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We create variable-length pseudorandom permutations {PRRI strong PRPs
(SPRPs) accepting any input length chosen from the rangeaa?b bits from fixed-
length,b-bit PRPs. We utilize thelastic networkhat underlies the recently introduced
concrete design of elastic block ciphers, exploiting it a&work of PRPs. We prove
that three and four-round elastic networks are variabgtlePRPs and five-round elas-
tic networks are variable-length SPRPs, accepting anytilgogth that is fixed in the
range ofb to 2b bits, when the round functions are independently chosed-ixegth
PRPs orb bits. We also prove that these are the minimum number of r@teglired.
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1 Introduction

We prove that the elastic network, the underlying structidirelastic block ciphers [2],
allows for the creation of variable-length PRPs and SPRéw fiixed-length PRPs,
meaning it provides a PRP or SPRP for every length indivighweithin a range of in-
put lengths. In the abstract sense, a block cipher should®RRP. Feistel networks
were analyzed in this manner and proven to provide fixedtleR&Ps and SPRPs un-
der certain conditions by Luby and Rackoff [7], and by Naod &eingold [8]. This
approach has also been used to justify modes of encryptamexample, the CBC-
Mask-CBC mode (CMC) of encryption was proven to provide a BRR multiples
of the block length under certain conditions on the blockeipused within the mode
[5]. In general, the implementation of a block cipher can basidered a black box
to applications making function calls to the cipher. Thigspecially true in modern
computers where block cipher hardware may be included, asid¢htel’s plan to have
AES in hardware as part of its future CPUs [4]. Understantimg to combine PRPs in
theory to provide additional functionality translatesoiqractical implementations by
replacing the PRP with the black box that is the block cipher.

We consider the elastic network in an analogous mannetti€lasck ciphers are
variable-length block ciphers created from existing blogdhers. The elastic version
of a block cipher supports any actual block size between owetao times that of
the original block size. The method consists of a subsbitupiermutation network, the

* This is an extended version of the paper in Inscrypt 2008.



elastic network, that uses the round function from the exgdixed-length block cipher.
We prove that three and four round elastic networks provateable-length PRPs and
five round elastic networks provides a variable-length SRRRBach input length in the
range ofb to 2b bits when the round functions are independently chosen-fixegth
PRPs orb-bits.

Our results assist in proving the soundness of the elagitkllipher’s basic struc-
ture. The security of elastic block ciphers against prattttacks was evaluated in [3].
By proving the elastic network forms variable-length PRRd 8PRPs on inputs of
to 2b bits, under certain restrictions on the number of roundsiadéependence of the
round functions as was done for Feistel networks [7, 8], cankvprovides further justi-
fication for the elastic block cipher approach to creatingade-length block ciphers.

We consider analysis of the elastic block cipher approadbetof value because
of how the approach differs from other approaches that remsting block ciphers
when creating a variable-length block cipher in practiceliké other variable-length
block cipher constructions that build upon existing fixeddth block ciphers, the elas-
tic block cipher approach does not require multiple apfgitices of the fixed-length
block cipher to encrypb + y bits, where0 < y < b. By using the round function
of the existing fixed-length block cipher as a black box witttie elastic network the
computational workload of an elastic block cipher is prdipmal to the block size. In
contrast, other methods, such as [1, 9, 10], treat a fixegktenlock cipher as a black
box. When encrypting + y bits, each of these methods apply a block cipher multiple
times along with additional operations, resulting in a coiagional workload that is
not proportional to the block size and which is less efficidnain padding the data to
two full blocks, regardless of the exact valueyof

The remainder of this paper is organized as follows. Se@isammarizes the def-
initions of a PRP and SPRP, and the structure of elastic bigatkers. In Section 3,
we show how to create variable-length PRPs from fixed-leRiRFPs with three and
four round elastic networks. In Section 4, we prove that afiuend elastic network
allows for the creation of a variable-length SPRP from fikexnlgth PRPs. In Section 5,
counter-examples used to define the minimum number of roandsndependence of
the round functions required for the proofs are presente8ektion 6, we summarize
our results and briefly explain how the elastic network carctmmbined with CMC
mode to extend the supported input length bey2ibits.

2 Preliminaries and Strategy

2.1 PRP and SPRP Definitions

We informally remind the reader of the definitions of a PRP ar8PRP. Refer to [6]
for formal definitions. Although we are discussing permiotad (as opposed to practical
block ciphers), we will use the terms "plaintext” and "ciptext” to refer to the inputs
and outputs of the permutation. We use the following ternthéndefinitions of a PRP
and a SPRP.

— Random permutation: A permutation érbits that is chosen randomly from all
permutations om bits.



— Let P be a permutation ohbits. P~! denotes its inverse?(z) is the output ofP
when given input: of lengthb bits.

— Chosen plaintext query: An adversary chooses an inputp a permutationp,
and receives the output, = P(p;).

— Chosen ciphertext query: An adversary chooses an irputp the inverse of a
permutationP~1, and receives the outpyt; = P~1(c;).

— Chosen plaintext - chosen ciphertext queries: An adversakes a series of queries
to a permutationP, and its inverseP !, and receives the outputs.

— Adaptive queries: When making chosen plaintext, chosehecipxt or chosen
plaintext - chosen ciphertext queries to a permutation/@aritd inverse), the queries
are said to be adaptive if the adversary making the queréssves the output of
thei*" query before forming théi + 1)t query and can use the previougueries
and their outputs when forming tiie+ 1)t query.

The concepts of a PRP and a SPRP can be described by congitherijorobability
with which an adversary can correctly determine whetheobarblack box contains a
specific permutation or a random permutatiorbdnits while using only polynomial (in
b) many resources. L&t be a permutation obhbits. Given a black box that contains ei-
ther P (orits inverse) or a random permutation, an adversary maddgaomially many
adaptive queries to the black box and receives the outptitegfermutation within the
box. If the probability that the adversary correctly deteres (using polynomial time
and memory) the contents of the box%ier e for negligiblee > 0, thenP is a PRP.
In terms of block ciphers, this corresponds to the adversaiyg able to make either
adaptive chosen plaintext queries or adaptive chosenrtgtigueries, but not both, to
a black box which contains either the cipher or a random ptatioun.

Similarly, a permutationP, onb bits is a SPRP if it is not possible to distinguish
P from a random permutation dnbits in polynomial (inb) time and memory when
queries to both the permutation and its inverse are pemhitta terms of block ci-
phers, this corresponds to the adversary being able to nu®iae chosen plaintext -
chosen ciphertext queries to a black box which containgette cipher or a random
permutation.

2.2 Elastic Network

We provide a brief review of the elastic network, which pa®s the underlying struc-
ture of elastic block ciphers. The elastic block cipher rodttvas defined for creating
variable-length block ciphers in practice [2]. The rounddtion or cycle of an existing
fixed-lengthp — bit, block cipher is inserted into the elastic network, showRigure 1
and becomes the round function of the elastic version of ijiieec. The input i + y
bits, whered < y < b. In each round the leftmostbits are processed by the round
function and the rightmogj bits are omitted from the round function. Afterwards, a
"swap step” is performed in which the rightmasbits are XORed with a subset of the
leftmostb bits and the results swapped when forming the input to thenoexd.

