
Extended Access Structures

and Their Cryptographic Applications

Vanesa Daza1, Javier Herranz 2, Paz Morillo3 and Carla Ràfols3

1 Dept. Tecnologies de la Informació i les Comunicacions,
Universitat Pompeu Fabra, Pg. Circumval·lació 8, Barcelona, Spain

vanesa.daza@upf.edu
2 IIIA-CSIC,

Campus UAB, s/n, Bellaterra, Spain
jherranz@iiia.csic.es

3 Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,
C. Jordi Girona, 1-3, Mòdul C3, Barcelona, Spain

{paz,crafols}@ma4.upc.edu

November 28, 2008

Abstract

In secret sharing schemes a secret is distributed among a set of users P in
such a way that only some sets, the authorized sets, can recover it. The family
Γ of authorized sets is called access structure. Given such a monotone family
Γ ⊂ 2P , we introduce the concept of extended access structures, defined over a
larger set P ′ = P ∪ P̃, satisfying these two properties:

• the set P is a minimal subset of Γ′, i.e. P − {Ri} /∈ Γ′ for every Ri ∈ P,
• a subset A ⊂ P is in Γ if and only if the subset A ∪ P̃ is in Γ′.

As our first contribution, we give an explicit construction of an extended access
structure Γ′ starting from a vector space access structure Γ, and we prove that
Γ′ is also vector space. Our second contribution is to show that the concept
of extended access structure can be used to design encryption schemes which
involve access structures that are chosen ad-hoc at the time of encryption.
Specifically, we design and analyze a dynamic distributed encryption scheme
and a ciphertext-policy attribute-based encryption scheme. In some cases, the
new schemes enjoy better properties than the existing ones.

Keywords: vector space access structure, secret sharing, dynamic distributed encryption,
attribute-based encryption.

1 Introduction

Secret sharing schemes [25] allow a secret to be distributed among several parties.
Roughly speaking, secret sharing schemes - SSS from now on- can force parties to

1

cooperate to perform a certain sensitive task, instead of trusting a single party. For
example, a bank requiring that at least two of its employees cooperate to open the
vault can share the vault’s lock combination in such a way that any two employees
can recover it, but one cannot. Similar challenges can arise in other sensitive areas
where a secret should be recovered only if certain users, the authorized sets, get
together. Given a set of users P = {R1, . . . , Rn}, the family Γ ⊂ 2P of authorized
sets is the access structure of the secret sharing scheme.

A classical example of secret sharing schemes is Shamir’s (t, n)-threshold scheme
[25], in which every set of at least t users - out of a total of n - can recover the secret.
Such a scheme can be easily implemented by means of polynomial interpolation.
Indeed, it suffices to publicly associate to each user Ri a different element αi 6= 0
in a finite field K and to choose a random polynomial Q ∈ K[X] of degree t− 1. If
each user is given the share Q(αi), the secret Q(0) has been shared in such a way
that at least t users have to get together to recover the secret. Such t is referred to
as the threshold of the scheme.

Secret sharing schemes are widely used as primitives in many cryptographic pro-
tocols, for instance in distributed encryption schemes, where decryption can be done
only by authorized groups of users. Typically, to allow decryption to be distributed
according to a certain access structure Γ, the secret key required for decryption is
shared among the users according to a certain SSS realizing Γ. The sender encrypts
using the public key, then each user uses his share of the secret key to compute
a partial decryption, and finally the partial decryptions of an authorized set can
be combined to obtain the decrypted message. However, this solution may not be
flexible enough to accommodate certain additional functionalities. For instance, in
the case of dynamic distributed encryption, where the sender of the message chooses
the receivers and the subsets authorized to decrypt at the time of encryption - so
that different messages can be decrypted by different sets of users-, this solution will
not do.

In this case a trivial alternative is to share the message m by means of a SSS
realizing Γ and then to encrypt each share mi using the public key of user Ri. This
trivial solution has ciphertext length n+O(1), if n is the total number of receivers.
If we restrict ourselves to the threshold case, where the sender chooses the threshold
t at the time of encryption, the ciphertext length can be reduced to n − t + O(1),
as shown in [16]. Indeed, given a set of n users with key pairs (pki, ski), the idea
is to use all their public keys to generate a global public key PK - which implicitly
defines a secret key SK- in such a way that ski can be seen as the share of user
Ri of the secret SK. That is, SK is shared with an (n, n)-threshold secret sharing
scheme. If the sender wants the threshold to be t, all it has to do is to include in the
ciphertext n− t partial decryptions, corresponding to n− t dummy, not real, users.
Then, any set of at least t of the real users can jointly decrypt.

Non-threshold access structures have received less attention in the literature of
cryptographic protocols, partly because SSS realizing threshold access structures
have a very simple description and intuitive realization, as we have seen above.
However, more general access structures make a lot of sense in some scenarios like
dynamic distributed encryption, or attribute-based encryption, where the sender

2

chooses a decryption policy for each ciphertext, such that a user can decrypt a
message if he satisfies some requirements (attributes). This decryption policy can
be seen as an access structure Γ over the set of all attributes. In this context, since
different attributes may have different significance, it is not reasonable to restrict
the sender to the threshold case and, in fact, most works dealing with the concept of
attribute-based encryption consider general access structures (see [31], for example).

Not all the cryptographic threshold protocols can be easily extended to allow
other access structures. The initial goal of this work was to adapt to the scenario
of general access structures the (threshold) ideas of [16]: to reduce the ciphertext
length by encrypting with some global public key and then adding some partial
decryptions corresponding to some dummy players. To this purpose, we introduce
the concept of extended access structures.

1.1 Our results

Given Γ ⊂ 2P , an extended access structure Γ′, defined over a larger set P ′ = P ∪P̃,
is an access structure satisfying these two properties:

• the set P is a minimal subset of Γ′, i.e. P − {Ri} /∈ Γ′ for every Ri ∈ P,

• a subset A ⊂ P is in Γ if and only if the subset A ∪ P̃ is in Γ′.

These additional users P̃ correspond to the aforementioned dummy users.
In Section 3 we prove, using linear algebra tools, that if Γ is a vector space access

structure, then it is possible to explicitly construct an extended access structure Γ′

which is also a vector space one. Γ is a vector space access structure if there exists
some assignment of vectors (one for each user and one for a special external user D)
such that Γ contains exactly those subsets of users whose vectors linearly generate
the vector of D. It is easy to see that threshold access structures are a particular
case of vector space ones.

We use this result to design in Section 4 the first dynamic distributed encryption
scheme which works for the non-threshold case with ciphertexts containing less than
n elements, where n is the number of receivers. We then show that the concept of ex-
tended access structures may be of independent interest, because it can be employed
to design other distributed cryptographic protocols, not only dynamic distributed
encryption schemes. As an example, we construct in Section 5 an attribute-based
encryption scheme which works for any vector space access structure (for the sub-
sets of attributes needed to decrypt) and which has in some cases shorter ciphertexts
than the rest of attribute-based schemes in the literature. For completeness, the se-
curity analysis of these two cryptographic schemes is included in Appendices A and
B. We give some concluding remarks in Section 6.

2 Preliminaries

In this section we recall some basics on the primitives of secret sharing, dynamic
distributed encryption and attribute-based encryption, which will appear later in
the rest of the paper.

3

2.1 Secret Sharing Schemes

The idea of secret sharing schemes was independently introduced by Shamir [25]
and Blakley [5]. Let P = {R1, . . . , Rn} be a set of n players. In this set of players, a
family of authorized or qualified subsets Γ ⊂ 2P is defined. This family is called the
access structure of the scheme, and it must be monotone increasing; that is, if A1 ∈ Γ
and A1 ⊂ A2 ⊂ P, then A2 ∈ Γ. Because of this property, an access structure is
fully determined by its basis Γ0 = {A ∈ Γ | A− {Ri} /∈ Γ, for all Ri ∈ A}.

Given a monotone increasing access structure Γ and a secret to be shared, the
idea behind a secret sharing scheme is that each player of the set P receives from
a trusted and external authority (the dealer, usually denoted by D) a share of the
secret. On the one hand, from the shares of any authorized subset, in Γ, the secret
can be efficiently recovered. On the other hand, from the shares of a non-authorized
subset, out of Γ, no information about the secret should be obtained.

Shamir proposed in [25] a threshold scheme, where subsets that can recover the
secret are those with at least t members (t is the threshold); in other words, the
access structure is Γ = {A ⊂ P : |A| ≥ t}. The scheme is based on polynomial
interpolation.

