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We create variable-length pseudorandom permutations (PRPs) and strong PRPs
(SPRPs) accepting any input length chosen from the range ofb to 2b bits from fixed-
length,b-bit PRPs. We utilize theelastic networkthat underlies the recently introduced
concrete design of elastic block ciphers, exploiting it as anetwork of PRPs. We prove
that three and four-round elastic networks are variable-length PRPs and five-round elas-
tic networks are variable-length SPRPs, accepting any input length that is fixed in the
range ofb to 2b bits, when the round functions are independently chosen fixed-length
PRPs onb bits. We also prove that these are the minimum number of rounds required.
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1 Introduction

We prove that the elastic network, the underlying structureof elastic block ciphers [2],
allows for the creation of variable-length PRPs and SPRPs from fixed-length PRPs,
meaning it provides a PRP or SPRP for every length individually within a range of in-
put lengths. In the abstract sense, a block cipher should be aSPRP. Feistel networks
were analyzed in this manner and proven to provide fixed-length PRPs and SPRPs un-
der certain conditions by Luby and Rackoff [7], and by Naor and Reingold [8]. This
approach has also been used to justify modes of encryption. For example, the CBC-
Mask-CBC mode (CMC) of encryption was proven to provide a SPRP on multiples
of the block length under certain conditions on the block cipher used within the mode
[5]. In general, the implementation of a block cipher can be considered a black box
to applications making function calls to the cipher. This isespecially true in modern
computers where block cipher hardware may be included, suchas Intel’s plan to have
AES in hardware as part of its future CPUs [4]. Understandinghow to combine PRPs in
theory to provide additional functionality translates into practical implementations by
replacing the PRP with the black box that is the block cipher.

We consider the elastic network in an analogous manner. Elastic block ciphers are
variable-length block ciphers created from existing blockciphers. The elastic version
of a block cipher supports any actual block size between one and two times that of
the original block size. The method consists of a substitution-permutation network, the
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elastic network, that uses the round function from the existing fixed-length block cipher.
We prove that three and four round elastic networks provide variable-length PRPs and
five round elastic networks provides a variable-length SPRPfor each input length in the
range ofb to 2b bits when the round functions are independently chosen fixed-length
PRPs onb-bits.

Our results assist in proving the soundness of the elastic block cipher’s basic struc-
ture. The security of elastic block ciphers against practical attacks was evaluated in [3].
By proving the elastic network forms variable-length PRPs and SPRPs on inputs ofb
to 2b bits, under certain restrictions on the number of rounds andindependence of the
round functions as was done for Feistel networks [7, 8], our work provides further justi-
fication for the elastic block cipher approach to creating variable-length block ciphers.

We consider analysis of the elastic block cipher approach tobe of value because
of how the approach differs from other approaches that reuseexisting block ciphers
when creating a variable-length block cipher in practice. Unlike other variable-length
block cipher constructions that build upon existing fixed-length block ciphers, the elas-
tic block cipher approach does not require multiple applications of the fixed-length
block cipher to encryptb + y bits, where0 ≤ y ≤ b. By using the round function
of the existing fixed-length block cipher as a black box within the elastic network the
computational workload of an elastic block cipher is proportional to the block size. In
contrast, other methods, such as [1, 9, 10], treat a fixed-length block cipher as a black
box. When encryptingb + y bits, each of these methods apply a block cipher multiple
times along with additional operations, resulting in a computational workload that is
not proportional to the block size and which is less efficientthan padding the data to
two full blocks, regardless of the exact value ofy.

The remainder of this paper is organized as follows. Section2 summarizes the def-
initions of a PRP and SPRP, and the structure of elastic blockciphers. In Section 3,
we show how to create variable-length PRPs from fixed-lengthPRPs with three and
four round elastic networks. In Section 4, we prove that a five-round elastic network
allows for the creation of a variable-length SPRP from fixed-length PRPs. In Section 5,
counter-examples used to define the minimum number of roundsand independence of
the round functions required for the proofs are presented. In Section 6, we summarize
our results and briefly explain how the elastic network can becombined with CMC
mode to extend the supported input length beyond2b bits.

2 Preliminaries and Strategy

2.1 PRP and SPRP Definitions

We informally remind the reader of the definitions of a PRP anda SPRP. Refer to [6]
for formal definitions. Although we are discussing permutations (as opposed to practical
block ciphers), we will use the terms ”plaintext” and ”ciphertext” to refer to the inputs
and outputs of the permutation. We use the following terms inthe definitions of a PRP
and a SPRP.

– Random permutation: A permutation onb bits that is chosen randomly from all
permutations onb bits.
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– Let P be a permutation onb bits.P−1 denotes its inverse.P (x) is the output ofP
when given inputx of lengthb bits.

– Chosen plaintext query: An adversary chooses an input,pi, to a permutation,P ,
and receives the output,ci = P (pi).

– Chosen ciphertext query: An adversary chooses an input,ci, to the inverse of a
permutation,P−1, and receives the output,pi = P−1(ci).

– Chosen plaintext - chosen ciphertext queries: An adversarymakes a series of queries
to a permutation,P , and its inverse,P−1, and receives the outputs.

– Adaptive queries: When making chosen plaintext, chosen ciphertext or chosen
plaintext - chosen ciphertext queries to a permutation (and/or its inverse), the queries
are said to be adaptive if the adversary making the queries receives the output of
theith query before forming the(i + 1)st query and can use the previousi queries
and their outputs when forming the(i + 1)st query.

The concepts of a PRP and a SPRP can be described by considering the probability
with which an adversary can correctly determine whether or not a black box contains a
specific permutation or a random permutation onb bits while using only polynomial (in
b) many resources. LetP be a permutation onb bits. Given a black box that contains ei-
therP (or its inverse) or a random permutation, an adversary makespolynomially many
adaptive queries to the black box and receives the outputs ofthe permutation within the
box. If the probability that the adversary correctly determines (using polynomial time
and memory) the contents of the box is1

2
+ e for negligiblee ≥ 0, thenP is a PRP.

In terms of block ciphers, this corresponds to the adversarybeing able to make either
adaptive chosen plaintext queries or adaptive chosen ciphertext queries, but not both, to
a black box which contains either the cipher or a random permutation.

Similarly, a permutation,P , on b bits is a SPRP if it is not possible to distinguish
P from a random permutation onb bits in polynomial (inb) time and memory when
queries to both the permutation and its inverse are permitted. In terms of block ci-
phers, this corresponds to the adversary being able to make adaptive chosen plaintext -
chosen ciphertext queries to a black box which contains either the cipher or a random
permutation.