* Elastic block ciphers also include initial and end-of-rdwshitening, and initial and final key-
dependent permutations. Our analysis focuses on the hasatuse and thus we omit these
steps.
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Fig. 1. Two Rounds of an Elastic Network

3 \Variable-Length PRPs

As our first step, we prove that a three-round elastic netwarkthe inverse of a four-
round elastic network are variable-length PRPs when tleind functions are inde-
pendently chosen random permutations (RP). From theséisiese can then prove
that the same networks are variable-length PRPs when tihel fanctions are indepen-
dently chosen fixed-length PRPs. Figure 2 shows three-randdfour-round elastic
networks.
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Fig. 2. Three and Four-Round Elastic Networks



We prove that if a three-round elastic netwo€K, with round functions that are
independently chosen random permutation$ bits can be distinguished from a ran-
dom permutation oh+ y bits, for some fixed value df+ y, using polynomially many
gueries taG’ then at least one of the round functions can be distinguifioed a ran-
dom permutation oh bits, which is a contradiction. Therefore, we conclude @ais a
PRP. We use a black boR,;-, that contains eithet’ or a random permutation dnt-y
bits. We prove that if a distinguishebys, exists that can determine whether or i,
containsG’ using polynomially many adaptive queries to the box thgncan be used
to create a distinguisher for at least one of the round fonstbfG’ to distinguish the
round function from a random permutation bbits. When we say a distinguisher for
G’ exists, we mean that the distinguisher, using polynomiabiyy adaptive queries in
one direction can predict or eliminate a possibility abouadditional input/output pair
value of the given permutation with greater certainty thaat bf a random guess. In
contrast, with a random permutation, anything beyond tpetiloutput pairs from the
queries is known with the same probability as a random giWegepeat the process
for the inverse of a four-round elastic network.

We will refer to the components of the three and four-rounidvoeks as they are
labelled in Figure 2. We use the following notation:

— b > 0is aninteger.

— yis aninteger such that< y <.

— X & Y whereX is ab-bit string andY is ay-bit string, means the bits df are
XORed withy specific bits ofX and the otheb — y bits of X are treated as if
they are XORed with O’s. If the resulting string is stored imaaiable containing
only y bits instead ob bits, the result consists only of thebits in the positions
that involved bothX andY instead ofX and theb — y 0's. For example, consider
XORIing a 2-bit string with a 4-bit string such that the XOR atwes the leftmost
2 bits of the 4-bit string. Let1 anda2 be 4-bit strings. Letvl andw2 be 2-bit
strings. Ifz1 = 0110 andwl = 11,042 = z1 @ wl = 1010.w2 = 21 & wl = 10.

— n > 0is an integer that generically represents the number ofrpohyally many
(in terms of the length of the input) queries made to a fumctio

— | X] is the length, in bits, of.

— RFiis thei®” round function, fori = 1,2, 3, 4. Any restrictions placed on RF'i
will be specified as needed. Each round function is a periouatah b-bits.

— ai is theb-bit input to thei*” round function fori = 1,2, 3, 4.

— zi is theb-bit output of thei*” round function fori = 1,2, 3, 4.

— wi is they bits left out of thei*” round function fori = 1,2, 3, 4. For any particular
elastic networkw?2 is formed from a fixed set oj-bit positions fromz1, w3 is
formed from a fixed set of-bit positions ofz2, andw4 is formed from a fixed set
of y-bit positions ofz3 (i.e., the positions of the bits taken from to formw1 do
not vary amongst the inputs to a specific three-round elastieork). Likewise,
when formingw2, w3 andw4.

— When referring to a specific value for at, zi or wi, a subscript will be used. For
exampleal;.

Theorem 1. A three-round elastic networky’, onb + y bits in which the round func-
tions are independently chosen random permutatiorigits is a variable-length pseu-



dorandom permutation o+ y bits in the encryption direction for any fixed valueyof
where0 < y < b. Three rounds are the mininum number of rounds required.

Proof. A two-round elastic network cannot be a PRP. Refer to Seétionthe counter-
example. We define the following notation for use in proving three round case:

— Bg is a black box that contains eith@f or a random permutation dn+ y bits.

— (al;,wl;) is an inputtoBg-. |al;| = b and|wl;| = y as defined previously.

— (234, w3;) is the output 0B+ corresponding to the inpyt1;, wl;). |23;| = band
|w3;| = y as defined previously.

— Djs is a distinguisher fotz’, meaningD3 can determine whether or n®g: con-
tainsG’ with probability £ + « for non-negligiblery, 0 < o < 1 when using only
polynomially (inb + y) many resources. LdD; return a 1 if it thinksBg: contains
G’ and a 0 otherwiseD3; makesn adaptive chosen plaintext or adaptive chosen
ciphertext queries, but not both.

— 81 = {(al;,wl;)} andS2 = {(23;,w3;)}, fori = 1 to n are the sets of inputs
and outputds uses to distinguish’ from a random permutation. Wheps works
by making queries tB¢- in the encryption direction$'1 contains the inputs and
S2 contains the resulting outputs. Whén works by making queries tB- in the
decryption directions?2 contains the inputs ansll contains the resulting outputs.

— Bgrr; is a black box that contains either tfé& round function,RF'i, of G’ or a
random permutation ohbits, fori = 1,2, 3.

— Bgri(X) is the output ofBgr; when given inputX.

— B;Ul,ﬂi (X) isthe inverse oBgrr;(X). i.e.,the inverse of whatever permutation is in
Brr; is applied toX.

— Dgp; is a distinguisher folRF'i, meaningDgr; can determine whether or not
Brr; containsRFi with probability  + o for non-negligiblen, 0 < o < 3 using
polynomially (inb + y) resourcesDrp; uses either adaptive chosen plaintext or
adaptive chosen ciphertext queries, but not both.

— "plaintext query” refers to a query @’ in the encryption direction and "ciphertext
query” refers to a query t6” in the decryption direction (a query & —1).

We note that the bit positions used in the swap steps’iare not secret and this
information can be used by any distinguisher. We define thewing functions corre-
sponding to the swap steps for use by the distinguishers:

— Let Fi(X,Y") be a function that takes&bit input, X, and ay-bit input, Y, and
returns the paitZ, W) whereZ is ab-bit string andi¥ is ay-bit string. F'i replaces
they bits of X with they bits of Y such that the bits ik’ which are replaced are
in the same positions as the bits from the output ofitheound function that are
involved in the swap step after thié& round ofG’. Fii returns the updated value
in Z and returns a bit string)’, that contains the bits of X that were removed
from X XORed with they bits inserted intoX. F'i(X,Y’) computes the inverse of
thei*” swap step in the elastic network.

— Let FYi(X) be a function that takestabit input X and returns thg bits that are
in the same bit positions used to createfrom z(i — 1) in G.

