
Small Odd Prime Field Multivariate PKCs

Anna Inn-Tung Chen1, Ming-Shing Chen2, Tien-Ren Chen2, Chen-Mou
Cheng1, Jintai Ding3, Eric Li-Hsiang Kuo2, Frost Yu-Shuang Li1, and Bo-Yin

Yang2

1 School of EECS, National Taiwan University, Taipei, Taiwan,
{anna1110,doug,frost}@crypto.tw

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan,
{mschen,trchen,lorderic,by}@crypto.tw

3 Dept. of Math. Sciences, U. of Cincinnati, Cincinnati, Ohio, USA,
ding@math.uc.edu

Abstract. We show that Multivariate Public Key Cryptosystems (MP-
KCs) over fields of small odd prime characteristic, say 31, can be highly
efficient. Indeed, at the same design security of 280 under the best known
attacks, odd-char MPKC is generally faster than prior MPKCs over F2k ,
which are in turn faster than “traditional” alternatives.
This seemingly counter-intuitive feat is accomplished by exploiting the
comparative over-abundance of small integer arithmetic resources in com-
modity hardware, here embodied by SSE2 or more advanced special mul-
timedia instructions on modern x86-compatible CPUs.
We explain our implementation techniques and design choices in imple-
menting our chosen MPKC instances modulo small a odd prime. The
same techniques are also applicable in modern FPGAs which often con-
tains a large number of multipliers.

Keywords: Gröbner basis, multivariate public key cryptosystem, TTS,
rainbow, HFE, `IC, SSE2, vector instructions

1 Introduction

MPKCs (multivariate public key cryptosystems) [16,42] are PKCs whose public
keys are multivariate polynomials in many variables over a small field K = Fq.

P : w = (w1, w2, . . . , wn) ∈ Kn 7→ z = (p1(w), p2(w), . . . , pm(w)) ∈ Km.

Here p1, p2, . . . are polynomials (in practice always quadratic for speed). It is
often mentioned that trying to invert P directly is equivalent to an instance of
Problem MQ(q;n, m): Solve the system p1(x) = p2(x) = · · · = pm(x) = 0,

where each pi is a quadratic in x = (x1, . . . , xn). All coefficients and variables
are in K = Fq, the field with q elements.

Which is a well-known difficult problem [27] and it is usually conjectured that
a random MQ instance is hard. Of course, a random P would not be invertible
by the legitimate user either. So in practice, the design involves two affine maps
S : w 7→ x = MSw+ cS , and T : y 7→ z = MT y+ cT , and an efficiently inverted
map Q : x 7→ y, and let P = T ◦Q◦S. The public key consists of the polynomials
in P. P(0) is always taken to be zero. The private key is M−1

s , cs, M−1
T , cT , and

whatever information that determines the central map Q.

2 B-Y Yang et al : Lab at crypto.tw

1.1 Questions

MPKCs are always touted as (a) potentially surviving of future attacks with
quantum computers, and (b) faster than “traditional” competition. In 2003,
sflash was a finalist for the NESSIE project signatures, recommended for speed.

However, the playing field has been changing rapidly. In the seminal pa-
pers more than a decade ago, it is pointed out that eventually it would be the
memory latency and bandwidth to become the bottleneck of the performance of
a microprocessor [8, 43]. This same trend has been observed by MPKC imple-
menters. When MPKCs were initially proposed two decades ago [32, 38], com-
modity CPUs compute a 32-bit integer product maybe every 15–20 cycles. When
NESSIE called for primitives, x86 CPUs could compute one 64-bit product every
3 (Athlon) to 10 (Pentium 4) cycles. A 64-bit AMD Opteron today has a big
pipelined multiplier that outputs one 128-bit integer product every 2 cycles plus
other multipliers each capable of outputing one 64-bit integer every cycle.

In stark contrast, cost of multiplying in F256 or F16 have not changed much
per cycle. An ’80s vintage 8051 microcontroller from Intel multiplies in F256 in
about a dozen instruction cycles using three table lookups. The AMD Opteron
today has the same latency, although a somewhat higher throughput. Despite
the fact that microprocessor manufacturers like Intel are planning carryless mul-
tiplication instructions [34] for new architectures to support polynomial multi-
plications in F2, the development and deployment of these new instructions still
lag several generations behind compared with their integer counterparts.

This striking disparity came about because memory access speed increased
at a snail’s pace compared to the number of gates available, which had been
doubling every 18 months (“Moore’s Law”) for two decades. Now the width
of a typical ALU is 64 bits, vector units are everywhere, and even FPGAs have
dozens of multipliers built-in. Commodity hardware has never been more friendly
to RSA and ECC – the deck seems stacked considerably against MPKCs.

Furthermore, we now understand multivariates and equation-solving much
better. The speed champions TTS/4 and SFLASH were much faster signature
schemes than traditional competition using RSA and ECC [1, 13, 44]. However,
both these two instances have been broken since [20,21]. Today TTS/7 and 3IC-
p still seem to do fine [10], but the impending doom of SHA-1 [40] will force
longer message digests and slower MPKCs, but leaving RSA untouched.

Of course, multivariates still represent a future-proofing effort, however, it
is imperative to address the obvious question: Can we design MPKCs that
are more efficient on modern commodity hardware?

1.2 Our Answers

Algebra tells us that q can be any prime power. However, in almost all pro-
posed multivariates to date, q is a power of two so that addition can be easily
accomplished by the logical XOR (exclusive-or) operation.

By letting q be a relatively small odd prime, in most of our tests here 31,
instead of a small power of 2, we achieve higher efficiency on current-generation

Multivariates over Small Odd Prime Fields 3

CPUs. MPKCs using mod-q arithmetic can become a few times faster by using
vector instructions that are present in almost every modern CPU.

All x86-64 (AMD64 or Intel64) CPUs today on a PC, either Intel’s Core 2
or AMD’s K8 (Athlon64) and K10 (Phenom) CPUs, support the SSE2 vector
instruction set. SSE2, which can pack eight 16-bit integer operands in its special
128-bit registers and access them together, can thus dispatch 8 simultaneous
integer operations per cycle. We hasten to point out that this is never really 8
times the speed since still need to set up, to move data, to fit data appropriately
and so on. Especially when the size of the vector is not divisible by 8, there is
often some extra cost in space and time. But our conclusion is:

Switching to Fq for MPKCs instead of F256 or F16 enables us to take
advantage of modern hardware. Even considering the need to convert
between base-q and binary, schemes over F31 is usually faster than an
equivalent scheme over F16 or F256 at the same design security.

Note that we are not really discussing the security of MPKCs, which is so
complicated that it may take a book and more. We simply aim to show that
today, there is no longer as much need to stick to F2k .

1.3 Previous Work

Proposed MPKCs There has been a great many. Most basic ideas remaining
— TTS, Rainbow, `IC-p, even oil-and-vinegar [14,15,20,36] can be implemented
over small odd-prime fields equally as well as over F2k . For some (e.g., `IC-
derivatives) an odd-char version is less convenient, but not impossible.

