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Abstract

The unique Shortest Vector Problem (uSVP) gained prominence because it was the problem
upon which the first provably-secure lattice-based cryptosystems were built. But it was an open
problem as to whether uSVP was as hard as the standard, more general, version of the shortest
vector problem.

We show that there is a reduction from the approximate decision version of the shortest
vector problem (GapSVP) to the unique shortest vector problem. In particular, we show that
for any γ > 6

√
n, there is a reduction from GapSVPγ to γ

6
√

n
-uSVP. This implies that the Ajtai-

Dwork and the Regev cryptosystems are based on the hardness of the worst-case GapSVPO(n2.5)

and GapSVPO(n2), respectively. Our reduction is quite elementary, but it does use a clever, yet
surprisingly simple (in retrospect!), idea of Peikert that was recently used by him to construct
a cryptosystem based on the worst-case hardness of GapSVPO(n3).

1 Introduction

Building cryptographic primitives based on the hardness of worst-case lattice problems began with
the seminal work of Ajtai [Ajt96]. One of the first primitives that was built was a cryptosystem
[AD97] with security based on the worst-case hardness of the unique Shortest Vector Problem
(uSVP). The security of the system was based on the hardness of solving the O(n8)-uSVP problem
(in the γ-uSVP problem, we are asked to find the shortest vector in a lattice in which the shortest
vector is at least γ times smaller than the next non-parallel lattice vector). This was followed by
an improvement to their cryptosystem [GGH97], and the currently best version of it is based on
the hardness of the O(n2)-uSVP. Later, Regev built a different cryptosystem based on worst-case
O(n1.5)-uSVP problem [Reg04]. But while other cryptographic primitives could be built on the
hardness of the more general, and more well understood, decision version of the shortest vector
problem (GapSVP), cryptosystems seemed to require the hardness of the potentially easier uSVP.

A breakthrough, in the sense of deviating from uSVP, came when Regev built a cryptosystem
which was actually based on GapSVP (as well as some other standard lattice problems), but the
assumption was that approximating GapSVP was hard even by quantum algorithms [Reg05]. And
another breakthrough came just recently, when Peikert finally constructed a cryptosystem that is
based on the hardness of the shortest vector problem under classical reductions [Pei08].

Of course, a different way of proving the existence of cryptosystems with security based on
GapSVP is to show a reduction from GapSVP to uSVP, which is the approach taken here.
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1.1 Results and Related Work

Our main result is a randomized worst-case to worst-case reduction from approximating GapSVP
within a factor γ (GapSVPγ) to solving the γ

6
√

n
-uSVP problem. We mention that the parameters

are not optimized, and with just a simple modification (which would make things a little messier)

it is possible to show a reduction to γ ·
√

log n
cn -uSVP for some constant c.

Since our reduction is inspired by the recent work of Peikert [Pei08], it is worthwhile to first
review the related portion of his result. At the heart of Peikert’s cryptosystem construction, in
our opinion, is a clever idea for using a seemingly “useless” oracle. The oracle that he uses is one
that finds the closest lattice vector if the target point is already very close to the lattice (this is
the Bounded Distance Decoding problem). At first glance, it is not clear how one might use such
an oracle (although Regev found a quantum use for it [Reg05]) because it seems that one needs to
know a close lattice vector if he is to successfully generate a target that is close to the lattice. And
in that case, the oracle doesn’t seem useful because it’ll just return a vector that you already know.
But Peikert shows how to use such an oracle to solve the GapSVPγ problem. Given a GapSVPγ

instance, the idea is to randomly create a target point t around a lattice point v, and then query the
oracle. If the oracle returns back the lattice point v, then the shortest vector is probably large. If,
on the other hand, the oracle returns some other lattice point, then the shortest vector is definitely
small. It can be shown that if the shortest vector is small, then the oracle cannot always know the
lattice point v, and therefore must return something else (or not return anything) which will give
away the fact that the length of the shortest vector is small.

In our reduction, given a GapSVPγ instance (B, d), we create n/2 other lattices such that if
there is no short vector in B, then at least one of the instances will be a valid instance of uSVP
(although we will not know which one). The idea is that caling the uSVP oracle should not produce
any “unexpected” short vectors of a certain form if the shortest vector of B is large, and it must
produce an “expected” short vector on the instances of uSVP that are valid. On the other hand,
if the shortest vector of B is small, then the uSVP oracle must either not produce any vectors of a
certain form, or produce an unexpected vector of the type that we are looking for. We give all the
details in Section 3.