2.2 Elastic Network

We provide a brief review of the elastic network, which provides the underlying struc-
ture of elastic block ciphers. The elastic block cipher method was defined for creating
variable-length block ciphers in practice [2]. The round function or cycle of an existing
fixed-length,b− bit, block cipher is inserted into the elastic network, shown inFigure 1
and becomes the round function of the elastic version of the cipher. The input isb + y

bits, where0 ≤ y ≤ b. In each round the leftmostb bits are processed by the round
function and the rightmosty bits are omitted from the round function. Afterwards, a
”swap step” is performed in which the rightmosty bits are XORed with a subset of the
leftmostb bits and the results swapped when forming the input to the next round.4

4 Elastic block ciphers also include initial and end-of-round whitening, and initial and final key-
dependent permutations. Our analysis focuses on the basic structure and thus we omit these
steps.
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Fig. 1. Two Rounds of an Elastic Network

3 Variable-Length PRPs

As our first step, we prove that a three-round elastic networkand the inverse of a four-
round elastic network are variable-length PRPs when their round functions are inde-
pendently chosen random permutations (RP). From these results, we can then prove
that the same networks are variable-length PRPs when the round functions are indepen-
dently chosen fixed-length PRPs. Figure 2 shows three-roundand four-round elastic
networks.

Fig. 2. Three and Four-Round Elastic Networks
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We prove that if a three-round elastic network,G′, with round functions that are
independently chosen random permutations onb bits can be distinguished from a ran-
dom permutation onb+ y bits, for some fixed value ofb + y, using polynomially many
queries toG′ then at least one of the round functions can be distinguishedfrom a ran-
dom permutation onb bits, which is a contradiction. Therefore, we conclude thatG′ is a
PRP. We use a black box,BG′ , that contains eitherG′ or a random permutation onb+y

bits. We prove that if a distinguisher,D3, exists that can determine whether or notBG′

containsG′ using polynomially many adaptive queries to the box thenD3 can be used
to create a distinguisher for at least one of the round functions ofG′ to distinguish the
round function from a random permutation onb bits. When we say a distinguisher for
G′ exists, we mean that the distinguisher, using polynomiallymany adaptive queries in
one direction can predict or eliminate a possibility about an additional input/output pair
value of the given permutation with greater certainty than that of a random guess. In
contrast, with a random permutation, anything beyond the input/output pairs from the
queries is known with the same probability as a random guess.We repeat the process
for the inverse of a four-round elastic network.

We will refer to the components of the three and four-round networks as they are
labelled in Figure 2. We use the following notation:

– b > 0 is an integer.
– y is an integer such that0 ≤ y ≤ b.
– X ⊕ Y whereX is a b-bit string andY is a y-bit string, means the bits ofY are

XORed withy specific bits ofX and the otherb − y bits of X are treated as if
they are XORed with 0’s. If the resulting string is stored in avariable containing
only y bits instead ofb bits, the result consists only of they bits in the positions
that involved bothX andY instead ofX and theb − y 0’s. For example, consider
XORing a 2-bit string with a 4-bit string such that the XOR involves the leftmost
2 bits of the 4-bit string. Letz1 anda2 be 4-bit strings. Letw1 andw2 be 2-bit
strings. Ifz1 = 0110 andw1 = 11,a2 = z1 ⊕ w1 = 1010.w2 = z1 ⊕ w1 = 10.

– n > 0 is an integer that generically represents the number of polynomially many
(in terms of the length of the input) queries made to a function.

– |X | is the length, in bits, ofX .
– RFi is theith round function, fori = 1, 2, 3, 4. Any restrictions placed on aRFi

will be specified as needed. Each round function is a permutation onb-bits.
– ai is theb-bit input to theith round function fori = 1, 2, 3, 4.
– zi is theb-bit output of theith round function fori = 1, 2, 3, 4.
– wi is they bits left out of theith round function fori = 1, 2, 3, 4. For any particular

elastic network,w2 is formed from a fixed set ofy-bit positions fromz1, w3 is
formed from a fixed set ofy-bit positions ofz2, andw4 is formed from a fixed set
of y-bit positions ofz3 (i.e., the positions of the bits taken fromz1 to formw1 do
not vary amongst the inputs to a specific three-round elasticnetwork). Likewise,
when formingw2, w3 andw4.

– When referring to a specific value for anai, zi or wi, a subscript will be used. For
example,a1j.

Theorem 1. A three-round elastic network,G′, onb + y bits in which the round func-
tions are independently chosen random permutations onb bits is a variable-length pseu-
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dorandom permutation onb + y bits in the encryption direction for any fixed value ofy

where0 ≤ y ≤ b. Three rounds are the mininum number of rounds required.

Proof. A two-round elastic network cannot be a PRP. Refer to Section5 for the counter-
example. We define the following notation for use in proving the three round case:

– BG′ is a black box that contains eitherG′ or a random permutation onb + y bits.
– (a1i, w1i) is an input toBG′ . |a1i| = b and|w1i| = y as defined previously.
– (z3i, w3i) is the output ofBG′ corresponding to the input(a1i, w1i). |z3i| = b and
|w3i| = y as defined previously.

– D3 is a distinguisher forG′, meaningD3 can determine whether or notBG′ con-
tainsG′ with probability 1

2
+ α for non-negligibleα, 0 < α ≤ 1

2
when using only

polynomially (inb + y) many resources. LetD3 return a 1 if it thinksBG′ contains
G′ and a 0 otherwise.D3 makesn adaptive chosen plaintext or adaptive chosen
ciphertext queries, but not both.

– S1 = {(a1i, w1i)} andS2 = {(z3i, w3i)}, for i = 1 to n are the sets ofn inputs
and outputsD3 uses to distinguishG′ from a random permutation. WhenD3 works
by making queries toBG′ in the encryption direction,S1 contains the inputs and
S2 contains the resulting outputs. WhenD3 works by making queries toBG′ in the
decryption direction,S2 contains the inputs andS1 contains the resulting outputs.

– BRFi is a black box that contains either theith round function,RFi, of G′ or a
random permutation onb bits, for i = 1, 2, 3.

– BRFi(X) is the output ofBRFi when given inputX .
– B−1

RFi(X) is the inverse ofBRFi(X). i.e.,the inverse of whatever permutation is in
BRFi is applied toX .

– DRFi is a distinguisher forRFi, meaningDRFi can determine whether or not
BRFi containsRFi with probability 1

2
+ α for non-negligibleα, 0 < α ≤ 1

2
using

polynomially (in b + y) resources.DRFi uses either adaptive chosen plaintext or
adaptive chosen ciphertext queries, but not both.

– ”plaintext query” refers to a query toG′ in the encryption direction and ”ciphertext
query” refers to a query toG′ in the decryption direction (a query toG′−1).

We note that the bit positions used in the swap steps inG′ are not secret and this
information can be used by any distinguisher. We define the following functions corre-
sponding to the swap steps for use by the distinguishers:

– Let Fi(X, Y ) be a function that takes ab-bit input, X , and ay-bit input, Y , and
returns the pair(Z, W ) whereZ is ab-bit string andW is ay-bit string.Fi replaces
they bits of X with they bits of Y such that the bits inX which are replaced are
in the same positions as the bits from the output of theith round function that are
involved in the swap step after theith round ofG′. Fi returns the updatedX value
in Z and returns a bit string,W , that contains they bits of X that were removed
from X XORed with they bits inserted intoX . Fi(X, Y ) computes the inverse of
theith swap step in the elastic network.

– Let FY i(X) be a function that takes ab-bit inputX and returns they bits that are
in the same bit positions used to createwi from z(i − 1) in G′.

