
Unconditionally Secure Message Transmission in Arbitrary
Directed Synchronous Networks Tolerating Generalized

Mixed Adversary

Kannan Srinathan∗ Arpita Patra†‡ Ashish Choudhary§ †

C. Pandu Rangan†‖

ABSTRACT
In this paper, we re-visit the problem of unconditionally se-
cure message transmission (USMT) from a sender S to a re-
ceiver R, who are part of a distributed synchronous network,
modeled as an arbitrary directed graph. Some of the inter-
mediate nodes between S and R can be under the control of
the adversary having unbounded computing power. Desmedt
and Wang [4] have given the characterization of USMT in
directed networks. However, in their model, the underlying
network is abstracted as directed node disjoint paths (also
called as wires/channels) between S and R, where the in-
termediate nodes are oblivious, message passing nodes and
perform no other computation. In this work, we first show
that the characterization of USMT given by Desmedt et.al
[4] does not hold good for arbitrary directed networks, where
the intermediate nodes perform some computation, beside
acting as message forwarding nodes. We then give the true
characterization of USMT in arbitrary directed networks.
As far our knowledge is concerned, this is the first ever true
characterization of USMT in arbitrary directed networks.

Categories and Subject Descriptors: D. 4. 5 [Reliabil-
ity]: Fault Tolerance

General Terms: Theory, Reliability, Security.

Keywords: Information Theoretic Security, Error Proba-
bility, Mixed Adversary.

∗CSTAR, IIIT Hyderabad, Gachibowli India 500032. Email:
srinathan@iiit.ac.in
†Department of Computer Science and Engineering,
IIT Madras, Chennai India 600036. Email: arpita,
ashishc@cse.iitm.ernet.in, rangan@iitm.ernet.in.
‡Financial Support from Microsoft Research India Acknowl-
edged.
§Financial Support from Infosys Technology India Acknowl-
edged.
‖Work Supported by Project No. CSE/05-
06/076/DITX/CPAN on Protocols for Secure Commu-
nication and Computation, Sponsored by Department of
Information Technology, Govt. of India.

.

1. INTRODUCTION
Achieving reliable and secure communication is one of

the fundamental problems in distributed computing. In
the problem of unconditionally reliable message transmis-
sion (URMT), a sender S and a receiver R are part of a dis-
tributed synchronous network and are connected through
intermediate nodes. S wishes to send a message m to R,
selected from a finite field F, even in the presence of sev-
eral kinds of faults in the network. The corruption/fault in
the network is modeled by a centralized adversary, who has
unbounded computing power and controls the actions of the
nodes (except S and R) under its influence in a colluded
fashion. The challenge is to design a protocol, such that at
the end of the protocol, R outputs m′ = m with probability
at least (1− δ), for arbitrary small 0 < δ < 1

2
. The problem

of unconditionally secure message transmission (USMT) re-
quires an additional constraint that the adversary should not
get any information about m in information theoretic sense.
If S and R are directly connected by a reliable and secure
channel, as assumed in generic secure multiparty computa-
tion protocols (see [2, 9, 12, 14, 3]), then reliable and secure
communication between S and R is trivial. However, it is
impractical to assume the existence of a direct and secure
channel between every two nodes in a network. In such a
situation, URMT and USMT protocols help to simulate an
error free and secure channel between S and R, with very
high probability.

1.1 Existing Results and Motivation of Our Work
The URMT and USMT problem was first defined and

solved by Franklin et.al [8] in undirected synchronous net-
work, tolerating threshold Byzantine adversary. Roughly
speaking, if a node is under the control of the adversary
in Byzantine fashion, then the adversary completely dictate
the actions of the node and make it behave in an arbitrary
fashion. In [8] the authors have abstracted the underlying
network in the form of multiple bi-directional vertex disjoint
paths, also called as channels, between S and R. The prob-
lem of URMT and USMT have been studied extensively in
the past in the undirected network model (see [8, 11] and
their references). Specially in [11], it is shown that allowing
a negligible error probability in the reliability of the proto-
col significantly reduces the communication complexity of
the protocol and also the number of interactions between
S and R during the protocol. Hence it is worth to study
URMT and USMT problem in other network models and
adversarial models.

Modeling the underlying network as a directed graph is

well motivated because in practice not every communica-
tion channel admits bi-directional communication. For in-
stance, a base-station may communicate to even a far-off
hand-held device but the other way round communication
may not be possible. In such a scenario, directed graph
is appropriate choice for modeling the underlying network.
The existing characterization and protocols for URMT and
USMT in undirected networks cannot be directly extended
for directed networks. The problem of URMT and USMT
in directed networks was first studied by Desmedt et.al [4].
Following the approach of [5] and [8], the authors in [4] ab-
stracted the directed network in the form of uni-directional
channels, directed either from S to R or vice-versa. While
doing so, the authors assumed that the intermediate nodes
between S and R are just oblivious, message passing nodes
and perform no other computation. However, in [13], Sri-
nathan et.al have shown that such an abstraction is incor-
rect in the context of URMT. That is, if we assume that
the intermediate nodes can perform computation beside act-
ing as message forwarding node, then there exist arbitrary
directed graphs over which no URMT protocol according
to the characterization of [4], even though there exists an
URMT protocol in the graph. Thus to characterize URMT
in an arbitrary directed graph, we should consider the un-
derlying graph as a whole, instead of abstracting it in the
form of directed channels between S and R. 1 The authors
in [13] have also given the true characterization of URMT
in an arbitrary directed network. But the characterization
holds only for URMT and it cannot be trivially extended for
USMT. As far our knowledge is concerned, nothing is known
in the literature with respect to the true characterization of
USMT in an arbitrary directed network, which is the main
subject of this paper.

To begin with, we give an example of a directed graph
where no USMT is possible according to the characteriza-
tion of [4], even though there exists an USMT protocol!

S R

A

B

C

D

Figure 1: A directed network

Consider the net-
work shown in
Fig. 1. 2

The previously
known theorem
characterizing the
possibility of USMT
in directed syn-
chronous networks
tolerating threshold Byzantine adversaries is the following:

Theorem 1 ([4]). USMT between S and R that are
connected by uni-directional channels (directed either from
S to R or from R to S) tolerating an adversary that can
corrupt up to any t channels in Byzantine fashion is possi-
ble iff there are at least 2t + 1 disjoint channels between S
and R, of which at least t + 1 are directed from S to R.

If we abstract the network in Fig. 1 in the form of directed
channels, then there exists two directed channels between S

1Note that this does not imply the incorrectness of the char-
acterization of URMT given in [4]. The necessary and suffi-
cient condition for URMT given in [4] is correct if the pro-
tocol is run between S and R over abstracted channels.
2The current example is taken from [13], where it is used to
show the incorrectness of abstracting an arbitrary digraph
in the forms of directed channels between S and R, in the
context of URMT.

and R. Now, if one of the four intermediate nodes among
{A, B, C, D} is Byzantine corrupted (i.e., t = 1), then from
Theorem 1, there does not exist any USMT protocol between
S and R. However, if we consider the entire network as a
whole and assume that all the intermediate nodes can also
perform computation, beside acting as message forwarding
nodes, then there indeed exist an USMT protocol tolerating
such an adversary.

USMT protocol for the network in Fig. 1 with t = 1:
Let m ∈ F be the secret message that S wants to send to R.

Node B selects three random elements ρ
(1)
B , ρ

(2)
B , ρ

(3)
B from F

and sends them to both S and R. Similarly, node C selects

three random elements ρ
(1)
C , ρ

(2)
C , ρ

(3)
C from F and sends them

to both S and R. Note that if a node is Byzantine corrupted,
then it can send different values to S and R. Let S receive
the values S

(1)
B ,S

(2)
B ,S

(3)
B and S

(1)
C ,S

(2)
C ,S

(3)
C from B and C

respectively. Note that if X ∈ {B, C} is uncorrupted, then

S
(i)
X = ρ

(i)
X . Now S forms three polynomials p1(x), p2(x) and

p3(x), each of degree one (i.e., straight line equation), such

that pi(2) = S
(i)
B and pi(3) = S

(i)
C , for 1 ≤ i ≤ 3. More-

over, S computes pi(1) and pi(4). Let Ki = pi(0). S sends
pi(1), 1 ≤ i ≤ 3 to R through node A. Similarly, S sends
pi(4), 1 ≤ i ≤ 3 to R through node D. Finally S sends the
tuple ((m + K1), K2(m + K1) + K3), to R through nodes A
and D.

We now show that R can correctly and securely recover
m with very high probability. First note that among the
four points on each of the three straight lines p1(x), p2(x)
and p3(x), at least three points (on each straight line) are
common between S and R. So from the properties of coding
theory [10], R can locate as well as correct the one point
that does not match with that of S (as per rules of error-
correction, four points on a straight line are necessary and
sufficient to correct one error). Thus, both S and R can now
agree on the values of p1(0) = K1, p2(0) = K2 and p3(0) =
K3. Since the adversary knows at most one point on each
of the three straight lines, K1, K2 and K3 are information
theoretically secure. Now, R can recover m as follows: let
R receives the tuple (xA, yA) along the path through A and

(xD, yD) along the path through D. Now, R verifies if yA
?
=

K2xA + K3. If yes, then R outputs xA−K1 as the received
message. Else, R outputs xD −K1 as the received message.

Since K1, K2, K3 are information theoretically secure and
m is completely independent of K1, K2 and K3, it implies
that m is also information theoretically secure. Now similar
to the proof of information checking protocol of [12], R may
accept an incorrect message m′ 6= m with error probability
of at most 2

|F| . Formally, if the adversary wants m′ 6= m

to be accepted by R, then he must control the node A and
change the tuple (xA, yA) passing through it into (x′A, y′A),
where x′A 6= xA, such that at R’s end K2x

′
A + K3 = y′A.

If K2 6= 0, then only one K3 will satisfy the equation for
the K2 which is held by R. On the other hand, if K2 =
0, then irrespective of the value of K3, the equation will
always be satisfied. But the probability that K2 = 0 is
1
|F| . This is because K2 = p2(0), where p2(x) is formed by

interpolating the points (2,S2
B), (3,S2

C). So, for any S2
B ,

there exists an unique S2
C such that resultant p2(x) has 0

as constant coefficient. Thus the probability that R may
accept an incorrect message m′ 6= m is at most 2

|F| .
The above example shows that it is incorrect to abstract a

directed network in the form of directed channels between S
and R, in the context of USMT. This is because the two het-
erogeneous paths involving the nodes B and C respectively
are neglected in the channel-based abstraction, since such
channels cannot be assigned any orientation. Thus using
channel based abstraction, one cannot hope for a complete
characterization of USMT over arbitrary directed graph. 3

Our Contribution: We give the first ever true character-
ization for the possibility of USMT in arbitrary directed
network tolerating non-threshold mixed adversary, consid-
ering the graph as a whole. The reason for considering non-
threshold mixed adversary is two fold: First, being a strict
generalization of the threshold adversary model, adopting
the non-threshold adversary model helps to strengthen the
(im)possibility results proved in this paper. Second, the
mixed adversary model is a strict generalization of the non-
mixed standard (say Byzantine) adversary model and conse-
quently, several practical scenarios are better captured using
mixed adversaries than otherwise. For example, in a typical
large network, certain nodes may be strongly protected while
certain other nodes may be weakly protected. An adversary
can only eavesdrop/fail-stop corrupt a strongly protected
node, while he may Byzantine corrupt a weakly protected
node. Also, it is better to grade the different types of cor-
ruption done by the adversary, rather than treating every
kind of corruption as Byzantine fault, as this is an overkill.
The reader may refer to [1, 7, 6, 11] for scientific proofs for
the same. Note that our characterization of USMT is com-
pletely different from the characterization of URMT given in
[13]. Moreover, we stress that our characterization of USMT
is not a trivial extension of the characterization of URMT
given in [13].