Note that C∗ and HFE in an odd char field was mentioned in [42] and recently
brought up again in [18], but not much researched so far.

Prior Attacks over F2k Nearly as many attacks and cryptanalytical techniques
exist as there are variations in MPKCs; most attacks applies equally to an MPKC
implemented over F2k or over a small prime field. Some attacks [7,12,24] do better
for smaller characteristics, or less well over an odd Fq than F2k . Significantly,
some direct solving attacks by Gröbner basis methods such as [22, 23] are in
these last category. Thus, MPKCs over odd Fq are of independent interest.

Implementation over F2k Current state of the art is given in [2, 10]. The
former discusses primarily the public map and include special bit-slicing imple-
mentations for quadratic maps (i.e., public map) over F2k . The latter discusses
current security criteria, parameter choices and give a few tricks to use for private
maps, such as bitslicing to solve linear systems.

To implement “big-field” MPKCs we also need to implement arithmetic and
algebraic operations in composite fields. I.e., powers, multiplications, inversions
and square roots and so on. Most techniques work similarly in any Fq, except

– Some arithmetic issues differ due to modulo-q considerations [5, 30].
– Square roots may require special methods [4] such as Tonelli-Shanks.

4 B-Y Yang et al : Lab at crypto.tw

– Cantor-Zassenhaus [9] is usually the algorithm of choice for equation-solving
in odd-char fields (required for HFE-like schemes), which typically is simpler
and faster than Berlekamp [3] that is used for F2k .

1.4 Future Work

Today’s FPGAs have many built-in multipliers and IP (intellectual property) for
good integer multipliers are common for ASICs (Application-Specific Integrated
Circuits). One example of using the multipliers in FPGAs for PKC can be found
in [31]. Hence our results can easily carry over to FPGAs as well as any other
specialized hardware with multiple small multipliers. There are also a variety
of massively parallel processor architectures on the rise, such as NVIDIA’s and
AMD/ATI’s graphics processors, as well as Intel’s upcoming Larrabee [39]. The
comparisons herein must of course be re-evaluated with each new instruction set
and new silicon, but we believe that the general trend stands on our side.

2 Our Tools

We aim to be as portable as possible, hence we programming everything in g++,
the C++ compiler in the GNU Compiler Collection (gcc). Since g++-4.3 can
use either Intel’s or its own naming conventions for x86 and x86-64 compatible
processor-specific intrinsics or inlined assembly, we choose to use the Intel names.
For the most part, icc (Intel’s own C++ compiler, version 10) gives similar results.

2.1 The SSE2 instruction Set

SSE2 stands for Streaming SIMD Extensions 2, where SIMD in turn stands for
Single Instruction Multiple Data. I.e., doing the same action on many operands.

All Intel CPUs since the Pentium 4 and all AMD CPUs since the K8 (Opteron
and Athlon 64) supports SSE2. The SSE2 instruction set operates on 16 architec-
tural 128-bit registers called xmm registers. Most relevant to us is SSE2’s integer
operations, which work on xmm registers as packed 8-, 16-, 32- or 64-bit operands.

SSE2 integer instructions are not easily to comprehend. The instruction set
is arcane and highly non-orthogonal. To summarize, there are the following:

Load/Store: To and from xmm registers from memory (both aligned and un-
aligned) and traditional registers (using the lowest unit in the xmm register
and zeroing all higher units on a load).

Reorganize Data: A multi-way 16- and 32-bit move called Shuffle, and Pack-
ing/Unpacking on vector data of different densities.

Logical: AND, OR, NOT, XOR; Shift (packed operands of 16-, 32- and 64-bits)
Left, Right Logical and Right Arithmetic (copies the sign bit); Shift entire
xmm register right and left (bytewise only).

Arithmetic: Add/subtract on 8-, 16-, 32- and 64-bits (including “saturating”
versions); multiply of 16-bit (high and low word returns, signed and unsigned,
and fused multiply-adds) and 32-bits unsigned; max/min (signed 16-bit, un-
signed 8-bit); unsigned averages (8-/16-bit); sum-of-differences 8-bits.

Multivariates over Small Odd Prime Fields 5

2.2 Other Vector Instruction Sets

The SSE3 instruction set does not do much for us, but the SSSE3 (Supple-
mentary Streaming SIMD Extensions) adds some instructions that assists with
our programming. The biggest drawback to SSE2, as explained above, is the
awkwardness with inner products, i.e., no operation between elements inside a
8-wide vector. One instruction that comes in very useful is PALIGNR (“packed
align right”, really a 32-byte shift). To execute “PALIGNR xmm (i), xmm (j),
k”, We shift xmm (j) right by k bytes, and insert the k rightmost bytes of xmm
(i) in the space vacated by the shift to the left. The result is placed in xmm (i).

Another useful intrinsic is PHADDW (“packed horizontal add word”). If desti-
nation register xmm (i) starts out as (x0, x1, . . . , x7), the source register xmm (j)
as (y0, y1, . . . , y7), then after “PHADDW xmm (i), xmm (j)”, xmm (i) will hold

(x0 + x1, x2 + x3, x4 + x5, x6 + x7, y0 + y1, y2 + y3, y4 + y5, y6 + y7).

We can check that if there are eight vectors v0, v1, . . . , v7 seven invocations of
PHADDW can obtain

(∑
j v

(0)
j ,

∑
j v

(1)
j , . . . ,

∑
j v

(7)
j

)
arranged in the right order.

Note that for both PALIGNR and PHADDW the source register xmm (j) can be
replaced by an 16-byte-aligned memory location.

Note: For introduction to optimizing x86-64 see [33]. Neither Intel’s SSE4
instructions nor AMD’s preemptive strike of what they call SSE5 are necessarily
useful to us as most effects of later instructions (e.g., PHADDW and PALIGNR)
can be achieved at a small cost using SSE2 instructions, which are remarkably
versatile. One exception is PSHUFB that does a 16-byte permute or table lookup.

2.3 A Comparison Between Current CPUs

Intel’s Core architecture, with SSSE3 and larger/faster L2 caches, have received
rave reviews and are remarkably cost-effective — but especially for floating point.
Even the new K10s from AMD don’t have SSSE3, but they are nicely optimized
for integer programming. Furthermore, one might simply use MOVDQU (move dbl.
quadword unaligned) to do unaligned loads/stores on AMD where one need
PALIGNR for Intel, due to the following subtle trap: One time in four on Intel
CPUs a random unaligned load would fall across a cache line for a penalty of
∼ 250 cycles. The SSE3 instruction LDDQU (load dbl. quadword unaligned) issues
two loads to avoid line faults but does not work very well on current Core 2’s.

In general, overall Intel’s Core 2 CPUs and AMD’s K10 CPUs remain close
if not evenly-matched by most estimates. But Intel’s newer 45nm process C2’s
excel particularly at vector code, since it is basically Intel’s own dominion.

