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Abstract. Currently, there are a lot of authenticated key exchange
(AKE) protocols in literature. However, the security proofs of this kind
of protocols have been established to be a non-trivial task. The main
issue is that without static private key it is difficult for simulator to fully
support the SessionKeyReveal and EphemeralKeyReveal queries. Some
proposals which have been proven secure either just hold in relatively
weak models which do not fully support above-mentioned two queries or
make use of the stronger gap assumption.
In this paper, using a new technique named twin Diffie-Hellman problem
proposed by Cash, Kiltz and Shoup, we present a new AKE protocol
based on the computational Diffie-Hellman (CDH) assumption, which
is more standard than gap Diffie-Hellman (GDH) assumption. More-
over, our scheme is shown to be secure in strong security definition,
the enhanced Canetti-Krawczyk (eCK) model introduced by LaMacchia,
Lauter and Mityagin, which better supports the adversaries’ queries than
previous models.

Keywords: Authenticated key exchange, CDH problem, Twin DH prob-
lem, Trapdoor test, Provably secure

1 Introduction

Authenticated key exchange (AKE) is a cryptographic protocol, which enables
two or more parties to establish a shared session key over an insecure channel.
Later, the shared session key can be used to‘ efficiently ensure data integrity and
confidentiality by symmetric primitives.

It is desirable for an AKE protocol to have the following attributes:
1.Known-key security (KKS): Each run of the protocol should result in a

unique secret session key. It is reasonable to assume the adversary has the ability
to learn the session keys except for one under attack. A protocol is said to be
known-key secure if the compromise of one session key should not compromise
other session keys.

2.Forward security (FS): If the static private key of an entity is compromised,
the adversary can arbitrarily masquerade as that entity in future. However, we
want to guarantee that when the static private key is compromised, the adver-
sary can not obtain the session keys that were accepted before the compromise.



Protocols are said to provide perfect forward security (PFS) if the static private
keys of all parties involved have been compromised without compromising the
previously established session keys by these entities. However, if the adversary
is actively involved with the choice of the DH values X, Y at a session, no two-
message AKE protocol can achieve forward security, according to the result of
HMQV [12]. So we define weak from of forward security (wFS).

3.Key compromise impersonation resistance (KCI): When the static private
key of an entity, say A, is compromised, the adversary can arbitrarily masquerade
as A in future. However, we want to guarantee that in this case the adversary
cannot masquerade as another entity, say B, to communicate with A.

4.Ephemeral key reveal resistance: The adversary can obtain the ephemeral
key of entities. Protocols are said to be ephemeral key reveal resistance if even
when the adversary obtains the ephemeral key of entities the session key under
attack still remains secure.

The design and analysis of secure AKE protocols have been established to
be a non-trivial task. Bellare and Rogaway [1] firstly proposed a formal secu-
rity model for authentication and key distribution. Since then, there have been
several extensions to BR model [2–4]. All these models attempt to cover these
desirable properties listed above as much as possible. Recently [5, 10] uniformly
deal with these attacks in one model named eCK model, which better sup-
ports SessionKeyReveal and EphemeralKeyReveal queries compared with pre-
vious models.

1.1 Related Work

A great number of AKE protocols which focus on enhancing security or weaken-
ing the assumption are proposed in either ID-based setting or traditional PKI-
based setting. In this paper, we focus on the latter in which the MQV protocol
[11] is possibly the considerably efficient one. However, it is not known whether
the MQV protocol can be proven secure in a strong security model. Later, based
on MQV, Krawczyk proposes HMQV protocol [12], which has a formal security
proof under GDH [15] and KEA1 [16] assumption. The security of HMQV covers
KKS, resistance to KCI, resilience to the leakage of ephemeral private keys and
wPFS etc.

K.Lauter and A.Mityagin propose an AKE protocol named KEA+ [13] under
GDH assumption. However, their security model is weaker than that of HMQV.
For instance, the adversary is not allowed to learn the static private keys of both
two parties. In other words, KEA+ does not guarantee wPFS.

Kudla and Paterson [6] propose a modular proof approach to the design of
AKE protocols, which makes use of gap assumption to keep the consistency of
random oracle queries. By doing this, their method better supports the Session-
KeyReveal queries.