The immediate implication of our result is that the Ajtai-Dwork [AD97] and the Regev cryp-
tosystems [Reg04] are based on the hardness of GapSVPO(n2.5) and GapSVPO(n2) respectively. At
this point, this compares favorably to Peikert’s recent cryptosystem which is based on the hardness
of the GapSVPO(n3) problem. But it’s quite possible that Peikert’s cryptosystem can be improved
to also be based on GapSVPO(n2) with a better trap-door generating algorithm (see [Pei08] for
details). Additionally, Peikert shows how to convert his semantically-secure cryptosystem to a
CCA-secure one (with a factor-n loss in the reduction), but it is unclear whether the same can be
done for the Ajtai-Dwork and the Regev cryptosystems.

2 Preliminaries

An n-dimensional lattice is an additive subgroup of R
n. The set of vectors that generate a lattice is

called a basis, and we will denote it as an n×n matrix B whose columns bi are the generator vectors.
The lattice generated by the basis B will be written as L(B). The fundamental parallelepiped of an
n× n basis B, written as P(B), is defined as the collection of all points that can be written as By

where y ∈ [0, 1)n. Every point s ∈ R
n has a unique associated point t inside P(B) such that s = t
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in the quotient group R
n/L(B). Given an s, it is possible to compute t = s mod B in polynomial

time.
The shortest vector of a lattice L(B) is the non-zero vector in L(B) with the smallest ℓ2 norm.

The length of the shortest vector of L(B) is denoted by λ1(L(B)) (or λ1(B) for short). Possibly
the most well-known lattice problem is the Shortest Vector Problem (SVP). It comes in both the
decisional and search versions, but in this paper we are only interested in the decision version.
The approximation version of decisional SVP can be defined as a “gap” problem GapSVPγ . In
the GapSVPγ problem, we are given a basis B and a real number d, and are required to return
YES if λ1(L(B)) ≤ d, and return NO if λ1(L(B)) > γd. If λ1(L(B)) falls between d and γd,
we can return anything. The GapSVPγ problem is NP-hard for any constant γ [Kho04, HR07].
The fastest algorithm for solving GapSVPγ for 1 ≤ γ ≤ poly(n) takes time 2O(n)[AKS01]. Using
the LLL algorithm [LLL82], it is possible to find a vector that has length at most 2n/2λ1(B) in
polynomial time.

A γ-unique shortest vector in a lattice L(B) is a vector whose length is λ1(B), and there are no
other vectors in L(B) of length between λ1(B) and γλ1(B) that are not simply multiples of this
vector. The γ-unique Shortest Vector Problem (γ-uSVP) is a search problem in which we are given
a lattice basis B with the promise that there exists a γ-unique shortest vector, and we are asked to
find it. This problem is known to be NP-hard (under randomized reductions) in its exact version
[KS01], but very little is known about the hardness of this problem for larger factors γ.

One additional fact that we will require is the following lemma of Goldreich and Goldwasser
[GG00] which states that the intersection of two spheres of large radii that are relatively close
together is large.

Lemma 2.1 ([GG00]). Let x be a vector in R
n such that ‖x‖ ≤ d. If s is a point chosen at random

from a ball of radius d
√

n centered at 0, then with some constant probability δ > 0, ‖s−x‖ ≤ d
√

n.

3 The Reduction

We will now describe the reduction from GapSVP to uSVP which is given in Figure 1. The
input to our algorithm is an LLL-reduced lattice basis B and a number d. We need to return YES
if λ1(B) ≤ d and NO if λ1(B) > γd. In other cases, any reply will suffice. The algorithm runs
for n iterations, and if during none of these iterations it outputs YES, then we output NO. Every
iteration starts by generating a point within a ball of radius d

√
n around the origin and reducing

it modulo B (we call the resulting point t). The idea is then to set up an instance of uSVP such
that if t is close to the lattice, then the uSVP instance will have a γ

6
√

n
-unique shortest vector that

our uSVP oracle can find. The instance that we set up is C =

[

B t

0 α

]

where the parameter α

needs to depend on the length of the shortest vector of L(B) (as in Lemma 3.2). Of course we do
not know λ1(B), which is why we will need to iterate through n/2 values of α to guarantee that
one of them will produce an instance of uSVP. It is also crucial that we use the same t for all the
n/2 instances where we vary the value of α.

In step 9 of the algorithm we call the uSVP oracle on our instance C and the oracle returns
some w′, which we write as

w′ =

[

v − tβ
−αβ

]

3



GapSVPγ(B, d)
Input: LLL-reduced lattice basis B such that ‖b1‖ ≤ 2n/2λ1(B), and a positive real d.
Output: YES if λ1(B) ≤ d and NO if λ1(B) > γd.