— LetOi be an oracle that contains t#é round function R i of G’. O~ will refer
to an oracle containin@Fi—*.



We now prove Theorem 1. D3, a distinguisher fof?’ in the encryption direction,
exists,Ds; must fall into one of the following categories:

— Category I:D3 does not use the3 portion of the output in its decision. The only
part of the output used is the3 portion. This means that given theinput/output
pairs inS1 andS2, D3 never uses the3 portion from any of the pairs i52.

— Category Il:D3 does not use the3 portion of the output in its decision. The only
part of the output used is the portion. This means that given theinput/output
pairs inS1 andS2, Ds never uses the3 portion from any of the pairs ig2.

— Category lll: D3 uses both the3 andw3 portion of the outputs in its decision.
This means that given input/output pairs ir61 andS2, D5 uses the:3 portion of
the output from at least one of of the pairsSft and uses the3 portion from at
least one of the pairs i2. Without using both portiond); fails to distinguish the
elastic network from a RP.

In each category, there are no restrictions on what portidttge inputs{(al;,wl;)},
are used. For each of the categories, we will show that thetemde ofD3 implies a
distinguisher can be formed for either the second or thitohdofunction ofG’, which
contradicts the round functions being independently chosedom permutations.

Category I: If Ds falls into Category I, a distinguisheR) g2, can be defined for the
second round functionR F'2. Intuitively, D3 using only thew3 portion of the output
of G’ whenw3 is from the output ofR 72 whose inputs cannot be predicted with non-
negligible probability impliesDs can distinguishRE2 from a random permutation.
The inputs toRF2 are distinct except with negligible probability. Therefpthew3
values are distributed as if they are taken from the outplutlistinct queries taR F'2,
except with negligible probability anéd; cannot rely on being givew3 values that
were generated from identical inputsRF'2.
Define Dgrro as follows:

Ask D3 what its first query (input) would be if it was queryirigy.. PopulateS1
with this first input, sqal;,w1;) has been chosen and isSi. S1 is known toD g pa.

fori=1ton {
Take(al;, wl;) from S1 for use in subsequent steps.
Setz1; = O1(al).
Setz2; = BRFQ(Zli D wli).
Setw3; = FY?)(ZQZ)
Give al;, wl;, w3; to Ds.
Add to S1 the next inputDs; would use when trying to distinguisbs, having
seen the inputs and partial output of the firqueries. This igal;1, wl;41).
}
Let ans be the valueDs returns.
Returnans.

The values given td); are the input and rightmost bits of the output of a three-
round elastic network witliR F'1 as the first round function and the content$3pfr, as
the second round function. The third round function is e@vaht here becaude; is not
using the output of the third round function. The values giteeDs correspond to those



of S1 and thew3, values 0fS2 whenDjs is allowed to make: adaptive chosen plaintext
queries taB¢. D3 succeeds with non-negligible probability in determininigather or

not it was given the input and partial output@f implies D g r» will succeed with non-
negligible probability in determining if the (a2,, 22;) pairs correspond to the inputs
and outputs ofR F'2. Therefore,Dgro can distinguish the contents &z - using the

n queries{O1(al;) ® wl;}. Brro, contradicting the assumption that the second round
function is an RP.

Category II: If Ds falls into Category Il, a distinguishef)gzr3, can be defined for
the third round functionR F'3. Intuitively, D3 using only thez3 portion of the output
of G’ whenz3 is from the output ofR '3 whose inputs cannot be predicted with non-
negligible probability implied; can distinguistR £'3 from a random permutation. The
inputs to RF'3 are distinct except with negligible probability. Theredpthez3 values
are distributed as if they are the outputsadistinct queries taR F'3, except with neg-
ligible probability andD3; cannot depend on being gives values that were generated
from identical inputs toRF'3. Therefore,Ds using only the input ta&’ and thez3
portion of the output implie®); can distinguish? #'3 from a random permutation.

Define Drr3 as follows:

Ask D3 what its first query (input) would be if it was queryirigy,.. PopulateS1
with this first input, sqal;,w1;) has been chosen and isSh. S1 is known toD g 3.

fori=1ton {
Take(al;, wl;) from S1 for use in subsequent steps.
Setzl; = Ol(all)
Setz2; = 02(2’11 ) wll)
Setw?2; = FY2(2’11)
Setz3; = BRF3(Z2i (&) w2i).
Give ali, wly, 23; 10 Ds.
Add to S1 the next inputDs; would use when trying to distinguisbs, having
seen the inputs and partial output of the firqueries. This igal;+1, wl;41).
}
Let ans be the valueDs returns.
Returnans.

The values given td3 are the input and leftmostbits of the output of a three-round
elastic network withRF'1 as the first round functionrR £'2 as the second round func-
tion and the contents aBrr3 as the third round function. The values giveniig
correspond to those &f1 and thez3; values fromS2 when D5 is allowed to make:
adaptive chosen plaintext queriesig. . D3 succeeds with non-negligible probability
in determining it was given the input and partial output®fimplies D3 will suc-
ceed with non-negligible probability in determining thentents of Bgr3 by usingn
queries{02(01(al;) ® wl;) ® F2(01(al;))}, contradicting the assumption that the
third round function is an RP.

Category lll: If D3 falls into Category lll, a second version of thk; 3 distinguisher
we just defined can be created for the third round functi®f,3. We call this new
version Drrsy2. Intuitively, D3 using both thez3 andw3 portions of the output of



G’ whenz3 is from the output ofRF'3 whose inputs cannot be predicted with non-
negligible probability, wherev3 is from the output ofRF'2 whose inputs cannot be
predicted with non-negligble probability and whee8 contributes to the formation of
the input of RF'3 (and thus contributes to the input to the permutation thatipces
23) implies D3 can distinguishRF'3 from random.D3 cannot depend on being given
23 and/orw3 values that were generated by holding the input®62 and/or RF'3
constant since this occurs with negligible probabilityeféfore,Ds can be viewed as
using some relationship between partial informatiaa (w3) used in forming the input
to RF'3 and the output (1.e53) of RF'3 to distinguish the third round function from a
random permutation.

Dgrrsye is Drrs with the modification thatv3; is given toDs along withal;, wl;
andz3;. DefineDgr,» as follows:

Ask D3 what its first query (input) would be if it was queryirigy.. PopulateS1
with this first input, sqal;,w1;) has been chosen and isSh. S1 is known toD g 3.

fori=1ton {
Take(al;,wl;) from S1 for use in subsequent steps.
Setz1; = O1(al).
Setz2; = 02(2’11 ©® wll)
Setz3; = BRFB(Z2i (&) w2i).
Give al;,wl;, 23;, w3; to Ds.
Add to S1 the next inputDs; would use when trying to distinguishs, having
seen the inputs and output of the firstueries. This ifal;41, wl;+1).
}
Let ans be the valueDs returns.
Returnans.

The values given t@3 are the inputs and outputs of a three-round elastic netwiahk w
RF1 as the first round functionR F'2 as the second round function and the contents
of Brps as the third round function. The values given/ig correspond to those of
S1 and.S2 when Dj is allowed to make: adaptive chosen plaintext queriesg;. .