2. MODEL AND DEFINITIONS
The network is modeled as a directed graph N = (P,E),

where P is the set of vertices and E denotes the set of
arcs/edges in N . The system is assumed to be synchronous
and any protocol is executed in a sequence of rounds wherein
in each round, a node can send new messages to his out-
neighbors, receive the messages sent in that round by his
in-neighbors and perform some computation on the received
messages, in that order. We assume that the network topol-
ogy is known publicly and hence known to all the nodes in
the network. Furthermore, we assume that each intermedi-
ate node can perform their own computation, beside acting
as message forwarding node.

During a protocol execution, a centralized adversary may
control a subset of the nodes, excluding S and R. We dis-
tinguish between three types of possible control, viz., fail-
stop, passive and Byzantine. An adversary can force a fail-
stop corrupted nodes to crash at will, but has no access to
the secrets/random coins stored in the fail-stop corrupted
node’s memory. The adversary has full access to the se-
crets/random coins stored in the passive corrupted node’s
memory, but the adversary cannot force them to behave ar-
bitrarily. The adversary may fully control a Byzantine cor-

3As in the case of URMT, this does not imply the incor-
rectness of the characterization of USMT given in [4]. The
necessary and sufficient condition for USMT given in [4] is
correct if the protocol is run between S and R over ab-
stracted channels.

rupted node and make it (mis)behave in an arbitrary fash-
ion.

The adversary is non-threshold and is represented by an
adversary structure which is an enumeration of all the pos-
sible ŞsnapshotsŤ of faults in the network. A single snap-
shot can be described by an ordered triple (B, E, F), where
B, E, F ⊆ P and (B∩E∩F) = ∅, which means that the nodes
in the set B, E and F can be corrupted in Byzantine, passive
and fail-stop fashion respectively. Thus, an adversary struc-
ture is a collection of such triplets. The adversary struc-
ture is monotone in the sense that if (B1, E1, F1) ∈ A, then
∀(B2, E2, F2) such that B2 ⊆ B1, E2 ⊆ E1 and F2 ⊆ F1,
we have (B2, E2, F2) ∈ A. Throughout the execution of a
protocol, the adversary can corrupt nodes from any one ele-
ment (triplet) of A in Byzantine, passive and fail-stop fash-
ion respectively. Moreover, S and R have no information
about the triplet before the beginning of the protocol. We
assume that the adversary is adaptive, who uses all infor-
mation currently at his disposal, to decide the new nodes
for corruption in the subsequent rounds. Furthermore, the
adversary is rushing, who in a particular round sees all the
messages sent to him (by the honest players), before sending
his own message(s) of that round. We note that A can be
uniquely represented by listing the elements in its maximal
basis Ā which we define below.

Definition 1 (Maximal Basis of A). For any mono-
tone adversary structure A, its maximal basis Ā is defined as
Ā = {(B, E, F)|(B, E, F) ∈ A, and 6 ∃(X, Y, Z) ∈ A such
that (X, Y, Z) 6= (B, E, F) where X ⊇ B, Y ⊇ E and Z ⊇

F}.

Definition 2 (Strong Path). A sequence of vertices
(v1, v2, v3, . . . , vk) is said to be a strong path from v1 to vk

in digraph N = (P,E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E.

Definition 3 (Semi-Strong Path). A sequence of ver-
tices (v1, v2, v3, . . . , vk) is said to be a semi-strong path from
v1 to vk in digraph N = (P,E) if there exists j, 1 ≤ j ≤ k
such that the sequence vj to v1 as well as the sequence vj to
vk are both strong paths in the network. Vertex vj is called
the head of the semi-strong path. For example, the path
(S, B,R) in Fig. 1 is a semi-strong path between S and R,
with B as the head.

Notice that any strong path can be viewed as a semi-strong
path. For example, though the path (S, A,R) is a strong
path from S to R in Fig. 1, it can be also viewed as a
semi-strong path from S to R, where S is the head of the
semi-strong path.

Definition 4 (Authentication Function). Let F be
a finite field, K1,K2,K3 ∈ F−{0} be three random keys and
m ∈ F be a message. Then auth(m,K1,K2,K3) = (K1 +
m,K2(K1 + m) +K3).

Suppose a random triplet (K1,K2,K3) ∈ F3 − {(0, 0, 0)} is
correctly established between S and R. For a message m, let
S computes auth(m,K1,K2,K3) and sends it to R through
a strong path, over which some of the nodes could be under
the control of the adversary. If the adversary does not know
m,K1,K3 and K3 in advance, then auth satisfies the follow-
ing two important properties: (a) Even if adversary learns
auth(m,K1,K2,K3), m will remain information theoretic se-
cure. (b) If the adversary changes auth(m,K1,K2,K3) to

some other value, then except with an error probability of
at most 1

|F| , R will be able to detect it. More specifically,

if S has sent (x1, y1) = auth(m,K1,K2,K3) along the path
and if the adversary has changed (x1, y1) into (x′1, y

′
1), where

(x′1, y
′
1) 6= (x1, y1), then R will be able to detect the corrup-

tion by checking K2x
′
1 + K3

?
= y′1. Since (x′1, y

′
1) 6= (x1, y1),

the test will fail, except with an error probability of at most
1
|F| . The proof of both the properties is similar to the proof of

information checking protocol of [12] and hence is omitted.

3. USMT IN DIGRAPHS TOLERATING NON-
THRESHOLD ADVERSARY

We now characterize USMT in an arbitrary synchronous
directed graph N tolerating an arbitrary non-threshold ad-
versary A. Working out a direct characterization of USMT
tolerating entire A is highly complex and non-intuitive. Rather
it is easy to think of a characterization tolerating small sized
subsets from A. In [13], it is shown that URMT tolerating
an arbitrary non-threshold adversary A is possible iff URMT
is possible tolerating every subset A of A, with maximal ba-
sis Ā of size two. We now show that same holds in the case
of USMT also.

Theorem 2. USMT in a digraph N tolerating a non-
threshold adversary A is possible iff USMT is possible in N
tolerating any A ⊆ A with maximal basis Ā of size two.

Proof (sketch): The only-if direction is obvious. For the
if-direction, we now show that if an USMT protocol exists
while tolerating every monotone subset A ⊆ A such that
|Ā| = 2, then one can construct an USMT protocol that
tolerates A. Suppose that every monotone subset A of A,
such that |A| = 2, is tolerable. Then, to show that every
monotone subset A of A, such that |A| = 3 is also tolerable,
we argue as follows: for any subset A ⊆ A with |A| = 3,
there exist three subsets, each of size two, such that any
element in A belongs to exactly two of them. Specifically,
we may choose to divide A = {x1, x2, x3} (where each xi

is an ordered triplet (Bi, Ei, Fi)) into A1 = {x1, x2}, A2 =
{x2, x3} and A3 = {x1, x3}. Now by our assumption, we
have USMT protocols Π1, Π2 and Π3 to tolerate A1,A2 and
A3 respectively. We now show how to design USMT protocol
Π to send a message m, tolerating A.

It is well known that single phase 4 USMT protocol is
possible over 2tb + 1 wires (vertex disjoint paths from S
to R), of which tb could be Byzantine corrupted [11, 4].
For tb = 1, it implies that USMT is achievable over three
wires, out of which one could be Byzantine corrupted. Let
USMT Single be a single phase USMT protocol which runs
over three wires p1, p2 and p3, of which one could be Byzan-
tine corrupted. Moreover, let USMT Single transmits αi

over pi for 1 ≤ i ≤ 3, to send message m. We now run the
sub-protocols Π1, Π2 and Π3 in parallel for transmitting α1,
α2 and α3 respectively. Since every element of Ā belongs
to at least two of the three Ai’s, R gets the correct infor-
mation in at least two of the three sub-protocols with very
high probability. R can now output m performing the same
computation, as done in USMT Single tolerating 1-active
Byzantine adversary. The correctness and secrecy of this
USMT protocol tolerating Ā follows from the correctness
and secrecy of the single phase USMT tolerating 1-active

4where only S can communicate to R

adaptive Byzantine adversary. Therefore we can conclude
that USMT is possible tolerating any subset A of A, such
that |A| = 3.

Applying the same procedure, we find that if USMT is
possible tolerating any subset A of A, such that |A| = 3 then
it is also possible to design an USMT protocol tolerating
any subset A of A, such that |A| = 4. This is because any
A = {x1, x2, x3, x4} (where each xi is an ordered triplet
(Bi, Ei, Fi)) can be divided into three subsets, each of size
three, such that every element in A occurs in at least two
of the subsets. More formally, we can divide A into A1 =
{x1, x2, x3}, A2 = {x2, x3, x4} and A3 = {x1, x3, x4}. Now
as in the previous case, we can run three USMT protocols (as
shown above, these protocols exists) in parallel, transmitting
α1, α2 and α3 tolerating the adversary structuresA1,A2 and
A3 respectively. Since every element of A belongs to at least
two of the three Ai’s, R gets the correct information in at
least two of the three sub-protocols and hence recovers the
message by performing same computation as in single phase
USMT tolerating 1-active adaptive Byzantine adversary.

In general, any A ⊆ A whose maximal basis |Ā| is of size
µ > 3, can be divided into three subsets each of size

⌈
2µ
3

⌉
,

such that every element of Ā occurs in at least two of the
subsets. The rest now follows from induction. 2

Remark 1. The protocol given as a part of sufficiency
proof in Theorem 2 is an inductive protocol and is exponen-
tial in the size of A. We leave the issue of designing efficient
USMT protocol tolerating A as an open problem.

Theorem 2 shows that in order to get a complete characteri-
zation of USMT tolerating the entire adversary structure A,
it is enough if we characterize USMT tolerating every A ⊆ A
with maximal basis Ā of size two. This is our main concern
in the rest of the paper.

4. A SUFFICIENT CONDITION FOR USMT
TOLERATING A ⊆ A WITH |Ā| = 2

We now give a sufficiency condition for the existence of
USMT in N tolerating A ⊆ A with |Ā| = 2.

Theorem 3. Let N be a directed network under the in-
fluence of non-threshold adversary A. Let A ⊆ A such that
|Ā| = 2, where Ā = {(B1, E1, F1), (B2, E2, F2)}. If for each
α ∈ {1, 2}, there exists two (not necessarily distinct) strong
paths pα and qα from S to R in N , such that the path pα does
not contain nodes from (B1∪B2∪Fα∪Eα)\{S,R} and the
path qα does not contain nodes from (Bα∪Fα∪Eα)\{S,R},
then there exists an USMT protocol over N tolerating A.
Here if α = 1(2), then α = 2(1).