– LetOi be an oracle that contains theith round function,RFi of G′. Oi−1 will refer
to an oracle containingRFi−1.
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We now prove Theorem 1. IfD3, a distinguisher forG′ in the encryption direction,
exists,D3 must fall into one of the following categories:

– Category I:D3 does not use thez3 portion of the output in its decision. The only
part of the output used is thew3 portion. This means that given then input/output
pairs inS1 andS2, D3 never uses thez3 portion from any of the pairs inS2.

– Category II:D3 does not use thew3 portion of the output in its decision. The only
part of the output used is thez3 portion. This means that given then input/output
pairs inS1 andS2, D3 never uses thew3 portion from any of the pairs inS2.

– Category III:D3 uses both thez3 andw3 portion of the outputs in its decision.
This means that givenn input/output pairs inS1 andS2, D3 uses thez3 portion of
the output from at least one of of the pairs inS2 and uses thew3 portion from at
least one of the pairs inS2. Without using both portions,D3 fails to distinguish the
elastic network from a RP.

In each category, there are no restrictions on what portionsof the inputs,{(a1i, w1i)},
are used. For each of the categories, we will show that the existence ofD3 implies a
distinguisher can be formed for either the second or third round function ofG′, which
contradicts the round functions being independently chosen random permutations.

Category I: If D3 falls into Category I, a distinguisher,DRF2, can be defined for the
second round function,RF2. Intuitively, D3 using only thew3 portion of the output
of G′ whenw3 is from the output ofRF2 whose inputs cannot be predicted with non-
negligible probability impliesD3 can distinguishRF2 from a random permutation.
The inputs toRF2 are distinct except with negligible probability. Therefore, thew3
values are distributed as if they are taken from the outputs of distinct queries toRF2,
except with negligible probability andD3 cannot rely on being givenw3 values that
were generated from identical inputs toRF2.
DefineDRF2 as follows:

Ask D3 what its first query (input) would be if it was queryingBG′ . PopulateS1
with this first input, so(a11, w11) has been chosen and is inS1. S1 is known toDRF2.

for i = 1 to n {
Take(a1i, w1i) from S1 for use in subsequent steps.
Setz1i = O1(a1).
Setz2i = BRF2(z1i ⊕ w1i).
Setw3i = FY 3(z2i).
Givea1i, w1i, w3i to D3.
Add toS1 the next inputD3 would use when trying to distinguishD3, having
seen the inputs and partial output of the firsti queries. This is(a1i+1, w1i+1).

}
Let ans be the valueD3 returns.
Returnans.

The values given toD3 are the input and rightmosty bits of the output of a three-
round elastic network withRF1 as the first round function and the contents ofBRF2 as
the second round function. The third round function is irrelevant here becauseD3 is not
using the output of the third round function. The values given toD3 correspond to those
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of S1 and thew3i values ofS2 whenD3 is allowed to maken adaptive chosen plaintext
queries toBG′ . D3 succeeds with non-negligible probability in determining whether or
not it was given the input and partial output ofG′ impliesDRF2 will succeed with non-
negligible probability in determining if then (a2i, z2i) pairs correspond to the inputs
and outputs ofRF2. Therefore,DRF2 can distinguish the contents ofBRF2 using the
n queries{O1(a1i)⊕w1i}. BRF2, contradicting the assumption that the second round
function is an RP.

Category II: If D3 falls into Category II, a distinguisher,DRF3, can be defined for
the third round function,RF3. Intuitively, D3 using only thez3 portion of the output
of G′ whenz3 is from the output ofRF3 whose inputs cannot be predicted with non-
negligible probability impliesD3 can distinguishRF3 from a random permutation. The
inputs toRF3 are distinct except with negligible probability. Therefore, thez3 values
are distributed as if they are the outputs ofn distinct queries toRF3, except with neg-
ligible probability andD3 cannot depend on being givenz3 values that were generated
from identical inputs toRF3. Therefore,D3 using only the input toG′ and thez3
portion of the output impliesD3 can distinguishRF3 from a random permutation.

DefineDRF3 as follows:
Ask D3 what its first query (input) would be if it was queryingBG′ . PopulateS1

with this first input, so(a11, w11) has been chosen and is inS1. S1 is known toDRF3.

for i = 1 to n {
Take(a1i, w1i) from S1 for use in subsequent steps.
Setz1i = O1(a1i).
Setz2i = O2(z1i ⊕ w1i).
Setw2i = FY 2(z1i).
Setz3i = BRF3(z2i ⊕ w2i).
Givea1i, w1i, z3i to D3.
Add toS1 the next inputD3 would use when trying to distinguishD3, having
seen the inputs and partial output of the firsti queries. This is(a1i+1, w1i+1).

}
Let ans be the valueD3 returns.
Returnans.

The values given toD3 are the input and leftmostb bits of the output of a three-round
elastic network withRF1 as the first round function,RF2 as the second round func-
tion and the contents ofBRF3 as the third round function. The values given toD3

correspond to those ofS1 and thez3i values fromS2 whenD3 is allowed to maken
adaptive chosen plaintext queries toBG′ . D3 succeeds with non-negligible probability
in determining it was given the input and partial output ofG′ impliesDRF3 will suc-
ceed with non-negligible probability in determining the contents ofBRF3 by usingn

queries,{O2(O1(a1i) ⊕ w1i) ⊕ F2(O1(a1i))}, contradicting the assumption that the
third round function is an RP.

Category III: If D3 falls into Category III, a second version of theDRF3 distinguisher
we just defined can be created for the third round function,RF3. We call this new
versionDRF3v2. Intuitively, D3 using both thez3 andw3 portions of the output of
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G′ whenz3 is from the output ofRF3 whose inputs cannot be predicted with non-
negligible probability, wherew3 is from the output ofRF2 whose inputs cannot be
predicted with non-negligble probability and wherew3 contributes to the formation of
the input ofRF3 (and thus contributes to the input to the permutation that produces
z3) impliesD3 can distinguishRF3 from random.D3 cannot depend on being given
z3 and/orw3 values that were generated by holding the inputs toRF2 and/orRF3
constant since this occurs with negligible probability. Therefore,D3 can be viewed as
using some relationship between partial information (i.e.,w3) used in forming the input
to RF3 and the output (ı.e.,z3) of RF3 to distinguish the third round function from a
random permutation.

DRF3v2 is DRF3 with the modification thatw3i is given toD3 along witha1i, w1i

andz3i. DefineDRFv2 as follows:
Ask D3 what its first query (input) would be if it was queryingBG′ . PopulateS1

with this first input, so(a11, w11) has been chosen and is inS1. S1 is known toDRF3.

for i = 1 to n {
Take(a1i, w1i) from S1 for use in subsequent steps.
Setz1i = O1(a1).
Setz2i = O2(z1i ⊕ w1i).
Setw2i = FY 2(z1i).
Setz3i = BRF3(z2i ⊕ w2i).
Setw3i = FY 3(z2i).
Givea1i, w1i, z3i, w3i to D3.
Add toS1 the next inputD3 would use when trying to distinguishD3, having
seen the inputs and output of the firsti queries. This is(a1i+1, w1i+1).

}
Let ans be the valueD3 returns.
Returnans.

