable for relation E if for every polyno-
mial ρ and PPT adversary A, there exists a family of polynomial size sets L = {Ln} (where Ln ⊆ Cn) such
that for sufficiently large n and for all C ∈ Cn \ Ln,

Pr [P ← A(O(C)) : V (P ) = 1 and ∃D ∈ Cn s.t. P ≡ D and E(C,D) = 1] <
1

ρ(n)
.

That is, any adversary that tries to modify an obfuscated program in accordance with the relation E can only
succeed on a polynomial size set of circuits.
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Now we prove that this property implies the weaker notion of verifiable non-malleability for many
interesting circuit families, such as the family of point circuits P1.

Lemma 23. Let C be a circuit family and (O, V ) be a verifiable obfuscation for C. Suppose C has the
property that given a circuit C ∈ C and oracle access to a circuit D ∈ C, one can test in polynomial
time whether C ≡ D. Then, almost everywhere non-malleability for relation E implies weakly verifiable
non-malleability for relation E.

Proof. Let E be a relation and assume that (O, V ) is almost everywhere non-malleable for relation E. Given
a polynomial ρ and an adversary A, we construct the simulator S necessary to prove weakly verifiable non-
malleability for relation E.

By almost everywhere non-malleability, there is a polynomial size family of sets L associated to A.
We construct a simulator S that knows L. (Remember that we work in the non-uniform setting, so this is
feasible.) The simulator SD(1n) tests whether there exists C ∈ Ln such that C ≡ D. This is feasible
because Ln is a polynomial size set and each test can be done in polynomial time by the assumption of the
lemma. If one of the tests succeeds, say when testing C ∈ Ln, then S emulates an execution of A(O(C)).
Otherwise, the simulator halts and outputs a failure symbol ⊥.

It remains to analyze the performance of the simulator S. We consider two cases.

1. If SD finds some C ∈ Ln such that C ≡ D, then it emulates a real execution of A, so the simulation
is perfect in this case.

2. Otherwise, then the simulator succeeds with probability zero. However, in this case the real adversary
runs A(O(D)) for some D such that D /∈ Ln. Therefore, the almost everywhere non-malleability
property says that the adversary succeeds with at most 1

ρ(n) probability.

Hence, in both cases the difference in success probabilities between the adversary and simulator is less than
1

ρ(n) , as desired.

Now we demonstrate that the obfuscator ÕP1 satisfies the almost everywhere non-malleability property.
Whereas the above proof was generic in nature, now we focus on our specific construction. It is given that
ÔP1 is an obfuscator for the family of point circuits. As a result, [2] shows that ÔP1 has the following
property.

Definition 24 (Oracle indistinguishability). For any polynomial ρ and any PPT distinguisher D that out-
puts a single bit, there exists a polynomial size family L = {Ln} of sets such that for sufficiently large n
and for all Iw, Iw′ ∈ P1

n \ Ln,∣∣∣Pr
[
D(ÔP1(Iw)) = 1

]
− Pr

[
D(ÔP1(Iw′)) = 1

]∣∣∣ <
1

q(n)
.

We use this property to demonstrate that almost everywhere non-malleability holds.

Lemma 25. Let E be an invertible relation. Then, (ÕP1 , ṼP1) is almost everywhere non-malleable for
relation E.

Proof. Let E be an invertible relation and Ē be the extraction algorithm associated to E. Assume for the
sake of contradiction that (ÕP1 , ṼP1) is not almost everywhere non-malleable for relation E, and we will
show a distinguisher that breaks the oracle indistinguishability property of ÔP1 . Since ÔP1 is assumed
to be an obfuscator for the family of point circuits, and [2] shows that all such obfuscators obey oracle
indistinguishability, we establish a contradiction.

Suppose the adversary A breaks almost everywhere non-malleability for relation E. We use A to con-
struct a distinguisher D. Note that A outputs long strings, but D is only allowed to output a single bit.
Distinguisher D operates as follows.
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1: on input a circuit P , form a CRS-trapdoor pair (Σ, τ)
2: use the trapdoor τ to create a false proof π claiming you know a witness w such that RÔP1

(P,w) = 1
3: set P ′ to be the circuit that is equal to P except that it also stores π in some clearly visible way (the

same way that the obfuscator ÕP1 does in Algorithm 7)
4: emulate A(P ′) with common reference string Σ, and set Q to be the output of the emulation of A
5: if ṼP1(Q) = 1 then
6: set π′ to be the proof embedded in Q (there is such a proof because the verifier checks for its existence)
7: use the proof system’s knowledge extractor to extract the witness w′ in the proof π′

8: set S ← Ē(w′) to be the set of all x such that E(x,w) = 1
9: for all x ∈ S do

10: if P (x) = 1 then
11: return the first bit of x
12: end if
13: end for
14: end if
15: return a uniformly random bit

This distinguisher runs in polynomial time because A, ṼP1 , Ē, and the proof system’s knowledge ex-
tractor are all PPT algorithms. Now we analyze the distinguisher’s output when it is given P = ÔP1(Iw) as
input. We consider two cases:

1. If the adversary A succeeds in creating a program P ′ such that there exists w′ where P ′ looks like a
valid obfuscation of Iw′ and E(Iw, Iw′) = 1, then the distinguisher correctly finds w and outputs the
first bit of w.