D3 succeeds with non-negligible probability in determinihg/as given the input and
output of G’ implies D g 3,2 Will succeed with non-negligible probability in determin-
ing the contents 0B 3 by usingn queries{02(01(al;) ® wl;) & F2(01(al;))},
contradicting the assumption that the third round funcisom random permutation.

For each category, we have shown tlhat cannot exist. Therefore, a three-round
elastic network cannot be distinguished from a PRP by usitgnpmially many plain-
text queries when the round functions are independentlgahoandom permutations.
In the decryption direction, four rounds are required t@atzea PRP.

Theorem 2. The inverse of a four-round elastic network;’~!), on b + y bits in
which the round functions are independently chosen randermptations orb bits
is a variable-length pseudorandom permutationbos y bits for any fixed value of
where0 < y < b. Four rounds are the minimum number of rounds required.



Proof. Refer to Section 5 for an example showing why three roundsnareficient.
The notation and terms are the same as in the proof to Theorente$s otherwise
stated. The black boX3, will containG’~! or a random permutation dn-y bits. The
categories for the distinguisher are the same as in the-tbrew case. For two of the
categories, three rounds are sufficient@r! to be a PRP. We prove these cases first.
Then the proof for the third category, which requires fowrnds, follows directly. The
inputs are of the fornz3, w3) when using three rounds afelt, w4) when using four
rounds. The outputs are of the fofiml, w1). D3 and D, will denote the distinguishers
when three and four rounds are under consideration, regglgciVhen the number of
rounds is not specified),. will be used to denote eithdps or D,. If a distinguisher
exists forG’~! it must fall into one of the following three categories:

— Category I:D,. does not use thel portion of the output in its decision. The only
part of the output used is thel portion. This means that given theinput/output
pairs inS2 andS1, D, never uses thel portion from any of the pairs i8'1.

— Category II:D,. does not use the1 portion of the output in its decision. The only
part of the output used is the portion. This means that given theinput/output
pairs inS2 andS1, D, never uses theyl portion from any of the pairs if1.

— Category lll:D,. uses both thel andw1 portion of the outputs in its decision. This
means that given input/output pairs ir52 andS1, D,. uses the:1 portion of the
output from at least one of them and uses:dheportion from at least one of them.
Without using both portiond),. fails to distinguish the elastic network from a RP.

In each category, there are no restrictions on what portbtie inputs{ (z3;, w3;)} or
{(#4;,w4;)}, are used. WheD,. is restricted to Category Il or I, only three rounds are
needed foilG~! to be a PRP. These two categories will be addressed befoeg@gt

I. Similar to what was done with the encryption directidn, can be used to create
a distinguisher for one of the round functions. Since thentbfunctions are random
permutations, this results in a contradiction; thereférg cannot exist.

Category IlI: If D5 falls into Category I, a distinguisheR g1, can be defined for the
inverse of the first round function @’ (the last round of>’—1). Intuitively, D5 using
only thea1 portion of the output of’~* whenal is from the output of? 71~! whose
inputs cannot be predicted with non-negligible probapiliplies D3 can distinguish
RF1~! from a random permutation. The inputs RF1~! are distinct except with
negligible probability. Therefore, thel values are distributed as if they are the outputs
of n distinct queries td? F'1~ 1, except with negligible probability. ThereforB; using
only the input toG’~! and theal portion of the output impliesD; can distinguish
RF1~! from a random permutation.

Define Drp1 as follows:

Ask D3 what its first query (input) would be if it was queryirgy,.. PopulateS2
with this first input, sq 231, w31) has been chosen and is$2. 52 is known toD g1 .

fori=1ton {
Take(z3;, w3;) from S2 for use in subsequent steps.
Seta3; = 03_1(231’)-
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Seta2; = 0271(221)
Setal; = B;E%‘l (le)
Give ali, Z3i, w33; 10 Ds.
Add to S2 the next inputDs; would use when trying to distinguisbs, having
seen the inputs and output of the firsfueries. This i§23;1, w3;4+1).
}
Let ans be the valueDs returns.
Drrsyo returnsans.

The values given td; are the inputs and outputs of the inverse of a three-round
elastic network withR F'3 as the third round functiorR F'2 as the second round func-
tion and the contents @, as the first round function. These values correspond to the
contents of52 and thex1; values 0fS1 whenDjs is allowed to make: adaptive chosen
plaintext queries t@g.. D3 succeeds with non-negligible probability in determining i
was given the input and output 6f implies D g1 will succeed with non-negligible
probability in determining the contents 6fz 1, contradicting the assumption that the
first round function is a random permutation.

Category lll: If Dg falls into Category lll, a distinguishef) z 3, can be defined for
the inverse of the first round functioRF1~". Intuitively, D5 can be viewed as using
some relationship between partial informatid®.(w1) used in forming the input to
RF1~! and the output (1.ex1) of RF1~! to distinguish the first round function from
a random permutation.

Define Drr142 to be Drpi with the addition that thevl; values are also given to
Ds.

Ask D3 whatits first query (input) would be if it was queryitity;. in the decryption
direction. Populat&2 with this first input, sq 23, w3;) has been chosen and is92.
S2is known toDgp142.

fori=1ton {
Take(z3;, w3;) from S2 for use in subsequent steps.
Seta3; = 0371(23;).
Seta2; = 02_1(221’)-
Set(zli, wli) = Fl(a2i, w2i).
Setal; = By (21;).
Give al;,wl;, 23;, w3; to Ds.
Add to S2 the next inputD3; would use when trying to distinguish
D3, having seen the inputs and output of the firgtieries.
Thisis (23i+17 w3i+1).

}

Let ans be the valueDs returns.

Returnans.

The values given td3 are the inputs and outputs of the inverse of a three-round
elastic network withR F'3 as the third round functiom? F'2 as the second round func-
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tion and the contents dBr 1 as the first round function. These values correspond to
those ofS1 and S2 when Ds is allowed to make: adaptive chosen plaintext queries
to Bgs. D3 succeeds with non-negligible probability in determinibhgvas given the
input and output of3’ implies D 1,2 Will succeed with non-negligible probability

in determining the contents @1, contradicting the assumption that the first round
function is a random permutation.

Category I: The result for this category follows directly from the rasubr Categories
Iland Ill. If D4 only uses thev1 portion of the outputs, sincel = w2 @ a2, this im-
plies D, is using a combination af2 andw2 on which to base its decision. This implies
D, is a distinguisher for the first three rounds of the networtkandecryption direction
that falls into Category Il because the leftmédbit portion @2) and rightmosty-bit
portion w2) of the three round output is used. Assuiilg exists for the four-round
network. D, is used to define a distinguisheépg, for the three rounds consisting of
RF4~* to RF272, taking inputs(z4;, w4;) and producing output&:2;, w2;). In this
case,B¢- is a black box containing eith& ! with four-rounds or a random permu-
tation onb + y bits. Let B3 be a black box containing either the three-round elastic
network formed from roundBF4~* to RF2~2 or a random permutation dn+ y bits.

