
Lower Bounds on Black-Box Ring Extraction

Tibor Jager and Andy Rupp
tibor.jager@rub.de, arupp@crypto.rub.de

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

Abstract. The black-box ring extraction problem is the problem of extracting a secret ring element
from a black-box by performing only the ring operations and testing for equality of elements. An
efficient algorithm for the black-box ring extraction problem implies the equivalence of the discrete
logarithm and the Diffie-Hellman problem. At the same time this implies the inexistence of secure
ring-homomorphic encryption schemes.
It is unknown whether the known algorithms for the black-box ring extraction problem are optimal.
In this paper we derive exponential-time lower complexity bounds for a large class of rings satisfy-
ing certain conditions. The existence of these bounds is surprising, having in mind that there are
subexponential-time algorithms for certain rings which are very similar to the rings considered in this
work. In addition, we introduce a novel technique to reduce the problem of factoring integers to the
black-box ring extraction problem, extending previous work to a more general class of algorithms and
obtaining a much tighter reduction.

1 Introduction

A famous question in cryptography is whether breaking the Diffie-Hellman protocol [1] is as hard
as computing discrete logarithms. The discrete logarithm problem can be reduced to the Diffie-
Hellman problem by assuming a Diffie-Hellman oracle DH solving the Diffie-Hellman problem, and
showing that there exists an algorithm solving the discrete logarithm problem efficiently using DH. If
the reduction algorithm is generic, i.e. does not exploit specific properties of a given representation
of group elements, then such an algorithm would imply that breaking the Diffie-Hellman protocol
is equivalent to computing discrete logarithms in any group.

Let G = (〈g〉, ◦) be a finite cyclic group of order n let σ be the isomorphism σ : (Zn,+) → G
mapping a 7→ ga. In this notation the discrete logarithm problem in G is to compute a ∈ Zn on input
σ(1), σ(a). Let us assume a Diffie-Hellman oracle DH for G that computes DH(σ(a), σ(b) = σ(ab).
Then we may observe that the group G together with the Diffie-Hellman oracle is isomorphic to
the ring Zn, i.e.,

(〈g〉, ◦,DH) ∼= (Zn,+, ·)

where addition in Zn can be performed by applying the group law

σ(a+ b) = σ(a) ◦ σ(b)

and the multiplication operation can be performed by querying the Diffie-Hellman oracle

σ(ab) = DH(σ(a), σ(b)).

Thus we see that the question whether there exists a generic reduction from the discrete loga-
rithm problem to the Diffie-Hellman problem corresponds to the question whether there exists an
algorithm inverting any function σ by exploiting only the structure of the ring (〈g〉, ◦,DH).

Now let us consider an encryption function σ : P→ C mapping elements of the plaintext space
P to elements of the ciphertext space C. An encryption function σ is homomorphic, if

1. P and C exhibit an algebraic structure (P and C are groups, or rings, for instance),
2. the algebraic operations on P and C can be computed efficiently, and
3. σ is a bijective homomorphism from P to C.

There are several group-homomorphic encryption schemes, such as unpadded RSA [2], native ElGa-
mal [3] or the Paillier scheme [4], for instance. However, it is a long-standing open question whether
there exist ring-homomorphic encryption schemes, i.e. schemes which are homomorphic with re-
spect to two operations such that the resulting algebraic structure forms a ring. An important step
towards an answer of this question is to answer the following questions.

– Is the structure of a ring sufficient to invert any ring-homomorphic encryption function σ effi-
ciently?

– Which conditions must be satisfied by a ring such that there is no efficient inversion algorithm?

Definition 1 (BBRE Problem). The black-box ring extraction problem is the problem of invert-
ing a ring-homomorphism σ by exploiting solely the structure of the given ring, without exploiting
specific properties of a representation of ring elements.

1.1 Related Work

Nechaev [5] and Shoup [6] studied the black-box extraction problem for groups, showing that any
generic algorithm has to perform Ω(

√
p) group operations to solve this problem, where p is the

largest prime factor of the order of the group. This bound matches essentially the running time of
well-known generic algorithms for the discrete logarithm problem [7, 8]. Hence the structure of a
group is not sufficient to solve the black-box extraction problem efficiently (in general).