A more general family of secret sharing schemes are vector space ones, introduced
by Brickell in [12]. An access structure Γ is realizable by such a scheme, over a finite
field K, if there exist a positive integer d and a map ψ : P ∪{D} −→ (K)d, such that
A ∈ Γ if and only if ψ(D) ∈ 〈ψ(Ri)〉Ri∈A. In this case, we say that Γ is a vector space
access structure. If a dealer wants to distribute a secret value s ∈ K according to
such an access structure, he takes a random vector ω ∈ (K)d, such that ω ·ψ(D) = s.
The share of a player Ri ∈ P is si = ω · ψ(Ri) ∈ K. Let A be an authorized subset,
A ∈ Γ; then, by definition, ψ(D) =

∑
Ri∈A λ

A
i ψ(Ri), for some values λA

i ∈ K. In
order to recover the secret from their shares, players in A compute∑

Ri∈A

λA
i si =

∑
Ri∈A

λA
i (ω · ψ(Ri)) = ω ·

∑
Ri∈A

λA
i ψ(Ri) = ω · ψ(D) = s.

Shamir’s threshold secret sharing scheme can be seen as a particular case of vector
space ones, by defining ψ(D) = (1, 0, . . . , 0) ∈ (Zq)t and ψ(Ri) = (1, i, i2, . . . , it−1) ∈
(K)t for every player Ri ∈ P.

2.2 Dynamic Distributed Encryption

Roughly speaking, an encryption scheme with dynamic distributed decryption (DDE
scheme, for short) works as follows. Each potential receiver generates his own pair of
secret and public keys. The sender of a message chooses (ad-hoc) a set of receivers
P and an access structure Γ ⊂ 2P of authorized receivers, and then encrypts this
message by using the public keys of these receivers. Given the resulting ciphertext,
the original message can be recovered by any subset in Γ: they use their secret keys
to compute partial decryptions which are then combined to obtain the message.
This kind of schemes is strongly related to standard distributed encryption schemes
[13, 8], but in these latter schemes the set of receivers and the access structures are

4

defined in the setup phase of the system, not chosen by the sender of each message.
Furthermore, the receivers do not generate their key pairs independently: there is
a distributed key generation phase, where a global public key is defined for the
whole set of receivers, and their secret keys are shares of the corresponding global
secret key. We emphasize that these differences are quite strong and call for specific
solutions to construct DDE schemes.

More formally, a DDE scheme DDE= (DDE.Setup,DDE.KG,DDE.Enc,DDE.PartDec,
DDE.Dec) consists of five algorithms:

• The randomized setup algorithm DDE.Setup takes as input a security param-
eter k and outputs some public parameters params, which will be common to
all the users of the system. We write params← DDE.Setup(1k).

• The randomized key generation algorithm DDE.KG is run by each user Ri.
It takes as input some public parameters params and returns a pair (pki, ski)
consisting of a public key and a matching secret key; we denote an execution
of this protocol as (pki, ski)← DDE.KG(params).

• The randomized encryption algorithm DDE.Enc takes as input a set of pub-
lic keys {pki}Ri∈P corresponding to a set P of n receivers, a monotone in-
creasing family Γ ⊂ 2P (the access structure), and a message m. The out-
put is a ciphertext C, which contains the description of P and Γ; we write
C ← DDE.Enc(P, {pki}Ri∈P ,Γ,m).

• The (possibly randomized) partial decryption algorithm DDE.PartDec takes
as input a ciphertext C for the pair (P,Γ) and a secret key ski of a receiver
Ri ∈ P. The output is a partial decryption value κi or a special symbol ⊥.
We denote with κi ← DDE.PartDec(C, ski) an execution of this protocol.

• The deterministic final decryption algorithm DDE.Dec takes as input a cipher-
text C for the pair (P,Γ) and partial decryptions {κi}Ri∈A corresponding to
receivers in some authorized subset A ∈ Γ. The output is a message m. We
write m← DDE.Dec(C, {κi}Ri∈A, A).

When formalizing security of a DDE scheme, one considers an attacker that
tries to break the security of the scheme. This attacker can corrupt different users,
obtaining their secret keys. The final goal of the attacker is to obtain some infor-
mation about a message which has been encrypted for a pair (P∗,Γ∗) such that the
subset U ′ of corrupted players is not in Γ∗. Depending on whether the attacker has
access to a decryption oracle, one can consider chosen plaintext attacks (CPA) or
chosen ciphertext attacks (CCA). The resulting levels of security are known as in-
distinguishability under CPA (or IND-CPA security) and indistinguishability under
CCA (or IND-CCA security). See Appendix A for a more formal definition of the
IND-CPA security of this kind of schemes.

To the best of our knowledge, only a few works [19, 21, 15, 16] have dealt with
DDE schemes, and all of them consider only the threshold case, where the authorized
subsets of receivers are those in the threshold access structure Γ = {A ⊂ P : |A| ≥ t},

5

for some value of the threshold t. The best of these results [16] achieves ciphertext
length of size roughly n − t, where n is an upper bound for the size of the set
of receivers. A slightly different variant of (threshold) DDE is considered in [17],
where a master entity is in charge of generating the secret and public keys of every
user; in this scenario, a scheme with constant-size ciphertexts but O(n) long public
parameters is proposed.

The DDE scheme that we will describe in Section 4 is based on ElGamal’s cryp-
tosystem, which works as follows. The key generation protocol takes as input a
security parameter k and generates two prime numbers p and q such that q is k bit
long and q|p− 1. Then a cyclic subgroup G = 〈g〉 of Zp is chosen, with order q. All
these values are made public. The secret key sk of a user is chosen at random in Z∗

q ,
whereas the matching public key is pk = gsk mod p. To encrypt a message m ∈ G
for the user with public key pk, a random value a ∈ Z∗

q is chosen, and the ciphertext
C = (r, s) is defined as r = ga mod p and s = m · pka mod p. Finally, the owner of
the secret key sk who receives a ciphertext C = (r, s) can decrypt and obtain the
original message, as s/rsk mod p = m.

2.3 Attribute-Based Encryption

In a ciphertext-policy attribute-based encryption (ABE, for short) system, each user
receives from a master entity a secret key which depends on the attributes that he
enjoys; examples of attributes can be at1 =‘student’, at2 =‘professor’, at3 =‘member
of MIT’, at4 =‘director of a department’, etc. A sender can encrypt a message so
that it can be decrypted only by users whose attributes satisfy some policy of his
choice and which may depend of the message. For example, a ciphertext could be
decrypted by users who are members of MIT ‘and’ are furthermore either professors
‘or’ directors of a department. Note that, if we define as P = {at1, . . . , atn} the
set of all possible attributes in such a system, a decryption policy for a determined
ciphertext can always be defined as a monotone increasing family (or access struc-
ture) of subsets of P. In the example above, with n = 4, the policy can be expressed
by the access structure Γ = {{at2, at3}, {at3, at4}}.

An ABE scheme ABE= (ABE.Setup,ABE.Ext,ABE.Enc,ABE.Dec) consists of
four probabilistic polynomial-time algorithms:

• The randomized setup algorithm ABE.Setup takes as input a security param-
eter k and outputs some public parameters params (containing the set P of
possible attributes), which will be common to all the users of the system,
along with a secret key msk for the master entity. We write (params,msk)←
ABE.Setup(1k).

• The key extraction algorithm ABE.Ext is an interaction between a user and
the master entity. Let P = {at1, . . . , atn} be the set of all possible attributes
for users in the system. The user proves to the master entity that he enjoys
a subset A ⊂ P of attributes. After verifying that this is actually the case,
the master entity uses his master secret key msk to generate a secret key skA

6

(which depends on the subset A of attributes), and gives it to the user. We
denote an execution of this protocol as skA ← ABE.Ext(params, A,msk).

• The encryption algorithm ABE.Enc takes as input a monotone increasing fam-
ily Γ ⊂ 2P , i.e. the access structure that determines the policy for decryption,
and a message m. The output is a ciphertext C, which must contain the
description of Γ; we write C ← ABE.Enc(params,Γ,m).

• The decryption algorithm ABE.Dec takes as input a ciphertext C for the
policy Γ and a secret key skA corresponding to some subset A of attributes.
The output is a message m̃. We write m̃← ABE.Dec(params, C, skA).

For correctness, it is required that ABE.Dec(params,ABE.Enc(params,Γ,m), skA) =
m, whenever A ∈ Γ and the values params,msk, skA have been obtained by properly
executing the protocols ABE.Setup and ABE.Ext.