3 General Implementation Techniques mod q

The most important optimization is avoid unnessary modulo operations. Careless
C++ programming will lead to frequent taking of remainders mod q. We try to

6 B-Y Yang et al : Lab at crypto.tw

delay this as much as possible and hence need to track carefully the size of
the operands. SSE2 uses 16- or 32-bit operands for most of its integer vector
operations. In general, we would like to use 16-bit integers (either signed or
unsigned) in our implementation because it makes for more parallel processing.

3.1 Conversion Between Bytes and Blocks in mod q

The division instruction is always particularly time-consuming, so by now ev-
eryone knows about doing division by multiplication for large integers [30]:

Proposition 1. If M satisfies 2n+` ≤ Md ≤ 2n+` + 2`, then

⌊
X

d

⌋
=

⌊
2−`

⌊
XM

2n

⌋⌋
=

⌊
2−`

(⌊
X ∗ (M − 2n)

2n

⌋
+ X

)⌋
(1)

for 0 ≤ X < 2n, where À denotes the right shift operation. Note that the second
equality in Eq. 1 is to take care of the common situation where M > 2n.

Most of the time there is a machine instruction returning the “top half of the
product of n-bit unsigned integers x and y” which achieves bxy

2n c relatively easily.
However, neither g++ nor Intel C++ have such intrinsics. For an unsigned integer
x in [0; 264 − 1], we might use something like the inline assembly code in Fig. 1
to access the requisite extra-precision arithmetic to achieve the effect of

Q =
⌊

1
32

(⌊
595056260442243601 x

264

⌋
+ x

)⌋
= x div 31, R = x− 31 Q.

One problem with the mod q is that the conversion between binary data and
base-q data can never be exact. Suppose the public map is P : Fn

q → Fm
q . For

digital signatures, we need to have qm > 2`, where ` is the length of the hash,
so that all hash digests of the appropriate size fit into Fq blocks; for encryption
schemes that pass an `-bit session key, we need qn > 2`.

It so happens that quadword (8-byte) unsigned integers in [0; 264 − 1] fit
decently into 13 blocks in F31. So to convert a 20-byte hash digest, we might do
two 8-byte-to-(F31)13 conversions, then convert the remaining 4 bytes into 7 F31

blocks for a total of 33. So to transfer 128-, 192-, and 256-bit AES keys, we need
at least 26, 39, and 52 F31 blocks respectively.

Once we have expressed a digital signature, a ciphertext, or even keys in
Fq-blocks, conversion to binary can be more wasteful as long as it is injective
and convenient. In our testing, we opted for a very simple packing that fits only
three F31 blocks in every 16-bit word. Thus, a digital signature scheme whose
public key is (F31)53 → (F31)36 might take a 20-byte hash, convert into 33 F31

blocks, pad to 36, take the inverse of the public map to get 53 F31 blocks, and
then pack to 36 bytes, which will be our signature.

Multivariates over Small Odd Prime Fields 7

3.2 Multiple Simultaneous mod q Operations as a Vector

We often need to take many remainders modulo q at the same time. Using divide
instructions is very time-wasting and this is eminently suitable for parallelization.

SSE2 does have instructions returning the upper word of a 16-bit-by-16-bit
product. However, since there are no carrying facilities, it is difficult to guarantee
a range of size q, especially for a general q. It is then important to realize that
we do not need always the tightest range. Minus signs are ok, it is only required
that the absolute values are relatively small to avoid costly mods. The following
is guaranteed to return a value y ≡ x (mod q) such that |y| ≤ q for general b-bit
word arithmetic:

y = x− q · IMULHIb
(⌊

2b

q

⌋
,

(
x +

⌊
q − 1

2

⌋))
, (2)

where IMULHIb returns the upper half in a signed product of two b-bit words, for
−2b−1 ≤ x ≤ 2b−1 − (q − 1)/2. For specifically q = 31 and b = 16, we can do
better and get a y ≡ x (mod 31),−16 ≤ y ≤ 15, for any −32768 ≤ x ≤ 32752:

y = x− 31 · IMULHI16 (2114, x + 15) , (3)

Here IMULHI16 is implemented via the intel intrinsic of __mm_mulhi_epi16. How
to multiply a vector by given q needs to be analyzed for individual architectures.

We implemented a special version for input and output in F31, where we
normalize the result to a principal value between 0 and 30 from y above:

y′ = y − 31 & (y ≫ 15) , (4)

where & is the logical AND and ≫ arithmetically shifts in the sign bit.

3.3 Multiplying a Matrix M to a Vector v

Core 2 and newer Intel CPUs have SSSE3 and can add horizontally within an
xmm register. On a Core 2, the matrix can be simply stored as rows. Each row is
multiplied componentwise to the vector. Then we use PHADDW to add horizontally
and arrange the elements at the same time. Surprisingly, the convenience of
having PHADDW available only makes a < 10% difference (cf. Sec. 2.2).

Using just SSE2, it is advisable to store M column-wise and treat the matrix-
to-vector product as taking a linear combination of the column vectors. Each
short int in v is copied 8 times into every 16-bit field in an xmm register using an
__mm_set1 intrinsic, which without SSSE3 takes three data-moving instructions
(using shuffles), but still avoids the penalty for accessing the L1 cache. Multiply
this register into one column of M, 8 components at a time, and accumulate.

One particular optimization for long rows and small modulus is given below.

8 B-Y Yang et al : Lab at crypto.tw

3.4 Evaluation of Public Polynomials

Normally we write the public map in the following manner:

zk =
∑

i

Pikwi+
∑

i

Qikw2
i +

∑

i<j

Rijkwiwj =
∑

i

wi

Pik + Qikwi +

∑

i<j

Rijkwj

 .

But often it is better to compute a vector c with contents [(wi)i, (wiwj)i≤j]T ,
then z as a product of a m × n(n + 3)/2 matrix times and c. Normally we
multiply as in Sec. 3.3, with coefficients grouped 8 at a time according to k. But
often we may exploit a packed multiply-add word to double word instruction that
computes (x0y0 +x1y1, x2y2 +x3y3, x4y4 +x5y5, x6y6 +x7y7) given (x0, . . . , x7)
and (y0, . . . , y7). We interleave one xmm with two monomials (32-bit load plus a
single __mm_set1 call), load a 4× 2 block in another, PMADDWD, and continue in
32-bits until the eventual reduction mod q. This messier way saves a few mod-q’s.

The Special Case of F31 We also pack keys (cf. Sec. 3.1) so that the public
key is roughly mn(n + 3)/3 bytes, which holds mn(n + 3)/2 F31 entries. For
F31, we go to special pains to avoid writing the data to memory and execute the
public map on-the-fly as we unpack (to avoid cache effects). It turns out that
it does not slow things down too much. Further, we can do the messier 32-bit
mod-q reduction (note: no __mm_mulhi_epi32!) via shifts as 25 = 1 mod 32.