2. Otherwise, the distinguisher outputs a random bit.

By assumption, A breaks almost everywhere non-malleability for relation E, so there exists a polynomial
ρ such that for every family of polynomial size sets {Ln}, there exist infinitely many n and a circuit Iw ∈
P1

n \ Ln such that

Pr
[
P ′ ← A(O(Iw)) : V (P ′) = 1 and ∃Iw′ s.t. P ′ ≡ Iw′ and E(Iw, Iw′) = 1

]
>

1
ρ(n)

.

By our analysis, if the distinguisher is given an obfuscation of this special circuit Iw, case 1 occurs with
probability at least 1

ρ(n) , so the distinguisher correctly outputs the first bit of w with probability at least
1
2 + ρ(n)

2 .
Alternatively, suppose the distinguisher is given the obfuscation of any circuit Iw̃ ∈ P1

n \ Ln such that
the first bit of w̃ is different from the first bit of w. We no longer know how often case 1 occurs and how
often case 2 occurs, but in either case the distinguisher will output the first bit of w̃ with probability at least
1
2 . This is enough to complete the proof.

Set the polynomial ρ′ = ρ
2 , and we have shown the following: for every family of polynomial size sets

{Ln}, there exist infinitely many n and some Iw, Iw̃ ∈ P1
n \ Ln such that

Pr [D(O(Iw)) = first bit of w] ≥ 1
2

+ ρ′(n)

and
Pr [D(O(Iw̃)) = first bit of w̃] ≥ 1

2
.

36



But the first bits of w and w̃ are different, so it follows that

|Pr [D(O(Iw)) = 1]− Pr [D(O(Iw′)) = 1]| ≥ 1
ρ′(n)

,

so the distinguisher D and polynomial ρ′ break oracle indistinguishability.

Finally, the composition of Lemmas 23 and 25 yield Theorem 21, as desired.

Multi-point circuits. The obfuscator ÕP1 can be generalized to the multi-point setting, as follows. Let
ÕPm be the obfuscator that, when given I{w1,...,wm} as input, outputs m single point obfuscations ÔP1(Iw1),
. . ., ÔP1(Iwm) followed by a non-malleable NIZK proof of knowledge that it knows all of the accepted
points w1, . . . , wm. As before, let ṼPm be the verification algorithm that checks the validity of the proof. It
is shown in [4] that ÕPm is an obfuscator. Using a proof similar to that in Theorem 21, we show that this
obfuscator is weakly verifiably non-malleable for invertible relations.

Theorem 26. Let E be an invertible relation. In the common reference string model, (ÕPm , ṼPm) is a
weakly verifiably non-malleable obfuscation for E.

Proof. The conditions of Lemma 23 hold in the multi-point setting, so it suffices to prove that (ÕPm , ṼPm)
is almost everywhere non-malleable for E. Suppose for the sake of contradiction that the adversary A
breaks almost everywhere non-malleability for E. Then, we construct a distinguisher that breaks the oracle
indistinguishability property for ÔP1 . The distinguisher D uses the proof system’s knowledge extractor K
and the extraction algorithm Ē associated with E. The distinguisher operates as follows, when it receives
the obfuscation of a single point circuit as input.

1: on input a circuit P , set n to be the input length P
2: form a CRS-trapdoor pair (Σ, τ), and choose w1, . . . , wm−1 ← {0, 1}n uniformly at random
3: for i = 1 to m− 1 do
4: form the obfuscation ÔP1(Iwi) using fresh randomness
5: end for
6: let P ′ be the concatenation of P with the m− 1 obfuscations ÔP1(Iwi) in a random order
7: create a false proof π claiming you know the m points that P ′ accepts, and append this proof to P ′

8: emulate A(P ′) with common reference string Σ, and set Q to be the output of the emulation of A
9: if ṼPm(Q) = 1 then

10: set π′ to be the proof embedded in Q
11: run K(π′) to obtain the witness w′1, . . . , w

′
m consisting of the m accepted points in Q

12: initialize S to be the empty set, and compute Ē(w′1, . . . , w
′
m)

13: for all Iw1,...,wm such that E(Iw1,...,wm , Iw′
1,...,w′

m
) = 1, as found by Ē do

14: insert w1, . . . , wm ∈ S
15: end for
16: for all x ∈ S do
17: if P (x) = 1 then
18: return the first bit of x
19: end if
20: end for
21: end if
22: return a uniformly random bit

The adversary succeeds with non-negligible probability, so using the same analysis as in the proof of
Lemma 25, it follows that the distinguisher D(O(Ix)) has a noticeable advantage in finding the first bit of x
for super-polynomially many x, so D breaks oracle indistinguishability as desired.
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Unfortunately, in the multi-point setting, the set of invertible relations is too small. For example, the
simple relation E(I{w1,...,wm}, I{w′

1,...,w′
m}) that accepts if any of the wi equal one of the w′j is not invertible.

As a result, Theorem 26 is a promising result but still unsatisfactory. Future research is needed to find an
obfuscator that is verifiably non-malleable for a wider class of relations.

Acknowledgment. We thank Ronny Dakdouk for his useful comments. In particular, an improvement in
Theorem 8 and an error in an earlier version of Theorem 17 were found by Ronny.
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