The values given toD3 are the inputs and outputs of a three-round elastic network with
RF1 as the first round function,RF2 as the second round function and the contents
of BRF3 as the third round function. The values given toD3 correspond to those of
S1 andS2 whenD3 is allowed to maken adaptive chosen plaintext queries toBG′ .
D3 succeeds with non-negligible probability in determining it was given the input and
output ofG′ impliesDRF3v2 will succeed with non-negligible probability in determin-
ing the contents ofBRF3 by usingn queries,{O2(O1(a1i) ⊕ w1i) ⊕ F2(O1(a1i))},
contradicting the assumption that the third round functionis a random permutation.

For each category, we have shown thatD3 cannot exist. Therefore, a three-round
elastic network cannot be distinguished from a PRP by using polynomially many plain-
text queries when the round functions are independently chosen random permutations.
In the decryption direction, four rounds are required to create a PRP.

Theorem 2. The inverse of a four-round elastic network,(G′−1), on b + y bits in
which the round functions are independently chosen random permutations onb bits
is a variable-length pseudorandom permutation onb + y bits for any fixed value ofy
where0 ≤ y ≤ b. Four rounds are the minimum number of rounds required.
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Proof. Refer to Section 5 for an example showing why three rounds areinsufficient.
The notation and terms are the same as in the proof to Theorem 1unless otherwise
stated. The black box,BG′ , will containG′−1 or a random permutation onb+y bits. The
categories for the distinguisher are the same as in the three-round case. For two of the
categories, three rounds are sufficient forG′−1 to be a PRP. We prove these cases first.
Then the proof for the third category, which requires four rounds, follows directly. The
inputs are of the form(z3, w3) when using three rounds and(z4, w4) when using four
rounds. The outputs are of the form(a1, w1). D3 andD4 will denote the distinguishers
when three and four rounds are under consideration, respectively. When the number of
rounds is not specified,Dr will be used to denote eitherD3 or D4. If a distinguisher
exists forG′−1 it must fall into one of the following three categories:

– Category I:Dr does not use thea1 portion of the output in its decision. The only
part of the output used is thew1 portion. This means that given then input/output
pairs inS2 andS1, Dr never uses thea1 portion from any of the pairs inS1.

– Category II:Dr does not use thew1 portion of the output in its decision. The only
part of the output used is thea1 portion. This means that given then input/output
pairs inS2 andS1, Dr never uses thew1 portion from any of the pairs inS1.

– Category III:Dr uses both thea1 andw1 portion of the outputs in its decision. This
means that givenn input/output pairs inS2 andS1, Dr uses thea1 portion of the
output from at least one of them and uses thew1 portion from at least one of them.
Without using both portions,Dr fails to distinguish the elastic network from a RP.

In each category, there are no restrictions on what portionsof the inputs,{(z3i, w3i)} or
{(z4i, w4i)}, are used. WhenDr is restricted to Category II or III, only three rounds are
needed forG−1 to be a PRP. These two categories will be addressed before Category
I. Similar to what was done with the encryption direction,Dr can be used to create
a distinguisher for one of the round functions. Since the round functions are random
permutations, this results in a contradiction; therefore,Dr cannot exist.

Category II: If D3 falls into Category II, a distinguisher,DRF1, can be defined for the
inverse of the first round function ofG′ (the last round ofG′−1). Intuitively, D3 using
only thea1 portion of the output ofG′−1 whena1 is from the output ofRF1−1 whose
inputs cannot be predicted with non-negligible probability impliesD3 can distinguish
RF1−1 from a random permutation. The inputs toRF1−1 are distinct except with
negligible probability. Therefore, thea1 values are distributed as if they are the outputs
of n distinct queries toRF1−1, except with negligible probability. Therefore,D3 using
only the input toG′−1 and thea1 portion of the output impliesD3 can distinguish
RF1−1 from a random permutation.

DefineDRF1 as follows:
Ask D3 what its first query (input) would be if it was queryingBG′ . PopulateS2

with this first input, so(z31, w31) has been chosen and is inS2. S2 is known toDRF1.

for i = 1 to n {
Take(z3i, w3i) from S2 for use in subsequent steps.
Seta3i = O3−1(z3i).
Set(z2i, w2i) = F2(a3i, w3i).
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Seta2i = O2−1(z2i).
Set(z1i, w1i) = F1(a2i, w2i).
Seta1i = B−1

RF1
(z1i).

Givea1i, z3i, w3i to D3.
Add toS2 the next inputD3 would use when trying to distinguishD3, having
seen the inputs and output of the firsti queries. This is(z3i+1, w3i+1).

}
Let ans be the valueD3 returns.
DRF3v2 returnsans.

The values given toD3 are the inputs and outputs of the inverse of a three-round
elastic network withRF3 as the third round function,RF2 as the second round func-
tion and the contents ofBRF1 as the first round function. These values correspond to the
contents ofS2 and thea1i values ofS1 whenD3 is allowed to maken adaptive chosen
plaintext queries toBG′ . D3 succeeds with non-negligible probability in determining it
was given the input and output ofG′ impliesDRF1 will succeed with non-negligible
probability in determining the contents ofBRF1, contradicting the assumption that the
first round function is a random permutation.

Category III: If D3 falls into Category III, a distinguisher,DRF3, can be defined for
the inverse of the first round function,RF1−1. Intuitively, D3 can be viewed as using
some relationship between partial information (i.e. w1) used in forming the input to
RF1−1 and the output (ı.e.a1) of RF1−1 to distinguish the first round function from
a random permutation.

DefineDRF1v2 to beDRF1 with the addition that thew1i values are also given to
D3.

AskD3 what its first query (input) would be if it was queryingBG′ in the decryption
direction. PopulateS2 with this first input, so(z31, w31) has been chosen and is inS2.
S2 is known toDRF1v2.

for i = 1 to n {
Take(z3i, w3i) from S2 for use in subsequent steps.
Seta3i = O3−1(z3i).
Set(z2i, w2i) = F2(a3i, w3i).
Seta2i = O2−1(z2i).
Set(z1i, w1i) = F1(a2i, w2i).
Seta1i = B−1

RF1
(z1i).

Givea1i, w1i, z3i, w3i to D3.
Add toS2 the next inputD3 would use when trying to distinguish
D3, having seen the inputs and output of the firsti queries.
This is(z3i+1, w3i+1).

}
Let ans be the valueD3 returns.
Returnans.

The values given toD3 are the inputs and outputs of the inverse of a three-round
elastic network withRF3 as the third round function,RF2 as the second round func-
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tion and the contents ofBRF1 as the first round function. These values correspond to
those ofS1 andS2 whenD3 is allowed to maken adaptive chosen plaintext queries
to BG′ . D3 succeeds with non-negligible probability in determining it was given the
input and output ofG′ implies DRF1v2 will succeed with non-negligible probability
in determining the contents ofBRF1, contradicting the assumption that the first round
function is a random permutation.