3.5 Inverting a Vector of Elements

To invert one element in Fq, we usually use a lookup table. In some cases, we need
to invert many Fq elements at the same time. Looking up 8 elements in a table
usually don’t take that long, but getting entries out of and into xmm registers can
be troublesome. Thus, we can elect to use a (q−2)-th power (“patched inverse”)
to get the inverse for a vector of elements. Taking into account the possibility of
overflowing, we do this to get a 29-th power in F31 using short int

y = x∗x∗x mod 31; y = x∗y∗y mod 31; y = y∗y mod 31; y = x∗y∗y mod 31.

3.6 Solving Systems of Linear Equations

Systems of linear equations are involved directly with TTS (and Rainbow), and
indirectly in the other schemes through taking inverses. Normally, one runs a
Gaussian elimination, which is sped up also by SSE2.

One must notice here that during a Gaussian elimination, one need to do
frequent modular reductions, which rather slows things down from the speed
that you might otherwise expect. To elaborate a little more, let’s say that we
have an augmented matrix [A|b] modulo 31. For ease of doing elementary row
operations, we naturally store the matrix row-first. Now suppose we have done
elimination on the first column. Each entry in the remaining columns will now

Multivariates over Small Odd Prime Fields 9

be be of size up to about 1000, or at least up to around 250 if we use signed
representations. So, to do the second column of eliminations, we need to reduce
that column mod 31 before we can look up the correct coefficients. Given that
and the results from implementations in Sec. 3.5, we might as well reduce the
entire matrix, especially when the size is not large.

3.7 Choosing q = 31

Clearly, we need to avoid having too large q (too many reductions mod q) and too
small q (too large an array). The choice of q = 31 seems a good compromise, since
it also allows us several convenient tower fields and easy packing conversions.

4 Tower Fields for Big-Field Schemes

In a “big-field” or “two-field” scheme, we need to handle L = Fqk
∼= Fq[t]/ (p(t)),

where p is an irreducible polynomial of degree k. Of course, any irreducible
p results in an isomorphic representation of the same field, but often it is of
paramount importance to pick a p that makes for easier computations. It would
be convenient if p(t) = tk−a for a small positive a. When k|(q− 1) and in a few
other cases such a suitable a can be found.

When p is in a convenient form, the map X 7→ Xq in L, as a precomputable
linear map overK = Fq becomes nearly trivial, and multiplication/division/inverses
become much easier. Some example timings for a tower field in Tab. 5.

4.1 Multiplications

When we have Fqk
∼= Fq[t]/(tk − a), we can see that

(
x0 + x1t + · · ·+ xk−1t

k−1
) · (y0 + y1t + · · ·+ yk−1t

k−1
)

= tk−1(x0yk−1+ x1yk−2+ x2yk−3+ · · ·+ xk−3y2+ xk−2y1+ xk−1y0)
+ tk−2(x0yk−2+ x1yk−3+ x2yk−4+ · · ·+ xk−3y1+ xk−2y0+ axk−1yk−1)
+ tk−3(x0yk−3+ x1yk−4+ x2yk−5+ · · ·+ xk−3y0+ axk−2yk−1+ axk−1yk−2)
+ · · ·
+ t2(x0y2+ x1y1+ x2y0+ . . . + axk−3y5+ axk−2y4+ axk−1y3)
+ t(x0y1+ x1y0+ ax2yk−1+ . . . + axk−3y4+ axk−2y3+ axk−1y2)
+ (x0y0+ ax1yk−1+ ax2yk−2+ . . . + axk−3y3+ axk−2y2+ axk−1y1)

The straightforward way is to take each xi, copy it 8 times; and multiply by
the correct yi’s using PMULLW, then shift the results by the appropriate distances
using PALIGNR (if SSSE3 is available) and unaligned load/stores or shifts (if not).
Each option may be better or worse depending on the architecture and compiler.

For inconvenient cases like when k = 9, we need to tune the code somewhat
to the occasion. As an example, for k = 9, we would multiply the x-vector by y8

and the y-vector by x8, leaving the rest in a convenient 8× 8 pattern for access.

10 B-Y Yang et al : Lab at crypto.tw

For very large fields, we can use Karatsuba [35] or more advanced multiplica-
tions. E.g., treat F3130 as F3115 [u]/(u2 − t), where F3115 = F31[t]/(t15 − 3). Then
(a1u+a0)(b1u+b0) = [(a1+a0)(b1+b0)−a1b1−a0b0]u+[a1b1t+a0b0]; similarly,
we treat F3154 as F3118 [u]/(u3 − t), where F3118 = F31[t]/(t18 − 3). Then

(a2u
2 + a1u + a0)(b2u

2 + b1u + b0) = [(a2 + a0)(b2 + b0)− a2b2 − a0b0 + a1b1] u
2

+ [(a1 + a0)(b1 + b0)− a1b1 − a0b0 + ta2b2] u + [t ((a2 + a1)(b2 + b1)− a1b1 − a2b2) + a0b0] .

4.2 Squaring

Often people say S = 0.8M. Here we simply skip some of the iterations in the
loops used for the multiplication, and weigh some of the other iterations double.
Due to architectural effects S/M is anywhere from as high as 0.92 to as low as
0.75 for fields in the teens of F31 blocks, somewhat randomly, which carries from
any implementation over up to any tower field built over it.

4.3 Square and Other Roots

To compute square roots, there are many ways [4] today. For field sizes q = 3
(mod 4), it is easy to compute the square root in Fq via

√
y = ±y

q+1
4 . Here

we implement the Tonelli-Shanks method for 1 (mod 4) field sizes, as working
with a fixed field we can include precomputated tables with the program “for
free”. To recap, let’s assume that we want to compute square roots in the field
L, where |L| − 1 = 2ka, with a being odd.

0. Compute one of the primitive solutions of g2k

= 1 in L. We only need to
take a random x ∈ L and compute g = xa, and it is almost even money (i.e.,
x is a non-square) that g2k−1

= −1, which means we have found a correct g.
Start with a precomputed table of (j, gj) for 0 ≤ j < 2k.

1. We wish to compute an x such that x2 = y. First compute v = y
a−1
2 .

2. Look up in our table of 2k-th roots yv2 = ya = gj . If j is odd then y is a
non-square. If j is even, then x = ±vyq

−j
2 because x2 = y(yv2g−j) = y.

Since we implemented mostly mod 31, for F31k taking a square root is easy
when k is odd and not very hard when k is even. Example: in F319 , we compute

i. temp1 := (((input)2)2)2, ii. temp2 := (temp1)2 ∗ ((temp1)2)2,
iii. temp2 :=

[
temp2 ∗ ((temp2)2)2

]31
, iv. temp2 := temp2 ∗ (temp2)31,

v. result := temp1 ∗ temp2 ∗ (
(temp2)31

)31 ;

which achieves the square root in F319 , by raising to a power of

1
4

(
319 + 1

)
= 23 · [1 + 2(1 + 2 + 22 + 23)(31 + 313 + 315 + 317)

]
.