Boneh and Lipton [9] applied a technique due to Maurer [10] to describe an algorithm solving the
black-box extraction problem over prime fields Fp in subexponential-time in log p under a (plausible)
number-theoretic conjecture. Hence, in comparison to the results of Nechaev [5] and Shoup [6], the
additional structure of a fields helps to solve the problem considerably more efficiently then in the
case where the underlying algebraic structure is a group. It is unknown whether there are more
efficient algorithms than the one proposed in [9]. Maurer and Raub [11] augmented the work of [9]
from prime fields to extension fields, by reducing the BBRE problem over an extension field to the
BBRE problem over the underlying prime field. As mentioned by Boneh and Lipton, the algorithm
described in [9] can also be extended from prime fields to rings Zn if n is a squarefree composite
integer, by first factoring n =

∏k
i=1 pi (which can be done in subexponential time with current

factoring algorithms) and solving the BBRE problem for all fields Zpi , i ∈ {1, . . . , k}. The solution
for Zn can then be obtained by Chinese remaindering.

Altmann et al. [12] have shown that there is no algorithm solving the BBRE for rings of
characteristic n without (essentially) revealing a factor of n, thus in this sense the Zn-variant of
the algorithm described in [9] is optimal. Hence, the black-box extraction problem can not be
solved efficiently in general, unless there is an efficient algorithm for integer factorization. We
note that Altmann et al. did not allow the BBRE-algorithm explicitly to compute multiplicative
inverses. Since inverses can be computed efficiently in many rings (e.g. Zn), it seems to be an unfair
restriction to exclude this operation.

Maurer and Wolf implicitly considered the BBRE problem for Zn in [13], when showing that
there is no efficient generic reduction from the discrete logarithm to the Diffie-Hellman problem in
groups of order n, if n is divisible by a large multiple prime factor.

1.2 Our Contribution

Let n ∈ N and p be a prime. In this paper we derive exponential-time (in log p) lower complexity
bounds for the black-box extraction problem over rings where the characteristic n is divisible
by p2. To this end, we introduce a generalization of a technique used in [13]. The existence of
these bounds appears quite surprising: Boneh and Lipton [9] show that for the ring Zn there is an
subexponential-time (in log n) algorithm for the BBRE problem if n is squarefree. The result of [13]
and this work imply that there is such an algorithm only if n is squarefree. In general, if p2 | n
then any algorithm has to perform at least O(

√
p) ring operations to solve the BBRE problem. In

contrast to [13], our result does not only cover the ring Zn, but any finite commutative unitary ring
having characteristic n. This generalization is especially interesting with respect to the question of
the existence of ring-homomorphic encryption schemes.

In addition, we introduce a novel technique to reduce the problem of factoring an integer n to the
black-box ring extraction problem in the ring Zn. We obtain a much tighter reduction than previous
work, and in addition allow for the computation of multiplicative inverses. In combination with [12],
our result generalizes in a straightforward manner to arbitrary rings of characteristic n which are
given in basis representation or as a polynomial ring. The reduction of integer factorization to the
BBRE problem for Zn proves a conjecture by Wolf [14, Conjecture 10.1], hence there is no efficient
generic reduction from computing discrete logarithms to solving the Diffie-Hellman problem, unless
factoring is easy.

2 The Black-Box Ring Extraction Problem

Let (R,+, ·) be a finite ring, and let B = {r1, . . . , rs} ⊆ R be a set of generating elements of R,
that is each element of R can be computed by performing a sequence of addition and multiplication
operations on elements of B. We always assume that the ring R and elements of B are given in
some explicit representation.

We adapt the generic group model of Shoup [6] to formalize the notion of black-box rings, and
describe the BBRE problem in terms of a game between an algorithm A and a black-box ring oracle
O. The oracle encodes ring elements as randomly chosen bit strings from the set S ⊆ {0, 1}dlog2 |R|e

with |S| = |R|, such that the mapping from R to S is a bijection. Hence each bit string is assigned
uniquely to exactly one ring element. In order to maintain the assignment of encodings to ring
elements, the oracle keeps two internal lists L ⊆ Zn and E ⊆ S. In the following let Li and Ei

denote the i-th entry of L and E. Ei corresponds to the encoding of Li. The oracle implements the
internal procedures compute() and encode(), which are defined as follows.