Category I: The result for this category follows directly from the results for Categories
II and III. If D4 only uses thew1 portion of the outputs, sincew1 = w2 ⊕ a2, this im-
pliesD4 is using a combination ofa2 andw2 on which to base its decision. This implies
D4 is a distinguisher for the first three rounds of the network inthe decryption direction
that falls into Category III because the leftmostb-bit portion (a2) and rightmosty-bit
portion (w2) of the three round output is used. AssumeD4 exists for the four-round
network.D4 is used to define a distinguisher,D3, for the three rounds consisting of
RF4−4 to RF2−2, taking inputs(z4i, w4i) and producing outputs(a2i, w2i). In this
case,BG′ is a black box containing eitherG−1 with four-rounds or a random permu-
tation onb + y bits. LetB3 be a black box containing either the three-round elastic
network formed from roundsRF4−4 to RF2−2 or a random permutation onb+ y bits.

DefineD3 as follows:
AskD4 what its first query (input) would be if it was queryingBG′ in the decryption

direction. PopulateS2 with this first input, so(z41, w41) has been chosen and is inS2.
S2 is known toD3.

for i = 1 to n {
Take(z4i, w4i) from S2 for use in subsequent steps.
Give (z4i, w4i) to B3 and get back(a2i, w2i).
Setw1i = a2i ⊕ w2i.
Givew1i, z4i, w4i to D4.
Add toS2 the next inputD4 would use when trying to distinguishBG′ , having
seen the inputs and output of the firsti queries. This is(z4i+1, w4i+1).

}
Let ans be the valueD4 returns.
D3 returnsans.

The values given toD4 are the inputs and rightmosty bits of the outputs of the
inverse of a four-round elastic network. Thesey bits are formed from both theb-bit and
y-bit portions of the output of three rounds. Therefore, by the assumptionD4 exists,D3

will succeed with non-negligible probability in determining that the(a2i, w2i) values
were formed from the first three rounds of decryption. This contradicts the previous
result from Category III.

For each of the three categories, we have shownDr cannot exist. Therefore, the
inverse of a four-round elastic network is a PRP when the round functions are indepen-
dently chosen random permutations.

Using Theorems 1 and 2, we can prove that a three-round elastic network in the
encryption direction and a four-round elastic network in the decryption direction is a
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variable-length PRP when the round functions are independently chosen fixed-length
PRPs.

Theorem 3. A three-round elastic network,G′, onb + y bits in which the round func-
tions are independently chosen PRPs onb bits is a variable-length PRP onb + y bits in
the encryption direction for any fixed value ofy where0 ≤ y ≤ b. Three rounds are the
mininum number of rounds required.

Proof. First, as noted in Theorem 1, a two-round elastic network cannot be a PRP. The
result for three rounds follows directly from Theorem 1 and the triangle inequality. We
consider the relationships between four versions of a three-round elastic network that
differ in regards to the number of their round functions thatare PRPs and RPs. We
consider the relationships between the four versions shownin Figure 3 of a three-round
elastic network. In each version, the round functions are chosen independently of each
other and map ab-bit input to ab-bit output.

Fig. 3. Three-Round Networks Consisting of RPs and PRPs

We define the following six permutations:

– Let PRP1, PRP2, PRP3 be three independently chosen pseudorandom permu-
tations.

– Let RP1, RP2, RP3 be three independently chosen random permutations.

Let Ni refer to a three-round elastic network in the encryption direction in which
the first i round functions are pseudorandom permutations and the remaining round
functions are random permutations, fori = 0, 1, 2, 3 defined as follows:

– N0: Each round function is a RP. The round functions areRP1, RP2 andRP3.
– N1: The first round function is the PRP. The second and third round functions are

RPs. The round functions arePRP1, RP2 andRP3.
– N2: The first two round functions are PRPs and the third round function is a RP.

The round functions arePRP1, PRP2 andRP3.

13



– N3: Each round function is a PRP. The round functions arePRP1, PRP2 and
PRP3.
As shown by Theorem 1,N0 is a PRP. Therefore, if Theorem 3 is not true it is

possible to distinquishN3 from N0 with probability≥ α for some non-negligibleα
where0 < α ≤ 1. However, ifN3 can be distinquished from random then at least one
of PRP1, PRP2 andPRP3 can be distinguished from random, which is a contradic-
tion to the definition of a PRP and thus proves Theorem 3. LetD be a distinguisher
that takes(b + y)-bit inputs and runs in polynomial time.D outputs a 1 if it thinks the
inputs are the outputs of a random permutation and outputs a 0otherwise. LetPr(Ni)
be the probability thatD outputs a 1 when given polynomially many outputs fromNi.
If N3 can be distinguished from a random permutation, then|Pr(N0)−Pr(N3)| ≥ α.
However,

|Pr(N0)− Pr(N3)| = |Pr(N0) − Pr(N1) + Pr(N1)− Pr(N2) + Pr(N2)−
Pr(N3)| ≤ |Pr(N0) − Pr(N1)| + |Pr(N1) − Pr(N2)| + |Pr(N2) − Pr(N3)|.
Therefore,α ≤ |Pr(N0)−Pr(N1)|+ |Pr(N1)−Pr(N2)|+ |Pr(N2)−Pr(N3)|.
This implies at least one term on the right side of the inequality is ≥ α

3
. Therefore, it

is possible to distinguish a three-round elastic network inthe encryption direction that
hasi round functions that are pseudorandom permutations and3 − i round functions
that are random permutations from a three-round elastic network that hasi − 1 round
functions that are pseudorandom permutations and4 − i round functions that are ran-
dom permutations with non-negligible probability, wherei is at least one value from
{1, 2, 3}. Therefore, it is possible distinguish between a round function which is a ran-
dom function and one that is a pseudorandom function with non-negligible probability,
contradicting the definition of pseudorandom.

Theorem 4. The inverse of a four-round elastic network,(G′−1), onb+y bits in which
the round functions are independently chosen PRPs onb bits is a variable-length pseu-
dorandom permutation onb + y bits for any fixed value ofy where0 ≤ y ≤ b. Four
rounds are the minimum number of rounds required.

Proof. First, as noted in Theorem 2, the inverse of a three-round elastic network cannot
be a PRP. The proof uses the same method as in the proof to Theorem 3, with each
network now having four rounds andNi defined fori = 0, 1, 2, 3, 4, with 4 − i round
functions being RPs andi round functions being PRPs. In each version, the round func-
tions are chosen independently of each other and map ab-bit input to ab-bit output.

We define the following eight permutations:

– Let PRP1, PRP2, PRP3, PRP4 be four independently chosen pseudorandom
permutations.

– Let RP1, RP2, RP3, RP4 be four independently chosen random permutations.

Let Ni refer to the inverse of a four-round elastic network in whichthe firsti round
functions are pseudorandom permutations and the remaininground functions are ran-
dom permutations, fori = 0, 1, 2, 3, 4 defined as follows:

– N0: Each round function is a RP. The round functions areRP1, RP2, RP3 and
RP4.
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– N1: The first round function is the PRP. The second to fourth round functions are
RPs. The round functions arePRP1, RP2, RP3 andRP4.

– N2: The first two round functions are PRPs and the last two are RPs. The round
functions arePRP1, PRP2, RP3 andRP4.

– N3: The first three round functions are PRPs and the last one is a RP. The round
functions arePRP1, PRP2, PRP3 andRP4.

