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Abstract: In a strong designated verifier signature scheme, no third party can verify the 

validity of a signature. On the other hand, non-delegatability, proposed by Lipmaa, Wang and 

Bao, is another stronger notion for designated verifier signature schemes. In this paper, we 

formalize a security model for non-delegatable identity based strong designated verifier 

signature (IDSDVS) schemes. Then a novel non-delegatable IDSDVS scheme based on 

pairing is presented. The presented scheme is proved to be non-delegatable, non-transferable 

and unforgeable under the Gap Bilinear Diffie-Hellman assumption. 
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1. Introduction 

Ordinary digital signature schemes allow a signer with a secret key to sign messages 

such that anyone can verify the authenticity of the signed messages via the corresponding 

public key. However, the public verifiability of ordinary digital signatures is not desirable in 

some applications when a verifier should not convince any third party about the fact by 

presenting a signature on a message, such as certificates for personal health records, income 

summary. To address this issue, in 1996, Jacobsson et al. introduced the concept of designated 

verifier signature(DVS) [2]. A DVS scheme makes it possible to prevent a designated verifier 

from transferring his conviction about validity of signed messages to any third party. The 

reason is that the designated verifier is able to simulate a signature that is indistinguishable 

from a real signature intended to him. That is, designated verifier signatures do not provide 

non-repudiation property of ordinary digital signatures. Designated verifier signatures have 

several applications, such as E-voting, call for tenders and software licensing. 
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Jacobsson et al. [2] also introduced a stronger notion of designated verifier signature, 

called strong designated verifier signature (SDVS). In a SDVS scheme, no third party can 

verify the validity of a signature without the knowledge of the designated verifier’s secret key. 

In 2003, Saeednia formalized the notion of strong designated verifier signature(SDVS) [7] 

and proposed an efficient scheme in their paper. Later, Susilo et al. [8] proposed an identity 

based SDVS scheme which is only an identity based variant of the scheme of [7]. 

On the other hand, Lipmaa et al. [5] described another stronger notion of designated 

verifier signature, called non-delegatability. That is, there exists an efficient knowledge 

extractor that can extract either the signer’s secret key or the designated verifier’s secret key, 

when given oracle access to an adversary who can create valid signatures with a high 

probability. Recently, Zhang and Mao [9] proposed an identity based strong designated 

verifier signature (IDSDVS) scheme which is claimed to offer non-delegatability. However, 

Kang et al. [3] showed that Zhang-Mao scheme can not satisfy the strongness property. That 

is, Zhang-Mao scheme allows anyone who intercepts one signature to verify subsequent 

signatures. In addition, Kang et al. [4] also proposed an IDSDVS scheme and claimed that the 

security of their scheme is related to the bilinear Diffie-Hellman problem.  

Nevertheless, we show that Kang et al.’s scheme presented in [4] is also vulnerable to the 

attack described in [3]. The essence of this attack is that the schemes in [4, 9] are delegatable. 

An effective solution to this problem is to design a non-delegatable IDSDVS scheme. 

Although Kang et al. [3] presented an efficient IDSDVS scheme, which uses hash operations 

to destroy algebraic structure of the produced signature in order to avoid the attack described 

in [3], it is not difficult to show that their scheme is also delegatable. Furthermore, no formal 

security proof is presented for their scheme in [3]. 

Motivated by the above discussion, we formalize a security model for non-delegatable 

IDSDVS schemes in this paper. Then we point out that the scheme proposed in [4] is also 

vulnerable to the attack described in [3]. In the following, we present a non-delegatable 

IDSDV signature scheme based on bilinear pairing, which is secure under our security model. 

The security of our scheme is based on the hardness of the Gap Bilinear Diffie-Hellman 

problem. However，the security result of our scheme is not tight as the reduction uses the 

Forking Lemma. It remains to be seen if there exists a non-delegatable IDSDVS scheme that 



 3

enjoys a tight reduction without using the Forking Lemma. Finally, we compare the efficiency 

with other related IDSDVS schemes. 

 

2. Preliminaries 

2.1 Bilinear pairing 

Let 1,G< + >  be a cyclic additive group generated by P , whose order is a large prime 

q , 2 ,G< >i  be a cyclic multiplicative group of the same order, and let 1 1 2:e G G G× →  be 

a bilinear pairing with the following properties: 

1. Bilinear: For any Q , R , T 1G∈ , ( , ) ( , ) ( , )e Q R T e Q T e R T+ = i  and 

( , ) ( , ) ( , )e Q R T e Q R e Q T+ = i  

2. Non-degenerate: There exists R ,T 1G∈ , such that ( , ) 1e R T ≠  

3. Computable: There exists an efficient algorithm to compute ( , )e R T  for any 

R ,T 1G∈ . 

 

2.2 Notation 

If A  is a randomized algorithm, then 1 2( ), ( ),
1 2( , , )O Oy A x x⋅ ⋅← " "  means that A  has 

input 1 2, ,x x "  , access to oracles 1 2, ,O O " , and the output of A  is assigned to y . We 

use the notation Rx S∈  to mean “the element x  is chosen with uniform probability from 

the set S ”. 

 

2.3 Complexity assumptions 

Definition 1: Bilinear Diffie-Hellman(BDH) Problem in 1 2( , )G G : Given 

1, , ,P a P b P c P G⋅ ⋅ ⋅ ∈  for some unknown , , qa b c Z∈ , compute 2( , )abcd e P P G= ∈ .  

Definition 2: Decisional Bilinear Diffie-Hellman(DBDH) Problem in 1 2( , )G G : 

Given 1 2, , , ,P a P b P c P G z G⋅ ⋅ ⋅ ∈ ∈  for some unknown , , qa b c Z∈ , decide whether 
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( , )abcz e P P=  holds.  