Proof: For α ∈ {1, 2}, let F ∗α = Fα \ (F1 ∩ F2). Similarly,
E∗

α = Eα \ (E1 ∩ E2) and B∗
α = Bα \ (B1 ∩B2). If the con-

ditions of the theorem are true, then there exist four (not
necessarily distinct) strong paths p1, p2, q1 and q2 from S to
R, which satisfy the conditions given in Table 1. Consider
the following USMT protocol to send a secret message m: S
chooses three random and secret keys K1, K2 and K3 from
F and computes (x1, y1) = auth(m, K1, K2, K3). Further-
more, S chooses three more random secret keys K′

1, K
′
2 and

K′
3 (independent of K1, K2 and K3) and computes (x2, y2) =

auth(m, K ′
1, K

′
2, K

′
3). S then sends the following to R: (a)

K1, K2, K3 along path p1 (b) K′
1, K

′
2, K

′
3 along path p2 (c)

(x1, y1) along path q2 and (d) (x2, y2) along path q1. We

Paths Possible Adversary Sets on the path Comments

p1 F ∗1 , E∗
2

If the first set in Ā is corrupt, then p1 can be fail-stop corrupt. If
the second set in Ā is corrupt, then p1 can be passively corrupt.

p2 F ∗2 , E∗
1

If first set in Ā is corrupt, then p2 can be passively corrupt. If
second set in Ā is corrupt, then p2 can be fail-stop corrupt.

q1 B∗
2 , F ∗2 , E∗

2

If first set in Ā is corrupt, then q1 is honest. If second set in Ā is
corrupt, then q1 can be Byzantine corrupt.

q2 B∗
1 , F ∗1 , E∗

1

If the first set in Ā is corrupt, then q2 can be Byzantine corrupt. If
the second set in Ā is corrupt, then q2 is honest.

Table 1: The Strong Paths from S to R Present According to Theorem 3

assume that during the transmission of these values, if an
honest node (which is not under the control of the adversary)
in a path receives either no value or syntactically incorrect
value (such as a value outside of F or in incorrect format)
from its predecessor along the path, then the honest node
stops the forward communication along the path.

R now recovers m as follows:

Case 1: Suppose R receives complete triplet of keys through
p1 and p2. Thus all the keys are correctly received (as p1

and p2 cannot be Byzantine corrupted). Let R receives
(x′1, y

′
1) along path q2 and (x′2, y

′
2) along path q1. R checks

y′1
?
= K2x

′
1 + K3. If the test passes, then R accepts x′1−K1

as the message and terminate. Else R accepts x′2 − K′
1 as

the message and terminate. The correctness of the mes-
sage recovery can be argued as follows: suppose the path
q2 is Byzantine corrupt and (x′1, y

′
1) 6= (x1, y1). This im-

plies that first set in Ā is corrupted and hence the adversary
knows the keys K′

1, K
′
2, K

′
3 by passively listening p2. But

adversary will have no information about K1, K2, K3. Since
(x1, y1) is computed from K1, K2, K3, by the property of
authentication function, except with probability 1

|F| , R will

detect that q2 is corrupted and correctly recovers m from
(x′2, y

′
2) (= (x2, y2)). Similar argument holds if q1 is Byzan-

tine corrupt. Note that it is possible that R either does not
receive any 2-tuple or receives some syntactically incorrect
value (such as an error message or some value outside F)
along q1 (q2). In this case, R can easily identify that second
(first) set in Ā is corrupted. R now knows that the 2-tuple
received over q2 (q1) is correct and recovers m from it.

Case 2: Suppose R receives the complete triplet of keys
through only the path p1. In this case, R knows that sec-
ond set in Ā is corrupt and so the pair (x′1, y

′
1) received along

q2 is correct. Thus, R recovers m by computing x′1 − K1.
Using similar argument, we can show that if R receives the
complete triplet of keys through only p2, then R will cor-
rectly recover m.

If the first set in Ā is corrupt, then adversary knows K′
1, K

′
2

and K′
3 and the pair (x1, y1) by eavesdropping p2 and q2 re-

spectively. If the second set in Ā is corrupt, then adversary
knows K1, K2 and K3 and the pair (x2, y2) by eavesdropping
p1 and q1 respectively. But in both the cases, by the prop-
erty of authentication function, m is information theoretic
secure. 2

Definition 5. We call the USMT protocol given in The-

orem 3 as protocol Π.

4.1 Relaxing the Sufficiency Condition of The-
orem 3

In the previous section, we have seen that if the paths
p1, p2, q1 and q2 are present in a network N , then USMT is
possible over N . Now the question is whether the physical
presence of the paths are necessary in N ? The answer is a
big no! Here, we show that even in the absence of p1, p2, q1

and q2, one can design USMT over N tolerating Ā, provided
the effect of p1, p2, q1 and q2 can be simulated overN . This is
possible provided N satisfies certain conditions with respect
to Ā.
Example 1: Consider the network N shown in Fig. 2,

along with the adversary structure Ā. In N , path q1 =

S R

A B C

D E F

Y B1 = {A}, E1 = {B}, F1 = {C}

Ā = {(B1, E1, F1), (B2, E2, F2)}

B2 = {D}, E2 = {E}, F2 = {F}

Network N under the influence of Ā

A B C RS

Y

D E F

HH

H - Completely Honest

B1 E1 F1

B2 E2 F2

Figure 2: A network for Example 1

(S, D, E, F,R) is free from the nodes in (B1 ∪E1 ∪F1), and
path q2 = (S, A, B, C,R) is free from the nodes in (B2∪E2∪
F2). However, there does not exist any strong path p1 which
is free from the nodes in (B1∪B2∪E1∪F2) and strong path
p2 which is free from the nodes in (B1∪B2∪E2∪F1). So N
does not completely satisfy all the conditions of Theorem 3
with respect to the Ā. However, the effect of p1 and p2 can
be simulated in N .

Consider the sub-portion of N with strong paths (S, A, B,
C,R), (S, D, E, F,R) and semi-strong path (S, Y,R) (with
head Y), as shown in the second picture (drawn in red
color) in Fig 2. Now consider the following sub-protocol

called Πsim
1 executed over this sub-portion to send a value

s ∈ F from S to R: node Y selects three random secret
keys K1,K2,K3 from F and sends to S and R. Since the
semi-strong path is completely honest, both S and R cor-
rectly receives the same triplet. S now computes (x1, y1) =
auth(s,K1,K2,K3) and sends (x1, y1) to R, along the strong
paths q1 and q2. Let R receives (x′1, y

′
1) and (x′2, y

′
2) along q1

and q2 respectively. R checks y′1
?
= K2x

′
1 + K3. If yes, then

R outputs x′1 −K1 as s and terminates. Else R knows that
second set in Ā is corrupted and recovers s by computing
x′2 − K1. It is possible that either q1 or q2 fails to deliver
any information to R. However, at least one of them will
always correctly deliver (x1, y1) to R. If R does not receive
anything along q2, then R knows that q1 has correctly de-
livered (x1, y1) to R, from which R can recover s. Similar
argument holds if q2 does not deliver anything to R. Now
irrespective of which set from Ā is corrupted, the keys will
always be oblivious to the adversary as the semi-strong path
is honest. So from the property of authentication function,
adversary will have no information about s. Similarly, from
the property of authentication function, if R outputs s from
(x′1, y

′
1), then except with error probability of at most 1

|F| ,
R outputs correct s.

By closely observing protocol Πsim
1 , we find that it has

the effect of simulating a direct ”virtual edge” between S
and R with very high probability. So the network N in Fig.
2 can be enhanced to network N1 under the influence of Ā1

as shown in Fig. 3 where in N1, there exists a ”virtual edge”
between S and R and Ā1 = Ā.

Now note that N1 satisfies the conditions of Theorem 3
with respect to Ā1, where the virtual edge (S,R) serves as
path p1 and p2. So the USMT protocol Π (of Theorem 3) can
be executed over N1 tolerating Ā. However, our goal is to
actually design an USMT protocol over N which is the given
physical graph. So we have to simulate the USMT protocol
Π executed over N1 tolerating Ā, into an USMT protocol
over N tolerating Ā1. Our next goal is to demonstrate that
simulation.

S R

A B C

D E F

Y

Ā1 = Ā

Network N1 under the influence of Ā1

Figure 3: Network N updated to N1

Any value
which is sent
over q1 or
q2 in pro-
tocol Π over
N1 can be
also sent
over the same
paths inN
(as these
paths are
physically
present in N). Similarly, any value which is sent over the
edge (S,R) in protocol Π over N1 can be also sent in N by
using the sub-protocol Πsim

1 . 5 Thus all the steps of Π over
N1 can be simulated over N also. If the error probability of
sub-protocol Πsim

1 is δ′ (which is at most 1
|F|), then the error

probability of the protocol Π simulated over N is at most
nδ′, where n is the number of times sub-protocol Πsim

1 is
executed. So we can make the error probability of resultant
USMT protocol over N to be at most δ, by appropriately

5Note that each time an independent random triplet of keys
are used to execute the sub-protocol Πsim

1 .

selecting |F| so that nδ′ = δ.
The network in Fig 2 did not satisfy completely the con-

ditions of Theorem 3. Still, there exists a ”special structure”
in the graph (as shown in the second picture in Fig. 2), due
to which the effect of a ”simulated virtual edge” between S
and R could be realized. However, there exists other type of
”special structures”, which when present in a graph can cre-
ate the effect of a simulated edge/path. Our next example
will demonstrate a ”special structure”which can simulate an
effect of a ”virtual path” rather than an ”virtual edge”.

Example 2: Consider the network N under the influence of

Ā as shown in Fig. 4. In N , path q1 = (S, D, E, F,R) is free
from the nodes in (B1 ∪E1 ∪ F1), path q2 = (S, A, B, C,R)
is free from the nodes in (B2 ∪ E2 ∪ F2) and path p2 =
(S, G, H,R) is free from the nodes in (B1 ∪ B2 ∪ E2 ∪ F1).
Thus, N satisfies the conditions of Theorem 3, except that
there does not exist any strong path p1 which is free from
the nodes in (B1 ∪B2 ∪E1 ∪F2). However, its effect can be
simulated in N .

S

A B C

R

I M N O J

K
L X

D

E

F

HG

Network N under the influence of Ā

Ā = {(B1, E1, F1), (B2, E2, F2)}

B1 = {A, M}, E1 = {B, H}

F1 = {C, L, O}

B2 = {D}, E2 = {E, K, N}

F2 = {F, G}

L

X

K

I M N O J
B1 E2 F1

E2

H

H - Completely Honest

F1

Figure 4: A network for Example 2

Consider the sub-portion of N involving the strong path
(I, M, N, O, J) and semi-strong path (I, K, L, X, J) (with
head X), as shown in the second picture (drawn in red
color) of Fig. 4. Now suppose we execute the following sub-
protocol Πsim

2 over this sub-portion to send a value s ∈ F
from I to J : Node X chooses a non-zero triple (K1,K2,K3)
uniformly at random from F3 and sends to I and J through
the semi-strong path (I, K, L, X, J). Now the following cases
may happen: (a) If node I does not receive any triplet
from X (this happens if node L gets fail-stop corrupted),
then I selects a random triplet (K′1,K′2,K′3) from F3 on its
own, computes (x1, y1) = auth(s,K′1,K′2,K′3) and sends to
J along the strong path (I, M, N, O, J). (b) If I receives
a triple from X (in this case, the triplet is correctly es-
tablished between I and J), then I computes (x1, y1) =
auth(s,K1,K2,K3) and sends to J along the strong path
(I, M, N, O, J).