– N4: Each round function is a PRP. The round functions arePRP1, PRP2, PRP3
andPRP4.

As shown by Theorem 2,N0 is a PRP. Therefore, if Theorem 4 is not true it is
possible to distinquishN4 from N0 with probability≥ α for some non-negligibleα
where0 < α ≤ 1. We will show that ifN4 can be distinquished from random then at
least one ofPRP1, PRP2, PRP3 andPRP4 can be distinguished from random in
order to derive a contradiction and thus conclude Theorem 4 is true.

LetD be a distinguisher that takes(b+y)-bit inputs and runs in polynomial time.D

outputs a 1 if it thinks the inputs are the outputs of a random permutation and outputs a
0 otherwise. LetPr(Ni) be the probability thatD outputs a 1 when given polynomially
many outputs fromNi. If N4 can be distinguished from a random permutation, then
|Pr(N0) − Pr(N4)| ≥ α.
However,

|Pr(N0)− Pr(N4)| = |Pr(N0) − Pr(N1) + Pr(N1)− Pr(N2) + Pr(N2)−
Pr(N3) + Pr(N3) − Pr(N4)|

≤ |Pr(N0)−Pr(N1)|+|Pr(N1)−Pr(N2)|+|Pr(N2)−Pr(N3)|+|Pr(N3−
Pr(N4)|.
Therefore,α ≤ |Pr(N0)−Pr(N1)|+ |Pr(N1)−Pr(N2)|+ |Pr(N2)−Pr(N3)|+
|Pr(N3) − Pr(N4)|.
This implies at least one term on the right side of the inequality is ≥ α

4
. Therefore, it

is possible to distinguish a four-round elastic network in the decryption direction that
hasi round functions which are pseudorandom permutations and4− i round functions
that are random permutations from a four-round elastic network that hasi − 1 round
functions that are pseudorandom permutations and5−i round functions that are random
permutations with non-negligible probability, wherei ∈ {1, 2, 3, 4}. Therefore, it is
possible distinguish between a round function which is a random function and one that
is a pseudorandom function with non-negligible probability, contradicting the definition
of pseudorandom.

4 Variable-Length SPRP from Fixed-Length PRPs

We now show how to construct variable-length SPRPs from fixed-length PRPs. First, we
prove that a five-round elastic network in which the round functions are independently
chosen fixed-length PRPs is a variable-length SPRP. This allows us to form SPRPs on
b + y bits fromb-bit PRPs, where0 ≤ y ≤ b.

We note that a five-round elastic network consisting of roundfunctions that are in-
dependently chosen PRPs is a PRP in both the encryption and decryption directions by
Theorems 3 and 4. We also note that by the definition of a SPRP, any random permu-
tation is a SPRP. Before stating the theorem regarding theb + y bit SPRP, we prove a
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claim. LetRP1 andRP2 be two independently chosen random permutations, each on
m bits. LetPerm1(x) = RP2(RP1(x)), wherex is of lengthm. Perm1 is a random
permutation onm bits and is a SPRP. Now we consider what happens if we use a com-
bination of pseudorandom permutations and permutations inplace of RP1 and RP2. We
define permutations,P1, P2, PRP1 andPRP2 to satisfy the following conditions:

– P1(x) andP2(x) are independently chosen permutations onm bits. P1 6= P2
except with negligible probability.P1 is not pseudorandom in that a relationship
between some subset of bits in its inputs and outputs that occurs with non-negligible
probability is known, but the exact permutation is unknown.Specifically, when
given a black box that contains eitherP1 or a random permutation onb bits, it
is possible to determine the contents of the box in polynomially many queries.
However, when usingP1 in forming PA as defined below, the exact permutation
corresponding toP1 is unknown in thatP1 will involve applying a PRP to the first
b bits of its(b+y)-bit input. Likewise forP2, which is used to formPB as defined
below. The PRPs used inP1 andP2 are not the same PRP, except with negligible
probability.

– PRP1(x) andPRP2(x) are pseudorandom permutations onm bits whose inde-
pendence is defined by the independence ofP1 andP2 such that
P2(PRP2(P1(x))) = PRP1−1(x).

– PA(x) = PRP2(P1(x))

– PB(x) = PRP1(P2(x)). Therefore,PB = PA−1

– Perm2 will refer to the permutation corresponding toPA andPB. Perm2 = PA

andPerm2−1 = PB.

It is possible to defineP1, P2, PRP1 andPRP2 that satisfy these constraints. For
example, we will later show how a five-round elastic network can be viewed in this
manner by definingP1 to be the first round,P2 to be the inverse of the last round,
PRP2 to be the last four rounds andPRP1 to be the inverse of the first four rounds.
Perm2 is a pseudorandom permutation onm bits (this is justPRP2 andPRP1 with
the inputs selected by choosingm bits then applying a permutation,P1 or P2, to the
input before giving it to the pseudorandom permutation).

Claim 1: Perm2 is a SPRP.

Proof. In order forPerm2 to be a SPRP it must not be possible to distinguishPerm2
from a random permutation on polynomially many (n) queries toPA and its inverse,
PB. For simplicity, when we say an adversary is queryingPerm1 or Perm2, we
mean the adversary is able to issue queries to both the permutation and its inverse. The
adversary does not have direct access toP1 andP2, meaning the adversary is not able
to queryP1 and use the output as input toPRP2 and/or queryP2 and use the output
as input toPRP1. The adversary can only give inputs toPA andPB.

– Let (pi, ci), for i = 1 to n be pairs ofm bit strings such thatci = PA(pi).
– Let < +, pi > denote a query toPA using inputpi.
– Let < −, ci > denote a query toPB using inputci.
– Let ti be the output of theith query.ti = ci when the query is< +, pi > and

ti = pi when the query is< −, ci >.
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– Let T = (t1, t2, ....tn) be the output ofn distinct queries toPA. If the ith query
is < +, pi > and thejth query is< −, ci >, tj = pi if and only if ti = cj , for
i 6= j. Without loss of generality we can assume that if an adversary queries with
< +, pi > that he will not later query with< −, ci > since he knows the answer
will be pi regardless of whether he is queryingPerm1 or Perm2.