Define D5 as follows:

Ask D, whatits first query (input) would be if it was queryitity;. in the decryption
direction. Populat&2 with this first input, sAz4,, w4;) has been chosen and isS2.
S2 is known toDs.

fori=1ton {
Take(z4;,w4,) from S2 for use in subsequent steps.
Give (z4;, w4;) to B3 and get bacKa2;, w2;).
Give wly, Z4i, w4; to Dy.
Add to S2 the next inputD, would use when trying to distinguisB/, having
seen the inputs and output of the firsjueries. This igz4,1, w4;41).
}
Let ans be the valueD, returns.
D3 returnsans.

The values given td),4 are the inputs and rightmogtbits of the outputs of the
inverse of a four-round elastic network. Theskits are formed from both thiebit and
y-bit portions of the output of three rounds. Therefore, lydbsumptio®, exists,Ds
will succeed with non-negligible probability in deternmigi that the(a2;, w2;) values
were formed from the first three rounds of decryption. Thietcadicts the previous
result from Category 1l

For each of the three categories, we have sh@yrcannot exist. Therefore, the
inverse of a four-round elastic network is a PRP when theddunctions are indepen-
dently chosen random permutations.

Using Theorems 1 and 2, we can prove that a three-roundelastivork in the
encryption direction and a four-round elastic network ia thecryption direction is a
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variable-length PRP when the round functions are indepafydehosen fixed-length
PRPs.

Theorem 3. A three-round elastic networky’, onb + y bits in which the round func-
tions are independently chosen PRP&drits is a variable-length PRP oy bits in
the encryption direction for any fixed valueipivhere0 < y < b. Three rounds are the
mininum number of rounds required.

Proof. First, as noted in Theorem 1, a two-round elastic networkioghe a PRP. The

result for three rounds follows directly from Theorem 1 ahe triangle inequality. We

consider the relationships between four versions of a thwaad elastic network that

differ in regards to the number of their round functions thed PRPs and RPs. We
consider the relationships between the four versions stwwigure 3 of a three-round

elastic network. In each version, the round functions ameseh independently of each
other and map &-bit input to ab-bit output.

NO N1 N2 N3

B Y B Y B Y B Y
RP1 PRP1
i & o o
RP2 RP2 PRP2 PRP2
& b & b

RP3 RP3 RP3 PRP3

C Z C Z C Z C Z

Fig. 3. Three-Round Networks Consisting of RPs and PRPs

We define the following six permutations:

— Let PRP1, PRP2, PRP3 be three independently chosen pseudorandom permu-
tations.
— Let RP1, RP2, RP3 be three independently chosen random permutations.

Let N1 refer to a three-round elastic network in the encryptioedtion in which
the firsti round functions are pseudorandom permutations and theimgmaound
functions are random permutations, for 0, 1, 2, 3 defined as follows:

— NO: Each round function is a RP. The round functionsArel, RP2 and RP3.

— N1: The first round function is the PRP. The second and thirdddunctions are
RPs. The round functions afeRP1, RP2 andRP3.

— N2: The first two round functions are PRPs and the third roundtfan is a RP.
The round functions ar@ RP1, PRP2 andRP3.
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— N3: Each round function is a PRP. The round functions BéeP1, PRP2 and

PRP3.
As shown by Theorem 10 is a PRP. Therefore, if Theorem 3 is not true it is

possible to distinquistv3 from N0 with probability > « for some non-negligiblex
where0 < a < 1. However, if N3 can be distinquished from random then at least one
of PRP1, PRP2 andPRP3 can be distinguished from random, which is a contradic-
tion to the definition of a PRP and thus proves Theorem 3.ILdte a distinguisher
that takegb + y)-bit inputs and runs in polynomial timé outputs a 1 if it thinks the
inputs are the outputs of a random permutation and outputsthedwise. LetPr(Ni)
be the probability thaD outputs a 1 when given polynomially many outputs frém
If N3 can be distinguished from a random permutation, tfe{N0) — Pr(N3)| > «.
However,

|Pr(NO) — Pr(N3)| = |Pr(N0) — Pr(N1) + Pr(N1) — Pr(N2) + Pr(N2) —
Pr(N3)| < |Pr(NO0) — Pr(N1)| +|Pr(N1) — Pr(N2)| + |Pr(N2) — Pr(N3)|.
Thereforeq < |Pr(NO) — Pr(N1)|+ |Pr(N1) — Pr(N2)| + |Pr(N2) — Pr(N3)|.
This implies at least one term on the right side of the ineiue > <. Therefore, it
is possible to distinguish a three-round elastic networth@encryption direction that
hasi round functions that are pseudorandom permutations3and round functions
that are random permutations from a three-round elastigorktthat has — 1 round
functions that are pseudorandom permutationsdéand round functions that are ran-
dom permutations with non-negligible probability, whéris at least one value from
{1, 2, 3}. Therefore, it is possible distinguish between a roundtionavhich is a ran-
dom function and one that is a pseudorandom function withmegligible probability,
contradicting the definition of pseudorandom.

Theorem 4. The inverse of a four-round elastic netwof&’ 1), onb+y bits in which
the round functions are independently chosen PRPishits is a variable-length pseu-
dorandom permutation oh+ y bits for any fixed value of where0 < y < b. Four
rounds are the minimum number of rounds required.

Proof. First, as noted in Theorem 2, the inverse of a three-rourstielaetwork cannot
be a PRP. The proof uses the same method as in the proof toerhé)rwith each
network now having four rounds and: defined for; = 0,1, 2, 3, 4, with 4 — 4 round
functions being RPs andound functions being PRPs. In each version, the round func-
tions are chosen independently of each other and nbapiteinput to ab-bit output.

We define the following eight permutations:

— Let PRP1, PRP2, PRP3, PRP4 be four independently chosen pseudorandom
permutations.
— Let RP1, RP2, RP3, RP4 be four independently chosen random permutations.

Let Ni refer to the inverse of a four-round elastic network in whioh firsti round
functions are pseudorandom permutations and the remaiaimg functions are ran-
dom permutations, far= 0, 1, 2, 3, 4 defined as follows:

— NO: Each round function is a RP. The round functions Rie1, RP2, RP3 and
RPA4.
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— N1: The first round function is the PRP. The second to fourth ddfumnctions are
RPs. The round functions afeRP1, RP2, RP3 and RP4.

— N2: The first two round functions are PRPs and the last two are Rigsround
functions arePRP1, PRP2, RP3 andRP4.

— N3: The first three round functions are PRPs and the last one R gl round
functions arePRP1, PRP2, PRP3 and RP4.

— N4: Each round function is a PRP. The round functionsfaf&”1, PRP2, PRP3
andPRPA4.

As shown by Theorem 2y¥0 is a PRP. Therefore, if Theorem 4 is not true it is
possible to distinquistiv4 from N0 with probability > « for some non-negligible:
where0 < o < 1. We will show that if N4 can be distinquished from random then at
least one ofPRP1, PRP2, PRP3 and PRP4 can be distinguished from random in
order to derive a contradiction and thus conclude Theoresirié.