Definition 3: Gap Bilinear Diffie-Hellman(GBDH) Problem in 1 2( , )G G : Given 

1, , ,P a P b P c P G⋅ ⋅ ⋅ ∈  for some unknown , , qa b c Z∈ , compute 2( , )abcd e P P G= ∈  

with the help of a DBDH oracle DBDHO . 

Remark: A DBDH oracle DBDHO  outputs 1 if ( , )abcz e P P=  and 0 otherwise. 

The success probability of an algorithm A  in solving the GBDH problem in 1 2( , )G G  

is 
1 2, ( ) Pr[ ( , , , ) ( , ) : , , ]DBDHOGBDH abc

G G qSucc A A P a P b P c P e P P a b c Z= ⋅ ⋅ ⋅ = ∈ .  

A ( , )t ε -GBDH solver A  is a probabilistic polynomial-time algorithm running in time 

at most t  such that the success probability 
1 2, ( )GBDH

G GSucc A ε≥ . We say that 1 2( , )G G  

satisfies the GBDH assumption if there is no polynomial time ( , )t ε -GBDH solver A  with 

advantage ε  non-negligible. 

 

3. Weakness of Kang et al’s scheme [4] 

3.1 Review of Kang et al’s scheme [4] 

1. Setup: Let 1,G< + >  be a gap Diffie-Hellman group generated by P , whose order 

is a large prime q , 2 ,G< >i  be a cyclic multiplicative group of the same order, and let 

1 1 2:e G G G× →  be a bilinear map. Then PKG (private key generation centre) picks a 

random number s *
qZ∈  as the master secret key and sets the master public key to 

pubP = s P⋅ .  1 2,H H  are two cryptographic hash functions  

 *
1 1:{0,1} ,H G→ * *

2 :{0,1} qH Z→ . 

The public system parameters are 1 2 1 2, , , , , , ,pubG G P P H H e q< > . 

2.KeyExtract: Given an identity iID , PKG computes  1( )i iQ H ID= , iS = is Q⋅ . 

Then KGC distributes the secret key iS  to the corresponding user identified by iID  over a 
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secure channel. 

3.Sign: To sign a message m  intended for a verifier Bob with identity BID , a signer 

Alice with identity AID  picks a random number k *
qZ∈  and computes  

t = ( , )k
Be P Q , 2 ( , ) AT k P H m t S= ⋅ + , σ = ( , )Be T Q . 

The signature on m  is ( , )tσ . 

4.Verify: Given the system parameters, 1( )A AQ H ID= , and the signature ( , )tσ  on 

the signed message m , the correctness of ( , )tσ  can be verified by Bob as follows: 

    2 ( , )( , )H m t
A Bt e Q Sσ = ⋅  

5.Signature Simulation: Bob can produce the simulated signature lσ  intended for him 

as follows: 

(1) Picks a random number �k *
qZ∈ . 

(2) Computes t� =
�( , )k

Be P Q , l 2 ( , )( , )H m t
A Bt e Q Sσ = ⋅

�� . 

 

3.2 Attack on Kang et al’s scheme [4] 

An adversary who intercepts the signature ( , )tσ  can compute ( , )A Be Q S  as follows: 

( , )A Be Q S =
1

2( ( , ))( ) H m ttσ
−

. 

Thus it is easy to see that the adversary can verify the correctness of subsequent 

signatures and simulate valid signatures intended for Bob via ( , )A Be Q S . The essence of this 

attack is that Kang et al’s scheme [4] is delegatable. That is, anyone who has the knowledge 

of the trapdoor ( , )A Be Q S  can verify the correctness of signatures and simulate valid 

signatures. An effective solution to this problem is to design a non-delegatable IDSDVS 

scheme. The notion of delegatability is discussed in subsection 4.2.3. 

Although Kang et al presented another efficient scheme in [3] and claimed it to be secure 

against this attack, it is not difficult to show that their scheme is delegatable. So we omit the 

details to show that their scheme in [3] is delegatable. In addition, no formal security proof is 
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presented for their scheme in [3]. In the following, we focus on establishing a security model 

for non-delegatable IDSDVS schemes and present a scheme secure under this model. 

 

4. Formal model of IDSDVS schemes 

4.1 Definition of IDSDVS schemes 

An IDSDVS scheme consists of the following polynomial-time algorithms: 

1. MasterKeyGen(Master Key Generation): On input a security parameter k∈Ν , it 

generates a list of system parameters params, and a master public/secret key pair 

( , )mpk msk . This algorithm is assumed to be run by a Key Generation Center (KGC). 

2. KeyGen(User Key Generation): On input msk , an identity *{0,1}ID∈ , it generates 

a secret key IDsk ←KeyGen ( , )ID msk . This algorithm is run by the KGC for each user 

and the generated secret key is assumed to be distributed securely to the corresponding user. 

3. SDV_Sign(Signature Generation): On input a signer’s secret key 
SIDsk , a verifier’s 

identity DID  and a message m , it generates a signature by executing 

DVσ ←SDV_Sign ( , , )
SID Dsk ID m . We require that the signer’s identity S DID ID≠  since it 

is meaningless to generate a signature to be verified only by the signer. 

4. SDV_Verf(Signature Verification): On input the signer’s identity SID , the verifier’s 

secret key 
DIDsk , the signed message m  and the signature DVσ ,  SDV_Verf returns 1 if 

DVσ  is accepted, and 0 otherwise. 

5. SDV_Sim(Signature Simulation): On input the signer’s identity SID , the verifier’s 

secret key 
DIDsk , and a message m , it generates a simulated signature 

DVσ ←SDV_Sim ( , , )
DID Ssk ID m . 