Since the path from X to J is completely honest, J cor-
rectly receives the triplet (K1,K2,K3). If J either does not

receive anything or receives syntactically incorrect values
(such as error message or values outside F) along the path
(I, M, N, O, J), then it knows that first set in Ā is corrupted.
However, if J receives (x′1, y

′
1) along the strong path, then J

checks K2x
′
1 +K3

?
= y′1. If the test passes, then except with

probability 1
|F| , x′1 = x1 and J outputs x′1−K1 as s. On the

other hand, if the test fails then J concludes that first set in
Ā is corrupted.

Let us now summarize the effect of sub-protocol Πsim
2 : if

the second set in Ā is corrupted, then the adversary will
know the keys K1,K2 and K3 (by eavesdropping node K)
and hence s (by eavesdropping node N , adversary will know
x1). However, s will be correctly received by J (as there
are no nodes from B2 along the strong path from I to J).
On the other hand, if the first set in Ā is corrupted then
the adversary will have no information about K1,K2 and
K3 and hence about s. In this case, if J outputs s, then
with very high probability, it is the correct s and adversary
is oblivious of it. However, if J does not output s, then it
correctly knows that the first set in Ā is corrupted. Thus
sub-protocol Πsim

2 has the same effect as if there exists a
”virtual path”(I, U, V, J), where U and V are ”virtual nodes”
under the control of F1 and E2 respectively. Note that the
ordering of U and V along the virtual path is important.
Notice that along the semi-strong path, node L which can
be under the control of F1 appears before node K, which
can be under the control of E2. In sub-protocol Πsim

2 , if
the first set in Ā is corrupted then the adversary can simply
block the path from X to I. This will simulate the effect
as if the virtual path (I, U, V, J) is blocked. On the other
hand, if the second set from Ā is corrupted in Πsim

2 , then
the path from X to I will never fail. This will simulate
the effect as if the virtual path (I, U, V, J) is not blocked,
but is passively controlled by the adversary. If we swap the
ordering or L and K along the semi-strong path, then the
same sub-protocol Πsim

2 will have the effect of simulating
the virtual path (I, U, V, J), with U ∈ E2 and V ∈ F1.

Thus, we can enhance network N to N1 and adversary
structure Ā to Ā1 as shown in Fig. 5, where Ā1 is same
as Ā, except that F ′1 = F1 ∪ {U} and E′

2 = E2 ∪ {V }.
Now N1 satisfies the conditions of Theorem 3 with respect
to Ā1. Specifically, the paths q1, q2 and p2 in N will also
be present in N1. In addition, now the strong path p1 =
(S, I, U, V, J,R) is free from the nodes in (B′

1∪B′
2∪E′

1∪F ′2).
So protocol Π (of Theorem 3) can be executed over N1. As
demonstrated in Example 1, Protocol Π which is executed
over N1 can be simulated over N using Πsim

2 .
Till now, we have demonstrated that the existence of ”spe-

cial structure” in a graph (e.g. the second pictures of Fig 2
and Fig 4 with respect to the adversary structure simulates
the effect of virtual edge or path in a given digraph. Let us
now pose a very interesting question. Does the simulation
of a virtual edge or path between two nodes help to simulate
another virtual edge or path between another pair of nodes?
Or in other words, is the process of simulation recursive?
The answer is yes as shown in next example.
Example 3: Consider a network N which is same as the
one shown in the first picture of Fig 4, with the direct edge
(X, J) being replaced by the structure between S and R of
Fig 2. That is there are three paths between X and J : (i) a
completely honest semi-strong path; (ii) a strong path con-
taining three nodes from the sets B1, E1 and F1 respectively
in that order; (iii) a strong path containing three nodes from

S

A B C

R

I M N O J

K
L X

D

E

F

HG

VU

Network N1 under the influence of Ā1

Ā1 = {(B′
1
, E′

1
, F ′

1
), (B′

2
, E′

2
, F ′

2
)}

B′
1

= {A, M}, E′
1

= {B, H}

F ′
1

= {C, L, O, U}

B′
2

= {D}, E′
2

= {E, K, N, V }

F ′
2

= {F, G}

Figure 5: Network N updated to N1 and Ā updated
to Ā1

the sets B2, E2 and F2 respectively in that order. The ad-
versary structure Ā as shown in Fig 4 will be changed ac-
cordingly by adding the new nodes in respective sets. From
the explanation provided in Example 2 and by easy ob-
servation, we notice that the network N lacks the existence
of path p1 and hence does not satisfy all the conditions of
Theorem 3. We now show how to simulate the effect of p1 in
N in the physical absence of p1. Notice that the structure
between nodes X and J can simulate a direct virtual edge
(X, J) using sub-protocol Πsim

1 as described in Example1.
So we may enhance N to N1 where the virtual edge (X, J) is
included. Similarly, we also enhance adversary structure Ā
to Ā1, where in this particular case Ā1 = Ā. Now network
N1 completely resembles the network shown in the first pic-
ture of Fig 4 with the direct physical edge (X, J) replaced by
virtual edge (X, J). As explained in Example 2, the net-
work N1 still does not contain path p1. Now the structure
between I and J (similar to the one shown in the second
picture of Fig 4 with (X, J) being a virtual edge instead of a
physical edge) can simulate a virtual path (I, U, V, J) by ex-
ecuting sub-protocol Πsim

2 . The nodes U and V are included
in F1 and E2 respectively. With this, we may enhance N1 to
N2 where the virtual path (I, U, V, J) is included. Now N2

contains p1 and satisfies all the conditions of Theorem 3. So
protocol Π of Theorem 3 can be executed over N2. Now in
protocol Π any value sent over p1 can be sent by executing
Πsim

2 in N1. In the protocol executed over N1, we may need
to send some value over the virtual edge (X, J). This can be
achieved in original network N by calling Πsim

1 . Thus the
protocol Π over N2 can be simulated over N with the help
of Πsim

2 and Πsim
1 .

Summary of the examples: In Example 1, 2 and 3, we
have seen networks, which do not satisfy the conditions of
Theorem 3, but still protocol Π could be simulated on them
with very high probability. In Example 1, 2, we demon-
strated two graphs which contained two different ”special
structures” (which satisfied some ”special properties” with
respect to Ā). Those structures lead to the simulation of
”virtual edge” and a special type of ”virtual path” in the
original network. Also, as demonstrated in Example 3,
the ”virtual edge(s)/path(s)” could be added recursively. Fi-
nally, the enhanced graph, with virtual edge(s)/path(s) added,
satisfies the conditions of Theorem 3 and hence we could
simulate protocol Π on the enhanced graph. But Π can be
run on the original graph with the help of sub-protocols like
Πsim

1 and Πsim
2 . So the idea is that starting from a physical

graph (where all the edges and nodes are physical), we find
the special structures (recursively) and keep on enhancing
the graph (step by step through some intermediate graphs)
until no more special structure is present on the (enhanced)
graph. The final enhanced graph is named as USMT-
BEF-Closure-Digraph of the original graph. Finally if
USMT-BEF-Closure-Digraph satisfies the conditions of
Theorem 3, then USMT protocol Π exists on the Closure
graph. The protocol Π can be run on the physical (origi-
nal) graph using the sub-protocols that simulate the respec-
tive virtual edges/paths present in USMT-BEF-Closure-
Digraph. In the next section, we explore all possibili-
ties of special structures and define USMT-BEF-Closure-
Digraph formally.

5. DEFINITION OF USMT-BEF-CLOSURE-
DIGRAPH

Definition 6 (USMT-BEF-Closure-Digraph). Let
N = (P,E) be the network (directed graph) influenced by a
non-threshold adversary characterized by the adversary struc-
ture A with a maximal basis of exactly two elements, say
A = {(B1, E1, F1), (B2, E2, F2)}. We inductively define a
sequence of networks N1,N2 . . . where the set of vertices,
denoted by Pi, of the network Ni is defined as Pi = P ∪ Vi

with V1 = ∅ and the set of edges, say Ei, of the network
Ni is defined as Ei = E ∪ Ai with A1 = ∅. The set Vi de-
notes the set of virtual nodes in Ni, while Ai denotes the
set of virtual edges in Ni. We also define a corresponding
sequence of adversary structures with maximal basis of two
elements each, viz., A1,A2, . . ., where A1 = A. The details
are as follows:

The network Ni, i ≥ 2 can be constructed from the network
Ni−1 in five different ways by applying one of the construc-
tions from the Tables given in Figure. 6, 8, 9 and 10. Here
we provide only Fig. 6. The remaining Tables are provided
in Appendix D.

In the tables, a typical entry as shown in Figure 7 means
the following:
“In the nthway of construction, we could potentially add a
virtual path with four new virtual nodes X1, X2, X3 and X4

and five new virtual edges to Ni−1 to obtain Ni. Specifically,
we add directed edges (A, X1), (X1, X2), (X2, X3), (X3, X4)
and (X4, B) if and only if the digraph Ni−1 = (Pi−1,Ei−1)
is such that there exists two physical nodes A, B in Ni−1,
such that for the two elements (B1, E1, F1) and (B2, E2, F2)
in Ai−1, both the following (1 and 2) are true:

1. there does not exist four nodes w1 ∈ (Vi−1 ∩ F1), w2 ∈
(Vi−1∩F2), w3 ∈ (Vi−1∩E1) and w4 ∈ (Vi−1∩E2) such
that the edges (A, w1), (w1, w2), (w2, w3), (w3, w4) and
(w4, B) belong to Ei−1. This means nth construction
has not been already used for nodes A and B. This is
interpreted by the second column of the entry.

2. Both the following (a and b) hold:

(a) there exists a semi-strong path, say q with head y
from A to B in Ni−1, such that the strong path
from y to A avoids nodes from ((B1 ∪ B2 ∪ F2 ∪
E1) \ {A, B}) and satisfies condition Q1 (possi-
bly null). Similarly, the strong path from y to B
avoids nodes from ((B1∪B2∪(F1∩F2))\{A, B}).

This is interpreted by the first two bulleted items
in the third column of the entry.

(b) there exists a strong path, say p from A to B in
Ni−1, such that p avoids nodes from ((B2 ∪ (F1 ∩
F2)) \ {A, B}). The path p satisfies the condi-
tion Q2 (possibly null). This is the interpretation
of the third bulleted item in the third column of
the entry. Further in addition to Q2, the follow-
ing condition must always be satisfied by p: for
each i ∈ {1, 2}, every occurrence of a node from
(Bi ∪ Fi) \ {A, B} (if any) in p is after the last
occurrence of a node from Bi \ {A, B} (if any),
where if i = 1 (i = 2), then i = 2 (i = 1).
Though not explicitly specified in the entry, the
last condition should be always satisfied by the
strong path(s) from A to B in all the construc-
tions.