For security, again quite informally, an ABE scheme must resist the action of
an attacker that can query for secret keys of subsets A1, . . . , A` of attributes of his
choice, and later tries to obtain some information about a message that is encrypted
by using a policy Γ such that Ai /∈ Γ, for all i = 1, . . . , `. Note that if a scheme
is secure in front of this kind of attacks, it resists collusions of users who try to
decrypt a message encrypted under a policy Γ that they do not individually satisfy,
even if the union of all the attributes of these users would give an authorized subset
of attributes (for example, the whole set P). See Appendix B for a more formal
definition of the (selective) security of this kind of schemes.

The notion of attribute-based encryption appeared implicitly in [24]. In 2006 the
first paper dealing explicitly with ciphertext-policy ABE [20] was published, while
in [4] other models for ABE were defined. In this paper we only consider ciphertext-
policy ABE. A recent work [31] gives some constructions of ciphertext-policy ABE
schemes, using also tools from secret sharing, as we will do in our construction in
Section 5.

In our ABE scheme, bilinear pairings will be an essential ingredient. Given an
additive group G1 = 〈P 〉 and a multiplicative group G2, both with prime order q,
we say that they admit a bilinear pairing if there exists a map e : G1 × G1 → G2

satisfying the following properties:

1. it is bilinear: e(aP, bP) = e(P, P)ab = e(bP, aP), for all a, b ∈ Zq;

2. it can be efficiently computed for any possible input pair;

3. it is non-degenerate, which means that e(P, P) 6= 1.

Bilinear pairings can be constructed over groups defined on elliptic curves. In the
last years, bilinear pairings have been widely used in cryptography, for example in
the design of identity-based cryptographic protocols.

7

3 Extended Access Structures

Let P = {R1, . . . , Rn} be a set of players and let Γ ⊂ 2P be a vector space access
structure. Our goal is to create an extended access structure Γ′, defined on an
extended set P ′ = P ∪ P̃, where P̃ denotes a set of dummy players, in such a way
that:

1. P ∈ (Γ′)0, that is, the set of real receivers is a minimal authorized subset of
the extended access structure; and

2. A ∈ Γ ⇐⇒ A′ = A ∪ P̃ ∈ Γ′, that is, an extended subset is authorized in the
extended access structure if and only if the real members of this subset form
an authorized subset in the original access structure.

In the following sections of the paper we will see how useful these properties are
to design some encryption schemes. This relation between two access structures Γ
and Γ′ is not unusual at all. The opposite transformation, from Γ′ to Γ, has been
studied in secret sharing or matroid theory (see [22], for example). It is well known
that if Γ′ is a vector space access structure, then Γ (which in this case is denoted as
a minor of Γ′) is vector space, too.

We are going to show the same property for the opposite transformation. That
is, given a vector space access structure Γ, we prove that an extension from Γ to Γ′

is always possible, and that the vector space property of Γ is preserved in Γ′.

Proposition 1. Let Γ ⊂ 2P be a vector space access structure defined on a set P of
n players. Then there exist a set of dummy players P̃, satisfying P̃ ∩ P = ∅, and a
vector space access structure Γ′ ⊂ 2P

′
, where P ′ = P ∪ P̃, such that:

1. P ∈ (Γ′)0, and

2. A ∈ Γ⇐⇒ A′ = A ∪ P̃ ∈ Γ′.

Proof. Let ψ : P ∪ {D} −→ (Zq)d be the map which realizes Γ as a vector space
access structure. If we denote as M the matrix whose n rows are the vectors ψ(Ri),
for i = 1, . . . , n, then we can assume that the rank of M is d, because otherwise we
can remove useless columns of M . This implies in particular that d ≤ n.

We are going to construct a map ψ′ : P ′∪{D} −→ (Zq)n realizing a vector space
access structure Γ′ over the set P ′ = P ∪ P̃, where P̃ ∩ P = ∅ and P̃ contains n− d
dummy players, such that Γ′ satisfies the desired conditions.

First of all, since the d columns of M are linearly independent over (Zq)n, we
can extend them to a basis of (Zq)n, via Steinitz, by adding n − d columns. The
resulting matrix M ′ has n linearly independent columns. The new rows are of the
form (ψ(Ri)|vi), for i = 1, . . . , n, for some vectors vi ∈ (Zq)n−d. These extended
rows will be precisely the new vectors assigned to the real receivers. That is,

ψ′(Ri) = (ψ(Ri)|vi) ∈ (Zq)n, for i = 1, . . . , n.

Note that these vectors are a basis of (Zq)n.

8

For the dummy players, that we denote P̃ = {Rn+1, . . . , R2n−d}, we consider a
basis {wj}j=1,...,n−d of (Zq)n−d, and we define

ψ′(Rn+j) = (0|wj) ∈ (Zq)n, for j = 1, . . . , n− d.

Here 0 denotes a vector with d zeros. Now we have to define the vector ψ′(D), in
such a way that:

(i) ψ′(D) is a linear combination, with all coefficients different from zero, of all
the vectors in {ψ′(Ri)}Ri∈P . This would ensure that P ∈ (Γ′)0.

(ii) ψ′(D) = (a ψ(D)|w), for some a ∈ Zq and some vector w ∈ (Zq)n−d. This
would ensure the second desired condition for Γ′. Indeed, if A ∈ Γ, we have
a ψ(D) =

∑
Ri∈A

λiψ(Ri), for some coefficients λi ∈ Zq. On the other hand,

we have w −
∑

Ri∈A

λivi =
∑

Rn+j∈P̃
µjwj , for some coefficients µj ∈ Zq, because

{wj}j=1,...,n−d is a basis of (Zq)n−d. Summing up, we would have

ψ′(D) = (a ψ(D)|w) =
∑

Ri∈A

λiψ
′(Ri) +

∑
Rn+j∈P̃

µjψ
′(Rn+j).

And so A ∪ P̃ ∈ Γ′. Reciprocally, if A′ ∈ Γ′, then we would have ψ′(D) =
(a ψ(D)|w) =

∑
Ri∈A′

λiψ
′(Ri). Since the vectors ψ′(Rn+j) of the dummy players

have the first d components equal to 0, the vectors in {ψ(Ri)}Ri∈A′∩P would
generate a ψ(D) (and also ψ(D)) and so A = A′ ∩ P ∈ Γ.

Let us show how such a vector ψ′(D) can be constructed. We consider a minimal
cover of P consisting of minimal authorized subsets A1, . . . , Ar, ordered in some
arbitrary way. Note that such a cover must always exist, because otherwise there
would be useless receivers in P. We have ψ(D) =

∑
Ri∈A`

λ`
iψ(Ri), for all ` = 1, . . . , r

and some coefficients λ`
i ∈ Zq. The idea now is to multiply each of these equalities

by a value α` ∈ Zq, and then to sum them all. If we define a =
∑r

`=1 α`, we obtain

a ψ(D) =

(
r∑

`=1

α`

)
ψ(D) =

r∑
`=1

∑
Ri∈A`

α`λ
`
iψ(Ri) =

∑
Ri∈P

 ∑
A` | Ri∈A`

α`λ
`
i

ψ(Ri).

We just have to ensure that all these coefficients ρi =
∑

A` | Ri∈A`

α`λ
`
i are different

from zero, for i = 1, . . . , n. If this is the case, then we will have that ψ′(D) =∑
Ri∈P

ρiψ
′(Ri) satisfies conditions (i) and (ii). To ensure ρi 6= 0 for all i = 1, . . . , n,

we consider a matrix B = (bi`) with n rows, one for each Ri ∈ P, and r columns, one
for each authorized subset A`. We define bi` = λ`

i , if Ri ∈ A`, and bi` = 0 otherwise.
Now, we will define α` from ` = 1 to ` = r. For each column `, we consider the

players Ri such that A` is the last subset of the cover which contains Ri; in other

9

words, the rest of the i-th row of B, on the right of the `-th column, contains only
zeros. Note that for each column ` there will be at least one player Ri satisfying
this condition; otherwise, the subset A` could be removed (but we are assuming
that these subsets form a minimal covering). For these players Ri, since the values
α1, . . . , α`−1 are already defined, and the next values α`+1, . . . , αr do not affect these
ρi, we choose a value for α` such that all the corresponding ρi are different from
zero. More precisely, for each of these players Ri, there exists a unique value for α`

which leads to ρi = 0. Therefore, we have at most n forbidden values. If we assume
that q ≥ n (which will be the case in our encryption schemes, because q is a very
large prime number), then there will exist a non-forbidden value for α`. Proceeding
iteratively, we define all these values and obtain that ρi 6= 0, for all Ri ∈ P, as
desired. This completes the proof.

The method described in this proof always works to realize an extended access
structure Γ′ from Γ, with the desired properties. For some particular cases of access
structures Γ, however, there are more efficient and simple methods to construct an
appropriate Γ′, as we can see in the following section.