Consistency: ∀ *{0,1}m∈ , *{0,1}ID∈ , k∈Ν , ( , )mpk msk ← MasterKeyGen (1 )k , 

IDsk ←KeyGen ( , )ID msk , the following hold:  

(1) ∀ DVσ ←SDV_Sign ( , , )
SID Dsk ID m , Pr[SDV_Verf ( , , , )=1]=1

DID S DVsk ID m σ . 
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(2) ∀ DVσ ←SDV_Sim ( , , )
DID Ssk ID m , Pr[SDV_Verf ( , , , )=1]=1

DID S DVsk ID m σ . 

 

4.2 Security model 

4.2.1 Unforgeability 

Let IDSDVS be an identity-based strong designated verifier signature scheme and 

k∈Ν  be a security parameter. In this section, we define the existential unforgeability of 

IDSDVS schemes against an adaptive chosen message and chosen identity adversary A  as 

follows. Define a game ,
, ( , )CMA CID

EUF IDSDVSExp A k  in which the adversary A  interacts with a 

game challenger S . 

Phase 1: At first, S  runs MasterKeyGen (1 )k  to get ( , )mpk msk  and a list of 

system parameters params. In the following, S  picks n  identities 1{ , , }nX ID ID= " . 

Then Corr  is initialized to an empty set ∅  which is used to keep track of those corrupted 

users’ identities. S  gives mpk , params and X  to the adversary A . 

Phase 2: A  issues the following queries:  

1. UserKey queries: On input an identity ID X∈  chosen by A , S  runs 

KeyGen ( , )ID msk  to get the secret key IDsk  and returns IDsk  to A . Then 

{ }Corr Corr ID← ∪ .  

2. Sign queries: On input a signer’s identity iID  , a verifier’s identity jID  and a 

message m  adaptively chosen by A ,  S  returns a signature by executing  

DVσ ←SDV_Sign ( , , )
iID jsk ID m . 

3. Verf queries: On input the signer’s identity iID  , the verifier’s identity jID , and a 

message/signature pair ( , )DVm σ  provided by A ,  S  returns the result of running 

SDV_Verf ( , , , )
jID i DVsk ID m σ . 

4. Sim queries: On input the signer’s identity iID  , the verifier’s identity jID  and a 

message m  adaptively chosen by A ,  S  returns the simulated signature 
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DVσ ←SDV_Sim ( , , )
jID isk ID m . 

Phase 3: A  wins the game if A  outputs SID (the signer’s identity), DID (the 

verifier’s identity) and a message/signature pair * *( , )DVm σ  such that: 

(1) S DID ID≠ , * *SDV_Verf ( , , , )=1
DID S DVsk ID m σ . 

(2) A  never made a Sign query or a Sim query on *( , , )S DID ID m  and 

{ , }S DCorr ID ID =∅∩ . 

We define the success probability of the adversary as  

,
, ( , )CMA CID

EUF IDSDVSSucc A k = ,
,Pr[ ( , ) 1]CMA CID

EUF IDSDVSExp A k = . 

An IDSDVS scheme is existential unforgeable against chosen message and chosen 

identity attack if the success probability ,
, ( , )CMA CID

EUF IDSDVSSucc A k  is negligible for any 

probabilistic polynomial time (PPT) adversary A . 

Remark: Zhang-Mao scheme [9] only provided an informal definition of unforgeability. 

An adversary in the security model of [4] is not allowed to issue Sim queries when attacking 

unforgeability. In contrast, our model provides a stronger security notion in which an 

adversary is allowed to issue Sim queries when attacking unforgeability. 

 

4.2.2 Non-transferability  

Non-transferability means that a third party is not able to determine whether a message is 

signed by the signer, or is simulated by the designated verifier. Formally, let IDSDVS be an 

identity-based strong designated verifier signature scheme, and k∈Ν  be a security 

parameter. The non-transferability of IDSDVS schemes against adaptive chosen message and 

chosen identity distinguisher D  can be defined as follows. Define a game 

,
, ( , )CMA CID

Non Tran IDSDVSExp D k−  in which the distinguisher D  interacts with a game challenger S .  

Phase 1: At first, S  runs MasterKeyGen (1 )k  to get ( , )mpk msk  and a list of 

system parameters params. In the following, S  picks n  identities 1{ , , }nX ID ID= " .  

Then Corr  is initialized to an empty set ∅  which is used to keep track of the corrupted 
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users’ identities. S  gives mpk , params and X  to D . 

Phase 2: UserKey queries, Sign queries, Verf queries and Sim queries issued by D  

are the same as those defined in section 4.2.1. 

Challenge: Once D  decides that Phase 2 is over, D  picks a tuple * * *( , , )S DID ID m  

such that * * *( , , )S DID ID m  has not been submitted as one of the Sign queries, Sim queries. 

Moreover, it is required that * *{ , }S DCorr ID ID =∅∩ . Then the challenger S  picks a 

random bit b {0,1}∈ . If b = 0 , S  returns a real signature 

DVσ ← SDV_Sign *
* *( , , )

S
DID

sk ID m  to the distinguisher D . Otherwise, S  returns a 

simulated signature DVσ ←SDV_Sim *
* *( , , )

D
SID

sk ID m  to the distinguisher D . 

Phase 3: Upon receiving the challenging response from S , D  still makes UserKey 

queries, Sign queries, Sim queries and Verf queries except that he cannot submit 

* * *( , , )S DID ID m  as one of the Sign queries, Sim queries.  

Guess: Finally, D  outputs a bit /b . D  wins the game if /b b= . 

The advantage of D  in this game is ( , )Adv D k = / 1|Pr[ ] |
2

b b= − . An IDSDVS 

scheme is non-transferable against adaptive chosen message and chosen identity distinguisher 

D  if for any probabilistic polynomial time (PPT) D , the advantage ( , )Adv D k  is 

negligible. 