Two recent AKE protocols NAXOS [5] and CMQV [10] are related to our
work and both of them are shown secure in eCK model under GDH assumption.
The trick for the AKE protocols to be proved secure in eCK model, as [5, 10]
did, is to hash the ephemeral private key and static private key.



More recently, some people focus on the AKE protocols in standard model.
T.Okamoto [7] proposes a PKI-based AKE protocol secure in eCK model with-
out random oracle assumption. Their protocol bases the security on decisional
Diffie-Hellman (CDH) assumption and the existence of pseudo-random functions
with pair-wise independent random sources (πPRF). Boyd et al. [9] propose a
generic approach to the design of AKE protocols based on a CCA-secure key en-
capsulation mechanism (KEM) primitive. They show that the resulted protocol
is secure in CK model if the underlying KEM scheme is CCA-secure. We also
note that Jeong et al. [8] propose an AKE protocol without random oracle in
the traditional PKI-based setting. However, their protocol fails to achieve KCI
resistance and thus their security model is weaker than ours.

Cash, Kiltz and Shoup [14] recently proposed a new computational prob-
lem called twin Diffie-Hellman problem, a nice feature of which not enjoyed by
ordinary Diffie-Hellman problem is that the twin Diffie-Hellman problem re-
mains hard, even with access to a decision oracle that recognizes solutions to
the problem. At the heart of their method is the “trapdoor test” that allows us
to implement an effective decision oracle for the twin Diffie-Hellman problem,
without knowing the corresponding discrete logarithm.

As one application of the trapdoor test technique, they present a new variant
of non-interactive Diffie-Hellman key exchange protocol.

1.2 Our Contributions

In this paper, based on the trapdoor test technique, we present a new interactive
AKE protocol for the traditional PKI-based setting. We show that our protocol
is secure in eCK model and bases its security on standard CDH assumption.
Compared to previous AKE protocols based on gap assumption, our proposal
has a more standard one. On the other hand, compared to other AKE proto-
cols without gap assumption, our proposal has advantages over them either in
efficiency or security model.

1.3 Organization

The paper is organized as follows. In section 2, we will review the related pre-
liminaries. In section 3 we review the eCK model. Then we propose our scheme
in section 4. In section 5, we will give its security proof in the eCK model.
In section 6 we compare the performance and security between previous AKE
protocols and ours. Finally, concluding remarks are made in section 7.

2 Preliminaries

Let the value k be the security parameter. Let G = 〈g〉 be the cyclic group of
prime order q. Define CDH(U, V ) := Z, where U = gu, V = gv, and Z = guv.
CDH Assumption. For any probabilistic polynomial time algorithm A,

Pr[A(q, g, U = gu, V = gv) = CDH(U, V )] ≤ ε(k).



where u, v ∈ Zq, and where ε(k) is negligible. The probability is taken over the
coin tosses of A, the choice of q, g and the random choices of u and v in Zq.

Theorem 1 (Trapdoor Test [14]). Let G = 〈g〉 be a cyclic group of prime
order q, generated by g ∈ G. Suppose X1, r, s are mutually independent random
variables where X1 takes values in G, and each of r, s is uniformly distributed
over Zq, and define the random variable X2 := gs/Xr

1 . Further, suppose that
Ŷ , Ẑ1, Ẑ2 are random variables taking values in G, each of which is defined as
some function of X1 and X2. Then we have:

(i) X2 is uniformly distributed over G;
(ii) X1 and X2 are independent;
(iii) if X1 = gx1 and X2 = gx2 , then the probability that the truth value of

Ẑ1
r
Ẑ2

?= Ŷ s (1)

does not agree with the truth value of

Ẑ1
?= Ŷ x1

∧
Ẑ2

?= Ŷ x2 (2)

is at most 1/q; moreover, if (2) holds, then (1) certainly holds.

Intuitionally, theorem 1 means that the simulator can use (1) to judge whether
(2) holds (Knowing the discrete logarithm ŷ of Ŷ , the adversary can computes
Ẑ1, Ẑ2 itself, while the simulator cannot). This technique is essential for us to im-
plement the effective decision oracle without knowing the corresponding discrete
logarithm.

3 Security Model

Our basic security model is the eCK model. For more details of this model, see
[5, 10].