3.1 Particular Cases

In the following sections we will show how to use the concept of extended access struc-
tures in order to design both dynamic distributed encryption (DDE) and attribute-
based encryption (ABE) schemes. An important parameter to measure the efficiency
of such schemes is the length of the ciphertexts C. From this point of view, our
schemes will not very efficient in general, because the ciphertexts must include the
description of Γ′, in particular all the vectors ψ′(D), {ψ′(Ri)}Ri∈P∪P̃ . Note however
that similar inefficiency problems will always appear as long as we want to consider
general access structures Γ in DDE or ABE schemes, because the description of Γ
and the secret sharing scheme which realizes it are always necessary.

However, for some particular cases of access structures Γ, it is possible to find
an appropriate Γ′ such that the description of the map ψ′ can be made very short.

For example, let us consider the threshold case, where Γ(t,n) = {A ⊂ P : |A| ≥ t},
for some threshold t such that 1 ≤ t ≤ n. In this case, if P = {R1, . . . , Rn}, we
can define P̃ = {Rn+1, . . . , R2n−t} and then the extended threshold access structure
Γ′(n,2n−t) = {A′ ⊂ P ∪ P̃ : |A′| ≥ n} satisfies the desired conditions, stated in
Proposition 1. This access structure can be realized by Shamir’s secret sharing
scheme, taking ψ′(D) = (1, 0, 0, . . . , 0) ∈ (Zq)n and ψ′(Ri) = (1, i, i2, . . . , in−1) ∈
(Zq)n, for all Ri ∈ P ∪ P̃.

Note that, in general, in Shamir’s threshold secret sharing scheme, each player
Ri is associated with a different element αi ∈ Zq, and then the vector is defined as
ψ′(Ri) = (1, αi, α

2
i , . . . , α

n−1
i). This can be done by defining αi = g(Ri) for some

public and collision-resistant hash function g : {0, 1}∗ → Zq. In this case, given the
set P of n real players, finding an appropriate set P̃ of n− t dummy users such that
P ∩ P̃ = ∅ and such that the description of P̃ is short can be done in the following
way: the sender looks for an interval of n−t integers J = {j0, j0+1, . . . , j0+n−t−1}

10

(modulo q) such that αi /∈ J for all Ri ∈ P, and defines the set P̃ simply as the n− t
dummy users Rj whose associated values are αj ∈ J . Such an interval J exists as
long as n(n − t) < q − 1, which is very likely since q is a very large number. Note
that the value j0 is enough to describe the set P̃, if the ciphertext already contains
P (and so n) and the threshold t for the decryption.

Finally, there are other families of access structures Γ for which an appropriate
Γ′ can be found directly, without using the generic construction described in the
proof of Proposition 1. In these cases, as it happens in the threshold case, Γ′ is
of the same kind as Γ, and so the description of Γ′ in the ciphertext can be made
very short, just by including the general parameters which define Γ and Γ′, and
the specific (usually well-known) secret sharing schemes that realize them. Some
examples of such families of access structures are bipartite ones [23], hierarchical
threshold ones [12, 29], weighted threshold ones [1], or compartmented ones [12, 30].

A very illustrative case is that of weighted threshold access structures. If Γ is
such a structure, then there exist an assignment of positive integers ω : P → Z+

and a threshold β such that A ∈ Γ⇔
∑

Ri∈A ω(Ri) ≥ β. In this case, we can easily
obtain a suitable extended access structure Γ′ by adding a single dummy user, i.e.
P̃ = {Rn+1}, by defining the extended threshold as β′ =

∑
Ri∈P ω(Ri) and the new

weights as ω′(Ri) = ω(Ri) for the real users, and ω′(Rn+1) = β′ − β for the dummy
user.

4 First Application: Dynamic Distributed Encryption

In this section we propose the first construction of encryption schemes with dynamic
distributed decryption which admits general access structures (not only threshold
ones) for the subsets of receivers authorized to decrypt a message, and whose ci-
phertexts contain less than n elements (where n is the number of receivers).

The basic idea is to think of a standard distributed encryption scheme, with
a global public key PK and a global secret key SK which is shared among the
receivers, according to some access structure and secret sharing scheme. In our
setting, however, the set of receivers and the global public key will not be always
the same, but generated ad-hoc by the sender of each message. Furthermore, each
potential receiver Ri has his own key pair (ski, pki), individually generated at the
beginning of the life of the system.

Now suppose a sender wants to encrypt a message for a set of receivers P and
a vector space access structure Γ ⊂ 2P . The idea for the encryption process is the
following: the sender computes the global public key corresponding to Γ′ (i.e. the
public key whose implicit matching secret key can be obtained only from the secret
keys of a subset in Γ′) from the individual public keys of the real receivers, because
P ∈ (Γ′)0. Then, he encrypts the message under this global public key and adds to
the ciphertext the partial decryption values of the dummy players P̃. If members
of an authorized set A ∈ Γ of real receivers want to decrypt, they can combine
their partial decryption values with the dummy ones, in the ciphertext, to form an
authorized subset A ∪ P̃ for Γ′, and then recover the plaintext.

11

Let us now describe the scheme in detail. It is based on ElGamal’s cryptosys-
tem. The five algorithms of our DDE scheme (DDE.Setup,DDE.KG,DDE.Enc,
DDE.PartDec,DDE.Dec) work as follows.

Setup, DDE.Setup. Given a security parameter k, two prime numbers p and
q are generated at random, such that q is k bits long and q|p − 1. Then a cyclic
subgroup G = 〈g〉 of Zp is chosen, with order q. Therefore, the output of the protocol
is params = (p, q,G, g, h).

Key generation, DDE.KG. Each player Ri chooses at random his secret key
ski ∈ Z∗

q . The matching public key is pki = gski mod p. (We will sometimes omit
the explicit mod p.)

Encryption, DDE.Enc. The goal is to encrypt a message m ∈ G addressed
to some set P = {R1, . . . , Rn} of n receivers, with access structure Γ ⊂ 2P for
the decryption. We assume that Γ is a vector space access structure realized by
some map ψ : P ∪ {D} −→ (Zq)d. The sender finds an appropriate subset P̃ =
{Rn+1, . . . , R2n−d}, access structure Γ′ ⊂ 2P

′
, where P ′ = P ∪ P̃, and map ψ′ :

P ′ ∪ {D} −→ (Zq)n realizing Γ′, by following the method explained in the proof
of Proposition 1. Recall that the vectors in {ψ′(Ri)}Ri∈P form a basis of (Zq)n, so
there exist coefficients λPi0, λ

P
ij such that

ψ′(D) =
∑

Ri∈P
λPi0ψ

′(Ri) and ψ′(Rj) =
∑

Ri∈P
λPijψ

′(Ri),

for all the dummy players Rj , with j = n+ 1, . . . , 2n− d.
The sender acts then as follows.

1. Define PK =
∏

Ri∈P
pk

λPi0
i mod p. Note that, if we write SK =

∑
Ri∈P

λPi0ski, we

have that PK = gSK . In other words, there is an implicit secret sharing in
the exponent, according to Γ′ (recall that P ∈ (Γ′)0), where the secret is SK
and the share of each real receiver Ri is his secret key ski.

2. For each dummy receiver Rj ∈ P̃, define pkj =
∏

Ri∈P
pk

λPij
i mod p. Following

the argument above, we could write pkj = gskj for some element skj ∈ Zq;
this element is the (implicit) secret share of the dummy user Rj in the secret
sharing process which happens in the exponent of the public keys, with access
structure Γ′ and map ψ′.

3. Choose at random a ∈ Z∗
q and compute r = ga mod p.

4. Compute s = m · PKa mod p.

5. For each Rj ∈ P̃, compute the partial decryption κj = pka
j mod p, which is

equal to rskj .

12

6. Define the final ciphertext as C = (P,Γ, P̃, ψ′, r, s, {κj}Rj∈P̃).

Note that the values PK and {pkj}Rj∈P̃ are uniquely determined from the public
keys of the real receivers and from ψ′, so they can be re-used every time a message
is encrypted for this set P and this access structure Γ.

Partial decryption, DDE.PartDec. Given a ciphertext C = (P,Γ, P̃, ψ′, r, s, {κj}Rj∈P̃),
any real receiver Ri ∈ P can compute his partial decryption κi = rski mod p.

Final decryption, DDE.Dec. Given a ciphertext C = (P,Γ, P̃, ψ′, r, s, {κj}Rj∈P̃)
and partial decryptions {κi}Ri∈A corresponding to receivers in some authorized sub-
set A ∈ Γ, a combiner algorithm considers the whole set of partial decryptions in
A′ = A ∪ P̃. Due to the conditions on Γ′, we have that A′ ∈ Γ′, so there exist
coefficients {λA′

i0 }Ri∈A′ such that ψ′(D) =
∑

Ri∈A′
λA′

i0 ψ
′(Ri). Translating this fact to

the secret sharing which is implicitly performed in the exponents of the public keys,

we have that PK = gSK = g

P
Ri∈A′

λA′
i0 ski

=
∏

Ri∈A′
pk

λA′
i0

i .