 

4.2.3 Non-delegatability 

The definition of non-delegatability is presented in [5]. We provide a straightforward 

adaptation of [5] to IDSVDS schemes. A delegatable IDSVDS scheme means that the signer 

identified by SID , without disclosing his secret key Ssk , may disclose some side 

information , ( , )S D S Dy f sk ID=  to an adversary such that the adversary can produce valid 

signatures on behalf of SID  such that these signatures can be verified only by the verifier 

identified by DID . Similarly, the verifier identified by DID  may disclose some side 



 10

information , ( , )D S D Sy f sk ID=  to the adversary such that the adversary can produce valid 

simulated signatures.  

In the original definition of designated verifier proofs [2], a proof of the truth of some 

statement Φ  is a designated verifier proof if it is a proof that either Φ  is true or the prover 

knows the secret key of the verifier. Clearly, this requirement is not satisfied by delegatable 

IDSVDS schemes since a signer only proves that either Φ  is true or he knows some side 

information ,S Dy  or ,D Sy . We formalize the definition of non-delegatable IDSVDS schemes 

via an alternative formulation from [1] as follows: 

Let k [0,1]∈  be the knowledge error and ( , )S Ssk ID (resp., ( , )D Dsk ID ) be the 

secret/public key pair of the signer(resp., verifier). Assume that there is an algorithm F  that 

can produce a valid signature σ  on input a message m  such that 

SDV_Verf ( , , , )=1
DID Ssk ID m σ  with probability kε > . We say that an IDSVDS scheme is 

( , )kτ  non-delegatable if there is a knowledge extractor K  that runs in expected 

polynomial time (without counting the time to make the oracle queries) with access to the 

oracle ( )F i  such that: 

( )Pr[ { , }: ( )] ( )
S D

F
ID IDx sk sk x K kε τ∈ ← ≥ −i i . 

  

5. Our scheme 

In this section, we propose a non-delegatable IDSDVS scheme as follows: 

1. MasterKeyGen(Master Key Generation): On input a security parameter k∈Ν , let 

1,G< + >  be a cyclic additive group generated by P , whose order is a large prime q , 

2log q k≈ , and 2 ,G< >i  be a cyclic multiplicative group of the same order. 

1 1 2:e G G G× →  represents a bilinear map. Then KGC performs the following operations: 

(1) Picks a random number s *
qZ∈  and sets the master public/secret key pair 

,mpk msk< >= ,s P s< ⋅ > .   
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(2) Chooses two collision-resistant hash functions * *
1:{0,1} , :{0,1}qG Z H G→ → . 

(3) Sets the system parameters params to 1 2( , ), ( , ), , , , ,G G e q P G H< + >i . 

KeyGen(User Key Generation): On input an identity iID , KGC computes 

( )i iQ H ID= , isk = imsk Q⋅ . Then KGC distributes isk  to the corresponding user as his 

secret key over a secure channel. The user can verify the correctness by checking 

( , ) ( , )i ie sk P e Q mpk= . 

SDV_Sign(Signature Generation): Given the signer’s key pair ( , )
SID Ssk ID , the 

verifier’s identity DID  and a message m , the signer should perform the following steps: 

(1) Picks random numbers , ,S S Sr w t qZ∈  and computes  

SR = ( , )
DID se Q r P⋅ , S ST t mpk= ⋅ . 

(2) Computes SV = ( , )
DS S IDe mpk t P w Q⋅ + ⋅ , ( , , , , )S S D S Sh G ID ID R V m= .  

(3) Computes SZ = ( )
SS S S IDr P h w sk⋅ + + ⋅  

(4) The signature is DVσ = , , ,S S S SR w T Z< > . 

SDV_Verf(Signature Verification): Given the signer’s identity SID , the verifier’s key 

pair ( , )
DID Dsk ID , the signed message m  and the corresponding signature DVσ , the 

correctness of DVσ = , , ,S S S SR w T Z< >  can be verified as follows: 

(1) Computes SV = ( , )
DS S IDe P T w sk+ ⋅ , ( , , , , )S S D S Sh G ID ID R V m=  

(2) Returns 1 if and only if ( , )
DID Se Q Z = SR i ( , ( ) )

D SID S S IDe sk h w Q+ ⋅ . 

It is easy to check the correctness of the above verification process as follows: 

( , )
DS S IDe P T w sk+ ⋅ = ( , ( ))

DS S IDe P s t P w Q⋅ ⋅ + ⋅  

= ( , )
DS S IDe mpk t P w Q⋅ + ⋅ = SV  

( , )
DID Se Q Z = ( , ( ) )

D SID S S S IDe Q r P h w sk⋅ + + ⋅  

          = ( , )
DID Se Q r P⋅ ( , ( ) )

D SID S S IDe Q h w sk+ ⋅  
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          = SR i ( , ( ) )
D SID S S IDe sk h w Q+ ⋅  

SDV_Sim(Signature Simulation): Given the signer’s identity SID , the verifier’s key 

pair ( , )
DID Dsk ID , a message m , a simulated signature DVσ  can be generated as follows: 

(1) Picks random Dα , D qZλ ∈ , 1DZ G∈  and computes 

 ( , )D DV e P Pα= ⋅  . 

(2) Computes DR = ( , ) ( , )
D D SID D ID D IDe Q Z e sk Qλ− ⋅i , ( , , , , )D S D D Dh G ID ID R V m= . 

(3) Computes ( ) modD D Dw h qλ= − .  

(4) Computes DT = ( )
DD D IDP w skα ⋅ − ⋅ .  