Participants. We model the protocol participants as a finite set P of fixed
size with each IDi being a probabilistic polynomial time (PPT ) Turing ma-
chine. Each protocol participant IDi ∈ P may execute a polynomial number
of protocol instances in parallel. We will refer to s-th instance of principal IDi

communicating with peer IDj as Πs
i,j(i, j ∈ N) (a session).

Adversary Model. The adversary M is modeled as a PPT Turing machine
and has full control of the communication network and may eavesdrop, delay,
replay, alter and insert messages at will. We model the adversary’s capability by
providing it with oracle queries.

– EphemeralKeyReveal(Πs
i,j) The adversary obtains the ephemeral private

key of Πs
i,j . These queries are motivated by practical scenarios, such as if

session-specific secret information is stored in insecure memory on device or
if the random number generator of party is corrupted.

– SessionKeyReveal(Πs
i,j) The adversary obtains the session key for a ses-

sion s of IDi, provided that the session holds a session key.



– StaticKeyReveal(IDi) The adversary obtains the static private key of
IDi.

– EstablishParty(IDi) The query models that the adversary can arbitrarily
register the public key on behalf of the party IDi. In this way the adversary
totally controls the party IDi. Parties against whom the adversary does not
issue this query are called honest.

– Send(Πs
i,j ,m) The adversary sends the message m to the session s executed

by IDi communicating with IDj and get a response according to the protocol
specification.

– Test(Πs
i,j) Only one query of this form is allowed for the adversary. Provided

that session key is defined, the adversary M can execute this query at any
time. Then with probability 1/2 the session key and with probability 1/2 a
uniformly chosen random value ζ ∈ {0, 1}k is returned.

Definition 1 (Matching Session). Let Πs
i,j be a completed session with public

output (IDi, X, Y, IDj), where IDi is the owner of the session, IDj is the peer,
and X is IDi’s outgoing message, Y is IDj’s outgoing message. The session
Πt

j,i is called the matching session of Πs
i,j, if either Πt

j,i is completed with public
output (IDj , Y,X, IDi) or it is incomplete with ((IDj , Y, ∗, IDi)).

Definition 2 (Freshness). Let instance Πs
i,j be a completed session, which was

executed by a honest party IDi with another honest party IDj. We define Πs
i,j

to be fresh if none of the following three conditions hold:

– The adversary M reveals the session key of Πs
i,j or of its matching session

(if latter exists).
– IDj is engaged in session Πt

j,i matching to Πs
i,j and M either makes queries:

-both StaticKeyReveal(IDi) and EphemeralKeyReveal(Πs
i,j); or

-both StaticKeyReveal(IDj) and EphemeralKeyReveal(Πt
j,i).

– No sessions matching to Πs
i,j exist and M either makes queries:

-both StaticKeyReveal(IDi) and EphemeralKeyReveal(Πs
i,j); or

-StaticKeyReveal(IDj).

Definition 3 (AKE Security). As a function of the security parameter k, we
define the advantage AdvAKE

M,Σ (k) of the PPT adversary M in attacking protocol
Σ as

AdvAKE
M,Σ (k)

def
= |SuccAKE

M,Σ (k)− 1
2 |

Here SuccAKE
M,Σ is the probability that the adversary queries Test oracle to a fresh

instance Πs
i,j, outputs a bit b̂ such that b̂ = b, where the bit b is used by the Test

oracle.
We call the protocol Σ to be AKE secure if for any PPT adversary M the

function is negligible.

Remark: The original CK model does not cover KCI attacks. The eCK model
covers KCI attacks resistance, weak forward secrecy and ephemeral key reveal



resistance etc. Moreover, in eCK model the adversary’s ability is extended to the
extent such that the adversary is allowed to reveal any static private key and
ephemeral private key of parties involved except for both static private key and
ephemeral private key of one of parties involved. We note that recently Boyd et
al.’s research [9] compare these two models. Their conclusion is that the eCK
is not stronger than the CK model. The essential difference comes from the
fact the CK model allows session state reveal queries. This give the adversary
complete information about the state of a given session at any entity, including
all ephemeral values, but also any other value during the computation, while
eCK model only allows the adversary to access to ephemeral values. However,
we also note that the previous AKE protocols claiming to use CK model does
not allow the adversary to get access to complete state information, e.g. HMQV.