The combiner therefore computes

κ =
∏

Ri∈A′

κ
λA′

i0
i mod p = g

a
P

Ri∈A′
λA′

i0 ski

=

= gaSK = PKa.

Then the plaintext m is recovered as m = s/κmod p.

4.1 Analysis: Security and Efficiency

Since this scheme is based on ElGamal (for example, considering P = Γ = {Rj},
for a single receiver Rj , leads to ElGamal’s standard cryptosystem), the achieved
security can be at most the same as the security of ElGamal’s cryptosystem. In
Appendix A we formally prove that this DDE scheme is IND-CPA secure, assuming
that the Decisional Diffie-Hellman problem is intractable.

It is possible to use our ideas of extended access structures, combined with the
schemes and ideas in [6, 14] (as done in [16] for the threshold case), in order to
obtain a DDE scheme for general access structures which is IND-CCA secure, in the
standard model.

Regarding efficiency, and excluding the scheme in [17] which considers a different
model for DDE, the new scheme is more efficient than all the previous proposals, in
terms of ciphertexts’ length. Specifically, in our scheme the length of a ciphertext
is n− d+O(1), whereas all the proposed schemes (except the one in [16], which is
the particular threshold case of our new scheme) have ciphertexts whose length is
at least n+O(1), being n the number of receivers.

13

The improvement provided by our scheme, i.e. the value of d, depends on the
degree of restriction of the family Γ. On the one hand, if the family is very restrictive,
meaning that few subsets (with many members) can decrypt, then the value d will
be high, and the length of the ciphertexts in our scheme will be smaller. On the
other hand, if the decryption policy is permissive, then d will be smaller, and the
length of our ciphertexts will be more or less the same as in other proposed DDE
schemes.

5 Second Application: Attribute-Based Encryption

In this section we describe a ciphertext-policy ABE scheme which admits general
access structures (or policies) for the subsets of attributes whose owners are autho-
rized to decrypt a ciphertext. The essential ingredients for the design of our scheme
are the identity-based encryption scheme of Boneh-Franklin [10] and the concept of
extended access structures that we have introduced in this paper. Now the role of
dummy players will correspond to dummy attributes, out of the set P of attributes
admitted in the system.

The algorithms of our ABE scheme (ABE.Setup,ABE.Ext,ABE.Enc,ABE.Dec)
work as follows.

Setup, ABE.Setup. Given a security parameter k, it generates a prime number
q with k bits, an additive groups G1 = 〈P 〉 and a multiplicative group G2, both
with order q, which admit a bilinear pairing e : G1×G1 → G2. A hash function H :
{0, 1}∗ → G1 is chosen. The secret key of the master entity consists of three random
elements msk = (γ, u, v) ∈ (Z∗

q)
3. The values P1 = γP , V = 1

vP and U = u
vP will

be part of the public parameters. Finally, the whole set P of possible attributes is
chosen. The output of the protocol is the master secret key msk = (γ, u, v) and the
public parameters params = (P, q,G1,G2, P, e,H, P1, V, U).

Key Extraction, ABE.Ext. A user proves to the master entity that he holds a
subset of attributes A ⊂ P. Once the master entity verifies the correctness of this
proof, she chooses a fresh random value t ∈ Z∗

q , computes T = tP , Tu = utP and, for
each ati ∈ A, computes the value Qi = H(ati) and then the pair Di,u = utQi + γQi

and Di,v = vtQi. The resulting secret key is skA = (T, Tu, {(Di,u, Di,v)}ati∈A).

Encryption, ABE.Enc. The goal is to encrypt a message m ∈ G2 addressed to
some vector space access structure Γ ⊂ 2P defined on the set of attributes P =
{at1, . . . , atn}. Let ψ : P ∪ {D} −→ (Zq)d be the map that realizes Γ. The sender
finds an appropriate subset P̃ = {atn+1, . . . , at2n−d}, an extended access structure
Γ′ ⊂ 2P

′
, where P ′ = P ∪ P̃, and a map ψ′ : P ′ ∪ {D} −→ (Zq)n realizing Γ′, by

following the method explained in the proof of Proposition 1. Recall that the vectors
in {ψ′(ati)}ati∈P form a basis of (Zq)n, so there exist coefficients λPi0, λ

P
ij such that

ψ′(D) =
∑

ati∈P
λPi0ψ

′(ati) and ψ′(atj) =
∑

ati∈P
λPijψ

′(ati),

14

for all the dummy attributes atj , with j = n+ 1, . . . , 2n− d.
The sender acts then as follows.

1. Define Q =
∑

ati∈P
λPi0Qi, where Qi = H(ati).

2. For each atj ∈ P̃, define Qj =
∑

ati∈P
λPijQi.

3. Choose at random r1, x ∈ Z∗
q , and (implicitly) define r2 such that ur1 + vr2 =

xmod q.

4. Compute C1 = r1P and C2 = r2P , as C2 = xV − r1U .

5. Compute C3 = m · e(P1, Q)r1 .

6. Compute X = xQ.

7. For each atj ∈ P̃, compute the pair of values κj,1 = r1Qj and κj,x = xQj .

8. Define the final ciphertext as C = (P,Γ, P̃, ψ′, C1, C2, C3, X, {(κj,1, κj,x)}atj∈P̃).

Decryption, ABE.Dec. Given a ciphertext C = (P,Γ, P̃, ψ′, C1, C2, C3, X, {(κj,1, κj,x)}atj∈P̃),
a user with secret key skA = (T, Tu, {(Di,u, Di,v)}ati∈A) for a subset of attributes
A ∈ Γ can recover the encrypted message, as follows. Recall that A′ = A ∪ P̃ ∈ Γ′

and, therefore, there exist coefficients {λA′
i0 }ati∈A′ such that ψ′(D) =

∑
ati∈A′

λA′
i0 ψ

′(ati)

and so Q =
∑

ati∈A′
λA′

i0Qi.

The user computes κ =

e

(
Tu + P1 ,

∑
atj∈P̃

λA′
j0κj,1

)
· e

(
T ,

∑
atj∈P̃

λA′
j0κj,x

)
· e

(
C1,

∑
ati∈A

λA′
i0Di,u

)
· e

(
C2,

∑
ati∈A

λA′
i0Di,v

)

e

(
Tu ,

∑
atj∈P̃

λA′
j0κj,1

)
· e(T,X)

=

= . . . =
e(utP, r1Q) · e(vtP, r2Q) · e(P1, r1Q)

e(tP, xQ)
= e(P1, Q)r1 .

The plaintext m is recovered by computing m = C3/κ.

5.1 Analysis: Security and Efficiency

We will only analyze the performance of our scheme in comparison with the scheme
of Waters [31], which seems to be the most competitive ABE scheme up to date, in
terms of efficiency, security and flexibility.

As it happens in the scheme of Waters, our scheme admits general (not neces-
sarily threshold) families Γ of authorized subsets of attributes that must be held by
a receiver in order to correctly decrypt. Regarding security, our scheme achieves the

15

same level of security as Waters’ scheme: it enjoys selective CPA-security under the
assumption that the decisional `-Bilinear Diffie-Hellman Exponent problem is hard.
The formal proof of this result can be found in Appendix B.

Finally, with respect to efficiency, the two schemes are very similar, for example in
terms of the computational cost for encryption and decryption. The main difference
between the two schemes is the length of the ciphertexts. In the scheme of Waters,
this length (without considering the description of P and Γ) is n + O(1), being n
the total number of attributes. In the case of our scheme, the length of a ciphertext
is 2(n − d) + O(1). Roughly speaking, our scheme is more efficient than Waters’
scheme, in terms of ciphertext length, if and only if d ≥ n/2. Note that the larger
the value d is, the more restrictive the family Γ of authorized subsets of attributes is.
In other words, our scheme can be more suitable for situations where the decryption
ability is restricted to few persons, holding many attributes. For example, let us
think of the threshold case in a system which considers n = 10 attributes in total. If
a sender wants to encrypt a very confidential message, in such a way that only those
people holding at least t = 8 attributes will be able to decrypt, then the length of
the ciphertext in our scheme will be 4+O(1), whereas it will be 10+O(1) in Waters’
scheme. Summing up, it turns out that the ABE scheme that we have constructed
by using the concept of extended access structures is, essentially, as efficient as the
best existing schemes of this kind.