If one of the above two conditions (1 and 2) fails, we con-
tinue to work with Ni−1 influenced by Ai−1. However, if
both of them are true, then we let Vi = Vi−1∪{X1, X2, X3, X4}
which implies that Pi = Pi−1 ∪{X1, X2, X3, X4}; and we let
Ai = Ai−1∪{(A, X1), (X1, X2), (X2, X3), (X3, X4), (X4, B)}
which implies Ei = Ei−1∪{(A, X1), (X1, X2), (X2, X3), (X3, X4),
(X4, B)}; finally we let the new nodes X1, X2, X3 and X4

to be added to F1, F2, E1 and E2 respectively. That is, if
Ai−1 = {(B1, E1, F1), (B2, E2, F2)}, then we let Ai = {(B1,
E1 ∪ {X3}, F1 ∪ {X1}), (B2, E2 ∪ {X4}, F2 ∪ {X2})}.”

The figure in the fourth column of the entry denotes the
complementary view of the conditions specified in the third
column of the entry. The labels along the edges of the figure
denote the the set of allowable adversarial nodes along the
semi-strong path and strong path(s) between A and B. It
is obvious, that honest nodes can be always present along
these paths. For example, in the figure, we have put sets E2

and F ∗1 along the edge y → A which means that the nodes
along the strong path from y to A can be completely honest
(denoted by H) or may contain nodes from sets E2 and F ∗1 ,
where F ∗i = Fi \ (F1 ∩ F2), i ∈ {1, 2}.

Remark 2. : A pair of vertices (A, B) may permit at
most twenty-four augmentations , corresponding to one of
the constructions from Tables given in Figure. 6, 8, 9 and
10. When there is no augmentation possible with respect
to any pair of vertices, we stop the process. Thus, start-
ing from N1, if we build a sequence of distinct networks
N1,N2, · · · ,Nν through the augmenting process, we observe
that ν ≤ 24

(
n
2

)
, where n = |P| denotes the set of nodes in N .

Also, we may consider the pairs of vertices in any order and
augmentation may also be done in any order for a given pair
of vertices. The USMT-BEF-closure-digraph of N , denoted
by N ∗

USMTBEF
is defined as N ∗

USMTBEF
= Nν . The corre-

sponding adversary structure is defined as A∗ = Aν , where
|Ā∗| = 2.

Example 1, 2 and 3 of previous section demonstrates
how to construct USMT-BEF-Closure-Digraph of a given
N . In Example 1, N is augmented to N1 by applying first
construction from Construction #1 of Figure 6. In Exam-
ple 2, N is augmented to N1 by applying Construction #7
of Figure 8. In Example 3, N is first augmented to N1

by applying first construction of Construction #1, which is
then augmented to N2 by applying Construction #7. We

S.No. Virtual Conditions & Figures
Link

#1 A → B

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ E1 ∪ E2) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ E1 ∪ E2) \ {A, B})
• A → B: for each α ∈ {1, 2} avoids nodes from ((Bα ∪ Fα) \ {A, B})

y

A B

HH

B2, E1, E2, F ∗

2

B1, E1, E2, F ∗

1

there exists α ∈ {1, 2} such that
• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ Eα) \ {A, B})
• Head → B: ((B1 ∪ B2 ∪ F1 ∪ F2) \ {A, B})
• A → B: for each i ∈ {1, 2} avoids nodes from (Bi ∪ Fi ∪ Eα) \ {A, B})
• B → A: (B1 ∪ B2 ∪ (F1 ∩ F2)) \ {A, B})

y

A B

E2 E1, E2

B2, E1, F ∗

2

B1, E2, F ∗

1

E1, E2, F ∗

1
, F ∗

2

for α = 1

there exists α ∈ {1, 2} such that
• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ Eα) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ Eα) \ {A, B})
• A → B: avoids nodes from (B1 ∪ B2 ∪ Fα ∪ Eα) \ {A, B})
and (Bα ∪ Fα ∪ Eα) \ {A, B})

y

A B

For α = 1

B1, E1, F ∗

1

E1, F ∗

2

E2 E2

#2
A → X1 → B

X1 ∈ E1

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ E2) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ E2) \ {A, B})
• A → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2) \ {A, B})

y

A B
E1, E2

E1
E1

#3
A → X1 → B

X1 ∈ E2

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2 ∪ E1) \ {A, B})
• A → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ F2) \ {A, B})

y

A B
E1, E2

E2 E2

#4
A → X1 → B

X1 ∈ F2

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E2) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E2) \ {A, B})
• A → B: avoids nodes from ((B1 ∪ F1 ∪ E1) \ {A, B})

y

A B

E1, F ∗

2
E1, F ∗

2

B2, E2, F ∗

2

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E1) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E1) \ {A, B})
• A → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E2) \ {A, B})

y

A B

E2, F ∗

2
E2, F ∗

2

E1, F ∗

2

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E1 ∪ E2) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F1 ∪ E1 ∪ E2) \ {A, B})
• A → B: avoids nodes from ((B1 ∪ F1) \ {A, B})

y

A B

F ∗

2
F ∗

2

B2, E1, E2, F ∗

2

#5
A → X1 → B

X1 ∈ F2

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E1) \ {A, B})
• A → B: avoids nodes from ((B2 ∪ F2 ∪ E2) \ {A, B})

y

A B

E2, F ∗

1

B1, E1, F ∗

1

E2, F ∗

1

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B})
• A → B: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E1) \ {A, B})

y

A B

E1, F ∗

1
E1, F ∗

1

E2, F ∗

1

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E1 ∪ E2) \ {A, B})
• Head → B: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪ E1 ∪ E2) \ {A, B})
• A → B: avoids nodes from ((B2 ∪ F2) \ {A, B})

y

A B

F ∗

1
F ∗

1

B1, E1, E2, F ∗

1

Figure 6: : Construction for adding virtual path with zero and one intermediate virtual node

#n

A → X1 →
X2 → X3 →
X4 → B where
X1 ∈ F1,X2 ∈ F2,
X3 ∈ E1, X4 ∈
E2

• Head → A: avoids nodes from ((B1 ∪ B2 ∪ F2 ∪
E1) \ {A, B}) with condition Q1

• Head → B avoids nodes from ((B1 ∪ B2 ∪ (F1 ∩
F2)) \ {A, B})
• A → B avoids nodes from ((B2 ∪ (F1 ∩ F2)) \
{A, B}) with condition Q2

y

A B

F ∗

1
, F ∗

2

E1, E2

E2, F ∗

1

B1, E1, E2, F ∗

1
, F ∗

2

Figure 7: : A Typical Entry in Figure. 6, 8, 9 and 10

now briefly and informally mention few important proper-
ties of the constructions.

Property 1 (Principle Behind the Constructions).
In general, if Ni−1 is augmented to Ni by applying some con-
struction to A, B in Ni−1 and if some value s is sent over
the resultant virtual path from A to B in Ni, then there
always exist a sub-protocol Πsim (as demonstrated in Ex-
ample 1, 2, 3), which when executed over Ni−1 has one of
the following outcomes: (a) Πsim correctly sends s from A
to B over Ni−1 with negligible error probability, as demon-
strated in Example 1; (b) Πsim may fail to send s, in which
case it facilitates B to correctly know the exact identity of
the corrupted set, as demonstrated in Example 2. We do
not provide the Πsim protocol for every construction given
in Figure. 6, 8, 9 and 10 due to space constraint.

Property 2 (Completeness of the Constructions).
The constructions in Figure. 6, 8, 9 and 10, represents all
possible ways of simulating a virtual path between two phys-
ical nodes, with zero, one, two, three and four intermediate
virtual nodes from (E1 ∪ F1 ∪ E2 ∪ F2) . We defer the ex-
planation of this property till the proof of Theorem 4.

Lemma 1. N ∗
USMTBEF

has finite number of nodes and is
unique (up to isomorphism).

Proof: The finiteness property follows from the Remark 2
provided in the Definition 6. The proof of the uniqueness
property is similar to the proof of Lemma 2 in [13] and hence
is omitted6. 2

Property 3 (Property of A∗). If Ā = Ā1 =
{(B1, E1, F1), (B2, E2, F2)} and Ā∗ = {(B′

1, E
′
1, F

′
1),

(B′
2, E

′
2, F

′
2)}, then we have B′

1 = B1, B
′
2 = B2, (F ′1 ∩ F ′2) =

(F1∩F2) and (E′
1∩E′

2) = (E1∩E2). This is because the Bi’s
are never changed and no new virtual node is simultaneously
added to both the fail-stop sets or both the passive sets at
any stage in any of the constructions. Also note that each
virtual node in N ∗

USMTBEF
has a unique in-neighbor and

out-neighbor.

6. TRUE CHARACTERIZATION OF USMT
TOLERATING A WITH |Ā| = 2

We now give first ever true characterization of USMT in
an arbitrary digraph N tolerating an adversary structure
A with |Ā| = 2, in terms of N ∗

USMTBEF
. This along with

Theorem 2, completely characterizes USMT in N tolerating
any arbitrary adversary structure A.

Theorem 4. Let N = (P,E) be a directed graph, where
S, R ∈ P. Let N be under the influence of a non-threshold
adversary A with maximal basis Ā = {(B1, E1, F1), (B2, E2, F2)}.
Furthermore, let N ∗

USMTBEF
= (P∗,E∗) denotes the USMT-

BEF-closure-digraph of network N with respect to A. More-
over, let N ∗

USMTBEF
be under the control of A∗ where A∗

is the adversary closure of A with maximal basis Ā∗ =
{(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}. Then USMT between S and R

is possible in N tolerating A iff for each α ∈ {1, 2}, the
following are true:

6In [13], the authors have given the construction of closure
graph by considering only Byzantine adversary and fail stop
adversary. The constructions given here can be viewed as
non-trivial generalization of the constructions given in [13]

1. There exists a strong path Pα from S to R in N avoid-
ing nodes from (Bα ∪ Fα).

2. There exists two (not necessarily distinct) strong paths
pα and qα from S to R in N ∗

USMTBEF
, such that the

path pα does not contain nodes from (B′
1 ∪ B′

2 ∪ F ′α ∪
E′

α)) \ {S,R}7 and the path qα does not contain nodes
from ((B′

α ∪ F ′α ∪ E′
α) \ {S,R}).

Proof: Sufficiency: Suppose the conditions of the the-
orem are true. Now closely looking at the conditions, we
observe that they are almost same as the sufficiency con-
ditions in Theorem 3. In Theorem 3 the strong paths pα

and qα are present in the original graph N and they satisfy
certain conditions with respect to Ā, where as in Theorem
4 the same strong paths are present in N ∗

USMTBEF
and they

satisfy the same conditions with respect to Ā∗. Also con-
dition 1 has been added here. Notice that condition 1 has
to be satisfied in the original graph N itself. Now in order
to prove the sufficiency of the Theorem 4, we begin with a
definition.