4 Strongly Secure Authenticated Key Exchange Protocol
Based on Computational Diffie-Hellman Problem

Parameters
Let k be the security parameter. The p is a large prime such that p − 1 is

divisible by another large prime q. The g is a generator of order q. We also denote
by G = 〈g〉 cyclic group of order q and by G∗ the set of non-identity elements in
G. Let H1 : {0, 1}∗ → Z∗q and H : {0, 1}∗ → {0, 1}k be hash functions modeled
as random oracles. In the following parts we omit the operation “ (mod p) ” to
simplify the expression. The party Â’s static private key is a1, a2 and its public
key is A1 = ga1 , A2 = ga2 . Similarly, the party B̂’s static private key is b1, b2

and its public key is B1 = gb1 , B2 = gb2 . The protocol follows below.

Â B̂

A1 = ga1 , A2 = ga2 B1 = gb1 , B2 = gb2

x̃←R Zq, x = H1(x̃, a1, a2) ỹ ←R Zq, y = H1(ỹ, b1, b2)
X = gx

−−−−−→
Y = gy

←−−−−
sid = (X, Y, Â, B̂) sid = (X, Y, Â, B̂)

Z1 = (Y B1)
x, Z2 = (Y B2)

x Z1 = Xy+b1 , Z2 = Xy+b2

Z3 = Y x+a1 , Z4 = Y x+a2 Z3 = (XA1)
y, Z4 = (XA2)

y

SK = H(Z1, Z2, Z3, Z4, sid) SK = H(Z1, Z2, Z3, Z4, sid)

Fig. 1. Our proposed protocol

Protocol description

1. Â chooses an ephemeral private key x̃ ∈ Zq at random, computes x =
H1(x̃, a1, a2) and ephemeral public key X = gx. Then Â destroys x and
send X to B̂. Similarly, B̂ randomly chooses ỹ ∈ Zq at random, computes



y = H1(ỹ, b1, b2) and ephemeral public key Y = gy. Then B̂ destroys y and
send Y to Â.

2. Upon receiving X, party B̂ verifies that X ∈ G∗. If so, B̂ computes y =
H1(ỹ, b1, b2), Z1 = Xy+b1 , Z2 = Xy+b2 , Z3 = (XA1)y, Z4 = (XA2)y and
SK = H(Z1, Z2, Z3, Z4, sid), where sid = (X, Y, Â, B̂). B̂ keeps SK as the
established session key.

3. Similarly, upon receiving Y , Â checks if Y ∈ G∗. If so, Â computes x =
H1(x̃, a1, a2), Z1 = (Y B1)x, Z2 = (Y B2)x, Z3 = Y x+a1 , Z4 = Y x+a2 and
SK = H(Z1, Z2, Z3, Z4, sid), where sid = (X, Y, Â, B̂). Â keeps SK as the
established session key.

5 Security Proof

Theorem 2. Suppose that the CDH assumption for (G, g) holds, H,H1 are ran-
dom oracles, then the proposed scheme in Figure 1 is a secure AKE protocol in
eCK model.

Proof. Let k denote the security parameter. Assume that the adversary M ac-
tivates at most n(k) honest parties and s(k) sessions in each party. Assume
that the adversary succeeds with non-negligible probability in the environment
described in Section 3. Since H(·) is modeled as a random oracle, after the ad-
versary queries Test oracle, it has only two possible ways to distinguish a session
key from a random string.

CASE 1 Forging attack: At some point in its run, the adversary M queries H
on the value (Z1, Z2, Z3, Z4, X, Y, Â, B̂) in the Test session owned by Â commu-
nicating with B̂. Clearly, in this case M computes these values Z1, Z2, Z3, Z4.

CASE 2 Key-replication attack: The adversary M forces a non-matching ses-
sion to have the same session key with the Test session. In this case, the adversary
M can simply learn the session key by querying the non-matching session.

The input to the key derivation function H(·) includes all information con-
tained in sid. Since two non-matching sessions can not have same parties and
same ephemeral public keys except for negligible probability and H is modeled
as random oracle, the success probability of key replication attack is negligible.