– The encode()-procedure is called each time an element is appended to L. The procedure checks
whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such that L|L| ≡ Li. For the first i

where this holds, the oracle sets E|L| := Ei. If there is no such i, a new encoding E|L|
$← S\E is

chosen at random from the set of unused encodings and appended to E.
– The compute()-procedure takes a triple (i, j, ◦) ∈ {1, . . . , |L|} × {1, . . . , |L|} × {+,−, ·} as input.

The procedure computes λ = Li ◦ Lj , appends λ to L, and calls the encode()-procedure.

Moreover, the oracle implements the public accessible functions init() and query(), which may be
called by the algorithm A. The public functions are defined as follows.

– When the init()-function is called, the lists L and E are set to the empty list. Then the oracle
samples a uniformly random ring element x $← R and appends the elements of B and x to L,
i.e. Li := ri for i ∈ {1, . . . , s} and Ls+1 := x, each time calling the encode()-procedure. The
init()-function returns the triple (E1, . . . , Es+1).

– The query()-function takes as input a triple (E′, E′′, ◦) ∈ E × E × {+,−, ·}. It determines the
smallest i, j ∈ {1, . . . , |L|} such that Ei = E′ and Ej = E′′ and calls compute(i, j, ◦). The query
function returns the encoding E|L| of the computed ring element.

At the beginning of the game the algorithm calls the init()-function and receives (E1, . . . , Es+1)
as input. Then it may call the query()-function to perform computations on encoded ring elements.
We assume that the algorithm calls the query()-function at most m times. We say that A wins the
game, if it outputs x in the given explicit representation of R.

3 Exponential Lower Bounds for BBRE

In the case that the characteristic of a ring is divisible by the square of a prime, we can prove a
meaningful upper bound on the probability of any efficient black-box ring extraction algorithm:

Theorem 1. Let R be a finite commutative unitary ring of characteristic char(R) =
∏k

i=1 p
ei
i ,

where e1 > 1. Then any algorithm for the black-box ring extraction problem over R performing at
most m oracle queries has a success probability of at most

dlog2(|R|)e(m+ s+ 1)2 + 1
p1

,

where s = |B|.
Hence, to achieve a certain success probability α, a BBRE algorithm needs to perform at least

Ω

(√
p1α

log2(|R|)
− s
)

operations.
To prove this theorem we make use of a technique introduced by Maurer and Wolf in [15].

Here, the authors consider the p-adic expansion of group elements to show that the DL problem
over groups whose order is divisible by pe (with e > 1) cannot be efficiently reduced to the DH
problem. However, this technique cannot be applied immediately in our case but we have to choose
an appropriate representation for ring elements first. More precisely, we decompose R into a certain
product of rings and use the so-called basis representation for one of the component rings. These
basics are introduced in Section 3.1. Then we apply the p-adic expansion technique to the elements
in basis representation.

The general structure of our proof is typical of proofs in the black-box group or ring model: By
means of a sequence of slight modifications, we transform the original black-box ring oracle O into
an oracle Osim that simulates O without using the knowledge of a part of x. We call this setting
the simulation game. Then we show that the behavior of Osim is perfectly indistinguishable from O
unless a certain simulation failure F occurs. Denoting the success event of A when interacting with
O and Osim by S and Ssim, respectively, we prove that Pr[S] is upper bound by Pr[Ssim] + Pr[F].
Section 3.2 describes the details of this part of the proof. Deriving concrete upper bounds on Pr[Ssim]
and Pr[F] in Section 3.3 completes the proof.

3.1 Some Preliminaries

In the context of the proof of Theorem 1 we make use of various representations of a finite ring
which we are going to introduce in this section.