(5) The simulated signature is DVσ = , , ,D D D DR w T Z< >  

The correctness of DVσ  can be checked as follows: 

( , )
DD D IDe P T w sk+ ⋅ ( , )D De P P Vα= ⋅ =    

( , ) ( , )
D D SID D D ID D IDe Q Z R e sk Qλ= ⋅i = ( , ( ) )

D SD ID D D IDR e sk h w Q+ ⋅i  

 

6.Security Analysis  

Lemma 1: Given the key pairs ( , )
SID Ssk ID , ( , )

DID Dsk ID , the following distributions are 

indistinguishable for a polynomial-time adversary in the random oracle model. 

2

1

,

( , , , ) ,

( )
S

S R S R q

S S S S S R S R q

S S S S ID

R G w Z

R w T Z T G h Z

Z r P h w sk

δ

⎧ ⎫∈ ∈
⎪ ⎪⎪ ⎪= ∈ ∈⎨ ⎬
⎪ ⎪= ⋅ + + ⋅⎪ ⎪⎩ ⎭

 

1 2
/

, ,

( , , , ) ,

( )
D

D R D R q D R

D D D D D R q D R q

D D D ID

Z G Z R G

R w T Z h Z w Z

T P w sk

α

δ

α

⎧ ⎫∈ ∈ ∈
⎪ ⎪⎪ ⎪= ∈ ∈⎨ ⎬
⎪ ⎪= ⋅ − ⋅⎪ ⎪⎩ ⎭

 

Proof: At first, we choose a valid tuple / ( , , , )R w T Zσ =  such that for some message m  

/SDV_Verf ( , , , )=1
DID Ssk ID m σ . In other words，the following equations hold: 
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V = ( , )
DIDe P T w sk+ ⋅ , ( , , , , )S Dh G ID ID R V m=    

( , )
DIDe Q Z = R i ( , ( ) )

D SID IDe sk h w Q+ ⋅ .        

We then compute the probability of appearance of this tuple following each distribution 

of probabilities. For the sake of simplicity, we will omit the notation mod q  in the rest of 

the proof. 

Claim 1: Pr[( , , , ) ( , , , )]S S S SR w T Z R w T Z
δ

= =

2

1

,
,

Pr[ ]
, ,

S S R

S S R q

S S R

S

R R R G
w w w Z

T T T G
Z Z

δ

= ∈⎧ ⎫
⎪ ⎪= ∈⎪ ⎪
⎨ ⎬

= ∈⎪ ⎪
⎪ ⎪=⎩ ⎭

= 31 q  

Proof: At first, , ,S S SR w T  are chosen from 2 1, ,qG Z G  respectively. As ,SR R= ,Sw w=  

ST T= , we have ,S SV V h h= =  by the verification equations defined in section 5.  

In the following, we know that:  

( , )
DIDe Q Z = R i ( , ( ) )

D SID IDe sk h w Q+ ⋅ .  

         = SR i ( , ( ) )
D SID S S IDe sk h w Q+ ⋅ = ( , )

DID Se Q Z  

Hence this result implies that SZ Z= . 

 

Claim 2:
/

Pr[( , , , ) ( , , , )]D D D DR w T Z R w T Z
δ

= =
/

1

2

,
,

Pr[ ]
,

D D R

D D R

D D R q

D

Z Z Z G
R R R G
w w w Z

T T

δ

= ∈⎧ ⎫
⎪ ⎪= ∈⎪ ⎪
⎨ ⎬= ∈⎪ ⎪
⎪ ⎪=⎩ ⎭

= 3(1 )(1 1 )q q−  

Proof: At first, , ,D D DZ R w  are chosen from 1 2, , qG G Z  respectively.  

As ,DR R= ,D Dw w Z Z= = , we have the following equations: 

( , )
DIDe Q Z = ( , )

DID De Q Z  

( , )
DIDe Q Z = R i ( , ( ) )

D SID IDe sk h w Q+ ⋅  

         = DR i ( , ( ) )
D SID D IDe sk h w Q+ ⋅  

( , )
DID De Q Z = ( , ( ) )

D SD ID D D IDR e sk h w Q+ ⋅i  



 14

Hence this result implies that Dh h= . Then we know that 

Pr[ | ] 1 1D DV V h h q= = = −  due to the fact that ( , , , , )S Dh G ID ID R V m=  and the hash 

function G  is assumed to be a random function. So we can assume that DV V= . Finally, 

we have the following equations: 

V = ( , )
DIDe P T w sk+ ⋅  

DV = ( , )
DD D IDe P T w sk+ ⋅ = ( , )

DD IDe P T w sk+ ⋅  

It is easy to see that DT T=  on condition that DV V= .  

The statistical distance between δ  and /δ  is 1 1 2kq ≈ . Hence, both distributions 

of probabilities are indistinguishable for a polynomial time(in k ) adversary according to 

Claim 1 and Claim 2. 

Remark: As the distributions are statistically close(i.e., indistinguishable for a 

polynomial-time adversary), access to simulated signatures will not help the adversary. Hence 

we will not provide the adversary with simulated signatures when analyzing the 

unforgeability of our scheme. 

 

The Splitting Lemma [6]: Let A X Y⊂ ×  such that Pr[( , ) ]x y A γ∈ ≥ . For any α γ< , 

define 
/

/{( , ) | Pr [( , ) ] }
y Y

B x y X Y x y A γ α
∈

= ∈ × ∈ ≥ − , then Pr[ | ]B A α γ≥  holds. 

 

Theorem 1: Let the knowledge error k =0. Assume that there is an algorithm F  that can 

make queries to a random oracle G  and produce a real signature σ  on input a message 

m  with probability at least ε . Let Gq  be a bound on the number of queries ( , , )j j jR V m  

made by F  to the random oracle G . Then there is a (4 ,0)Gq ε  knowledge extractor K  

such that ( ) 2Pr[ : ( )] 4
S

F
ID Gx sk x K m qε= ← ≥i . 