Let D be a distinguisher that takés+ y)-bit inputs and runs in polynomial timé&
outputs a 1 if it thinks the inputs are the outputs of a randenmuitation and outputs a
0 otherwise. LePr(Ni) be the probability thab outputs a 1 when given polynomially
many outputs from\Vi. If N4 can be distinguished from a random permutation, then
|Pr(NO) — Pr(N4)| > a.

However,

|Pr(NO) — Pr(N4)| = |Pr(N0) — Pr(N1) + Pr(N1) — Pr(N2) + Pr(N2) —
Pr(N3) + Pr(N3) — Pr(N4)|

< |Pr(N0)—Pr(N1)|+|Pr(N1)—Pr(N2)|+|Pr(N2)— Pr(N3)|+|Pr(N3—
Pr(N4)|.

Thereforeqe < |Pr(NO)— Pr(N1)|+|Pr(N1)— Pr(N2)|+|Pr(N2)— Pr(N3)|+
|Pr(N3) — Pr(N4)|.

This implies at least one term on the right side of the ineiued > 5. Therefore, it
is possible to distinguish a four-round elastic networkha tlecryption direction that
hasi round functions which are pseudorandom permutationstand round functions
that are random permutations from a four-round elastic odtwhat has — 1 round
functions that are pseudorandom permutationssandround functions that are random
permutations with non-negligible probability, wherec {1,2,3,4}. Therefore, it is
possible distinguish between a round function which is @oamfunction and one that
is a pseudorandom function with non-negligible probagitbntradicting the definition
of pseudorandom.

4 Variable-Length SPRP from Fixed-Length PRPs

We now show how to construct variable-length SPRPs from fleedth PRPs. First, we
prove that a five-round elastic network in which the roundcfions are independently
chosen fixed-length PRPs is a variable-length SPRP. Thisillis to form SPRPs on
b + y bits fromb-bit PRPs, wher@ < y < b.

We note that a five-round elastic network consisting of rofumdtions that are in-
dependently chosen PRPs is a PRP in both the encryption anghbtien directions by
Theorems 3 and 4. We also note that by the definition of a SARRR;amdom permu-
tation is a SPRP. Before stating the theorem regarding the bit SPRP, we prove a
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claim. LetRP1 and RP2 be two independently chosen random permutations, each on
m bits. LetPerm1(x) = RP2(RP1(x)), wherex is of lengthm. Perml is a random
permutation onn bits and is a SPRP. Now we consider what happens if we use a com-
bination of pseudorandom permutations and permutatiopiage of RP1 and RP2. We
define permutations?1, P2, PRP1 and P R P2 to satisfy the following conditions:

— P1(z) and P2(z) are independently chosen permutationsnorbits. P1 # P2
except with negligible probability”1 is not pseudorandom in that a relationship
between some subset of bits in its inputs and outputs thatsegth non-negligible
probability is known, but the exact permutation is unkno@pecifically, when
given a black box that contains eithxl or a random permutation ol bits, it
is possible to determine the contents of the box in polyntynimaany queries.
However, when using’1 in forming PA as defined below, the exact permutation
corresponding td”1 is unknown in that”1 will involve applying a PRP to the first
b bits of its (b + y)-bit input. Likewise forP2, which is used to fornP B as defined
below. The PRPs used il and P2 are not the same PRP, except with negligible
probability.

— PRP1(z) and PRP2(z) are pseudorandom permutationsrarbits whose inde-
pendence is defined by the independencBbaind P2 such that
P2(PRP2(P1(z))) = PRP1(x).

— PA(xz) = PRP2(P1(x))

— PB(z) = PRP1(P2(x)). Therefore PB = PA~!

— Perm?2 will refer to the permutation corresponding®A andPB. Perm2 = PA
andPerm2~! = PB.

It is possible to definé’1, P2, PRP1 and PRP2 that satisfy these constraints. For
example, we will later show how a five-round elastic netwoak be viewed in this
manner by defining”1 to be the first roundP2 to be the inverse of the last round,
PRP2 to be the last four rounds arfdR P1 to be the inverse of the first four rounds.
Perm?2 is a pseudorandom permutation@nbits (this is justP RP2 and PR P1 with
the inputs selected by choosing bits then applying a permutatio®1 or P2, to the
input before giving it to the pseudorandom permutation).

Claim 1: Perm?2 is a SPRP.

Proof. In order for Perm2 to be a SPRP it must not be possible to distingutshm?2
from a random permutation on polynomially mam) Queries toP A and its inverse,
PB. For simplicity, when we say an adversary is queryidgrm1l or Perm?2, we
mean the adversary is able to issue queries to both the patioruand its inverse. The
adversary does not have direct accesBtand P2, meaning the adversary is not able
to queryP1 and use the output as input faR P2 and/or queryP2 and use the output
as inputtoPRP1. The adversary can only give inputsiftA andPB.

— Let(ps, ¢;), fori =1 ton be pairs ofm bit strings such that; = PA(p;).

— Let< +, p; > denote a query t& A using inputp;.

— Let< —,¢; > denote a query t& B using inputc;.

— Let t; be the output of thé*" query.t; = ¢; when the query is< +,p; > and
t; = p; when the query i< —, ¢; >.
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— LetT = (ty,t,....t,) be the output of: distinct queries taP A. If the i** query
is < +,p; > and thej*" query is< —,¢; >, t; = p;ifandonly ift; = ¢;, for
i # j. Without loss of generality we can assume that if an advergaeries with
< +,p; > that he will not later query withx —, ¢; > since he knows the answer
will be p; regardless of whether he is queryiRgrm1 or Perm?2.
— LetU = (u1, ua, ....u,) be the output ofi distinct queries made tBerml.
We will refer toU andT as transcripts oPerm1 and Perm2, respectively. In order
for Perm?2 to be a SPRP, it must not be possible to distingdisttom U with non-
negl|g|ble probability. The probability af; 1 ocurring given(ps, ¢1), (p2, ¢2)...(ps, ¢i)

is becausdé’erml is a random permutation. The probability of a spedifioc-

2m %
curing isPrr = [[1-, 5o

SincePA is a pseudorandom permutation, it is not possible to distsigthe out-
put,;, of any single query from the output of a random permutatidgh mon-negligible
probability. For any single query t84, the output occurs with probability: + e for
some negligiblee. When giveni queries toP A, the (i + 1)%* such query produces
an output that occurs with probabilitl— + e.4, for negligiblee 4,. Likewise, when
giveni queries toP B, the (i + 1)* such query produces an output that occurs with
probability 5— 2m - + ep, for negligibleep,. Even thoughP A and PB are inverses of
each other, there is no non-negligible relationship betwbe outputs o’ A and PB
because these are the output®dt P2 andPRP1, respectively A transcript of1 dis-

tinct queries taP A will occur with probability([ ;" o ) +ea forneghglbleeA A

transcript ofn2 distinct queries ta B will occur with probab|I|ty(]_[3120 ! 2,,_3 )+er

for negligibleep.