First, we need a convenient decomposition of finite commutative unitary rings which already
proved its usefulness in [12]. Here, the authors showed that any such ring can be decomposed into
a product of rings of prime power characteristic:

Theorem 2. Let R be a finite commutative unitary ring of characteristic char(R) =
∏k

i=1 p
ei
i .

Then R is isomorphic to a product of rings

R1 × · · · ×Rk

where Ri has characteristic pei
i . We call such a decomposition of R a prime-power decomposition.

Furthermore, we consider the basis representation of a ring R. This is a tuple

(n1, . . . , nt, (ci,j,`)1≤i,j,`≤t) ,

where n1, . . . , nt are the additive orders of elements b1, . . . , bt ∈ R generating (R,+) and the
ci,j,` ∈ Zn`

are integers describing the effect of multiplication on the bi via

bibj :=
t∑

`=1

ci,j,`b`.

It is noteworthy that the integers ni are factors of the characteristic of the ring R. The elements of
R are represented by tuples

(r1, . . . , rt) ∈ Zn1 × · · · × Znt .

The addition of two elements r = (r1, . . . , rt) and u = (u1, . . . , ut) in this representation is defined
by component-wise addition, i.e.,

r + u = (r1 + u1, . . . , rt + ut) . (1)

Multiplication is defined by

r · u =
∑

1≤i,j≤t

(riujci,j,1, . . . , riujci,j,t) . (2)

The two elements r, u are equal, which is denoted by r ≡ u, if and only if

ri ≡ ui mod ni for all 1 ≤ i ≤ t. (3)

The elements b1 = (1, 0, . . . , 0), b2 = (0, 1, 0, . . . , 0), . . ., bt = (0, . . . , 0, 1) represent an additive basis
of R.

Remark 1. Note that the ring R is not necessarily isomorphic to the product ring Zn1 × · · · × Znt

since multiplication is defined differently. However, if the basis representation satisfies

ci,j,k =

{
1, i = j = k

0, else

then such an isomorphism exists. Indeed, the basis representation of R essentially corresponds to
the canonical representation Zn1 ×· · ·×Znt . As a special case, we obtain R = Zn by setting n1 = n
and t = 1.

3.2 Proof of Theorem 1: Introducing a Simulation Game

We first define an oracle O′ which is equivalent to the original oracle O by doing some slight changes
to O. Then applying a minor modification to O′ yields the simulation oracle Osim.

An Equivalent Oracle

Modification 1. According to Theorem 2, the ring R can be decomposed as R ∼= R1×· · ·×Rk where
char(Ri) = pei

i . Let ψ : R→ R1× · · · ×Rk denote the corresponding isomorphism and ψi : R→ Ri

the surjective homomorphisms induced by ψ. Note that if r is a uniformly random element from R,
then ψi(r) is a uniformly random element from Ri. So our oracle O′ can equivalently work with this
product ring: The list L ⊂ R1 × · · · × Rk is initialized with ψ(r1), . . . , ψ(rs), ψ(x). Multiplication,
addition, subtraction in the compute()-procedure and equality checking in the encode()-procedure
are performed component-wise.

Modification 2. Furthermore, we can use the following basis representation for R1:

R1 = (n1, . . . , nt, (ci,j,`)1≤i,j,`≤t), where n1 = pe1
1 and ni+1 | ni .

Thus, the ni are all powers of p1. The existence of such a representation follows from the fundamental
theorem of finite abelian groups (e.g., see [16, Theorem 8.44]). Note that if a is a uniformly random
element from R1 also each component ai of its basis representation is a uniformly random element
from Zni . Arithmetic over R1 works as defined by Equations (1) and (2). Equalities of elements
over R1 are checked according to Equation (3). In the following we use the simplifying notation
p := p1 and e := e1.

Modification 3. Let us use the p-adic expansion to represent the components of the basis rep-
resentation of elements from R1. That means, given the basis representation a = (a1, . . . , at) ∈
Zn1 × · · · ×Znt of an element a ∈ R1, we write each ai as a(0)

i p0 + · · ·+ a
(e−1)
i pe−1, where a(j)

i ∈ Zp.
The values a

(j)
i are called the digits of the p-adic expansion. Note that we have a

(j)
i = 0 for

pj+1 > ni. Moreover, the digits a(j)
i (where pj+1 ≤ ni) of a uniformly random ai ∈ Zni are also

uniformly random numbers from Zp.