– Let U = (u1, u2, ....un) be the output ofn distinct queries made toPerm1.
We will refer toU andT as transcripts ofPerm1 andPerm2, respectively. In order
for Perm2 to be a SPRP, it must not be possible to distinguishT from U with non-
negligible probability. The probability ofui+1 ocurring given(p1, c1), (p2, c2)...(pi, ci)
is 1

2m
−i

becausePerm1 is a random permutation. The probability of a specificU oc-

curing isPrR =
∏n−1

i=0
1

2m
−i

.
SincePA is a pseudorandom permutation, it is not possible to distinguish the out-

put,ti, of any single query from the output of a random permutation with non-negligible
probability. For any single query toPA, the output occurs with probability1

2m + e for
some negligiblee. When giveni queries toPA, the (i + 1)st such query produces
an output that occurs with probability1

2m
−i

+ eAi
for negligibleeAi

. Likewise, when
given i queries toPB, the (i + 1)st such query produces an output that occurs with
probability 1

2m−i
+ eBi

for negligibleeBi
. Even thoughPA andPB are inverses of

each other, there is no non-negligible relationship between the outputs ofPA andPB

because these are the outputs ofPRP2 andPRP1, respectively. A transcript ofn1 dis-
tinct queries toPA will occur with probability(

∏n1−1

i=0

1

2m−i
)+eA for negligibleeA. A

transcript ofn2 distinct queries toPB will occur with probability(
∏n2−1

j=0

1

2m−j
)+eB

for negligibleeB.
We consider the probability with which a transcript,TPA, of n1 queries toPA

occurs and with which a transcript,TPB, of n2 queries toPB occurs. Suppose an
adversary makesn1 queries toPA and that between the queries, the adversary is given
(pl, cl) pairs that correspond toPA (ı.e., the adversary is given extra pairs for which
he did not need to expend resources) such that overall, the adversary is givenn2 such
pairs. The adversary will not repeat any query or make a queryfor which he already
been given the outcome. Letnai be the number of(pl, cl) pairs the adversary has been
given prior to the(i + 1)st query toPA. nai ≥ nai−1 for 1 ≤ i ≤ n1. TPA occurs
with probabilityPrA = (

∏n1−1

i=0
1

2m−i−nai
) + ePA for negligibleePA. Suppose an

adversary makesn2 queries are made toPB and that between the queries, the adversary
is given(pl, cl) pairs that correspond toPB (ı.e., the adversary is given extra pairs for
which he did not need to expend resources) such that overall,the adversary is given
n1 such pairs. The adversary will not repeat any query or make a query for which he
already been given the outcome. Letnbj be the number of(pl, cl) pairs the adversary
has been given prior to the(j+1)st query toPB. nbj ≥ nbj−1 for 1 ≤ j ≤ n2. TPB

occurs with probabilityPrB = (
∏n2−1

j=0
1

2m−j−nbj
) + ePB for negligibleePB.

Whenn = n1+n2 queries are made to Perm2 such thatn1 queries are made toPA

andn2 are made toPB (the queries can be in any order), the probability of the resulting
transcript,T , from Perm2 can be written as the product ofPrA andPrB. Let qBi be
the number of queries made toPB between theith and(i + 1)st queries toPA. Let
qAj be the number of queries made toPA between thejth and(j+1)st queries toPB.
By settingnai =

∑i
k=0

qAk andnbj =
∑j

k=0
qBk, the probability ofT occurring is
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(PrA)(PrB) = ((
∏n1−1

i=0
1

2m
−i−nai

) + ePA)∗ ((
∏n2−1

j=0
1

2m
−j−nbj

) + ePB)

= (
∏n1−1

i=0

1

2m−i−nai
) ∗ (

∏n2−1

j=0

1

2m−j−nbj
) + (

∏n1−1

i=0

1

2m−i−nai
) ∗ ePA

+(
∏n2−1

j=0
1

2m
−j−nbj

) ∗ ePB + ePA ∗ ePB.

=
∏n−1

i=0

1

2m−i
+ e for negligiblee.

Therefore, it is not possible to distinguishT from U with non-negligible probability.

Theorem 5. A five-round elastic network onb + y bits in which each round function
is an independently chosen PRP onb bits is a variable-length SPRP onb + y bits for
any fixed value ofy where0 ≤ y ≤ b. Five rounds are the minimum number of rounds
required.

Fig. 4. Five-Round Elastic Network as Two PRPs and Two Permutations

Proof. Refer to Section 5 for an example showing why four rounds are insufficient.
G′ refers to a five-round elastic network onb + y bits with round functions that

are independently chosen PRPs onb bits. G′ can be defined in a format consistant
with the four permutations used in Claim 1:P1, P2, PRP1, PRP2. Figure 4 shows
a five-round elastic network represented in this manner. In the figure, the RFi’s are
independently chosen pseudorandom permutations.

– Let P1 refer to the first round ofG′, including the swap step.
– Let P2 refer to the inverse of the last round ofG′, including the swap step that

precedes the round function.i.e.,P2 is the first round inG′−1.
– P1 andP2 are independently chosen permutations, because eachRFi is a inde-

pendently chosen pseudorandom permutations. The exact permutations used for
P1 andP2 are unknown because they involveRF1 andRF4, respectively.P1
andP2 are not pseudorandom because they can be distinguished froma random
permutation by using queries where theb bit portion of input is held constant and
they-bit portion is varied.

– Let PRP2 refer to the last four rounds ofG′; i.e.,all steps inG′ afterP1.
– Let PRP1 refer to the inverse of the first four rounds ofG′, excluding the swap

step after the third round.PRP1 consists of all steps inG′−1 afterP2.
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PRP1 andPRP2 are PRPs onb + y bits by Theorems 4 and 3.PRP1 6= PRP2−1.
P1 and P2 are permutations onb + y bits. By settingPA = PRP2(P1(x)) and
PB = PRP1(P2(x)), PB = PA−1. Therefore, by Claim 1,G′ is a SPRP.

In our analysis for the three, four and five round cases, we required the round func-
tions be independently chosen random permutations. It may be possible to relax the
requirement that the round functions must independently chosen PRPs in a manner sim-
ilar to what was done by Naor and Reingold in their analysis ofFeistel networks [8].
While we have not determined to what extent the independenceof the round functions
can be relaxed, we know that at least two of the round functions must differ, except with
negligible probability. Specifically, a three-round elastic network and the inverse of a
four-round elastic network in which the round functions areidentical are not PRPs. The
proofs are provided in Section 5. These results indicate some independence is required
of the round functions.

5 Counter-Examples

We provide a lower bound on the minimum number of rounds needed in an elastic net-
work to create variable-length PRPs and variable-length SPRPs by providing examples
of when fewer rounds are not PRPs and SPRPs. We also show that acertain level of
independence is required between the round functions by considering cases when all of
the round functions are identical. First, we show that at least three rounds are needed for
an elastic network to be a PRP by proving that a two-round elastic network is not a PRP
regardless of the round functions. Second, we show that a three-round elastic network
is not a PRP when the round functions are identical. Third, weshow that the inverse
of a three-round elastic network is not a PRP regardless of the round functions. Fourth,
we show that the inverse of a four-round elastic network is not a PRP when the round
functions are identical. Fifth, we show that three and four-round elastic networks are
not SPRPs, regardless of the round functions. When proving an elastic network is not a
variable-length PRP or variable-length SPRP under specificconditions on the number
of rounds and/or round functions, it is sufficient to providean example for one block
size. All of the counter-examples use a2b-bit block size (y = b). Each example will not
hold with probability 1 wheny < b.

Claim 2:
An elastic network with exactly two rounds is not a PRP.

Proof. This claim holds regardless of the properties of the round functions. Consider
the case wherey = b. Given two2b-bit plaintexts of the formB||Y 1 andB||Y 2 (theb-
bit portion is the same in each), let the ciphertexts be denoted byC1||Z1 andC2||Z2,
respectively.Z1 = Z2 with probability 1. If the two-round construction was a PRP
on b + y bits, then for largeb, this equality would occur with probability2−b ± e for
negligiblee instead of with probability 1.