6 Conclusion

We have introduced the concept of extended access structure, where a set of dummy
players is added to an existing set of real players. We have used linear algebra
tools to prove that any vector space access structure Γ admits an extended access
structure Γ′ which is also a vector space one.

We believe that extended access structure can be a useful tool to design dis-
tributed cryptographic protocols. To support this claim, we have given two practi-
cal applications of this concept: a dynamic distributed encryption scheme and an
attribute-based encryption scheme. Both constructions improve over the existing
schemes of these kinds, specially regarding the size of the ciphertexts. We believe
these results bring a nice application of linear algebra to the construction of cryp-
tographic protocols.

References

[1] A. Beimel, T. Tassa and E. Weinreb. (2005) Characterizing ideal weighted
threshold secret sharing. Proceedings of TCC’05, LNCS 3378, Springer-Verlag,
pp. 600–619.

[2] M. Bellare, A. Boldyreva and S. Micali. (2000) Public-key encryption in a multi-
user setting: security proofs and improvements. Proceedings of Eurocrypt’00,
LNCS 1807, Springer-Verlag, pp. 259–274.

16

[3] M. Bellare and P. Rogaway. (1993) Random oracles are practical: a paradigm
for designing efficient protocols. Proceedings of Computer and Communications
Security, CCS’93, ACM, pp. 62–73.

[4] J. Bethencourt, A. Sahai and B. Waters. (2007) Ciphertext-policy attribute-
based encryption. Proceedings of IEEE Symposium on Security and Privacy,
IEEE Society Press, pp. 321–334.

[5] G.R. Blakley. Safeguarding cryptographic keys. Proceedings of the National
Computer Conference, American Federation of Information, Processing Soci-
eties Proceedings 48, pp. 313–317 (1979).

[6] D. Boneh and X. Boyen. (2004) Efficient selective-ID secure identity-based en-
cryption without random oracles. Proceedings of Eurocrypt’04, LNCS 3027,
Springer-Verlag, pp. 223–238.

[7] D. Boneh, X. Boyen and E.-J. Goh. (2005) Hierarchical identity based encryp-
tion with constant size ciphertext. Proceedings of Eurocrypt’05, LNCS 3494,
Springer-Verlag, pp. 440–456.

[8] D. Boneh, X. Boyen and S. Halevi. (2006) Chosen ciphertext secure public
key threshold encryption without random oracles. Proceedings of CT-RSA’06,
LNCS 3860, Springer-Verlag, pp. 226–243.

[9] D. Boneh, R. Canetti, J. Katz and S. Halevi. (2007) Chosen-ciphertext security
from identity-based encryption, SIAM Journal on Computing, vol. 36 (5), pp.
1301–1328.

[10] D. Boneh and M.K. Franklin. (2003) Identity-based encryption from the Weil
pairing. SIAM Journal on Computing, vol. 32 (3), pp. 586–615.

[11] D. Boneh, C. Gentry and B. Waters. (2005) Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. Proceedings of Crypto’05,
LNCS 3621, Springer-Verlag, pp. 258–275.

[12] E.F. Brickell.(1989) Some ideal secret sharing schemes. Journal of Combinato-
rial Mathematics and Combinatorial Computing, 9, pp. 105–113 .

[13] R. Canetti and S. Goldwasser. (1999) An efficient threshold public key cryp-
tosystem secure against adaptive chosen ciphertext attack. Proceedings of Eu-
rocrypt’99, LNCS 1592, Springer-Verlag, pp. 90–106 .

[14] R. Canetti, S. Halevi and J. Katz. (2004) Chosen-ciphertext security from
identity-based encryption. Proceedings of Eurocrypt’04, LNCS 3027, Springer-
Verlag, pp. 207–222.

[15] Z. Chai, Z. Cao and Y. Zhou. (2006) Efficient ID-based broadcast threshold
decryption in ad hoc network. Proceedings of IMSCCS’06, Volume 2, IEEE
Computer Society, pp. 148–154.

17

[16] V. Daza, J. Herranz, P. Morillo and C. Ràfols. (2007) CCA2-secure thresh-
old broadcast encryption with shorter ciphertexts. Proceedings of ProvSec’07,
LNCS 4784, Springer-Verlag, pp. 35–50.

[17] C. Delerablée and D. Pointcheval. (2008) Dynamic threshold public-key encryp-
tion. Proceedings of Crypto’08, LNCS 5157, Springer-Verlag, pp. 317–334.

[18] A. Fiat and M. Naor. (1994) Broadcast encryption. Proceedings of Crypto’93,
LNCS 773, Springer-Verlag, pp. 480–491.

[19] H. Ghodosi, J. Pieprzyk and R. Safavi-Naini. (1996) Dynamic threshold cryp-
tosystems: a new scheme in group oriented cryptography. Proceedings of
Pragocrypt’96, CTU Publishing house, pp. 370-379.

[20] V. Goyal, O. Pandey, A. Sahai and B. Waters. (2006) Attribute-based encryp-
tion for fine-grained access control of encrypted data. Proceedings of Computer
and Communications Security, CCS’06, ACM, pp. 89–98.

[21] C.H. Lim and P.J. Lee. (1997) Directed signatures and application to threshold
cryptosystems. Proceedings of Security Protocols Workshop’96, LNCS 1189,
Springer-Verlag, pp. 131–138.

[22] J. Mart́ı-Farré and C. Padró. (2007) On secret sharing schemes, matroids and
polymatroids. Proceedings of TCC’07, LNCS 4392, Springer-Verlag, pp. 273–
290.

[23] C. Padró and G. Sáez. (2000) Secret sharing schemes with bipartite access
structure. IEEE Transactions on Information Theory, 46 (7), pp. 2596–2604.

[24] A. Sahai and B. Waters. (2005) Fuzzy identity-based encryption. Proceedings
of Eurocrypt’05, LNCS , Springer-Verlag, pp. 457–473.

[25] A. Shamir. How to share a secret. (1979) Communications of the ACM, vol. 22,
pp. 612–613.

[26] A. Shamir. (1984) Identity-based cryptosystems and signature schemes. Pro-
ceedings of Crypto’84, LNCS 196, Springer-Verlag, pp. 47–53.

[27] V. Shoup and R. Gennaro. (2002) Securing threshold cryptosystems against
chosen ciphertext attack. Journal of Cryptology, vol. 15 (2), Springer-Verlag,
pp. 75–96.

[28] G.J.Simmons, W. Jackson and K. Martin.(1991) The geometry of secret sharing
schemes. Bulletin of the ICA, 1, pp. 71–88 .

[29] T. Tassa. (2004) Hierarchical threshold secret sharing. Proceedings of TCC’04,
LNCS 2951, Springer-Verlag, pp. 473–490.

[30] T. Tassa and N. Dyn. (2006) Multipartite secret sharing by bivariate interpo-
lation. Proceedings of ICALP’06, LNCS 4052, Springer-Verlag, pp. 288–299.

18

[31] B. Waters. (2008) Ciphertext-policy attribute-based encryption: an ex-
pressive, efficient, and provably secure realization. Manuscript available at
http://eprint.iacr.org/2008/290

A Security Analysis of the DDE Scheme

Indistinguishability under CPA, for DDE schemes, is formally defined by considering
the following game that an attacker A plays against a challenger:

U = ∅.
params← DDE.Setup(1k).
Each timeA requires the creation of a new userRi, (pki, ski)← DDE.KG(params)

is executed and Ri is added to U .
(St,P,Γ,m0,m1)← ACor(find, {pki}Ri∈U).
b← {0, 1} at random.
C∗ ← DDE.Enc(P, {pki}Ri∈P ,Γ,mb).
b′ ← ACor(guess, C∗, St).

In both phases of the attack, A has access to a corruption oracle Cor: A submits
to the oracle a user Ri ∈ U , and must receive as answer his secret key ski. We denote
as qc the total number of such corruptions. Let U ′ ⊂ U be the subset of users that A
has corrupted during the attack. In order to consider meaningful and successful such
an attack, we require U ′ /∈ Γ. Otherwise, A knows the secret key of an authorized
subset of P and can decrypt C∗ by himself, obtaining mb.

The advantage of such an adversary A in breaking the CPA-security of the DDE
scheme is defined as

ε =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
A DDE scheme is said to be ε-indistinguishable under CPA if the advantage of

any polynomial time attacker A is at most ε.
We are now ready to prove, by a reduction argument, that the DDE scheme that

we have proposed in Section 4 enjoys CPA-security, if we assume that the decisional
Diffie-Hellman problem is hard to solve.