1: for j = 1 to n do

2: s← Generate a uniformly random point within the ball of radius d
√

n centered at 0.
3: t← s mod B

4: α←
√

n‖b1‖
γ2n/2

5: betaWasOne← false
6: for i = 0 to n/2− 1 do

7: α← α · 2i

8: C←
[

B t

0 α

]

9: Call the γ
6
√

n
-uSVP oracle on C, and let w′ be its response.

10: Write w′ =

[

v − tβ
−αβ

]

where v ∈ L(B) and β ∈ Z (w.l.o.g. assume that β ≥ 0)

11: if β = 1 and ‖v − t‖ ≤ d
√

n and v 6= t− s then

12: output YES and end the algorithm
13: end if

14: if β = 1 and ‖v − t‖ ≤ d
√

n and v = t− s then

15: betaWasOne← true
16: end if

17: end for

18: if betaWasOne = false then

19: ouptut YES and end the algorithm
20: end if

21: end for

22: output NO

Figure 1: Solving GapSVPγ when given an oracle for γ
6
√

n
-uSVP.

where v ∈ L(B) and β ∈ Z. The reason we can do this is that we can solve the equation Cx′ = w′

for x′, and multiplying B by the first n coordinates of x′ gives us a vector in L(B), while the last
coordinate of x′ gives us the coefficient β for the last column of C. Without loss of generality, we
can assume that β ≥ 0, by simply multiplying the vector x′ by −1 if necessary. It can be shown
that if t is close to the lattice, then at least one of the n/2 lattices L(C) will be a valid uSVP
instance in which the oracle must return a vector in the lattice that uses the last column only once.
If this happens, we check to make sure that the vector returned by the oracle is the vector that we
“expected”. If it is, then we just go on with the algorithm, otherwise, we output YES signifying
that λ1(B) ≤ d. We also need to make sure that in the case that t is actually close to L(B),
the uSVP oracle does return an expected vector at least once. This is what the boolean variable
betaWasOne is for. If at the end of the n/2 iterations it is still set to false, we know that none of
the lattices L(C) were valid uSVP instances, and we conclude that λ1(B) ≤ d.

If λ1(B) ≤ d, then it can be shown that for each choice of t, the uSVP oracle will either never
work for all the n/2 iterations of α, or it will return an unexpected short vector with some constant
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probability. Therefore repeating the algorithm n times with different values of t will identify the
YES-instances of GapSVP with probability negligibly close to one. If the algorithm never answers
YES, then we can be almost certain that we have a NO-instance of GapSVP.

We now give a formal proof of our main result.

Theorem 3.1. For any γ > 6
√

n, there is a randomized polynomial-time Cook-reduction from
GapSVPγ to γ

6
√

n
-uSVP.

Proof. Suppose that (B, d) is a NO-instance of GapSVPγ . This means that λ1(B) > γd, and

therefore the point t that is generated by the algorithm is a distance of at most d
√

n < λ1(B)
√

n
γ

away from the lattice. In this case we need to show that the algorithm never outputs YES. There
are two places where the algorithm will reply YES. The first one of these is in line 11, if β = 1,
‖v − t‖ ≤ d

√
n and v 6= t− s. But this cannot happen because t− s is a vector in L(B) and

‖v − (t− s)‖ ≤ ‖v − t‖+ ‖s‖ ≤ 2d
√

n <
2λ1(B)

√
n

γ
<

2λ1(B)
√

n

6
√

n
=

λ1(B)

3
,

which is a contradiction.
The second case is that the boolean variable betaWasOne never gets set to true. We will now

show that this can never happen either. Because dist(t,L(B)) ≤ λ1(B)
√

n
γ , Lemma 3.2 tells us that

if α falls in between λ1(B)
√

n
2γ and λ1(B)

√
n

γ , then the vector

[

v − t

−α

]

is the γ
6
√

n
-unique shortest

vector of L(C). Notice that α starts at

α =

√
n‖b1‖

γ · 2n/2
≤
√

n2n/2λ1(B)

γ2n/2
=

√
nλ1(B)

γ

and ends at

α =

√
n‖b1‖

γ · 2n/2
· 2n/2−1 =

√
n‖b1‖
2γ

≥
√

nλ1(B)

2γ

And because we always multiply α by 2, some value of the initial α multiplied by 2i must fall in
the appropriate range whose endpoints are a factor of 2 apart. Thus when α falls in this range, the

γ
6
√

n
-uSVP oracle will return the vector

[

v − tβ
−αβ

]

where β = 1 and ‖v − t‖ ≤ d
√

n. And as we

showed above, this implies that v = t− s, and therefore the boolean variable betaWasOne will be
set to true.