Claim 3:
A three-round elastic network is not a PRP when the round functions are identical.
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Fig. 5. Three-Round Elastic Network with Identical Round Functions

Proof. Consider the case shown in Figure 5 wheny = b. Let 0 denote a string ofy
zeroes. EncryptB||0 and letC1||Z1 denote the resulting ciphertext.Z1 = f1(f1(B)).
C1 = f1(f1(f1(B)) ⊕ f1(B)). Then encryptB||Z1 and letC2||Z2 denote the ci-
phertext.Z2 = C1 with probability 1. If this three-round network was a PRP onb + y

bits, then for largeb, this equality would occur with probability2−b ± e for negligible
e instead of with probability 1.

Fig. 6. Three-Round Elastic Network: Chosen Ciphertext Attack

Claim 4:
The inverse of a three-round elastic network is not a PRP.
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Proof. This is illustrated in Figure 6. The inputs to the round functions are defined in
the directions of the arrows in the figure and correspond to the direction of decryption.
This claim holds regardless of the properties of the round functions and is due to the
fact that, wheny = b, the input to the inverse of the second round function is known
because it is the rightmosty bits. In contrast, in the encryption direction, the XOR after
the first round prevents the input to the second round function from being chosen. Let
0 denote a string ofb zeroes. Wheny = b, create four2b-bit ciphertexts of the form
C1||0, C2||0, C1||Z andC2||Z whereC1 6= C2 andZ 6= 0. Let the plaintexts be
denoted byB1||Y 1, B2||Y 2, B3||Y 3 andB4||Y 4. ThenY 1 = f2−1(0)⊕ f3−1(C1),
Y 2 = f2−1(0)⊕ f3−1(C2), Y 3 = f2−1(Z)⊕Z ⊕ f3−1(C1) andY 4 = f2−1(Z)⊕
Z ⊕f3−1(C2). As a result,Y 1⊕Y 2 = Y 3⊕Y 4 with probability 1. If the three-round
network was a PRP on2b bits in the decryption direction, then for largeb, this equality
would occur with probability2−b ± e for negligiblee instead of with probability 1.
Wheny < b, the attack does not hold with probability 1 because the input to the second
round of decryption containsb− y bits off4−4(Ci). Theseb− y bits would have to be
equal forf4−4(C1) andf4−4(C2).

Fig. 7. Four-Round Elastic Network with Identical Round Functions

Claim 5:
The inverse of a four-round elastic network in which the round functions are identi-

cal is not a PRP.

Proof. Consider the case shown in Figure 7 wheny = b. Let 0 denote a string ofb
zeroes. Decrypt0||0 and letB1||Y 1 denote the resulting plaintext.B1 = f1−1(0).
Y 1 = f1−1(f1−1(0)) = f1−1(B1). Decrypt0||B1 and letB2||Y 2 denote the result-
ing plaintext.Y 2 = f1−1(B1)⊕f1−1(0) = Y 1⊕B1 with probability 1. If the inverse
of this four-round network was a PRP onb+ y bits, then for largeb, this equality would
occur with probability2−b ± e for negligiblee instead of with probability 1.
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Neither a three-round nor a four-round elastic network is a SPRP. In both cases,
this can be shown with an adaptive chosen plaintext - chosen ciphertext attack in which
two chosen plaintexts are encrypted then two chosen plaintexts formed from the two
resulting ciphertexts are decrypted. We include one four-round counter-example here.

Fig. 8. Four-Round Elastic Network: Chosen Plaintext - Chosen Ciphertext Attack

Claim 6:
A four-round elastic network is not a SPRP whenb = y.

Proof. This claim holds regardless of the properties of the round functions and is due
to the fact that a three-round elastic network in the decryption direction is not a PRP.
In the three round case, using chosen ciphertexts only, a relationship can be pushed
through the three rounds of decryption into the right half ofthe output with probability
1 wheny = b. In the four round case, the same approach is used in that the halves of
two ciphertexts are switched to form to new ciphertexts and push a relationship into
the rightmosty bits of the output of the third round. Wheny = b, this becomes the
entire input to the round function in the fourth round of decryption. This time, one
plaintext must be encrypted to assist in providing the values from which the ciphertexts
are formed. The sequence of three decryptions and one encryption shown in Figure 8
can be used to distinguish the four-round elastic network from a SPRP wheny = b.
Each plaintext and ciphertext is of length2b, ı.e.|B| = |Bi| = |Y i| = |Ci| = |Zi| =
b ∀i. Let 0 denote a string ofy zeroes. Decrypt a ciphertext of the formC1||0. Let
B1||Y 1 be the resulting plaintext. Encrypt a plaintext of the formB1||Y 2 with Y 2 6=
Y 1. Let C2||Z2 be the resulting ciphertext. The output of the first round function,
α1, is identical in both the decryption and encryption. Form two ciphertexts,C2||0 and
C1||Z2, and decrypt them. LetB3||Y 3 andB4||Y 4 denote the two resulting plaintexts.
B3 = B4 with probability 1.
Notice that:α1 = f4−1(C1) ⊕ f3−1(0) = Z2 ⊕ f4−1(C2) ⊕ f3−1(Z2)
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α3 = f4−1(C2) ⊕ f3−1(0)
α4 = Z2 ⊕ f4−1(C1) ⊕ f3−1(Z2)

By rearranging the equations forα1:
f4−1(C2) ⊕ f3−1(0) = Z2 ⊕ f4−1(C1) ⊕ f3−1(Z2).

Therefore, α3 = α4 andB3 = B4.

6 Conclusions and Extensions

Our analysis validates the soundness of the underlying structure used in creating elastic
block ciphers. We have proven that a three-round elastic network and the inverse of a
four-round elastic network are variable-length PRPs and a five-round elastic network
is a variable-length SPRP when the round functions are independently chosen PRPs.
These results allow for the creation of(b+ y)-bit PRPs and SPRPs fromb-bit PRPs, for
each value ofy where0 ≤ y ≤ b. We also proved that these are the minimum number
of rounds required and that the results do not hold when all ofthe round functions are
identical.

We can extend our PRP and SPRP constructions to cover a wider range of input
sizes by using instances of CMC mode [5] as the round functions within the elastic
network. CMC mode producesmb-bit SPRPs from a fixed-lengthb-bit PRP, where
m is an integer and2 ≤ m ≤ α, for some integer upper bound ofα. It involves
encrypting data using a block cipher in CBC mode, applying a mask, then encrypting
the resulting data in a reverse CBC mode. By using ab-bit PRP in CMC mode for
each of the round functions in the elastic network (the PRPs are still independently
chosen across each round), we are able to create variable-length SPRPs on a larger
range of input lengths, in single bit increments, then when using the elastic network by
itself. This combination for supporting variable-length inputs is unique from previous
designs of variable-length block ciphers that worked on anyinput length [1, 9]. Those
constructions work by creating an IV to use with the cipher incounter mode, then
create a key stream to XOR with all but one block of the data. When dealing with input
lengths beyond two blocks, the use of CMC mode and the elasticnetwork provides
an alternative approach to [1, 9] that does not apply a key stream, but rather creates a
permutation that results in diffusion across all of the bits.
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