Proof: Assume that F  is a PPT Turing machine with a random tape ω  and makes queries 

to a random oracle G . For a random choice of ( , )Gω , F  can produce a real signature 
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σ ( , , , )R w T Z=  on input a message m  with probability at least ε . Since G  is a 

random oracle, the probability that ( , , )R V m , where V = ( , )
DIDe P T w sk+ ⋅ , is not asked to 

G  is at most 1 q . Hence we can define ( , )Ind Gω  to be the index j  such that 

( , , )R V m = ( , , )j j jR V m . We then define the following sets: 

{( , ) | ( )GS G Fω ω=  succeeds and (1 ( , ) )}GInd G qω≤ ≤  

{( , ) | ( )G
iS G Fω ω=  succeeds and ( ( , ) ,1 )}GInd G i i qω = ≤ ≤  

We now apply the Splitting Lemma for each ,1 Gi i q≤ ≤ . We denote by iG  the 

restriction of G  to queries of index strictly less than i . Let α = 2 Gqε , γ = Gqε . Since 

Pr[ ]i GS qε= , it is easy to see that there exists a subset iΩ  of executions by the Splitting 

Lemma such that: 

For any , iGω ∈Ω（ ） , and any /G , if / /Pr[( , ) | ] 2i i i GG S G G qω ε∈ = ≥ , then 

Pr[ | ] 1 2i iSΩ ≥ , where /G  is another random oracle. 

Since all the subsets iS  are disjoint and Pr[ | ]iS S  is 1 Gq , we have 

,
Pr[ (1 ), ( , ) | ]G i iG

i q G S S
ω

ω∃ ≤ ≤ ∈Ω ∩  

=
1

Pr[ | ]
G

i i
i q

S S
≤ ≤

Ω∑ ∩ =
1

Pr[ | ]Pr[ | ]
G

i i i
i q

S S S
≤ ≤

Ω∑ ≥ 1 2 .  

We let β  denote the index ( , )Ind Gω  corresponding to the successful pair. With 

probability at least 1 2 , we have 1 Gqβ≤ ≤  and ( , )G Sβ βω ∈Ω ∩  by the above 

argument. Hence with probability at least 2ε , F  can produce a real signature 

( , , , )R w T Zβ β βσ =  with such an index β . 

In the following, if we replay F  with the fixed random tape ω  but a randomly 

chosen oracle /G  such that /G Gβ β= , we know 
/

/ /Pr[( , ) | ] 2 G
G

G S G G qβ β βω ε∈ = ≥  

since ( , )G Sβ βω ∈Ω ∩ . Then  

/

/Pr[( , )
G

G Sβω ∈  and / /| ]h h G Gβ β β β≠ =  
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≥
/

/ /Pr[( , ) | ]
G

G S G Gβ β βω ∈ =
/

/Pr[ ]
G

h hβ β− = ( 2 1 )Gq qε≥ − 2 Gqε≈ , 

where / / ( , , , , ), ( , , , , )S D S Dh G ID ID R V m h G ID ID R V mβ β β β β β β β= = . 

Then with probability 2 Gqε  we get another success / /( , , , )R w T Zβ β βσ = , where 

( , )R e P r Pβ β= ⋅ , T t Pβ β= ⋅  , Vβ = ( , )
DIDe mpk t P w Qβ β⋅ + ⋅  and , ,r w tβ β β  are the 

fixed random coins used by F . 

Finally, we have the following equations with probability at least 2 4 Gqε : 

Z = ( )
SIDr P h w skβ β β⋅ + + ⋅   

/Z = /( )
SIDr P h w skβ β β⋅ + + ⋅  

Hence 
SIDsk = / 1 /( ) ( )h h Z Zβ β

−− ⋅ − . 

 

Theorem 2: Let the knowledge error k =0. Assume that there is an algorithm F  that can 

make queries to a random oracle G  and produce a valid simulated signature σ  on input a 

message m  with probability at least ε . Let Gq  be a bound on the number of queries 

( , , )j j jR V m  made by F  to the random oracle G . Then there is a (4 ,0)Gq ε  

knowledge extractor K  such that ( ) 2Pr[ : ( )] 4
D

F
ID Gx sk x K m qε= ← ≥i .  

Proof: Assume that F  is a PPT Turing machine with a random tape ω  and makes queries 

to a random oracle G . For a random choice of ( , )Gω , F  can produce a valid simulated 

signature σ ( , , , )R w T Z=  on input a message m  with probability at least ε . Since G  

is a random oracle, the probability that ( , , )R V m , where V = ( , )
DIDe P T w sk+ ⋅ , is not 

asked to G  is at most 1 q . Hence we can define ( , )Ind Gω  to be the index j  such that 

( , , )R V m = ( , , )j j jR V m . We then define the sets: 

{( , ) | ( )GS G Fω ω=  succeeds and (1 ( , ) )}GInd G qω≤ ≤  

{( , ) | ( )G
iS G Fω ω=  succeeds and ( ( , ) ,1 )}GInd G i i qω = ≤ ≤  
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We now apply the Splitting Lemma for each ,1 Gi i q≤ ≤ . We denote by iG  the 

restriction of G  to queries of index strictly less than i . Let α = 2 Gqε , γ = Gqε . Since 

Pr[ ]i GS qε= , it is easy to see that there exists a subset iΩ  of executions by the Splitting 

Lemma such that: 

For any , iGω ∈Ω（ ） , and any /G , / /Pr[( , ) | ] 2i i i GG S G G qω ε∈ = ≥ , then 

Pr[ | ] 1 2i iSΩ ≥ , where /G  is another random oracle. 