Now we suppose that (B, d) is a YES-instance of GapSVPγ , which means that λ1(B) ≤ d. In
this case, it’s possible that none of the constructions of the matrix C result in valid instances of
the uSVP problem and so the oracle may behave in any way that it wants. Nevertheless, we will
show that even an adversarial uSVP oracle cannot prevent our algorithm from outputting YES
with extremely high probability. Notice that if the oracle is to have any chance of preventing the
algorithm from outputting YES, he must set the boolean betaWasOne to true for every choice of t

by outputting a w′ in which the v− tβ component has β = 1 and v = t−s. Note that finding such
a v implies knowing which s was selected by the algorithm in step 2, and we will now show that he
cannot always guess the s. Let x be a vector in the lattice such that ‖x‖ ≤ d. Notice that every
time we pick an s and reveal t = s mod B to the oracle, by Lemma 2.1, there is some constant
probability δ that ‖s− x‖ ≤ d

√
n, and therefore in this case, given t, the oracle cannot know with
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probability greater than 1
2 whether we randomly generated s or s − x (since both s mod B and

s− x mod B equal to t). Therefore for a δ fraction of the t’s that we give him, the oracle cannot
guess the exact s with probability greater than 1/2. And so guessing the s in all n rounds has
success probability of at most (1− δ/2)n, which is negligible for constant δ.

Lemma 3.2. Let C be an (n + 1)× (n + 1) matrix

C =

[

B t

0 α

]

where B is an n× n matrix, t is an n× 1 vector, 0 is a 1× n vector of zeros and α is a positive
real number. For any γ > 6

√
n, if

λ1(B)
√

n

2γ
≤ α ≤ λ1(B)

√
n

γ
and dist(t,L(B)) ≤ λ1(B)

√
n

γ
,

then L(C) has a γ
6
√

n
-unique shortest vector. In particular, if v is the vector in L(B) for which

dist(t,v) = dist(t,L(B)), then the vector

[

v − t

−α

]

is the γ
6
√

n
-unique shortest vector of L(C).

Proof. We first show that λ1(C) ≤ 1.5·λ1(B)
√

n
γ . Let v be the vector in L(B) such that ‖t − v‖ ≤

λ1(B)
√

n
γ , then the vector v′ = (vT , 0)T − (tT , α)T is a vector in L(C) and

‖(vT , 0)T−(tT , α)T ‖ ≤

√

(

λ1(B)
√

n

γ

)2

+ α2 ≤

√

(

λ1(B)
√

n

γ

)2

+

(

λ1(B)
√

n

γ

)2

<
1.5 · λ1(B)

√
n

γ
.

We now want to show that every other vector in L(C) that is not a multiple of v′ has length at
least

λ1(B)/4 ≥ γ

6
√

n
· λ1(C).

Assume for the sake of contradiction that w′ is a vector of length less than λ1(B)/4 that is not
a multiple of v′. Notice that if in obtaining w′, we used the last column of C 0 times, then the
shortest vector we could possibly get has length λ1(B). If we used the last column of C at least

γ
2
√

n
times, then we get a vector of length at least α · γ

2
√

n
≥ λ1(B)

√
n

2γ · γ
2
√

n
≥ λ1(B)/4. Therefore we

must have used the last column of C some number β times where 0 < |β| < γ
2
√

n
. We can rewrite

the vector w′ = ((w − βt)T ,−βα)T where w is some vector in L(B). Since ‖w′‖ ≤ λ1(B)/4,
then certainly ‖w − βt‖ ≤ λ1(B)/4 as well. Now recall that there is a vector v ∈ L(B) such that

‖v − t‖ ≤ λ1(B)
√

n
γ . Therefore

‖w − βv‖ = ‖(w − βt)− (βv − βt)‖
≤ ‖w − βt‖+ |β| · ‖v − t‖

≤ λ1(B)

4
+ |β| · λ1(B)

√
n

γ

≤ λ1(B)

4
+

γ

2
√

n
· λ1(B)

√
n

γ

≤ λ1(B)

4
+

λ1(B)

2
< λ1(B).
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Also because we assumed that w′ is not a multiple of v′, it means that w 6= βv, and therefore
the vector w − βv is a non-zero vector in L(B) whose length is less than λ1(B), which is a
contradiction.
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