We consider the probability with which a transcriffty 4, of n1 queries toPA
occurs and with which a transcrigf,pg, of n2 queries toPB occurs. Suppose an
adversary makesl queries toP A and that between the queries, the adversary is given
(p1, ¢;) pairs that correspond tB A (1.e., the adversary is given extra pairs for which
he did not need to expend resources) such that overall, trersaty is givem2 such
pairs. The adversary will not repeat any query or make a gfggrwhich he already
been given the outcome. Let; be the number ofp;, ¢;) pairs the adversary has been
given prior to the(i + 1)t query toPA. na; > na;_1 for 1 < i < nl. Tp occurs
with probability Pr, = (HflO ! m) + epa for negligibleep4. Suppose an
adversary makes2 queries are made B85 and that between the queries, the adversary
is given(p;, ¢;) pairs that correspond t8B (1.e., the adversary is given extra pairs for
which he did not need to expend resources) such that ovidraladversary is given
nl such pairs. The adversary will not repeat any query or makgeaydgfor which he
already been given the outcome. két; be the number ofp;, ¢;) pairs the adversary
has been given prior to thg " 1)st query toPB. nb; > nb;_; for1 < j < n2.Tpp
occurs with probabilityPrg = (H;ﬁo ! m) + epp for negligibleepp.

Whenn = nl+n2 queries are made to Perm2 such thatgueries are made tBA
andn2 are made td® B (the queries can be in any order), the probability of theltiegu
transcript,T’, from Perm2 can be written as the productfaf, and Prg. Let ¢B; be
the number of queries made B between the'" and (i + 1)* queries toP A. Let
qA; be the number of queries madeftal between thg'" and(j +1)*! queries taP B.

By settingna; = 2220 gAy andnb; = Z';i:o qBy, the probability ofl” occurring is
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(Pra)(Pre) = (11125 s + epa)x (T2 s——;) T eps)
= (T i) * (120 =) + (T el ) # epa
+(H§Zgl m) *epp + epA *epp.

=[1I2) 57 + e for negligiblee.

Therefore, it is not possible to distinguighfrom U with non-negligible probability.

Theorem 5. A five-round elastic network o+ y bits in which each round function
is an independently chosen PRP phits is a variable-length SPRP dn+- y bits for
any fixed value o where0 < y < b. Five rounds are the minimum number of rounds
required.

I
RF1 ‘ P1

— PRP1

—— PRP2

RF2
4R
I
RF3
I
RF4
T
ﬁ/ P2

RF5

Fig. 4. Five-Round Elastic Network as Two PRPs and Two Permattions

Proof. Refer to Section 5 for an example showing why four roundsrasefficient.

G’ refers to a five-round elastic network én+ y bits with round functions that
are independently chosen PRPs phbits. G’ can be defined in a format consistant
with the four permutations used in Claim 21, P2, PRP1, PRP2. Figure 4 shows
a five-round elastic network represented in this mannerhénfigure, the RFi's are
independently chosen pseudorandom permutations.

— Let P1 refer to the first round of’, including the swap step.

— Let P2 refer to the inverse of the last round 6f, including the swap step that
precedes the round functiaire., P2 is the first round irG’ 1.

— P1 and P2 are independently chosen permutations, because Raths a inde-
pendently chosen pseudorandom permutations. The exaoiupsions used for
P1 and P2 are unknown because they involy&F'1 and RF'4, respectively.P1
and P2 are not pseudorandom because they can be distinguishedaframdom
permutation by using queries where thbit portion of input is held constant and
they-bit portion is varied.

— Let PRP2 refer to the last four rounds @¥’; i.e., all steps inG’ after P1.

— Let PRP1 refer to the inverse of the first four rounds @f, excluding the swap
step after the third round? R P1 consists of all steps i6’~! after P2.
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PRP1 and PRP2 are PRPs oh + y bits by Theorems 4 and  RP1 # PRP2~ 1.
P1 and P2 are permutations oh + y bits. By settingPA = PRP2(P1(z)) and
PB = PRP1(P2(x)), PB = PA~'. Therefore, by Claim 1¢’ is a SPRP.

In our analysis for the three, four and five round cases, weired the round func-
tions be independently chosen random permutations. It neagadssible to relax the
requirement that the round functions must independentigeh PRPs in a manner sim-
ilar to what was done by Naor and Reingold in their analysis&ittel networks [8].
While we have not determined to what extent the independeiite round functions
can be relaxed, we know that at least two of the round funstioust differ, except with
negligible probability. Specifically, a three-round elastetwork and the inverse of a
four-round elastic network in which the round functionsidentical are not PRPs. The
proofs are provided in Section 5. These results indicateesodependence is required
of the round functions.

5 Counter-Examples

We provide a lower bound on the minimum number of rounds net@dan elastic net-
work to create variable-length PRPs and variable-lengfRFFoy providing examples
of when fewer rounds are not PRPs and SPRPs. We also show ¢katiain level of
independence is required between the round functions ksidering cases when all of
the round functions are identical. First, we show that attldaee rounds are needed for
an elastic network to be a PRP by proving that a two-roundielastwork is not a PRP
regardless of the round functions. Second, we show thaeattound elastic network
is not a PRP when the round functions are identical. Thirdsheaw that the inverse
of a three-round elastic network is not a PRP regardlesseafathind functions. Fourth,
we show that the inverse of a four-round elastic network isanBRP when the round
functions are identical. Fifth, we show that three and famund elastic networks are
not SPRPs, regardless of the round functions. When provirgdeestic network is not a
variable-length PRP or variable-length SPRP under spamficlitions on the number
of rounds and/or round functions, it is sufficient to provateexample for one block
size. All of the counter-examples use@tabit block size {; = b). Each example will not
hold with probability 1 whery < b.

Claim 2:
An elastic network with exactly two rounds is not a PRP.

Proof. This claim holds regardless of the properties of the roumattions. Consider
the case wherg = b. Given two2b-bit plaintexts of the fornB||Y'1 and B||Y'2 (theb-

bit portion is the same in each), let the ciphertexts be dghbyC1||Z1 andC2||Z2,
respectivelyZ1 = Z2 with probability 1. If the two-round construction was a PRP
onb + y bits, then for large, this equality would occur with probability—® + e for
negligiblee instead of with probability 1.