Since all the subsets iS  are disjoint and Pr[ | ]iS S  is 1 Gq , we have 

,
Pr[ (1 ), ( , ) | ]G i iG

i q G S S
ω

ω∃ ≤ ≤ ∈Ω ∩  

=
1

Pr[ | ]
G

i i
i q

S S
≤ ≤

Ω∑ ∩ =
1

Pr[ | ]Pr[ | ]
G

i i i
i q

S S S
≤ ≤

Ω∑ ≥ 1 2 .  

We let β  denote the index ( , )Ind Gω  corresponding to the successful pair. With 

probability at least 1 2 , we have 1 Gqβ≤ ≤  and ( , )G Sβ βω ∈Ω ∩ . Hence with 

probability at least 2ε , F  can produce a valid simulated signature ( , , , )R w T Zβ β β βσ =  

with such an index β . 

In the following, if we replay F  with the fixed random tape ω  but randomly chosen 

oracle /G  such that /G Gβ β= , we know 
/

/ /Pr[( , ) | ] 2 G
G

G S G G qβ β βω ε∈ = ≥  since 

( , )G Sβ βω ∈Ω ∩ . Then  

/

/Pr[( , )
G

G Sβω ∈  and / /| ]h h G Gβ β β β≠ =  

≥
/

/ /Pr[( , ) | ]
G

G S G Gβ β βω ∈ =
/

/Pr[ ]
G

h hβ β− = ( 2 1 )Gq qε≥ − 2 Gqε≈ , 

where / / ( , , , , ), ( , , , , )S D S Dh G ID ID R V m h G ID ID R V mβ β β β β β β β= = . 

Then with probability 2 Gqε  we get another success / / /( , , , )R w T Zβ β β βσ = , where 

Rβ = ( , ) ( , )
D D SID ID IDe Q Z e sk Qβ βλ− ⋅i  and the fixed random coins used by F  in this case 

are , , Zβ β βα λ  since /σ  is a valid simulated signature. Note that ( ) modw h qβ β βλ= − , 

/ /( ) modw h qβ β βλ= − . Hence /w wβ β≠ . This result also implies that /T Tβ β≠ . 
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Finally, we have the following equations with probability at least 2 4 Gqε : 

Tβ = ( )
DIDP w skβ βα ⋅ − ⋅   

/Tβ = /( )
DIDP w skβ βα ⋅ − ⋅  

Hence 
DIDsk = / 1 /( ) ( )w w T Tβ β β β

−− ⋅ − . 

 

Theorem 3: Assume 1 2( , )G G  satisfies the GBDH assumption. Suppose there is a 

polynomial-time adversary A  who makes at most  kq  UserKey queries, sq  Sign 

queries and vq  Verf queries can existentially forge a signature in our scheme with 

non-negligible success probability ε  in time at most t .Then there is an algorithm B  that 

solves the GBDH problem in 1 2( , )G G  with probability: 

 2/ (1 2 ( 2)) (2 ( 2) ))aa aε ε> − + + , where a = k s vq q q+ + . 

Proof: Algorithm B  is given as input a tuple ( , , , )P a P b P c P⋅ ⋅ ⋅ , where P  is the 

generator of the group 1G  with prime order q , , , qa b c Z∈ . Then B  works by 

interacting with the adversary A  as follows.  

The system parameters are params= 1 2( , ), ( , ), , , , ,G G e q P G H< + >i , where ,G H  

are the random oracles controlled by B .  

At first, B  initializes mpk  with c P⋅  and picks n  identities 1{ , , }nX ID ID= " . 

Then B  randomly picks two identities ,S DID ID X∈ . During the simulation, B  can 

answer A ’s queries as follows: 

H  Queries: B  maintains a list listH ={ , , ( ) }ID l H ID< > . On input an identity 

ID X∈  chosen by A , if the queried identity ID  appears in 1
listH , B  returns the 

previously assigned value. Otherwise, B  performs as follows: 

(1) { , }S DID ID ID∉ , B  picks a random l qZ∈  and responds to A  with 

( )H ID = l P⋅ . 
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(2) SID ID= , B  responds to A  with ( )H ID = a P⋅ . 

(3) DID ID= , B  responds to A  with ( )H ID =b P⋅ . 

G  Queries: B  maintains a list listG ={ ( , , , , ), _ }i jID ID R V m g hash< . On input 

( , , , , )i jID ID R V m  chosen by A , if the queried tuple appears in listG , B  returns the 

previously assigned value. Otherwise, B  picks a random k qZ∈  and responds to A  

with _g hash = k . 

UserKey queries: B  maintains a list L = { , }IDID sk< > . On input an identity 

ID X∈  chosen by A , if the queried identity ID  appears in L , B  returns the 

previously assigned value. Otherwise, B  performs as follows: 

(1) { , }S DID ID ID∉ , B  looks up listH  to extract a tuple , , ( )ID l H ID< >  and 

responds to A  with IDsk = l mpk⋅ . Then { }Corr Corr ID← ∪ . 

(2) { , }S DID ID ID∈ , B  returns ⊥  and aborts.  

Sign queries: On input a signer’s identity iID  , a verifier’s identity jID  and a 

message m  adaptively chosen by A , if i jID ID≠ , B  performs as follows: 

(1) |{ , } { , } | 1i j S DID ID ID ID ≤∩ : If { , }i S DID ID ID∉ , B  looks up L  to extract 

iIDsk  and returns DVσ ←SDV_Sign ( , , )
iID jsk ID m . Otherwise, B  looks up L  to extract 

jIDsk  and returns DVσ ←SDV_Sim ( , , )
jID isk ID m . 

(2) { , } { , }i j S DID ID ID ID= : B  returns ⊥  and aborts. 