Modification 4. Let x $← R be our secret ring element (given as input to O′) and let

(x(0)
1 p0 + · · ·+ x

(e−1)
1 pe−1, . . . , x

(0)
t p0 + · · ·+ x

(e−1)
t pe−1)

denote the representation of ψ1(x) as used internally by the oracle so far. We do another slight
change to the representation of this element, namely we replace x(e−1)

1 by some indeterminate X.
That means, we initially insert

(x(0)
1 p0 + · · ·+Xpe−1, . . . , x

(0)
t p0 + · · ·+ x

(e−1)
t pe−1)

as the representation of ψ1(x) into the list L. Arithmetic over R1 is performed as before. Note
that due to multiplications the indeterminate X may not only appear in the first component of the
representation of an element from R1 but may be part of possibly all components. For instance,
consider the representation of ψ1(x2):
“
(x

(0)
1 p

0
+ · · · + Xp

e−1
)
2
c1,1,1, . . . , (x

(0)
1 p

0
+ · · · + Xp

e−1
)
2
c1,1,t

”
+

X
2≤j≤t

“
(x

(0)
1 p

0
+ · · · + Xp

e−1
)(x

(0)
j p

0
+ · · · + x

(e−1)
j p

e−1
)c1,j,1, . . . , (x

(0)
1 p

0
+ · · · + Xp

e−1
)(x

(0)
j p

0
+ · · · + x

(e−1)
j p

e−1
)c1,j,t

”
+

X
2≤i≤t

“
(x

(0)
1 p

0
+ · · · + Xp

e−1
)(x

(0)
i p

0
+ · · · + x

(e−1)
i p

e−1
)ci,1,1, . . . , (x

(0)
1 p

0
+ · · · + Xp

e−1
)(x

(0)
i p

0
+ · · · + x

(e−1)
i p

e−1
)ci,1,t

”
+

X
2≤i,j≤t

“
(x

(0)
i p

0
+ · · · + x

(e−1)
i p

e−1
)(x

(0)
j p

0
+ · · · + x

(e−1)
j p

e−1
)ci,j,1, . . . , (x

(0)
i p

0
+ · · · + x

(e−1)
i p

e−1
)(x

(0)
j p

0
+ · · · + x

(e−1)
j p

e−1
)ci,j,t

”

Obviously, it depends on the definition of the multiplication operation (more precisely, on the values
ci,j,`) in which components X can appear. Hence,O′ internally uses tuples from Zn1 [X]×· · ·×Znt [X]
to represent elements from R1.

To determine the encoding of a newly computed element (a1, . . . , ak) ∈ R1 × · · · × Rk which
should be appended to the list L, the following computation is triggered: The encode()-procedure
of O′ checks if there exists any index 1 ≤ j ≤ |L| such that for Lj = (Lj,1, . . . , Lj,k) ∈ R1×· · ·×Rk

holds
((Lj,1 − a1)(x(e−1)

1), Lj,2 − a2, . . . , Lj,k − ak) = (0, . . . , 0) .

If this equation holds for some j, then the respective encoding Ej is appended to E again. Otherwise,
the encode()-procedure chooses a new encoding s $← S \E and appends it to E. This completes the
description of O′. It is easy to see that O′ and O are equivalent, i.e., their behaviors are perfectly
indistinguishable. We say that an algorithm is successful when interacting with O′ if it outputs x.
This event is denoted by S in the following.

Modification 5. We slightly lighten the task of the algorithm A: Let y denote the output of A and

ψ1(y) = (y(0)
1 p0 + · · ·+ y

(e−1)
1 pe−1, . . . , y

(0)
t p0 + · · ·+ y

(e−1)
t pe−1)

be the representation of y’s projection to R1. We say that A is already successful if y(e−1)
1 = x

(e−1)
1 .

We denote this event by S′. Clearly, we have Pr[S] ≤ Pr[S′].