Claim 3:
A three-round elastic network is not a PRP when the roundtfoms are identical.
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B
f1
f1(f1(B)) ® f1(B)€9A/
o
C1
e
C1
f1
Cc2 z2

Bl = 0] =121
Encrypting B || Z1 results in Z2 = C1

Fig. 5. Three-Round Elastic Network with Identical Round Funcsion

Proof. Consider the case shown in Figure 5 wher= b. Let 0 denote a string of
zeroes. EncrypB||0 and letC'1||Z1 denote the resulting ciphertexl = f1(f1(B)).
Cl = f1(f1(f1(B)) ® f1(B)). Then encryptB||Z1 and letC2||Z2 denote the ci-
phertext.Z2 = C1 with probability 1. If this three-round network was a PRPWoA y
bits, then for large, this equality would occur with probability—* + e for negligible
e instead of with probability 1.

s=Bii= =g =Pl =
& d d q

[ ] [ e [ ] [ |
4 I = I =

|Ci| = |Z] =b, C1 # C2, 0 = string of b zeroes, Z# 0

Fig. 6. Three-Round Elastic Network: Chosen Ciphertext Attack

Claim 4:
The inverse of a three-round elastic network is not a PRP.
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Proof. This is illustrated in Figure 6. The inputs to the round fumaes are defined in
the directions of the arrows in the figure and correspondedalirection of decryption.
This claim holds regardless of the properties of the roumttions and is due to the
fact that, wheny = b, the input to the inverse of the second round function is kmow
because it is the rightmogtbits. In contrast, in the encryption direction, the XOR afte
the first round prevents the input to the second round fundtimm being chosen. Let
0 denote a string ob zeroes. Whery = b, create four2b-bit ciphertexts of the form
C1]]0, C2]|0, C1||Z andC2||Z whereC1 # C2 andZ # 0. Let the plaintexts be
denoted byB1||Y 1, B2||Y2, B3||Y3 andB4||Y4. ThenY'1 = f271(0) @ f371(C1),
Y2 = 2"10)® f371(C2),Y3=f27Y(Z)®a Za f371(Cl)andY4d = f271(2) &
Z® f371(C2). Asaresulty 1@ Y2 = Y3 @ Y4 with probability 1. If the three-round
network was a PRP a2b bits in the decryption direction, then for largethis equality
would occur with probability2—® + ¢ for negligible e instead of with probability 1.
Wheny < b, the attack does not hold with probability 1 because thetitgpthe second
round of decryption contairts— y bits of f4=%(C4). Theseb — y bits would have to be
equal forf4=4(C1) and f4=4(C2).

B1 Y1

Y2

B1 = f11(0)
Y1 =f11(B1)

2

1

g
1

1

N

%

1

Y1

11(0) Y1
f

B1

B
f
f
4
N
f
0

B1

Fig. 7. Four-Round Elastic Network with Identical Round Functions

Claim 5:
The inverse of a four-round elastic network in which the méumctions are identi-
cal is not a PRP.

Proof. Consider the case shown in Figure 7 when= b. Let 0 denote a string ob
zeroes. Decrypb||0 and let B1|[Y'1 denote the resulting plaintex1 = f1-1(0).
Y1 = f1"1(f171(0)) = f1-1(B1). Decrypt0||B1 and letB2||Y2 denote the result-
ing plaintextY2 = f1-1(B1)® f171(0) = Y1 B1 with probability 1. If the inverse
of this four-round network was a PRP b#r-y bits, then for largé, this equality would
occur with probability2—* + e for negligiblee instead of with probability 1.
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Neither a three-round nor a four-round elastic network iP®B. In both cases,
this can be shown with an adaptive chosen plaintext - chapbeitext attack in which
two chosen plaintexts are encrypted then two chosen pidinfermed from the two
resulting ciphertexts are decrypted. We include one fourd counter-example here.

B1 Y1 B1 Y2 B3 Y3 B4 Y4
o [ [ O o R
al ;‘/(11 69/OLS € o4
f2:| Bz DZ:| 52
S I = B = I
[ ] i3 [ ] [ w
& d b i
:1 0 D(‘;j 7o :2 0 D:F' z2

0] = Bl = |Yi| = |Ci| = |Zi] Y1#Y2
Results in B3 = B4

Fig. 8. Four-Round Elastic Network: Chosen Plaintext - Chosen &iglxt Attack

Claim 6:
A four-round elastic network is not a SPRP wties y.

Proof. This claim holds regardless of the properties of the roumtttions and is due
to the fact that a three-round elastic network in the dedoypdirection is not a PRP.
In the three round case, using chosen ciphertexts only,aiaeship can be pushed
through the three rounds of decryption into the right halfhef output with probability
1 wheny = b. In the four round case, the same approach is used in thatthieshof
two ciphertexts are switched to form to new ciphertexts anshpa relationship into
the rightmosty bits of the output of the third round. When= b, this becomes the
entire input to the round function in the fourth round of dgxtion. This time, one
plaintext must be encrypted to assist in providing the \&fuem which the ciphertexts
are formed. The sequence of three decryptions and one dimmghown in Figure 8
can be used to distinguish the four-round elastic netwasknfa SPRP whep = b.
Each plaintext and ciphertext is of lendth, 1.e.|B| = |Bi| = |Yi| = |Ci| = | Zi| =

b Vi. Let 0 denote a string ofj zeroes. Decrypt a ciphertext of the for@i ||0. Let
B1||Y'1 be the resulting plaintext. Encrypt a plaintext of the faB||Y2 with Y2 £
Y1. Let C2||Z2 be the resulting ciphertext. The output of the first roundcfion,
al, is identical in both the decryption and encryption. Forro tiphertexts(C2||0 and
C1]|Z2, and decrypt them. LeB3||Y'3 andB4||Y 4 denote the two resulting plaintexts.
B3 = B4 with probability 1.

Notice thatal = f471(C1) & f371(0) = Z2 & f4~1(C2) & f371(Z22)
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a3 = f471(C2) @ £371(0)

ad=Z72® f471(C1) @ f371(22)
By rearranging the equations foi:

fA7HCO2) @ f371(0) = Z22@ fA7H(C1) @ £371(Z22).
Therefore, a3 = a4 andB3 = B4.

6 Conclusions and Extensions

Our analysis validates the soundness of the underlyingtsireiused in creating elastic
block ciphers. We have proven that a three-round elastizarktand the inverse of a
four-round elastic network are variable-length PRPs angearfiund elastic network

is a variable-length SPRP when the round functions are iggntly chosen PRPs.
These results allow for the creation(@f- y)-bit PRPs and SPRPs frobrbit PRPs, for
each value ofy where0 < y < b. We also proved that these are the minimum number
of rounds required and that the results do not hold when @h®found functions are
identical.

We can extend our PRP and SPRP constructions to cover a veidge of input
sizes by using instances of CMC mode [5] as the round funstigithin the elastic
network. CMC mode producesb-bit SPRPs from a fixed-lengthbit PRP, where
m is an integer an@ < m < «, for some integer upper bound af It involves
encrypting data using a block cipher in CBC mode, applyingagknmthen encrypting
the resulting data in a reverse CBC mode. By usinghit PRP in CMC mode for
each of the round functions in the elastic network (the PREsstll independently
chosen across each round), we are able to create varialgtt|lSPRPs on a larger
range of input lengths, in single bit increments, then whaingithe elastic network by
itself. This combination for supporting variable-lengtiputs is unique from previous
designs of variable-length block ciphers that worked oniapyt length [1, 9]. Those
constructions work by creating an IV to use with the ciphecaunter mode, then
create a key stream to XOR with all but one block of the dataektealing with input
lengths beyond two blocks, the use of CMC mode and the elastivork provides
an alternative approach to [1, 9] that does not apply a keyastr but rather creates a
permutation that results in diffusion across all of the.bits
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