Verf queries: Given a signer’s identity iID  , a verifier’s identity jID , and a 

message/signature pair ( , ( , , , ))m R w T Zσ =  provided by A , i jID ID≠ , if 

{ , }j S DID ID ID∉ , B  returns the result of running SDV_Verf ( , , , )
jID isk ID m σ . 

Otherwise, B  returns ⊥  and aborts. 

Finally, if B  does not abort during the simulation, A  will output a signer’s identity 
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iID , a verifier’s identity jID , i jID ID≠ , and a message/signature pair 

* * * * * *( , ( , , , ))m R w T Zσ = . If { , } { , }i j S DID ID ID ID≠ , B  returns ⊥  and aborts. 

Otherwise, if the forgery output by the adversary A  is successful, the probability that A  

does not issue a G  query is at most 1 q . Hence we know that * * *( , , , , )i jID ID R V m  is 

already in listG  with probability at least 1 1 q−  in this case. For the sake of simplicity, we 

only consider the case ,i S j DID ID ID ID= = . The other case ,i D j SID ID ID ID= =  can 

be analyzed similarly.  

So we have * * * *( , , , , )S Dh G ID ID R V m= , ( )
i SID ID SQ Q H ID a P= = = ⋅ , 

( )
j DID ID DQ Q H ID= = = b P⋅ , 

DIDsk = ( )cb P⋅ . Let ξ = *( , )e b P Z⋅ . If 

* * 1* ( )( , , , ( ) )h w
DBDHO a P b P c P Rξ

−+⋅ ⋅ ⋅ =1, then B  returns 
* * 1* ( )( ) h wRξ

−+ . The reason is 

that the following equations hold: 

*( , )
DIDe Q Z = *R i * *( , ( ) )

D SID IDe sk h w Q+ ⋅ , 

( , )abce P P =
* * 1* ( )( ) h wRξ

−+ . 

Now it remains to analyze the probability of B  not aborting. B  aborts if the 

following events happens: 

1E : B  aborts when answering UserKey queries.  

2E : B  aborts when answering Sign queries. 

3E : B  aborts when answering Verf queries. 

4E : A  outputs iID  and jID  such that { , } { , }i j S DID ID ID ID≠ . 

It is easy to see that 1Pr[ ]E = 2 n , 2Pr[ ]E = 2 ( 1)n n − , 3Pr[ ] 2E n= , 

4Pr[ ]E =1 (2 ( 1))n n− − . Hence the success probability /ε  of B  can be estimated as 

follows: 

/ε = (1 2 ) (1 2 ( 1)) (2 ( 1))k v sq q qn n n n n ε+− − − −  

> 2(1 2 ) (2 ))k v sq q qn n ε+ +−  
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Let k s va q q q= + + , 2( ) (1 2 ) (2 ))an n nη = − . Then ( )nη  is maximized at 

( 2)n a= + . Hence for large a , /ε > 2

2
exp(2) a

ε
⋅

. 

The running time of B  can be calculated as  

(( 2) 5 2 ) (2 3 )s v m s v pt n q q t q q t+ − + + + + + ( )kq O n  

where mt  is the time to compute a scalar multiplication in 1G  and pt  is the time to 

compute a pairing operation. 

 

Theorem 4: Our IDSDVS scheme is non-transferable against a polynomial-time distinguisher 

D  who makes at most kq  UserKey queries, sq  Sign queries,  simq  Sim queries and vq  

Verf queries.  

Proof: According to Lemma 1, the distributions of δ (the real signatures), /δ (the simulated 

signatures) are statistically close. Consequently, it is infeasible for a polynomial-time 

distinguisher D  to distinguish the simulated signatures from the real signatures. Hence our 

IDSDVS scheme is non-transferable.  

 

7. Performance Analysis 

In this section, we evaluate the performance of our scheme and other related schemes 

proposed in [3, 4, 9] in terms of the signature length and computational cost. In table 1, Mu(G) 

denotes a multiplication operation in group G. Exp, Pair and Hash denote an exponentiation 

operation, a pairing operation and a hash operation respectively. Although the scheme of [3] is 

more efficient than other schemes, no formal security analysis is presented for it. In addition, 

our scheme is proven to be non-delegatable. 

Table 1. Performance comparison with other related schemes 

Scheme Signature 

length 

Signing cost Verification cost Non-delegatable

Zhang-Mao 

scheme [9] 

3|G1| 4Mu(G1)+1Hash+ 

1Inv+1Mu(Zq) 

3P+2Mu(G2)+ 

1Hash 

No 
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Kang et al.’s 

scheme [4] 

2|G1| 2P+3Mu(G1)+1Hash 1P+1Mu(G2)+ 

1Mu(G1) 

No 

Kang et al.’s 

scheme [3] 

2|G1| 2Mu(G1)+1Hash+ 

1P 

1Hash+1P No 

Our scheme 3|G1|+1|Zq| 5Mu(G1)+1Hash+ 

2P 

3P+2Mu(G1)+ 

1Mu(G2)+1Hash 

Yes 

 

8.Conclusion 

    Some previously proposed IDSDVS schemes [4, 9] are vulnerable to the attack described 

in [3]. The essence of this attack is that the schemes of [4, 9] are delegatable. In this paper, a 

security model for non-delegatable IDSDVS schemes is established. Then a novel 

non-delegatable IDSDVS scheme based on pairing is presented. In the following, we provide 

security proofs to show that our scheme is non-delegatable, non-transferable and unforgeable 

under the Gap Bilinear Diffie-Hellman assumption. However，the security of our scheme is 

not tight as the reduction uses the Forking Lemma. It remains to be seen if there exists a 

non-delegatable IDSDVS scheme that enjoys a tight reduction without using the Forking 

Lemma. Finally, we compare the efficiency with other related IDSDVS schemes. 
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