The Simulation Oracle

Now we replace O′ by a simulation oracle Osim. The simulation oracle behaves exactly like O′ except
for the encode()-procedure, in order to be independent of x(e−1)

1 : Each time an element (a1, . . . , ak)
should be appended the list L, Osim checks whether there exists an index 1 ≤ j ≤ |L| such that for
Lj = (Lj,1, . . . , Lj,k) ∈ R1 × · · · ×Rk holds

(Lj,1 − a1, Lj,2 − a2, . . . , Lj,k − ak) = (0, . . . , 0) . (4)

Remember that the first component (Lj,1− a1) is a t-tuple of polynomials in the indeterminate X.
If Equation (4) holds for some j, the encoding Ej is appended to E again.1 If Equation (4) cannot
be satisfied, the oracle Osim chooses a new encoding s $← S \ E and appends it to E.

In this way, the determined encoding and thus the behavior of Osim is independent of the part
x

(e−1)
1 of the secret choice x $← R given as input to it. Obviously, the applied modification also leads

to a behavior differing from that of O′ in the case that there exist (a1, . . . , ak) and (b1, . . . , bk) in
L such that

(a1 − b1)(x(e−1)
1) ≡ 0 ∧ a1 − b1 6≡ 0 . (5)

We denote this simulation failure event by F. Note that if and only if F occurs, the simulation oracle
computes different encodings for the same ring element. The success event Ssim in the simulation
game is defined like the event S′.

It is easy to see that we have the following relationship between the considered events:

S′ ∧ ¬F ⇐⇒ Ssim ∧ ¬F

1 Observe that if this equation is satisfied for two different indices j and j′ then we also have Ej = Ej′ .

That means, both games proceed identically unless a simulation failure occurs. Using this relation
we immediately obtain the desired upper bound on the success probability in the original game in
terms of the success probability and the failure probability in the simulation game:

Pr[S] ≤ Pr[S′] ≤ Pr[Ssim] + Pr[F] .

The last inequality follows from applying the Difference Lemma [17].

3.3 Proof of Theorem 1: Bounding Probabilities in the Simulation Game

Let us first bound the probability of the event F. The crucial observation is that each of the tuples
(a1 − b1) ∈ Zn1 [X] × · · · × Znt [X] considered in Equation (5) consists of polynomials of at most
linear degree. This is due to the fact that a product of the form

(cXpe−1) · (c′Xpe−1)

vanishes modulo ni for each i since ni is a power of p that is smaller or equal to pe. The probability
that a non-zero linear polynomial in Zni [X] evaluates to zero for uniformly random x

(e−1)
1 ∈ Zp is

at most 1
p . Hence, we get

Pr[F] = Pr
x
(e−1)
1

$←Zp
[∃ (a1, . . . , ak), (b1, . . . , bk) ∈ L : (a1 − b1)(x(e−1)

1) ≡ 0 ∧ (a1 − b1) 6≡ 0]

≤
∑

(a1,...,ak),(b1,...,bk)∈L

Pr
x
(e−1)
1

$←Zp
[(a1 − b1)(x(e−1)

1) ≡ 0 ∧ (a1 − b1) 6≡ 0]

≤
∑

(a1,...,ak),(b1,...,bk)∈L

t

p

≤ (m+ s+ 1)2
t

p

Remember that t describes the number of components in which the group (R1,+) can be splitted
according to the fundamental theorem of finite abelian groups. Clearly, t is upper bounded by
dlog2(|R1|)e which is in turn bounded by dlog2(|R|)e.

Bounding the probability of Ssim is simple: Since the computation in the simulation game is
independent of the uniformly random x

(e−1)
1 ∈ Zp, the algorithm virtually guesses the right output,

i.e., we have

Pr[Ssim] ≤ 1
p
.

4 Reducing Integer Factorization to BBRE

Let us introduce a black-box ring oracle On for the ring Zn that allows an explicit operation “/”
to query multiplication with inverses. Oracle On is defined like the oracle O described in Section 2,
but we adapt the description of the procedures to the ring Zn and the additional operation “/”. The
oracle takes x $← Zn as input and implements the internal procedures invertible(), compute(),
and encode(), which are defined as follows.