Definition 1. We define the decisional Diffie-Hellman (DDH, for short) problem
in the group G = 〈g〉 as follows. Let x, y ∈ Zp be chosen at random; the input of
the problem is the tuple (g, gx, gy). A challenger randomly chooses a bit z ∈ {0, 1},
defining T = gxy if z = 1 and T as a random element in G if z = 0. The goal for a
solver of the problem is to find the correct bit z.

A solver of the DDH problem in G, which outputs a bit z′, has advantage ε if∣∣∣∣Pr[z′ = z]− 1
2

∣∣∣∣ ≥ ε
Through the following theorem we prove that a hypothetical attacker A against

the CPA-security of our DDE scheme, with advantage ε, could be used to construct

19

a solver of the DDH problem with advantage ε
6(qc+1) , where qc is the number of

corruption queries made by A. Since the DDH problem is assumed to be hard,
we conclude that ε must be negligible, which means that our DDE scheme enjoys
CPA-security.

Theorem 1. The DDE scheme in Section 4 has CPA-security, assuming that the
DDH problem is hard in G.

Proof. Let us assume the existence of an attacker A against the CPA-security of
our DDE scheme, and let us construct a solver of the DDH problem, for an instance
(g, gx, gy, T).

We prepare the initialization of the attacker A. Namely, every time that A
requires the creation of a new user Ri, we choose at random γi ∈ Z∗

q . Let µ ∈ (0, 1)
be a real number to be determined later. With probability µ, the value ci = 0 is
chosen, and then we define pki = gγi (in this case, ski = γi is known to us). On
the other hand, with probability 1 − µ, the value ci = 1 is chosen, and we define
pki = (gx)γi (in this case, we do not know the value of ski). The public keys pki are
sent to A. The values (ci, γi) are stored in a table. We denote as U the total set of
users created by A.
A is allowed to corrupt some users. If A sends a corruption query for user Ri,

we look for ci in the table. If ci = 0, then the value ski = γi is sent back to A.
Otherwise, if ci = 1, we abort and output a random bit z′ ∈ {0, 1} as our answer
to the DDH problem. If the number of corruption queries from A is qc, then the
probability that we do not abort in this phase is µqc . Let U ′ ⊂ U denote the subset
of users that A corrupts during the attack.

At some point, A broadcasts a set P = {R1, . . . , Rn}, an access structure Γ ⊂ 2P

for decryption, and two messages m0,m1 ∈ G2, such that the corrupted users do
not form an authorized subset for Γ, i.e. U ∩ P /∈ Γ. This means that at least
one user Ru ∈ P has not been corrupted by A (otherwise, Γ would be empty).
With probability 1 − µ, we have cu = 1 and so pku = (gx)γu . In general, we define
P0 = {Ri ∈ P : ci = 0} and P1 = {R` ∈ P : c` = 1}. As we have just said, P1 is not
empty with probability at least 1 − µ. If this is not the case, we abort and output
a random bit z′ ∈ {0, 1}.

We run the method explained in the proof of Proposition 1 to obtain a set P̃ of
n − d dummy players such that P ∩ P̃ = ∅, and an appropriate access structure Γ′

with associated map ψ′.
For the challenge ciphertext C∗ to be given to A, we choose at random a bit

b ∈ {0, 1}. We first define r = gy, and then we have to simulate the value s =
mb · PKy mod p. Remember that

PK =
∏

Ri∈P
pk

λPi0
i =

∏
Ri∈P0

(gγi)λPi0
∏

R`∈P1

((gx)γ`)λP`0 .

Therefore, we can define PKy as∏
Ri∈P0

((gy)γi)λPi0
∏

R`∈P1

(T γ`)λP`0 ,

20

which will be a consistent definition if and only if T = gxy. If T is a random element,
then this value will also be completely random, and so the resulting s = mb · PKy

will be completely independent on the bit b.
Finally, for each dummy user Rj ∈ P̃, we must simulate the partial decryption

κj = pky
j mod p, where

pkj =
∏

Ri∈P
pk

λPij
i =

∏
Ri∈P0

(gγi)λPij
∏

R`∈P1

((gx)γ`)λP`j .

Using an analogous argument, we define

κj =
∏

Ri∈P0

((gy)γi)λPij
∏

R`∈P1

(T γ`)λP`j ,

which is consistent, again, if and only if T = gxy.
The challenge ciphertext is defined as C∗ = (P,Γ, P̃, ψ′, r, s, {κj}Rj∈P̃).
The attacker A eventually outputs a bit b′. If b′ = b, then we output z′ = 1 as

our answer to the given instance of the DDH problem. If b′ 6= b, then we output
z′ = 0.

Let us compute our success probability of solving the DDH problem. With
probability 1/2, we have T = gxy and so the challenge ciphertext is consistent and,
by hypothesis, A guesses the correct bit b with probability 1/2 + ε. On the other
hand, with probability 1/2, the value T is completely random, and in this case the
view of A is independent of the bit b, and so A correctly guesses b with probability
1/2. We have to take into account, as well, the event in which we abort, during
the simulation of A’s environment. Note that, when we abort, we guess the correct
bit z with probability 1/2. Putting all the pieces together, and denoting as ρ the
probability that we do not abort in any phase, we have:

Pr[we succeed] =
1
2

Pr[we succeed/ T = gxy] +
1
2

Pr[we succeed/ T is random] ≥

≥ 1
2

[
Pr[we do not abort] · (1

2
+ ε) + Pr[we abort] · 1

2

]
+

+
1
2
· 1
2
≥ 1

4
ρ+

1
2
ρε+

1
4
(1− ρ) +

1
4

=
1
2

+
ρε

2
.

The probability that we do not abort at any point is ρ ≥ µqc(1− µ). This value
is maximized when µ = qc

qc+1 , which leads to

ρ ≥

(
1

1 + 1
qc

)qc

· 1
qc + 1

≥ 1
e
· 1
qc + 1

.

Therefore, our advantage in solving the DDH problem is at least

ρε

2
≥ ε

2(qc + 1)e
≥ ε

6(qc + 1)
.

21

B Security Analysis of the ABE Scheme

Selective CPA security for ABE schemes is defined by considering the following game
that an attacker A plays against a challenger:

1. A selects a set P of attributes and a family Γ ⊂ 2P .

2. The challenger runs (params,msk)← ABE.Setup(1k) and gives params to A.

3. Secret key queries: A adaptively sends subsets B /∈ Γ, and must receive skB ←
ABE.Ext(params, B,msk) as answer.

4. A outputs two messages m0,m1 of the same length.

5. The challenger chooses a random bit b← {0, 1}, computes C∗ ← ABE.Enc(params,Γ,mb)
and gives C∗ to A.

6. Step 3 is repeated.

7. A outputs a bit b′.

If the specific ABE scheme employs some hash function H that is modeled as
a random oracle in the security proof, then the attacker A can make hash queries
to this oracle, for inputs x of his choice. A must receive as answer a completely
random and independent value H(x).

The advantage of such an adversary A in breaking the selective CPA-security of
the ABE scheme is defined as

ε =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
An ABE scheme is said to enjoy ε-selective CPA-security if the advantage of any

polynomial time attacker A is at most ε.
The security of our ABE scheme will hold under the assumption that the follow-

ing decisional problem related to bilinear pairings is hard.

Definition 2. We define the decisional `-Bilinear Diffie-Hellman Exponent (`-
BDHE, for short) problem in the group G1 = 〈P 〉 as follows. Let a, s ∈ Zq be chosen
at random; the input of the problem is the tuple y = (P, sP, aP, a2P, . . . , a`P, , a`+2P, . . . , a2`P).
A challenger randomly chooses a bit z ∈ {0, 1}, defining R = e(P, P)a`+1s if z = 1
and R as a random element in G2 if z = 0. The goal for a solver of the problem is
to find the correct bit z.

A solver of the decisional `-BDHE problem in G1, which outputs a bit z′, has
advantage ε if ∣∣∣∣Pr[z′ = z]− 1

2

∣∣∣∣ ≥ ε
This problem has been considered and studied in other works [7, 11]. In partic-

ular, the assumption that the decisional `-Bilinear Diffie-Hellman Exponent is hard
is proved to be generically secure in [7].

22

Again, we are going to use a reduction argument to prove that our ABE scheme
enjoys selective CPA-security. We will assume the existence of an hypothetical
attacker A against the selective CPA-security of the scheme, with advantage ε, and
we will useA to construct a solver of the decisional `-BDHE problem, with advantage
ε/2. Under the assumption that this problem is hard, we conclude that ε must be
negligible and so our ABE scheme is secure.

Theorem 2. The ABE scheme in Section 5 has selective CPA-security, assuming
that the decisional `-BDHE problem is hard in G1, for ` = n, the total number of
real attributes.