The rest of this section is mainly devoted to the analysis of the CASE 1. We
consider two complementary subcases:

CASE 1.1: No honest party owns a matching session to the Test session.
CASE 1.2: The Test session has a matching session owned by another honest

party.

5.1 The analysis of CASE 1.1

In this case, following the standard approach, we will show how to construct CDH
problem solver S that uses an adversary M who succeeds with non-negligible
probability in CASE 1.1. The solver S is given a pair of CDH challenge (U, V ),
where U, V ∈ G. Its task is to compute CDH(U, V ) = Uv = V u. With probabil-
ity at least 1

n(k)2 , S guesses the adversary M will select one party denoted by Â



as the owner of the session ŝ and the other party denoted by B̂ as the peer. With
probability at least 1

s(k) , S guesses the adversary M will select the session ŝ as
Test session. Furthermore, S randomly chooses s, r ∈ Zq, assigns static public
key B1 = V,B2 = gs/V r for B̂, and random static key pairs for the remaining
n(k)− 1 parties (including Â). When the adversary M activates a party whose
static key S possesses, S follows the protocol description. We next mainly dis-
cuss the action of S when the adversary M makes queries related to party B̂
(because S does not know B̂’s static private key). Without loss of generality, we
assume that B̂ is the responder.

– H(Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, IDi, IDj): S maintains an initially empty list H list

with entries of the form (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, IDi, IDj , h). S simulates the
oracle in usual way except for queries of the form (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, Ĉ, B̂),
where Ĉ is B̂’s peer and may not be honest. The simulator S responds to
these queries in the following way:
• If (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, Ĉ, B̂) is already there, then S responds with stored

value h.
• Otherwise, S looks in Llist (maintained in the Send query) for the entries

of the form (X, Y, Ĉ, B̂, ∗). If finds it, S computes

Z̄1 = Ẑ1/Xy (3)

Z̄2 = Ẑ2/Xy (4)

Note that the value Ẑi(i = 1, 2, 3, 4) is correctly generated iff Ẑ1 =
(Y B1)x, Ẑ2 = (Y B2)x, Ẑ3 = Y x+c1 , Ẑ4 = Y x+c2 which is equivalent
to Z̄1 = Xb1 , Z̄2 = Xb2 , Z3 = (XC1)y, Z4 = (XC2)y. Thus S judges
whether Z̄1

r
Z̄2 equals Xs (Theorem 1), Ẑ3 equals (XC1)y and Ẑ4 equals

(XC2)y.
∗ If the predicate evaluates to 0, S chooses h ∈ {0, 1}k at random,

sends it to M and stores the new tuple (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, Ĉ, B̂, h)
in H list.
∗ Otherwise, it returns from Llist the stored value SK to M , stores

the new tuple (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, Ĉ, B̂, SK) in H list.
• Otherwise (no such entries exist), S chooses h ∈ {0, 1}k at random, sends

it to M and stores the new tuple (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, Ĉ, B̂, h) in H list.
– StaticKeyReveal(IDi):
• If IDi = B̂, then simulator fails (S does not know the corresponding

static private key b1, b2).
• Otherwise, S returns the corresponding static private key to M .

– EstablishParty(IDi): The adversary M registers public key. In this case,
S does not know adversary’s private key.

– EphemeralKeyReveal(Πs
i,j): The simulator returns the stored ephemeral

private key ỹ to M .
– Send(Πs

i,j ,m): S maintains an initially empty list Llist with entries of the
form (X, Y, IDi, IDj , SK).



• If Πs
i,j is the Test session, then simulator returns U to M (We set the

ephemeral public key of Test session owned by Â to be U).
• If IDi = B̂ (For convenience, we set IDj = Ĉ and X = m.)
∗ S chooses ỹ, y ←R Zq and returns Y = gy to the adversary M .
∗ S looks in H list for entry of the form (∗, ∗, ∗, ∗, X, Y, Ĉ, B̂, ∗). If finds

it, S computes Z̄1 = Ẑ1/Xy = Xb1 and Z̄2 = Ẑ2/Xy = Xb2 , where
Ẑi(i = 1, 2, 3, 4) are first four elements from entry above. Note that
the value Ẑi(i = 1, 2, 3, 4) is correctly generated iff Ẑ1 = (Y B1)x,
Ẑ2 = (Y B2)x, Ẑ3 = Y x+c1 , Ẑ4 = Y x+c2 which is equivalent to
Z̄1 = Xb1 , Z̄2 = Xb2 , Ẑ3 = (XC1)y, Ẑ4 = (XC2)y.
Thus S judges whether Z̄1