Multivariates over Small Odd Prime Fields 11

Similarly, in F3118 , the key step in taking a square root is accomplished via

i. temp1 := input ∗ (input)2 ∗ (input)4,
ii. temp2 := input ∗ (temp1)2,

iii. temp2 :=
[((

(temp1)31 ∗ temp2)31 ∗ temp1 * temp2 * input
)31

]31

,

iv. temp2 := temp2 ∗ ((((temp2)31)31)31)31,
v. result := temp1 ∗ temp2 ∗ ((((((((temp2)31)31)31)31)31)31)31)31.

This raises to the power of 1
128

(
3118 − 65

)
. Note that powers of 31 are “trivial”.

We should mention here that taking other (e.g. cubic or fifth) roots is, while
dependent on the exact field concerned, analogous to square roots.

4.4 Multiplicative Inverses

There are several ways to do multiplicative inverses in Fqk . The classical one is an
extended Euclidean Algorithm; another is to solve a system of linear equations;
the last one is to invoke Fermat’s little theorem and raise to the power of qk−2.

While the extended Euclidean Algorithm is a classic, for our specialized tower
fields of characteristic 31, it is slower because after the very first division the
sparsity of the polynomial is lost. Solving every entry in the inverse as a variable
and running a elimination is about 30% better; even though it is counter-intuitive
to compute X3115−2 to get 1/X, it ends up fastest by a factor of 2×–3×.

One final twist: when we compute
√

X and 1/X as high powers at the same
time, we can share some exponentiations and saving 10% of the work.

4.5 Equation-Solving in a Large Field

Using an odd-prime base field let us implement Cantor-Zassenhaus, today the
standard recommended algorithm for odd characteristics finite fields, for finding
all solutions in L = Fqk to a univariate degree-d equation u(X) = 0:

1. Replace u(X) by gcd(u(X), Xqk − X) so that u splits (factors completely)
in L. Most of the work is to compute Xqk

mod u(X), which can be done by
(a) Compute and tabulate Xd mod u(X), . . . , X2d−2 mod u(X).
(b) Compute Xq mod u(X) via square-and-multiply.
(c) Compute and tabulate Xqi mod u(X) for i = 2, 3, . . . , d− 1.
(d) Compute Xqi

mod u(X) for i = 2, 3, . . . , k.

2. Compute gcd
(
v(X)(q

k−1)/2 − 1, u(X)
)

for a random v(X), where deg v =
deg u−1; half of the time we find a nontrivial factor; repeat till u is factored.

The work is normally cubic in L-multiplications and quintic in (d, k, lg q) overall.

12 B-Y Yang et al : Lab at crypto.tw

5 Tests

Some recent implementations of MPKCs over F2k are tested in [10]. We choose
these more well-known schemes for comparison: TTS/Rainbow signature schemes;
3IC-p and pFLASH signature scheme; HFE encryption scheme. We have im-
plemented the following as comparable schemes: TTS/Rainbow of comparable
sizes; 3IC-p (analogue to pFLASH); HFE-based encryption schemes, all prefixed
with a 0 block (which means discarding a variable). Results are tabulated in
Tab. 2 and 1, with further data in Tab. 3 and 4.

5.1 Rainbow and TTS Families

Rainbow with u stages is characterized as follows [17,20]:

– The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
– For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S. Denote by ol := vl+1− vl and Ol := Sl+1 \Sl for l = 1 · · ·u.

– The central map Q has component polynomials yv1+1 = qv1+1(x), yv1+2 =
qv1+2(x), . . . , yn = qn(x) — notice unusual indexing — of the following form

yk = qk(x) =
vl∑

i=1

n∑

j=i

α
(k)
ij xixj +

∑

i<vl+1

β
(k)
i xi, if k ∈ Ol := {vl + 1 · · · vl+1}.

In every qk, where k ∈ Ol, there is no cross-term xixj where both i and j
are in Ol at all. So given all the yi with vl < i ≤ vl+1, and all the xj with
j ≤ vl, we can compute xvl+1, . . . , xvl+1 .

– a Rainbow is said to be a TTS [44] if the coefficients of Q are sparse.
– To invert Q, determine (usu. at random) x1, . . . xv1 , i.e., all xk, k ∈ S1. From

the components of y that corresponds to the polynomials p′v1+1, . . . p
′
v2

, we
obtain a set of o1 equations in the variables xk, (k ∈ O1). We may repeat
the process to find all remaining variables.

[10] suggests TTS/Rainbow on (F24 , 24, 20, 20) and (F28 , 18, 12, 12), both with
280 level design security (see the Appendix); we implement completely analogous
TTS/Rainbow at (F31, 24, 20, 20) which according to [20] should be somewhat
stronger, and (F31, 16, 16, 8, 16) at the same design security as the [10] versions.
Note that Rainbow is usually regarded the “normal” or parent scheme, where
TTS is faster but less investigated.

5.2 C∗, `-Invertible Cycles (`IC) and Minus-p Schemes

The `-invertible cycle [19] can be considered an improved version or extension
of Matsumoto-Imai, otherwise known as C∗ [38]. Let’s review first the latter.
“big-field” variants, the central map is really a map in a larger field L, a degree
n extension of a finite field K. We have a map Q : L→ L that we can invert, and
pick a K-linear bijection φ : L→ Kn. Then we have the multivariate polynomial

Multivariates over Small Odd Prime Fields 13

map Q = φ ◦ Q ◦ φ−1, which is presumably quadratic (for efficiency). then, one
“hide” this map Q by composing invertible affine linear maps S and T in Kn.
According to Imai, we pick a K of characteristic 2 for easy computation, and
“of course we would like to have just the easiest map, the square”. However,
squaring is linear in characteristic two, so they use this map instead Q

Q : x 7−→ y = x1+qα

, (5)

where x is an element in L, and such that gcd(1 + qα, qn − 1) = 1. The last
condition ensures that the map Q has an inverse, which is given by

Q−1
(x) = xh, (6)

where h(1 + qα) = 1 mod (qn − 1). `IC also uses an intermediate field L = Kk.
Here we use the simplest ` = 3 and extends C∗ by using this map:

Q : (X1, X2, X3) ∈ (L∗)3 7→ (Y1, Y2, Y3) := (X1X2, X2X3, X3X1). (7)

Most of the analysis of the properties of the 3IC map can be found in [14,19,26]
— the 3IC and C∗ maps has a lot in common. Typically, we do “minus” on 1/3
of the variables (3IC−) and use a prefix (set one of the variables to zero) [14].

For signature schemes, [14] recommends for 280 level security “pFLASH”,
which is C∗−p(24, 74, 22, 1) and closely related to the original FLASH except
that it uses half as wide variables and fix one variable to 0. [10] in addition
chooses 3IC−p(24, 32, 1) as their implementation model.