Definition 7 (USMTforward). An USMT protocol over
digraph Ni = (P∪Vi,E∪Ai) is called an USMTforward pro-
tocol, if in the protocol, the virtual nodes (nodes in Vi) are
capable of only receiving and forwarding messages and do no
other computation; i.e., they do not use any internal random
coins.

In order to prove the sufficiency of the Theorem 4, we first
show that if the conditions of Theorem 4 are satisfied, then
we can design an USMTforward protocol over N ∗

USMTBEF

tolerating Ā∗ (Lemma 2). We then show that if there exists
an USMTforward protocol over Ni for i > 1 tolerating Āi,
then there exists an USMTforward protocol over Ni−1 tol-
erating Āi−1 (Lemma 3). Now any USMTforward protocol
over the original graph N = N1 is actually an USMT pro-
tocol over N . This is because there are no virtual nodes in
N ; i.e., V1 = ∅. Since N ∗

USMTBEF
is finite and unique (see

Lemma 1), sufficiency of Theorem 4 follows from Lemma 2
and Lemma 3.

Lemma 2. If the conditions of Theorem 4 are satisfied,
then there exists an USMTforward protocol from S to R in
the network N ∗

USMTBEF
tolerating the adversary structure

Ā∗.
Proof: It is easy to see that if the conditions of Theorem 4
are satisfied inN ∗

USMTBEF
with respect to Ā∗, then protocol

Π (of Theorem 3) can be executed over N ∗
USMTBEF

. Let
us call the protocol as Π∗. It is easy to see that Π∗ is an
USMTforward protocol inN ∗

USMTBEF
tolerating Ā∗ because

in Π∗, the virtual nodes only receive and forward messages
and do no other computation. 2

Lemma 3. For any i > 1, there exists an USMTforward

protocol from S to R in the graph Ni tolerating the adversary
structure Āi if and only if there exists an USMTforward

protocol from S to R in the network Ni−1 tolerating the
adversary structure Āi−1.

Proof: If part: This is the easy part. In fact, it is fairly
obvious since any USMTforward protocol over Ni−1 can be
directly run over Ni without using the newly added virtual

7If α = 1(2), then α = 2(1).

nodes at all! This is guaranteed to work because the adver-
sary structure Āi differs from Āi−1 only with respect to the
virtual nodes that are newly added.

Only-if Part:(sketch) Let Πi be an USMTforward proto-

col over Ni tolerating Āi. Using Πi, we now design an
USMTforward protocol Πi−1 overNi−1 tolerating Āi−1. Let
I be an instruction in the protocol Πi involving some nodes
from Ni. If all these nodes are also present in Ni−1, then I
can also be executed over Ni−1. Hence I will be present in
Πi−1. On the other hand, suppose I is of the form “send M
along (A, X1) who then forwards it to X2 who finally for-
wards it to B”, such that A, B are physical nodes in Ni (and
hence in Ni−1) and X1 and X2 are virtual nodes present in
Ni but not in Ni−1 (the proof will remain same if I involves
0,1,2,3 or 4 virtual nodes). In this case, I cannot be exe-
cuted over Ni−1 directly. But since X1 and X2 are virtual
nodes present in Ni but not in Ni−1, it implies that these
virtual nodes would have been added to Ni−1 by applying
one of the constructions, say C (from one of the Figure. 6,
8, 9 and 10), to the nodes A and B. However, as pointed
out in Property 1, for construction C there is a sub-protocol
Πsim
C which can simulate the effect of the virtual path/edge

(added by C) over the graph Ni−1 on which C is applied.
Some examples of sub-protocol Πsim

C protocols are provided
in Example 1 and Example 2 of previous section. Thus,
we can replace the instruction I, with sub-protocol Πsim

C in
Πi−1. In this way, from Πi, we get Πi−1. This completes
the proof of the lemma. 2

Remark 3. If the sub-protocol that we use to replace in-
struction I in Ni is incorrect with error probability δsub

and the sub-protocol is invoked N times, then the resultant
USMTforward protocol is incorrect with a probability up to
Nδsub. Since, δsub can be reduced exponentially by a lin-
ear blow-up in the communication complexity (as the num-
ber of bits required to represent a field element is log |F|),
we may set δsub = δ

N
where δ is the tolerance limit of the

USMTforward protocol and N is an upper bound on the
number of sub-protocol invocations. This increases the over-
all communication complexity by a factor of O(log N

δ
).

Now the proof of sufficiency of the Theorem 4 follows from
the Lemma 1, 2 and 3. We now proceed to prove the neces-
sity part of the Theorem 4.

Necessity (sketch): The necessity of path Pα in N is ob-
vious. Otherwise all the strong paths from S to R in N will
contain nodes from (Bα ∪Fα) and the adversary can choose
to corrupt the αth set from Ā and block all the nodes from
(Bα ∪Fα), thus refuting any type of communication from S
to R inN . Similarly, the path qα is necessary inN ∗

USMTBEF
.

Otherwise, all the strong paths from S to R in N ∗
USMTBEF

will contain nodes from (B′
α ∪ E′

α ∪ F ′α). In this case, the
adversary can choose to corrupt αth set in Ā∗ and block all
the nodes from (B′

α ∪ F ′α) and eavesdrop all the nodes from
E′

α. This refutes any type of secure communication from S
to R in N ∗

USMTBEF
and hence in N .

Finally the necessity of path pα in N ∗
USMTBEF

is proved
by contradiction. Suppose there exists an USMT protocol
Π∗ in N ∗

USMTBEF
(and hence in N) tolerating Ā∗ even in

the absence of path p1 in N ∗
USMTBEF

(similar argument is
used to show the necessity of p2). Since p1 does not exist,
it implies that each of the strong paths from S to R in

N ∗
USMTBEF

contain nodes from (B′
1∪B′

2∪F ′2∪E′
1). We now

divide the set of nodes (virtual + physical) in N ∗
USMTBEF

as follows: let Y1 be the set of all nodes that have a strong
path to R in N ∗

PPSMTBEF
that does not use any vertex from

(B′
1 ∪B′

2 ∪F ′2 ∪E′
1). Furthermore, let X1 = P∗ \ (B′

1 ∪B′
2 ∪

F ′2 ∪ E′
1) ∪ Y1). Clearly, R ∈ Y1 and S ∈ X1. Moreover, it

is evident from the definition of Y1 that there are no edges
from any node in X1 to any node in Y1. However, there
can be some reverse path(s) from the node(s) in Y1 to the
node(s) in X1. The necessity of p1 is now proved in two
parts:

1. We first show that if there are no reverse path(s) from
the node(s) in Y1 to the node(s) in X1, then in the
absence of p1, there always exists an adversary strategy
using which Ā∗ can violate the secrecy property of Π∗

(see Lemma 4 in APPENDIX C).

2. We next show that even if there is some reverse path,
say p, from Y1 to X1, then also presence of p does
not help in the possibility of USMT (in the absence of
p1), thereby maintaining the impossibility of USMT in
N ∗

USMTBEF
as projected by Lemma 4. This is tricky

to prove. In order to prove this, we consider the best
case for path p i.e. p being honest. We then show that
corresponding to this status of p, the strong path(s)
from X1 to Y1 should definitely satisfy certain prop-
erties. If not, then we could augment N ∗

USMTBEF
by

applying at least one of the constructions, thus con-
tradicting the fact that N ∗

USMTBEF
is USMT-BEF-

Closure-Digraph. Now once it is shown that the
strong path(s) from X1 to Y1 exhibit certain proper-
ties, when p is completely honest, we prove that there
always exists an adversary strategy which disallows p
to help in the possibility of USMT at all.

So existence of pi is necessary for possibility of Π∗ onN ∗
USMTBEF

.
This in turn implies the necessity of pi in N ∗

USMTBEF
for

the possibility of USMT in N . For the complete proof of
the above two cases, see APPENDIX C. 2

Property 4 (Usefulness of The Constructions).
While the constructions provided in Figure. 6, 8 may directly
help in obtaining paths p1, p2, q1, q2 on the closure graph
N ∗

USMTBEF
(as demonstrated in Example 1 and Exam-

ple 2), the constructions provided in Figure. 9 and 10 may
not do so. The reason is that the constructions in Figure.
9 and 10 always add a virtual path containing either nodes
of type F1 and F2 or nodes of type E1 and E2. But the
properties of p1, p2, q1 and q2 says that none of them allow
both types of fail-stop or passive nodes. But then there is no
reason to consider the constructions in Figure. 9 and 10 as
useless. They may be used on intermediate graph as a part of
recursion. For example, construction #15 may be applied on
an intermediate graph to obtain a new (intermediate) graph
with the virtual path A → X1 → X2 → X3 → B where X1,
X2 and X3 are included in F2, E1 and E2 respectively. Now
this new virtual path may help the current graph to satisfy
the conditions of the 3rd case of construction #11. Specifi-
cally, the new virtual path may act as the strong path from
y to B (part of the semi-strong path between A and B; see
the figure given in Figure 8 corresponding to the 3rd entry
of construction #11) for 3rd case of construction #11 of
Figure. 8.

7. CONCLUSION AND OPEN PROBLEMS
We have shown that the existing characterization of USMT

in directed networks is inappropriate. We then provided true
characterization of USMT in arbitrary directed networks.
We leave the issue of designing efficient USMT protocols in
arbitrary directed networks as an open problem.

8. REFERENCES
[1] B. Altmann, M. Fitzi, and U. M. Maurer. Byzantine

agreement secure against general adversaries in the
dual failure model. In Proc. of DISC 99, pages
123–137, 1999.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi
Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed
computation (extended abstract). In STOC, pages
1–10, 1988.

[3] David Chaum, Claude Crépeau, and Ivan Damg̊ard.
Multiparty unconditionally secure protocols (extended
abstract). In STOC, pages 11–19, 1988.

[4] Y. Desmedt and Y. Wang. Perfectly secure message
transmission revisited. In Proc. of Advances in
Cryptology: Eurocrypt 2002, LNCS 2332, pages
502–517. Springer-Verlag, 2003.

[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung.
Perfectly secure message transmission. JACM,
40(1):17–47, 1993.

[6] M. Fitzi, M. Hirt, and U. Maurer. Trading correctness
for privacy in unconditional multi-party computation.
In Proc. of CRYPTO 98, pages 121 – 136, 1998.

[7] M. Fitzi, M. Hirt, and U. M. Maurer. General
adversaries in unconditional multi-party computation.
In Proc. of ASIACRYPT 99, pages 232–246, 1999.

[8] M. Franklin and R. Wright. Secure communication in
minimal connectivity models. Journal of Cryptology,
13(1):9–30, 2000.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proc. of 19th ACM STOC,
pages 218–229, 1987.

[10] F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error Correcting Codes. North-Holland Publishing
Company, 1978.

[11] A. Patra, A. Choudhary, K. Srinathan, and C. Pandu
Rangan. Unconditionally reliable and secure message
transmission in undirected synchronous networks
tolerating mixed adversary: Possibility, feasibility and
optimality. Cryptology ePrint Archive, Report
2008/141, 2008.

[12] Tal Rabin and Michael Ben-Or. Verifiable secret
sharing and multiparty protocols with honest majority
(extended abstract). In STOC, pages 73–85, 1989.