r
Z̄2 equals Xs (Theorem 1), Z3 equals

(XC1)y and Z4 equals (XC2)y.
· If the predicate evaluates to 0, S chooses SK ∈ {0, 1}k at random

and stores the new tuple (X, Y, Ĉ, B̂, SK) in Llist.
· Otherwise, S stores the new tuple (X, Y, Ĉ, B̂, h) in Llist (The

value h is from H list).
∗ Otherwise, S chooses SK ∈ {0, 1}k at random and stores the new

tuple (X, Y, Ĉ, B̂, SK) in Llist.
• Otherwise (IDi 6= B̂),
∗ S chooses ỹ, y ←R Zq and returns Y = gy to the adversary M .
∗ S chooses SK ∈ {0, 1}k at random and stores the new tuple (X, Y, IDi, IDj , SK)

in Llist.
– SessionKeyReveal(Πs

i,j):
• If Πs

i,j is the Test session, then simulator fails.
• Otherwise, S returns the stored value SK in Llist to M .

– Test(Πs
i,j):

• If Πs
i,j is not the Test session, S aborts.

• Otherwise, S randomly chooses ζ ∈ {0, 1}k and returns it to M .

As the attack that adversary M mounts is Forging attack, if M succeeds, it must
have queried oracle H on the first two inputs Z∗

1 = (Y ∗B1)x = (Y ∗V )u, Z∗
2 =

(Y ∗B2)x = (Y ∗gs/V r)u, where X = U is the outgoing message of Test session,
Y ∗ is the incoming message from the adversary. To solve CDH(U, V ) problem,
for each entry in H list, S proceeds with following steps:

S computes
Z∗

2

Z∗
1

=
(Y ∗B2)u

(Y ∗B1)u
= (

B2

B1
)u = g(s−b1r−b1)u (5)

From (5), knowing s, r, the simulator S gets

Z̄1 = (g(s−b1r−b1)u/Us)
−1
r+1 = Bu

1 = V u (6)

This contradicts the CDH assumption.
On the other hand, because the adversary cannot reveal both Â’s ephemeral

key and static key, the probability that the adversary makes queries H1 on
(x̃, a1, a2) is negligible. Also, the adversary can not reveal B̂’s static key. So the
simulation of S is accurate and its success probability is



Pr[S] ≥ 1
s(k)n(k)2t(k)

p1(k) (7)

where p1(k) is the probability of the event that CASE 1.1 occurs and the
adversary M succeeds in this case. t(k) is the polynomial bound on the number
of distinct H calls made by the adversary M .

5.2 The Analysis of CASE 1.2

In this case, given the CDH instance U, V , where U, V ∈ G. Its task is to compute
CDH(U, V ) = Uv = V u. With probability at least 2

s(k)2 , F guesses that the
adversary M will select one of two sessions as Test session and the other as
matching session. We assume that the owner of Test session is Â and owner
of matching session is B̂. The simulator S sets the ephemeral public key of
Test session and its matching session to be U, V respectively. The simulations
of Â and B̂ (for which S knows corresponding private key) is trivial. If M
succeeds in the Test session, then M must have queried the value Z∗

1 = (Y B1)x =
(V B1)u, Z∗

2 = (Y B2)x = (V B1)u, where X = U is the outgoing message of
Test session, Y = V is the outgoing message of its matching session. From
one of these values, say Z∗

1 , knowing B’s static private b1, b2, S can computes
CDH(U, V ) = Z∗

1/U b1 = V u = Uv.
Because the adversary cannot reveal both Â(B̂)’s ephemeral key and static

key, the probability that the adversary makes queries H1 on (x̃, a1, a2)((ỹ, b1, b2))
is negligible. So the simulation of S is accurate and its success probability is

Pr[S] ≥ 2
s(k)2t(k)

p2(k) (8)

where p2(k) is the probability of the event that CASE 1.2 occurs and the
adversary M succeeds in this case. t(k) is the polynomial bound on the number
of distinct H calls made by the adversary M .