– The invertible()-procedure takes L ∈ L as input, and returns true if L ∈ Z∗n and false if
L 6∈ Z∗n..

– The encode()-procedure checks whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such
that

L|L| ≡ Li mod n.

– The compute()-procedure takes a triple (i, j, ◦) ∈ {1, . . . , |L|}×{1, . . . , |L|}×{+,−, ·, /} as input.
If ◦ = /, then the the procedure invertible(Lj) is called; if invertible(Lj) = false then the
error symbol ⊥ is returned. Otherwise the procedure computes λ = Li ◦ Lj mod n, appends λ
to L, and calls the encode()-procedure.

The oracle implements the public accessible functions init() and query(), which are defined as
follows.

– When the init()-function is called, the lists L and E are set to the empty list. Then the elements
1 ∈ Zn and x are appended to L, and the respective encodings (E1, E2) are returned.

– The query()-function takes as input a triple (E′, E′′, ◦) ∈ E × E × {+,−, ·, /}. It determines
the smallest i, j ∈ {1, . . . , |L|} such that Ei = E′ and Ej = E′′ and calls compute(i, j, ◦). If
compute(i, j, ◦) =⊥, then the query function returns ⊥. Otherwise the encoding E|L| of the
computed element is returned.

Let n ∈ N be the product of at least two different primes, and let n =
∏k

i=1 p
ei
i be the prime

factor decomposition of n such that gcd(pi, pj) = 1 for i 6= j.

Theorem 3. Let R = Zn with basis B = {1}. Suppose there exists an algorithm A solving the
BBRE problem in R with probability ε by performing at most m operations in R. Then there exists
an algorithm B finding a factor of n by running A and performing O(m2) operations in R and O(m2)
gcd-computations on dlog2 ne-bit numbers. Algorithm B has success probability at least ε − pe/n,
where e ≥ 1 and pe | n and pe+1 - n.

Proof. Suppose the black-box ring oracle On is replaced with an oracle Ope . Ope is defined exactly
like On, except for the following modifications.

– The oracle takes a prime power pe such that pe | n and pe+1 - n as additional input.
– The invertible()-procedure returns true if L ∈ Z∗pe and false if L 6∈ Z∗pe .
– The encode()-procedure checks whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such

that
L|L| ≡ Li mod pe.

– The compute()-procedure performs all computations modulo pe.
– The init()-function appends the elements of B and x mod pe to L and returns (E1, . . . , Es+1).

Note that all computations of A are performed in the subring Zpe of Zn. Thus the algorithm can
not determine x ∈ Zn, but only x mod pe. Hence the probability the success probability of any
algorithm A when interacting with Ope is at most 1

n/pe = pe/n. Also note that Ope simulates On

perfectly, unless there exist Li, Lj ∈ L such that Li ≡ Lj mod pe and Li 6≡ Lj mod n. In this case
a factor of n can be found by computing gcd(n,Li − Lj).

It follows that the success probability ε of A in the original game is upper bounded by

ε ≤ pe/n+ Pr[F],

where F denotes the event that an interaction of A with O′ is not indistinguishable from interaction
of A with O.

The factoring algorithm B implements oracle O (which does not receive a factor of n as input)
and computes gcd(n,Li − Lj) for all i > j each time an element Li is appended to L. Since there

are at most (m + 2) elements in L, this algorithm computes at most (m + 2)(m + 1)/2 = O(m2)
differences (Li −Lj) and performs O(m2) gcd-computations on dlog2 ne-bit numbers. Algorithm B
is successful with probability at least

ε− pe/n.

ut

From this theorem we may derive the following corollaries. The first one confirms a conjecture
of Wolf [14, Conjecture 10.1], whereas the second one may be seen as evidence towards the existence
of ring-homomorphic encryption schemes.

Corollary 1. If there exists an efficient generic reduction from the discrete logarithm problem to
the Diffie-Hellman problem, then there exists an efficient factoring algorithm.