[13] K. Srinathan and C. Pandu Rangan. Possibility and
complexity of probabilistic reliable communication in
directed networks. In Proc. of 25th PODC, pages
265–274. ACM Press, 2006.

[14] A. C. Yao. Protocols for secure computations. In Proc.
of 23rd IEEE FOCS, pages 160–164, 1982.

APPENDIX C: Necessity Proof of Theorem 4
As mentioned in the necessity proof of Theorem 4, we con-
sider the following two cases and show the impossibility of

protocol Π∗ over N ∗
USMTBEF

between S and R in the ab-
sence of p1 in both the cases:

1. There does not exist any reverse path(s) from any node(s)
in Y1 to any node(s) in X1.

2. There exists reverse path(s) from the nodes in Y1 to the
node(s) in X1.

We first consider the case, when there is no reverse path(s)
from the node(s) in Y1 to the node(s) in X1 and show the
impossibility of USMT protocol Π∗ between S and R in the
absence of p1.

Lemma 4. If there does not exist vertices x ∈ X1 and
y ∈ Y1 with a strong path from y to x in N ∗

USMTBEF
, then

existence of path p1 is necessary for the existence of Π∗ over
the network N ∗

USMTBEF
.

Proof: We prove this lemma by contradiction. So assume
that USMT protocol Π∗ exists over N ∗

USMTBEF
, even in

the absence of path p1 in N ∗
USMTBEF

. The absence of p1

implies each of the strong paths from S to R in N ∗
USMTBEF

contains nodes from (B′
1 ∪B′

2 ∪ F ′2 ∪ E′
1). So, we may view

the network as X1 and Y1 being cut (separated) by four
clusters, viz., B′

1, B′
2, F ′2 and E′

1. Also, we may assume
that these clusters are disjoint (for otherwise the adversary
is even more powerful and will not affect this impossibility
result). Note that any data flowing from Y1 into any of the
clusters has no way of reaching X1 because according to the
lemma statement, there is no strong path from the node(s)
in Y1 to the node(s) in X1! Thus, the information flowing
out of X1 to the clusters is independent of what Y1 sent to
the clusters. Now, all the information emanating from X1

form four clusters wherein the first cluster is influenced by
B′

1, the second by B′
2 the third by F ′2 and the fourth by E′

1.
Now in protocol Π∗ consider the following adversary strat-

egy: (a) if the adversary selects second set from Ā∗ to cor-
rupt, then he blocks all the messages flowing along the nodes
of (B′

2 ∪ F ′2); (b) if the adversary selects first set from Ā∗
to corrupt, then he passively listen all the messages flow-
ing along the nodes of (B′

1 ∪ E′
1). Now since Π∗ is a valid

USMT protocol, R can recover message when the adversary
corrupts second set from Ā∗. This implies the data passing
through the clusters B′

1 and E′
1 have sufficient information

about the message. If so, then adversary can choose first
set from Ā∗ and he will also get the secret message by pas-
sively listening B′

1 and E′
1. So, if R can recover the message,

then so can the adversary. It is easy to note that the com-
munication among the clusters do not help in Π∗. This is
because the adversarial strategy is to block all the messages
in the second and the third clusters, contrasted with listen-
ing to the first and fourth clusters; clearly communication
involving the second and third clusters are useless while the
communication between the first and fourth is not going to
help since adversary is reading at both ends. This implies
that if an USMT protocol between S and R exists, then
there also exists an USMT protocol between another sender
S’ and receiver R’, who are connected by four node disjoint
paths, where first one in under the control of B′

1, the second
one is under the control of B′

2, the third one is under the
control of F ′2 and fourth one is under the control of E′

1. How-
ever, from the results of [11], such an USMT protocol does
not exist. Hence Π∗ is non-existent which is a contradiction.
2

We now consider the second case, when there exist strong
(reverse) path(s) from Y1 to X1.

Lemma 5. Existence of the path p1 is necessary for the
existence of USMT protocol Π∗ over N ∗

USMTBEF
even if

there are strong paths from Y1 to X1.

Proof: Suppose there is a node y ∈ Y1 and another node
x ∈ X1, such that there exists a strong path p from y to
x. Also consider another node z from Y1 such that y is
connected to z through a path not containing nodes from
(B′

1 ∪B′
2 ∪ F ′2 ∪ E′

1). We will prove this lemma considering
the best case i.e. considering the case when p is completely
honest. Even in this case, we will prove that Π∗ does not
exit, unless path p1 exists. So for all other cases where p
contains nodes from some adversary sets, Π∗ will not exist,
in the absence of p1. Hence, let us assume p is completely
honest. Also p1 does not exist. So as pointed before, the
absence of p1 implies each of the strong paths from x to z
in N ∗

USMTBEF
contains nodes from (B′

1 ∪B′
2 ∪ F ′2 ∪ E′

1).
Now more specifically, we claim that all the strong path(s)

from x to z must pass through the node(s) in (B′
2 ∪ F ′2)

. We will prove this by contradiction. So assume all the
strong path(s) from x to z do not pass through the node(s)
in (B′

2 ∪ F ′2). Hence they pass through the remaining two
sets (B′

1 ∪E′
1). But now we can now apply Construction#7

of Figure. 8 between node x and z. Specifically, the semi-
strong path and the strong path between x and z satisfy
all the conditions of Construction#7: (a) y can act as the
head of the semi-strong path between x and z, such that the
strong path from y to x is completely honest and the strong
path from y to z avoids node(s) from (B′

1 ∪ B′
2 ∪ F ′2 ∪ E′

1),
(b) the strong path(s) from x to z contains node(s) from
(B′

1∪E′
1) (i.e. avoids node(s) from (B′

2∪F ′2) according to the
assumption). So, we can apply Construction #7 from Fig.
8 on x and z, which will add the simulated path x → X1 →
X2 → z, where X1 ∈ F ′1 and X2 ∈ E′

2. This contradicts
the fact that x 6∈ Y1 and N ∗

USMTBEF
is an USMT closure

graph. Thus, we have shown that in N ∗
USMTBEF

, every path
from x to z involves a node from (B′

2 ∪ F ′2). Now can the
path p be useful for the possibility of USMT? The answer is
no! We will prove that p does not help x to influence z in
any way. Let the adversary chooses the second set from Ā∗
to corrupt, then his strategy is to block all the information
passing through (B′

2∪F ′2). So he will block everything from x
to z. Here, x can essentially help z to identify the corrupted
set even without the help of p. In other words, in this case
if there is an USMT protocol on N ∗

USMTBEF
, then it will

exists even in the absence of p. Hence p does not help x to
influence z. This implies the presence of p has no effect on
the (im)possibility of Π∗. So we may assume that p does not
exist! This readily proves the necessity of p1 in N ∗

USMTBEF

from the proof of Lemma 4, when there does not exist any
strong path from the set Y1 to X1. 2

This completes our proof of the necessity of the path p1

in the Theorem 4. An analogous argument can be given to
prove the necessity of the path p2 as well (we do not do it
since it is fairly straightforward). This completes the proof
of the Theorem 4. 2

APPENDIX D: Tables for Constructions
The various other constructions that are used for construct-
ing USMT-BEF-Closure graph are shown in the tables
in the following figures. In the figures, we use the following
notation with respect to the third column of each entry:

Notation: An entry like:

•A → B avoids S1 with

last(S2) precedes first(S3)

means the following: there should exist a strong path from
A to B avoiding nodes from the set S1. In addition, the last
occurrence of a node from the set S2 (if they exist) along the
strong path should occur before the first occurrence of any
node from the set S3 (if they exist) along the strong path.
Thus an entry like

•A → B avoids ((B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B}) with

last(B1) precedes first(F2) and last(F1) precedes first(E2)

means the following: there should exist a strong path from
A to B avoiding nodes from the set ((B2 ∪E2 ∪ (F1 ∩F2)) \
{A, B}). In addition, in the strong path, the last occurrence
of any node from the set B1 must be before the first oc-
currence of any node from F2. In addition, along the same
strong path, the last occurrence of any node from F1 must
be before the first occurrence of any node from E2.

S.No. Virtual Conditions & Figures
Link

#6
A → X1 → X2 → B

X1 ∈ F1, X2 ∈ F2

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids ((B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})

y

A B

E2, F ∗

1
, F ∗

2
E2, F ∗

1

B1, E1, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})

y

A B

E2, F ∗

1

E1, F ∗

1
, F ∗

2

E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪ B2 ∪ F1 ∪ E1) \ {A, B}) with E2

after F2

• Head → B: avoids ((B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: for each α ∈ {1, 2} avoids ((Bα ∪ (E2 \ Eα) ∪ (F1 ∩
F2)) \ {A, B})

y

A B

E2, F ∗

2
E2, F ∗

1
, F ∗

2

B2, E∗

1
, F ∗

1
, F ∗

2

B1, E∗

2
, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B}) with E1

after F1

• Head → B: avoids ((B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: for each α ∈ {1, 2} avoids ((Bα ∪ (E1 \ Eα) ∪ (F1 ∩
F2)) \ {A, B})

y

A B

E1, F ∗

1
E1, F ∗

1
, F ∗

2

B1, E∗

2
, F ∗

1
, F ∗

2

B2, E∗

1

F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ (F1 ∩F2)∪E1 ∪E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩F2)∪E1 ∪E2) \ {A, B})
• A → B: avoids (B1 ∪B2 ∪ (F1 ∩ F2))

y

A B

F ∗

1
, F ∗

2
F ∗

1
, F ∗

2

E1, E2, F ∗

1
, F ∗

2

there exists α ∈ {1, 2} such that:
• Head → A: avoids ((B1 ∪B2 ∪ Eα ∪ (F1 ∩ F2)) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ Eα ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids (B1 ∪ B2 ∪ (F1 ∩ F2)) and
((Bα ∪ Eα ∪ (F1 ∩ F2)) \ {A, B})

y

A B

E2, F ∗

1

E1, E2, F ∗

1
, F ∗

2

E2, F ∗

1

F ∗

2

F ∗

2

B1, E1, F ∗

1
, F ∗

2

For α = 1

#7
A → X1 → X2 → B

X1 ∈ F1, X2 ∈ E2

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
• A → B: avoids ((B2 ∪ F2) \ {A, B})

y

A B

E2, F ∗

1
E2, F ∗

1

B1, E1, E2, F ∗

1

#8
A → X1 → X2 → B

X1 ∈ F2, X2 ∈ E1

• Head → A: avoids ((B1 ∪B2 ∪ F1 ∪ E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F1 ∪ E2) \ {A, B})
• A → B: avoids ((B1 ∪ F1) \ {A, B})

y

A B

E1, F ∗

2

E1, F ∗

2

B2, E1, E2, F ∗

2

#9
A → X1 → X2 → B

X1 ∈ F1, X2 ∈ E1

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F2 ∪ E2) \ {A, B})
• A → B: avoids ((B1 ∪ B2 ∪ F2) \ {A, B}) with last(F1)
precedes first(E1).

y

A B

E1, F ∗

1
E1, F ∗

1

E1, E2, F ∗

1

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E1 ∪ E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F2 ∪ E2) \ {A, B})
• A → B: avoids (B2 ∪ F2) \ {A, B}) with last(B1 ∪ F1)
precedes first(E1).

y

A B

F ∗

1
E1, F ∗

1

B1, E1, E2, F ∗

1

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F2) \ {A, B})
• A → B: avoids (B2 ∪ F2 ∪ E2) \ {A, B}) with last(B1 ∪ F1)
precedes first(E1).

y

A B

E2, F ∗

1
E1, E2, F ∗

1

B1, E1, F ∗

1

#10 A → X1 → X2 → B
X1 ∈ E1, X2 ∈ F1

Same as Construction#9 except that the condition “with
last(F1) precedes first(E1)” is removed.