We simply use the central 3IC over F3118 here. For each projected minus
scheme, to sign:

1. Put in random numbers to the “minus” coordinates.
2. Invert the linear transformation T to get y.
3. Invert the central map C∗ or 3IC to get x. For 3IC, from (Y1, Y2, Y3) we do

(a) Compute Y1Y2 [1 multiplication].
(b) Compute (#a)−1 [1 inverse].
(c) Compute Y3(#b) = X−2

2 [1 multiplication].
(d) Compute (#c)−1 = X2

2 and ±
√

(#c) = X−1
2 [1 sqrt+inverse].

(e) Multiply X−1
2 from step (#d) to Y1, Y2, X2

2 from (#d) [3 multiplications].
4. Invert the final linear transformation S to get w (usually two answers).
5. Return if either w has the last component zero, else go to step 1 and repeat.

Note that 3IC in F3118 resembles pFLASH more due to much exponentiation.

5.3 HFE and Others

HFE is a well-known, perhaps the best-known Multivariate encryption method.
At the moment, solving HFE systems directly is considered to be sub-exponential

[29], and what is considered to be a “standard” HFE implementations for at least
128-bit key transmission works over F2103 with degree d = 129. We know of no

14 B-Y Yang et al : Lab at crypto.tw

timings below 100M cycles. Recently there is an attempt to get faster HFE with
a multivariate construction [7]. Randomly choose a Lh → Lh quadratic map

Q(X1, ..., Xh) = (Q1(X1, ..., Xh), · · · , Qh(X1, ..., Xh))

where each Q` for ` = 1, . . . , h is a randomly chosen quadratic polynomial:

Q`(X1, . . . , Xh) =
∑

1≤i≤j≤h

α
(`)
ij XiXj +

h∑

j=1

β
(`)
j Xj + γ(`). (8)

When h is small, this Q can be easily converted into an equation in one of
the Xi using Gröbner basis methods at degree no longer than 2h, this is good
since solving univariate equations is cubic in the degee. The problem is that
the authors showed that these schemes are basically equivalent to normal HFE,
meaning equally insecure.

It has been recently noticed that for odd characteristics, the usual Gröbner
basis attacks on HFE does not work as well [18]. Hence, we tried our hands at
multivariate HFEs. Since we are not acquainted with the theory, we enforced
prefixed zero blocks (the p modifier, blocking structural attacks) at a 31× speed
penalty. The results, with h = 3, 4, is listed.

6 A Recap and Discussion

We do not claim to be experts at writing vector code. In fact, we probably
ran into many of the normal traps for newcomers to SSE2 code. We believe
that further efforts will improve the speed tests. However, all our data indicates
that even now MPKCs in odd-characteristic fields hold their own against prior
MPKCs that is based in F2k , and even look generally faster. Given the above, and
some recent interest into the theory of algebraic attacks on odd-characteristic
HFE, we think that Odd-Field MPKCs merit more investigation.

References

1. M.-L. Akkar, N. T. Courtois, R. Duteuil, and L. Goubin. A fast and secure imple-
mentation of SFLASH. In Public Key Cryptography — PKC 2003, volume 2567
of Lecture Notes in Computer Science, pages 267–278. Y. Desmedt, ed., Springer,
2002.

2. C. Berbain, O. Billet, and H. Gilbert. Efficient implementations of multivariate
quadratic systems. In E. Biham and A. M. Youssef, editors, Selected Areas in
Cryptography, volume 4356 of Lecture Notes in Computer Science, pages 174–187.
Springer, 2007.

3. E. R. Berlekamp. Factoring polynomials over finite fields. Bell Systems Technical
Journal, 46:1853–1859, 1967. Republished in: Elwyn R. Berlekamp. ”Algebraic
Coding Theory”. McGraw Hill, 1968.

4. D. J. Bernstein. Faster square roots in annoying finite fields. http://cr.yp.to/

papers.html#sqroot. draft, 2001, to appear in “High-Speed Cryptography”.

Multivariates over Small Odd Prime Fields 15

Scheme KeyGen SecrMap PublMap

rainbow (16, 24, 20, 20) 344M 188k 81k

rainbow (256, 18, 12, 12) 109M 135k 117k

rainbow (31, 16, 16, 8, 16) 108.2M 99.4k 75.1k

TTS (16, 24, 20, 20) 102M 31k 117k

TTS (256, 18, 12, 12) 151M 61k 81k

TTS (31, 24, 20, 20) 79M 64k 85k

3IC-p (16, 32, 1) 143M 456k 788k

3IC-p (31, 18, 1) 11.5M 822k 59.0k

pflash 72M 2400k 853k

3HFE-p (31, 9) no sse 9.8M 1308k 36k

4HFE-p (31, 10) 32M 2104k 41k

RSA 1024b 108M 2950k 121k

ECC 256b 2.7M 2850k 3464k
Table 1. Cycle Counts in One Core of Core2 65nm

Scheme KeyGen SecrMap PublMap

rainbow (16, 24, 20, 20) 396.2M 138.7k 83.9k

rainbow (256, 18, 12, 12) 234.6M 297.0k 224.4k

rainbow (31, 16, 16, 8, 16) 145.4M 110.7k 117.3k

TTS (16, 24, 20, 20) 225.2M 103.8k 84.8k

TTS (256, 18, 12, 12) 20.4M 69.1k 224.4k

TTS (31, 24, 20, 20) 110M 88k 147k

3IC-p (16, 32, 1) 204M 683k 758k

3IC-p (31, 18, 1) 18.9M 1.55M 95.9k

pflash 127M 5.01M 914k

4HFE-p (31, 10) 33M 2090k 41k

RSA 1024b 150M 2647k 117k

ECC 256b 2.8M 3205k 3837k
Table 2. Cycle Counts in One Core of K8

Scheme KeyGen SecrMap PublMap

rainbow (16, 24, 20, 20) 343.8M 136.8k 79.3k

rainbow (256, 18, 12, 12) 110.7M 143.9k 121.4k

rainbow (31, 16, 16, 8, 16) 98.5M 93.5k 60.3k

TTS (16, 24, 20, 20) 175.7M 64.8 k 78.9k

TTS (256, 18, 12, 12) 11.5M 35.9k 121.4k

TTS (31, 24, 20, 20) 79M 62k 78k

3IC-p (16, 32, 1) 143M 452k 788k

3IC-p (31, 18, 1) 10.3M 728k 48.6k

pflash 71M 2450k 853k

3HFE-p (31, 9) no sse 9.9 M 1305k 36k

4HFE-p (31, 10) 29M 1948k 34k
Table 3. Cycle Counts in One Core of Core2 45nm

16 B-Y Yang et al : Lab at crypto.tw

Scheme KeyGen SecrMap PublMap

rainbow (16, 24, 20, 20) 367M 172k 82k

rainbow (256, 18, 12, 12) 169M 214k 152k

rainbow (31, 16, 16, 8, 16) 104.3M 95.2k 68.4k

TTS (16, 24, 20, 20) 179M 82k 79k

TTS (256, 18, 12, 12) 143M 46k 154k

TTS (31, 24, 20, 20) 92M 151k 84k

3IC-p (16, 32, 1) 144M 600k 735k

3IC-p (31, 18, 1) 26.6M 1.41M 63.9k

pflash 87M 3.68M 801k

Table 4. Comparison on One Core of a Phenom (K10)

CPU Mult. Square Inverse Sqrt Sqrt+Inv

K8 (Opteron) 397 312 5521 8120 11646

K10(Phenom) 242 222 2984 5153 7170

Core2 (65nm) 234 194 2640 4693 6332

Core2 (45nm) 145 129 1980 3954 5244
Table 5. SSE code cycle counts in F3118 , a Tower Field

5. D. J. Bernstein. Algorithmic number theory, chapter Fast multiplication and its
applications. Cambridge University Press, Joe Buhler, Peter Stevenhagen, eds.,
2003. ISBN 978–0521808545.