Remark 2. Note that the above corollary holds even if the reduction algorithm is given an additional
oracle returning σ(x−1) on input σ(x). Such an oracle seems not to follow directly from a Diffie-
Hellman oracle, unless φ(n) is known. At least in the n = pq case, with p and q prime, computing
φ(n) is as hard as factoring n.

Corollary 2. If there exists an algorithm inverting any ring-homomorphic encryption function
efficiently by only applying the ring operations, then there exists an efficient factoring algorithm.

4.1 Generalizing Theorem 3

The proof of Theorem 3 can be generalized from the ring Zn to finite commutative unitary rings
of characteristic n that are given either in polynomial or in basis representation, by combining the
technique presented in this work with results of Altmann et al. [12]. We sketch this in the following.
Let n =

∏k
i=1 p

ei
i be the prime factor decomposition of n, and let Rn be a ring of characteristic n. Rn

is decomposable into a direct product of rings Rp
e1
1
× · · · ×Rp

ek
i

having prime power characteristic,
cf. Theorem 2 . If the simulation oracle performs all computation in Rp

ei
i

for some i ∈ {1, . . . , k},
then a simulation failure occurs only if the algorithm has computed two ring elements La, Lb ∈ Rn

such that for ∆ := (La−Lb) holds that ∆ 6= 0 ∈ Rn and φp
ei
i

(∆) = 0 ∈ Rp
ei
i

, where φp
ei
i

: Rn → Rp
ei
i

is the surjective homomorphic projection mapping Rn to Rp
ei
i

. If R is given in basis or polynomial
representation, then Altmann et al. [12] describe efficient algorithms that take as input ∆ satisfying
the above conditions and output a factor of n.

Acknowledgements. We thank the anonymous TCC 2009 program committee members for very
good comments and positive feedback on our work.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22 (1976)
644–654

2. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM 21 (1978) 120–126

3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory 31(4) (1985) 469–472

4. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In Stern, J., ed.: EURO-
CRYPT. Volume 1592 of Lecture Notes in Computer Science., Springer (1999) 223–238

5. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2)
(1994) 165–172

6. Shoup, V.: Lower bounds for discrete logarithms and related problems. In Walter Fumy, ed.: Advances in
Cryptology - EUROCRYPT 1997. Volume 1233 of Lecture Notes in Computer Science. (1997) 256–266

7. Shanks, D.: Class number, a theory of factorization, and genera. In Lewis, D.J., ed.: 1969 Number Theory
Institute. Volume 20 of Proceedings of Symposia in Pure Mathematics., Providence, Rhode Island, American
Mathematical Society (1971) 415–440

8. Pollard, J.M.: A Monte Carlo method for factorization. BIT 15 (1975) 331–334
9. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography (extended ab-

stract). In Koblitz, N., ed.: CRYPTO. Volume 1109 of Lecture Notes in Computer Science., Springer (1996)
283–297

10. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete algo-
rithms. In Desmedt, Y., ed.: CRYPTO. Volume 839 of Lecture Notes in Computer Science., Springer (1994)
271–281

11. Maurer, U., Raub, D.: Black-box extension fields and the inexistence of field-homomorphic one-way permutations.
In Kurosawa, K., ed.: ASIACRYPT. Volume 4833 of Lecture Notes in Computer Science., Springer-Verlag (2007)
427–443

12. Altmann, K., Jager, T., Rupp, A.: On black-box ring extraction and integer factorization. In Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I., eds.: ICALP (2). Volume 5126 of Lecture
Notes in Computer Science., Springer (2008) 437–448

13. Maurer, U., Wolf, S.: The relationship between breaking the Diffie-Hellman protocol and computing discrete
logarithms. SIAM Journal on Computing 28(5) (April 1999) 1689–1721

14. Wolf, S.: Information-theoretically and computationally secure key agreement in cryptography. PhD thesis, ETH
Zurich (1999) ETH dissertation No. 13138.

15. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In Nyberg, K., ed.: Advances in
Cryptology - EUROCRYPT ’98. Volume 1403 of Lecture Notes in Computer Science. (1998) 72–84

16. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press (2005)
17. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs (2006) URL:

http://eprint.iacr.org/2004/332.