Same as Construc-
tion#9

#11 A → X1 → X2 → B
X1 ∈ F2, X2 ∈ E2

• Head → A: avoids ((B1 ∪B2 ∪ F1 ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F1 ∪ E1) \ {A, B})
• A → B: avoids from ((B1 ∪B2 ∪F1) \ {A, B}) with last(F2)
precedes first(E2).

y

A B

E2, F ∗

2
E2, F ∗

2

E1, E2, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ F1 ∪ E1 ∪ E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F1 ∪ E1) \ {A, B})
• A → B: avoids (B1 ∪ F1) \ {A, B}) with last(B2 ∪ F2)
precedes first(E2).

y

A B

E2, F ∗

2
F ∗

2

B2, E1, E2, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ F1 ∪ E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F1) \ {A, B})
• A → B: avoids (B1 ∪ F1 ∪ E1) \ {A, B}) with last(B2 ∪ F2)
precedes first(E2).

y

A B

E1, F ∗

2
E1, E2, F ∗

2

B2, E2, F ∗

2

#12 A → X1 → X2 → B
X1 ∈ E2, X2 ∈ F2

Same as Construction #11 except that the condition “with
last(F2) precedes first(E2)” is removed.

Same as Construction
#11

Figure 8: Constructions for adding virtual path with two intermediate virtual nodes

S.No. Virtual Conditions & Figures
Link

#13

A → X1 → X2

→ X3 → B
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E1

• Head → A: avoids ((B1 ∪B2 ∪ E2 ∪ F1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids ((B1 ∪ (F1 ∩ F2)) \ {A, B}) with last(B2)
precedes first(F1) and last(F1) precedes first(E1).

y

A B

E1, F ∗

2
E1, F ∗

1
, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪ B2 ∪ E2 ∪ F2) \ {A, B}) with
last(F1) precedes first(E1)
• Head → B: avoids ((B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: for each α ∈ {1, 2}, path pα: avoids
((Bα ∪ (F1 ∩ F2)) \ {A, B}) with last(Bᾱ) precedes
first(Fα) and last(F1) precedes first(E1).

y

A B

E1, F
∗

1
E1, F

∗

1
, F ∗

2

B1, E1, E2, F ∗

1
, F ∗

2

B2, E1, E2

F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ E1 ∪ F2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids (B2 ∪E2 ∪ (F1 ∩F2)) \ {A, B}) with last(B1)
precedes first(F2) and last(F1) precedes first(E2).

y

A B

E2, F ∗

1
E1, E2, F ∗

1
, F ∗

2

B1, E1, F ∗

1
, F ∗

2

• Head → A, B: avoids ((B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids (B1 ∪ (F1 ∩ F2)) \ {A, B}) with last(B2)
precedes first(F1) and last(F1) precedes first(E1).
• A → B: avoids (B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})

y

A B

E1, F ∗

1
, F ∗

2

E1, E2

F ∗

1
, F ∗

2

E1, F ∗

1
, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

#14

A → X1 → X2

→ X3 → B
X1 ∈ F1, X2 ∈ E1,
X3 ∈ E2

• Head → A: avoids ((B1 ∪B2 ∪ E1 ∪ F2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F2) \ {A, B})
• A → B: avoids ((B2 ∪F2) \ {A, B}) with last(F1) precedes
first(E1).

y

A B

E2, F ∗

1
F ∗

1
, E1, E2

B1, E1, E2, F ∗

1

#15

A → X1 → X2

→ X3 → B
X1 ∈ F2, X2 ∈ E1,
X3 ∈ E2

• Head → A: avoids ((B1 ∪B2 ∪ E2 ∪ F1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ F1) \ {A, B})
• A → B: avoids ((B1 ∪F1) \ {A, B}) with last(F2) precedes
first(E2).

y

A B

F ∗

2
, E1, E2

B2, E1, E2, F ∗

2

E1, F ∗

2

#16

A → X1 → X2

→ X3 → B
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E2

• Head → A: avoids ((B1 ∪B2 ∪ E1 ∪ F2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids ((B2 ∪ (F1 ∩ F2)) \ {A, B}) with last(B1)
precedes first(F2) and last(F2) precedes first(E2).

y

A B

F ∗

1
, F ∗

2

E1, E2

E2, F ∗

1

B1, E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪ B2 ∪ E1 ∪ F1) \ {A, B}) with
last(F2) precedes first(E2)
• Head → B: avoids ((B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: for each α ∈ {1, 2}, path pα: avoids
((Bα ∪ (F1 ∩ F2)) \ {A, B}) with last(Bᾱ) precedes
first(Fα) and last(F2) precedes first(E2).

y

A B

F ∗

1
, F ∗

2

E1, E2

E1, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ E2 ∪ F1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids (B1 ∪E1 ∪ (F1 ∩F2)) \ {A, B}) with last(B2)
precedes first(F1) and last(F2) precedes first(E1).

A B

y
E2, F ∗

2

E1, E2

F ∗

1
, F ∗

2

B1, E1, E2, F ∗

1
, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

• Head → A, B: avoids ((B1 ∪B2 ∪ E1 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids (B2 ∪ (F1 ∩ F2)) \ {A, B}) with last(B1)
precedes first(F2) and last(F2) precedes first(E2).
• A → B: avoids (B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})

A B

y

B2, E1, E2, F ∗

1
, F ∗

2

B1, E1, E2, F ∗

1
, F ∗

2

E1, F ∗

1

E1, E2

F ∗

1
, F ∗

2

#17

A → X1 → X2

→ X3 → B
X1 ∈ E1, X2 ∈ F1,
X3 ∈ F2

same as construction #13 except that the condition “last(F1)
precedes first(E1) is removed”

same as construction
#13

#18

A → X1 → X2

→ X3 → B
X1 ∈ F1, X2 ∈ E2,
X3 ∈ F2

same as construction #16 except that the condition “last(F2)
precedes first(E2) is removed”

same as construction
#16

#19

A → X1 → X2

→ X3 → B
X1 ∈ E1, X2 ∈ F1,
X3 ∈ E2

same as construction #14 except that the condition “last(F1)
precedes first(E1) is removed”

same as construction
#14

#20

A → X1 → X2

→ X3 → B
X1 ∈ E2, X2 ∈ F2,
X3 ∈ E1

same as construction #15 except that the condition “last(F2)
precedes first(E2) is removed”

same as construction
#15

Figure 9: Constructions for adding virtual path with three intermediate virtual nodes

S.No. Virtual Conditions & Figures
Link

#21

A → X1 → X2

→ X3 → X4 → B
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E1, X4 ∈ E2

• Head → A: avoids ((B1 ∪B2 ∪ F2 ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids ((B2 ∪ (F1 ∩ F2)) \ {A, B}) with last(F1)
precedes first(E1) and last(F2) precedes first(E2).

y

A B

F ∗

1
, F ∗

2

E1, E2

E2, F ∗

1

B1, E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ F1 ∪ E2) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: avoids ((B1 ∪ (F1 ∩ F2)) \ {A, B}) with last(F2)
precedes first(E2) and last(F1) precedes first(E1).

y

A B

F ∗

1
, F ∗

2

E1, E2

E1, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids nodes from ((B1∪B2∪F1∪E1)\{A, B})
with last(F2) precedes first(E2).
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: for each i ∈ {1, 2} avoids (Bi ∪ (F1 ∩ F2)) \ {A, B})
with last(F1) precedes first(E1) and last(F2) precedes
first(E2).

A B

y
E2, F ∗

2

E1, E2

F ∗

1
, F ∗

2

B1, E1, E2, F ∗

1
, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B}) with
last(F1) precedes first(E1).
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B: for each i ∈ {1, 2} avoids (Bi ∪ (F1 ∩ F2)) \ {A, B})
with with last(F1) precedes first(E1) and last(F2) pre-
cedes first(E2).

A B

y

B2, E1, E2, F ∗

1
, F ∗

2

B1, E1, E2, F ∗

1
, F ∗

2

E1, F ∗

1

E1, E2

F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ (F1 ∩ F2) ∪ E1) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B, Path p: avoids (B2 ∪ (F1 ∩ F2)) \ {A, B}) with
last(F1) precedes first(E1) and last(F2) precedes
first(E2) and avoids (B1 ∪B2 ∪ (F1 ∩ F2)).
• A → B, Path Q: avoids (B1 ∪B2 ∪ (F1 ∩ F2)

A B

y

B1, E1, E2, F ∗

1
, F ∗

2

E1, E2

F ∗

1
, F ∗

2

E1, E2, F ∗

1
, F ∗

2

E2, F ∗

1
, F ∗

2

• Head → A: avoids ((B1 ∪B2 ∪ E2 ∪ (F1 ∩ F2)) \ {A, B})
• Head → B: avoids ((B1 ∪B2 ∪ (F1 ∩ F2)) \ {A, B})
• A → B, Path p: avoids (B1 ∪ (F1 ∩ F2)) \ {A, B}) with
last(F1) precedes first(E1) and last(F2) precedes
first(E2) and avoids (B1 ∪B2 ∪ (F1 ∩ F2)).
• A → B, Path Q: avoids (B1 ∪B2 ∪ (F1 ∩ F2)

A B

y E1, E2

F ∗

1
, F ∗

2

E1, E2, F ∗

1
, F ∗

2

E1, F ∗

1
, F ∗

2

B2, E1, E2, F ∗

1
, F ∗

2

#22

A → X1 → X2

→ X3 → X4 → B
X1 ∈ E1, X2 ∈ F1,
X3 ∈ F2, X4 ∈ E2

Similar to the construction #21 except that the condition“with
last(F1) precedes first(E1)” is removed from the all the six cases

Similar to #21 ex-
cept that first restric-
tion on the ordering of
vertices in the strong
paths from A to B is re-
laxed

#23

A → X1 → X2

→ X3 → X4 → B
X1 ∈ F1, X2 ∈ E1,
X3 ∈ E2, X4 ∈ F2

Similar to the construction #21 except that the condition“with
last(F2) precedes first(E2)” is removed from the all the six cases

Similar to #21 ex-
cept that second re-
striction on the order-
ing of vertices in the
strong paths from A to
B is relaxed

#24

A → X1 → X2

→ X3 → X4 → B
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E1, X4 ∈ E2

Similar to the construction #21 except that both the condi-
tions “with last(F1) precedes first(E1)” and “last(F2) precedes
first(E2)” are removed from the all the six cases

Similar to #21 ex-
cept that both restric-
tions on the ordering of
vertices in the strong
paths from A to B are
relaxed

Figure 10: Constructions for adding virtual path with four intermediate virtual nodes