Together with (7),(8), the success probability of S is

Pr[S] ≥ max{ 1
s(k)n(k)2t(k)

p1(k),
2

s(k)2t(k)
p2(k)} (9)

where p1(k), p2(k) are defined in (7),(8) respectively. t(k) is the polynomial
bound on the number of distinct H calls made by the adversary M .

If the adversary M succeeds with non-negligible probability in any case above,
we can also solve the CDH problem with non-negligible probability, which con-
tradicts the assumed security of CDH problem.

So we complete the proof of Theorem 2.

6 Comparison of performance and security

In Table 1 we compare our protocol with several popular traditional PKI-based
AKE protocols in term of efficiency, security model and underlying hardness



assumptions. For simplicity, we do not take into account subgroup validation
and speedup trick that may be applicable. Also, we just consider expensive
operations and denote by “E” the exponentiation in G. We denote by “Enc”
the CCA-secure encryption algorithm of KEM and by “Dec” the corresponding
decryption algorithm. Also, we denote by “ROM” the random oracle model and
by “ Standard” the standard model. CK denotes Canetti-Krawczyk security
[4] without perfect forward secrecy. BR denotes the Bellare-Rogaway model [1],
where no EphemeralKeyReveal queries are allowed. KCI denotes security against
key-compromise impersonation. wPFS denotes weak perfect forward secrecy.

Protocol Computation Security Model Assumption

KEA+ [13] 3E CK,KCI GDH, ROM
HMQV [12] 2.5E CK, KCI, wPFS GDH, KEA1, ROM
NAXOS [5] 4E eCK GDH, ROM
CMQV [10] 3E eCK GDH, ROM
Kudla-Paterson[6] 3E BR, KCI GDH, ROM
Jeong-Katz-Lee[8] 3E BR, wPFS DDH, secure MACs, Standard
Okamato[7] 8E eCK DDH, πPRF, Standard
Boyd et al.[9] 1Enc+1Dec+2E CK, KCI, wPFS *1, Standard
Our scheme 5E eCK CDH, ROM

Table 1. Protocol comparison

Compared with the KEA+ and Kudla-Paterson our scheme has advantages in
both hardness assumption and security model. Compared with HMQV, the CDH
assumption of our scheme is more standard than GDH and KEA1 assumption.
While NAXOS and CMQV are shown secure in eCK model, both of which base
their security on stronger GDH assumption.

While Jeong-Katz-Lee’s protocol is efficient in standard model, their protocol
fails to achieve KCI resistance and thus their security model is weaker than ours.
On the other hand, while Okamoto’s protocol is secure in eCK model without
random oracle assumption, their protocol bases the security on decisional Diffie-
Hellman (DDH) problem and another assumption of existence of πPRF, whose
construction from a fundamental primitive like a one-way function or (trapdoor)
one-way permutation is an open problem [7].

The comparison between Boyd et al.’s protocol and ours is a bit complicated.
Since their protocol is generic, it can be instantiated using any combination of
KEM as long as they are CCA secure. If the underlying KEM is instantiated
using any KEM scheme in standard model, obviously, our protocol in random
oracle is more efficient. On the other hand, if the underlying KEM is instan-
tiated using any KEM scheme in random oracle, say, twin Elgamal encryption
scheme [14], which is CCA-secure based on CDH assumption, the operations of

1 The assumption of this protocol depends on that of underlying KEM.



1Enc+1Dec+2E need 3+2+2=7 exponentiations totally while our scheme needs
5 exponentiations.

7 Conclusion

For the simulator to better support the SessionKeyReveal and EphemeralKeyRe-
veal queries, a lot of AKE protocols base their security on the stronger gap as-
sumption, which is a basic technique for the simulator to keep the consistency
of random oracle. In this paper, based on the twin Diffie-Hellman problem pro-
posed by Cash, Kiltz and Shoup, a new traditional PKI-based AKE protocol is
proposed and its security is proved in eCK model based on CDH assumption.

Compared to previous AKE protocols based on gap assumption, our proposal
has more standard one, i.e. CDH assumption. On the other hand, compared to
other AKE protocols without gap assumption, our proposal has advantages over
them in either efficiency or hardness assumption.
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