6. O. Billet and H. Gilbert. Cryptanalysis of rainbow. In Security and Cryptography
for Networks, volume 4116 of LNCS, pages 336–347. Springer, September 2006.

7. O. Billet, J. Patarin, and Y. Seurin. Analysis of intermediate field systems. pre-
sented at SCC 2008, Beijing.

8. D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth limitations of future
microprocessors. In Proceedings of the 23rd annual international symposium on
Computer architecture, pages 78–89, 1996.

9. D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, 36(587–592), 1981.

10. A. I.-T. Chen, C.-H. O. Chen, M.-S. Chen, C.-M. Cheng, and B.-Y. Yang. Practical-
sized instances of multivariate PKCs: Rainbow, TTS, and `IC-derivatives. In
J. Buchmann, J. Ding, and T. Hodges, editors, Post-Quantum Crypto, volume
5299 of LNCS, pages 95–106. Springer, Oct 2008.

11. D. Coppersmith, J. Stern, and S. Vaudenay. The security of the birational permu-
tation signature schemes. Journal of Cryptology, 10:207–221, 1997.

12. N. Courtois. Algebraic attacks over GF (2k), application to HFE challenge 2 and
SFLASH-v2. In PKC [25], pages 201–217. ISBN 3-540-21018-0.

13. N. Courtois, L. Goubin, and J. Patarin. SFLASH: Primitive specification (second
revised version), 2002. https://www.cosic.esat.kuleuven.be/nessie, Submis-
sions, Sflash, 11 pages.

14. J. Ding, V. Dubois, B.-Y. Yang, C.-H. O. Chen, and C.-M. Cheng. Could SFLASH
be repaired? In L. Aceto, I. Damgard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 691–701. Springer, 2008. E-Print 2007/366.

Multivariates over Small Odd Prime Fields 17

15. J. Ding and J. Gower. Inoculating multivariate schemes against differential attacks.
In PKC, volume 3958 of LNCS. Springer, April 2006. Also available at http:

//eprint.iacr.org/2005/255.
16. J. Ding, J. Gower, and D. Schmidt. Multivariate Public-Key Cryptosystems. Ad-

vances in Information Security. Springer, 2006. ISBN 0-387-32229-9.
17. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature

scheme. In Conference on Applied Cryptography and Network Security — ACNS
2005, volume 3531 of Lecture Notes in Computer Science, pages 164–175. Springer,
2005.

18. J. Ding, D. Schmidt, and F. Werner. Algebraic attack on hfe revisited. In ISC
2008, Lecture Notes in Computer Science. Springer. to appear.

19. J. Ding, C. Wolf, and B.-Y. Yang. `-invertible cycles for multivariate quadratic
public key cryptography. In PKC, volume 4450 of LNCS, pages 266–281. Springer,
April 2007.

20. J. Ding, B.-Y. Yang, C.-H. O. Chen, M.-S. Chen, and C.-M. Cheng. New
differential-algebraic attacks and reparametrization of rainbow. In Applied Cryp-
tography and Network Security, volume 5037 of Lecture Notes in Computer Science,
pages 242–257. Springer, 2008. cf. http://eprint.iacr.org/2008/108.

21. V. Dubois, P.-A. Fouque, A. Shamir, and J. Stern. Practical cryptanalysis of
SFLASH. In Advances in Cryptology — CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 1–12. Alfred Menezes, ed., Springer, 2007.

22. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra, 139:61–88, June 1999.

23. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pages 75–83. ACM Press, July 2002.

24. J.-C. Faugère and A. Joux. Algebraic cryptanalysis of Hidden Field Equations
(HFE) using Gröbner bases. In Advances in Cryptology — CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 44–60. Dan Boneh, ed., Springer,
2003.

25. Feng Bao, Robert H. Deng, and Jianying Zhou (editors). Public Key Cryptography
— PKC 2004, volume 2947 of Lecture Notes in Computer Science. Springer, 2004.
ISBN 3-540-21018-0.

26. P.-A. Fouque, G. Macario-Rat, L. Perret, and J. Stern. Total break of the `IC-
signature scheme. In Public Key Cryptography, pages 1–17, 2008.

27. M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979. ISBN 0-7167-
1044-7 or 0-7167-1045-5.

28. L. Goubin and N. T. Courtois. Cryptanalysis of the TTM cryptosystem. In
Advances in Cryptology — ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 44–57. Tatsuaki Okamoto, ed., Springer, 2000.

29. L. Granboulan, A. Joux, and J. Stern. Inverting HFE is quasipolynomial. In
C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science,
pages 345–356. Springer, 2006.

30. T. Granlund and P. Montgomery. Division by invariant integers using multiplica-
tion. In In Proceedings of the SIGPLAN ’94 Conference on Programming Language
Design and Implementation, pages 61–72, 1994. http://www.swox.com/~tege/

divcnst-pldi94.pdf.
31. T. Güneysu and C. Paar. Ultra high performance ecc over nist primes on commer-

cial fpgas. In E. Oswald and P. Rohatgi, editors, CHES, volume 5154 of Lecture
Notes in Computer Science, pages 62–78. Springer, 2008.

18 B-Y Yang et al : Lab at crypto.tw

32. H. Imai and T. Matsumoto. Algebraic methods for constructing asymmetric cryp-
tosystems. In Algebraic Algorithms and Error-Correcting Codes, 3rd International
Conference, AAECC-3, Grenoble, France, July 15-19, 1985, Proceedings, volume
229 of Lecture Notes in Computer Science, pages 108–119. Jacques Calmet, ed.,
Springer, 1985.

33. Intel Corp. Intel 64 and IA-32 architectures optimization reference manual. http:
//www.intel.com/design/processor/manuals/248966.pdf, Nov. 2007.

34. Intel Corp. Carry-less multiplication and its usage for computing the
GCM mode. http://http://software.intel.com/en-us/articles/

carry-less-multiplicati%on-and-its-usage-for-computing-the-gcm-mode,
2008.

35. A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by auto-
matic computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962. Translation in
Physics-Doklady, 7 (1963), pp. 595–596.

36. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar signature
schemes. In Advances in Cryptology — EUROCRYPT 1999, volume 1592 of Lecture
Notes in Computer Science, pages 206–222. Jacques Stern, ed., Springer, 1999.

37. A. Kipnis and A. Shamir. Cryptanalysis of the oil and vinegar signature scheme.
In Advances in Cryptology — CRYPTO 1998, volume 1462 of Lecture Notes in
Computer Science, pages 257–266. Hugo Krawczyk, ed., Springer, 1998.

38. T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient sig-
nature verification and message-encryption. In Advances in Cryptology — EURO-
CRYPT 1988, volume 330 of Lecture Notes in Computer Science, pages 419–545.
Christoph G. Günther, ed., Springer, 1988.

39. L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan. Larrabee: a many-core x86 architecture for visual computing. ACM
Transactions on Graphics, 27(18), August 2008.

40. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1. In CRYPTO,
volume 3621 of Lecture Notes in Computer Science, pages 17–36. Victor Shoup,
ed., Springer, 2005.

41. C. Wolf, A. Braeken, and B. Preneel. Efficient cryptanalysis of RSE(2)PKC
and RSSE(2)PKC. In Conference on Security in Communication Networks —
SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages 294–309.
Springer, Sept. 8–10 2004. Extended version: http://eprint.iacr.org/2004/237.

42. C. Wolf and B. Preneel. Taxonomy of public key schemes based on the problem
of multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077,
12th of May 2005. http://eprint.iacr.org/2005/077/, 64 pages.

43. W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, 23(1):20–24, March 1995.

44. B.-Y. Yang and J.-M. Chen. Building secure tame-like multivariate public-key
cryptosystems: The new TTS. In ACISP 2005, volume 3574 of Lecture Notes in
Computer Science, pages 518–531. Springer, July 2005.

A Security and Prior Instances of TTS/Rainbow

A.1 Known Attacks and Security Criteria from [10,20]

1. Rank (or Low Rank, MinRank) attack to find a central equation with least
rank [44].

Multivariates over Small Odd Prime Fields 19

Clow rank ≈
[
qv1+1m(n2/2−m2/6)/

]
m.

Here the unit m is a multiplications in K, and v1 the number of vinegars in
layer 1. This is the “MinRank” attack of [28]. as improved by [6, 44].

2. Dual Rank (or High Rank) attack [11, 28], which finds a variable appearing
the fewest number of times in a central equation cross-term [20,44]:

Chigh rank ≈
[
qon−v′n3/6

]
m,

where v′ counts vinegar variables that never appears until the final segment.
3. Trying for a direct solution. The complexity is roughly as MQ(q;m,m).
4. Using the Reconciliation Attack [20], the complexity is as MQ(q; vu,m).
5. Using the Rainbow Band Separation from [20], the complexity is determined

by that of MQ(q;n,m + n).
6. Against TTS, there is Oil-and-Vinegar Separation [36,37,41], which finds an

Oil subspace that is sufficiently large (estimates as corrected in [44]).

CUOV ≈
[
qn−2o−1o4 + (some residual term bounded by o3qm−o/3)

]
m.

o is the max. oil set size, i.e., there is a set of o central variables which are
never multiplied together in the central equations, and no more.

A.2 Rainbow and TTS Instances

It is demonstrated by [20] that using F28 there is no way to get to 280 security
at a size smaller than vinegar sequence (18, 12, 12). If we look at smaller fields
such as F24 , we can do smaller such as (24, 20, 20). The digest is 160 bits.

TTS of the same size over F28 or F24 are 2× or more the speed of than
a Rainbow instance. They also tend to have much lower memory requirement.
The following instances are called TTS/7 ([10]), built with exactly the same
rainbow structural parameters as above. We add two instances in F31 one should
be more secure and the other equally secure than the [10] instances according
to the formulas in [20].

TTS (28, 18, 12, 12) K =F28 , n = 42, m = 24. Q is structured as follows:

yi = xi + ai1xσi + ai2xσ′i +
11∑

j=0

pijxj+18xπi(j)

+ pi,12xπi(12)xπi(15) + pi,13xπi(13)xπi(16) + pi,14xπi(14)xπi(17), i = 18 · · · 29
[indices 0 · · · 17 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′ (where six σ′i slots are empty)];

yi = xi + ai1xσi + ai2xσ′i + ai3xσ′′i +
11∑

j=0

xj+29(pijxπi(j) + pi,j+12xπi(j+12))

+ pi,24xπi(24)xπi(27) + pi,25xπi(25)xπi(28) + pi,26xπi(26)xπi(29), i = 30 · · · 41
[indices 0 · · · 29 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′, σ′′ (where six σ′′i slots are empty)].

20 B-Y Yang et al : Lab at crypto.tw

TTS (24, 24, 20, 20) K =F24 , n = 64, m = 40.

yi = xi + ai1xσi
+ ai2xσ′i +

19∑

j=0

pijxj+23xπi(j)

+ pi,20xπi(20)xπi(22) + pi,21xπi(21)xπi(23), i = 24 · · · 43
[indices 0 · · · 23 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′ (there are only four σ′i)];

yi = xi + ai1xσi
+ ai2xσ′i + ai3xσ′′i +

19∑

j=0

xj+44(pijxπi(j) + pi,j+20xπi(j+20))

+ pi,40xπi(40)xπi(42) + pi,41xπi(41)xπi(43), i = 44 · · · 63
[indices 0 · · · 43 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′, σ′′ (there are only four σ′′i)].

TTS (31, 24, 20, 20) K =F31, n = 64, m = 40. Exactly as above except for F31.
TTS (31, 16, 16, 8, 16) K =F31, n = 56, m = 40. We copy the structure above,

except that in the first stage, second, and third stages we use respectively: 1
linear and 1 quadratic cross-term per index, 4 linear and 4 quadratic cross-
term per index; 2 linear, 2 quadratic cross-terms per index.

unsigned int div31 (unsigned long long int a, short int *b){

// rdi is a, rsi is b[]

// r8 will store div31=595056260442243601=ceil(2^69/31)-2^64

// rdx, rax are scratch; rax will return final result

asm ("movq $595056260442243601, %r8\n\t"

"movq %rdi, %rax\n"

"mulq %r8\n\t" // rdx:rax is now x * div31

"addq %rdi, %rdx\n\t" // rdx = floor(x*div31/2^64)+x

"rcrq %rdx\n\t’’ // last add can overflow to carry!

"shrq $4, %rdx\n\t" // rdx = old x div 31

"movq %rdx, %rax\n\t"

"shlq $5, %rdx\n\t" // rdx = rax * 32, might carry!

"subq %rax, %rdx\n\t" // rdx = rax * 31, even with carry!

"subq %rdx, %rdi\n\t" // rdi now = x mod 31

"movw %di, (%rsi,%rcx,2)\n\t"

}

Fig. 1. Sample divide-mod 31 code in AT&T syntax x86-64 inline assembly