Proof. We assume the existence of a successful adversary A against the selective
CPA-security of our scheme, with advantage ε, and we use A to solve an in-
stance of the `-BDHE problem. We start executing A, which gives us the set
P = {at1, . . . , atn} of attributes and the access structure Γ ⊂ 2P for the challenge
ciphertext (by definition of selective security). We construct a suitable extended
access structure Γ′ ⊂ 2P∪P̃ , where P̃ = {atn+1, . . . , at2n−d} is the set of dummy
attributes. Let ψ′ : P ∪ P̃ ∪ {D} → (Zq)n be the map realizing the extended access
structure Γ′. Without loss of generality (applying if necessary a basis change), we can
assume that ψ′(D) = (1, 0, 0, . . . , 0). We denote ψ′(ati) = (ψ′(ati)(1), . . . , ψ′(ati)(n)).

Now we ask for an instance of the `-BDHE problem, for ` = n (note that we
will use both n and ` throughout the proof), and we receive (y,R), where y =
(P, sP, aP, a2P, . . . , a`P, , a`+2P, . . . , a2`P). Remember that the goal is to distinguish
if R = e(P, P)a`+1s or if R is a random element in G2.

We choose the public parameters of the ABE scheme as follows: we take at
random u, v ∈ Z∗

q , and we define P1 = aP , V = 1
vP and U = u

vP . We give the
resulting params to A, which can then make queries for hash values (random oracle
model) and for secret keys of subsets B /∈ Γ.

Hash queries. Note that the only relevant queries are H(ati), for ati ∈ P. We
define Q = a`P + α0P , for some random value α0 ∈ Zq. For each dummy attribute
atj ∈ P̃, we take at random αj ∈ Z∗

q and define Qj = αjP . Let L ⊂ P, L ∈
(Γ̄)0 be a maximal non-authorized subset. This implies that P̃ ∪ L /∈ Γ′, and that
P̃ ∪ L ∪ {ati∗} ∈ Γ′ for any ati∗ /∈ L. For every ati ∈ L, we take αi ∈ Zq at random
and we define

Qi = H(ati) = ψ′(ati)(1)(a`P) + ψ′(ati)(2)(a`−1P) + . . .+ ψ′(ati)(n)(aP) + αiP.

For each of the remaining real attributes ati∗ /∈ L, we know that A′ = P̃ ∪
L ∪ {ati∗} ∈ Γ′, therefore there must exist coefficients λA′

i0 such that ψ′(D) =∑
ati∈A′

λA′
i0 ψ

′(ati). We define

H(ati∗) = Qi∗ =
1
λA′

i∗0

Q− ∑
atj∈P̃

λA′
j0Qj −

∑
ati∈L

λA′
i0Qi

 =

23

= ψ̃(ati∗)(1)(a`P) + . . .+ ψ̃(ati∗)(n)(aP) + αi∗P,

where αi∗ = 1

λA′
i∗0

(
α0 −

∑
atj∈P̃ λ

A′
j0αj −

∑
ati∈L λ

A′
i0 αi

)
and, for every k = 1, . . . , n:

ψ̃(ati∗)(k) =
1
λA′

i∗0

ψ′(D)(k) −
∑

ati∈L

λA′
i0 ψ

′(ati)(k)

 = ψ′(ati∗)(k)+
1
λA′

i∗0

∑
atj∈P̃

λA′
j0ψ

′(atj)(k).

Summing up, we have at the end Q = a`P + α0P , then Qj = αjP for atj ∈ P̃,
and for ati ∈ P we have

Qi = H(ati) = ψ̃(ati)(1)(a`P) + . . .+ ψ̃(ati)(n)(aP) + αiP,

where ψ̃(ati)(k) is either equal to ψ′(ati)(k), when ati ∈ L, or is otherwise equal to

ψ′(ati)(k) +
1
λA′

i0

∑
atj∈P̃

λA′
j0ψ(atj)(k).

We must show that this is a consistent simulation of the random oracle model,
i.e. that the values H(ati) are all random and independent. To see this, note that
for every ati ∈ P ∪ P̃, we can write Qi = βiP for some βi ∈ Zq. For instance, for
atj ∈ P̃ we have βj = αj , and for ati ∈ L we have

βi = ψ̃(ati)(1)a` + . . .+ ψ̃(ati)(n)a+ αi.

It is easy to check that these values {βi}ati∈P∪P̃ are a sharing, according to the secret
sharing scheme defined by ψ′, of the secret a`+α0 (which is the discrete logarithm of
Q in the basis P). This sharing has been randomly computed, by choosing at random
the secret and the shares of the elements in a maximal non-authorized subset, L∪P̃.
Therefore, this random sharing follows the same distribution as a random sharing
in which the shares that are chosen at random are those of the minimal authorized
subset P. Since these shares in P are independent, we conclude that the values
H(ati) = βiP , for ati ∈ P, are random and independent, as desired.

Secret key queries. If A requests a secret key for a subset of attributes B /∈ Γ,
we know that B′ = B ∪ P̃ /∈ Γ′. By definition of the secrecy property of a vector
space secret sharing scheme, any secret is equally possible given the set of shares
of B′. In other words, there exists a vector w = (w1, . . . , wn) such that w1 =
w · ψ′(D) = 1

1−u and such that w · ψ′(ati) = 0 for all ati ∈ B′. We implicitly define
t = w1a + w2a

2 + . . . + wna
n. Then, from the data included in the instance y of

the `-BDHE problem, we can easily compute the values T = tP and Tu = u(tP).
Finally, for the values Di,u = utQi + γQi and Di,v = vtQi, where ati ∈ B, we
have Di,u = (ut + a)Qi and Di,v = vtQi. The only problematic component of
these two values is the one which multiplies a`+1P , because the value a`+1P is not
included in the instance y of the `-BDHE problem. Recalling the special form of

24

Qi = ψ̃(ati)(1)(a`P)+. . .+ψ̃(ati)(n)(aP)+αiP , we have that the coefficient of a`+1P
in Di,u is

(uw1 + 1)ψ̃(ati)(1) + w2ψ̃(ati)(2) + . . .+ wnψ̃(ati)(n),

whereas the coefficient of a`+1P in Di,v is

w1ψ̃(ati)(1) + w2ψ̃(ati)(2) + . . .+ wnψ̃(ati)(n).

Taking into account the form of ψ̃(ati)(k), for k = 1, . . . , n, the fact that w1 = 1
1−u

(which makes the two previous coefficients of a`+1P , in both Di,u and Di,v, equal)
and the fact that w · ψ′(ati) = 0 for all attributes ati ∈ B′ = B ∪ P̃, it is easy to
see that these problematic coefficients vanish, and so we can correctly simulate Di,u

and Di,v by using the values included in y.

Challenge. At some point, A broadcasts two messages m0,m1 of the same length,
to be challenged. We choose a bit β ∈ {0, 1} at random, and compute an encryption
C of mβ, as follows. We choose at random x ∈ Z∗

q and (implicitly) define r1 = s and
r2 such that ur1 + vr2 = x. In other words, we have r2 = x

v −
us
v .

For the elements of the challenge ciphertext C∗, remember that Q = a`P +α0P .
We can compute X = xQ, C1 = sP , C2 = r2P = x

vP −
u
v (sP), C3 = mβ · R ·

e(aP, sP)α0 , and then, for each atj ∈ P̃, the values κj,1 = sQj = αj(sP) and
κj,x = xQj .

Note that the ciphertext C∗ is consistent if and only if R = e(P, P)a`+1s. If R is
a random value in G2, then the view of A is completely independent of the bit β, so
the probability that A guesses β in this second case is 1/2. We wait for A’s answer
β′ ∈ {0, 1}. If β′ = β, then we output z′ = 1 as our answer to the `-BDHE problem,
meaning that R = e(P, P)a`+1s. Otherwise, if β′ 6= β, we output z′ = 0, meaning
that R is a random element in G2.

By the definition of the decisional `-BDHE problem, we have R = e(P, P)a`+1s

with probability 1/2, and R is a random element with probability 1/2, as well.
Assuming that A guesses β with probability 1/2 + ε, when the challenge ciphertext
is consistent, we can compute our success probability in solving the decisional `-
BDHE problem as

Pr[we succeed] =
1
2

Pr[we succeed/ R = e(P, P)a`+1s] +

+
1
2

Pr[we succeed/ R is random] ≥

≥ 1
2
· (1

2
+ ε) +

1
2
· 1
2
≥ 1

2
+
ρε

2
.

The advantage that we obtain in solving the `-BDHE problem is therefore half
the advantage of A in breaking the selective CPA security of our ABE scheme.

25

