
Improved Cryptanalysis of SHAMATA-BC

Adem Atalay, Orhun Kara ⋆ and Ferhat Karakoç

TÜBİTAK UEKAE

{adematalay,orhun,ferhatk}@uekae.tubitak.gov.tr

Abstract. We state the design flaws of the 1-round block cipher SHA-

MATA-BC, designed by Fleishmann and Gorski by using the building

blocks of SHAMATA hash function. We fix the flaws and then show that

the amended version of SHAMATA-BC is much weaker. We believe that

there is no connection between security level of SHAMATA as a hash

function and that of SHAMATA-BC as a block cipher.

Key words: Hash function, SHAMATA, SHAMATA-BC, SHA-3.

1 Introduction

SHAMATA is a register based hash function, submitted to NIST as one
of the contestant algorithms for SHA-3 competition [1].

SHAMATA is not a block cipher based hash function and hence it
has no internal block cipher. On the other hand, in a very recent study,
E. Fleismann and M. Gorski describe a one-round block cipher by using
the building blocks of SHAMATA, which they call ”SHAMATA-BC” and
show that SHAMATA-BC is extremely very weak by deducing the key
from one plaintext/ciphertext pair [5]. Nevertheless, we should emphasize
that this attempt can neither make SHAMATA a block cipher based
hash function nor assign SHAMATA-BC as the internal block cipher of
SHAMATA.

We have seen that there are some flaws in both the definition and
the design of SHAMATA-BC. In this note, we state the design flaws and
fix them. Then, we show that the amended version of SHAMATA-BC is
much weaker.

In SHAMATA, data is loaded into the registers and then the regis-
ters are clocked like sponge constructions [2]. The clocking mechanism is
invertible. Roughly speaking, the clocking and data loading mechanism
is defined as a block cipher in [5], so called SHAMATA-BC. Hence, it is
in fact somehow trivial that SHAMATA-BC is a very weak block cipher.

⋆ Supported in part by the European Commission through the project FP-7 ICE under

the project grant number 206546.

Indeed, one can recover the current data (which is perceived as key in
[5]) if the current internal state (which is perceived as plaintext in [5])
and the next internal state (which is perceived as ciphertext in [5]) is
known. Almost all the register based hash constructions including sponge
constructions have such a property. If one can construct an attack on
SHAMATA hash function by making use of the attack on SHAMATA-
BC, then it is no doubt that this type of attack can be easily generalized
for almost all sponge constructions having invertible next state function.

2 Description of SHAMATA-BC and Its Analysis

SHAMATA-BC is defined by E. Fleishmann and M. Gorski ([5]) by mak-
ing use of the building blocks of SHAMATA. This block cipher is of the
form:

SHAMATA-BC : {0, 1}512 × {0, 1}128 → {0, 1}512

where a 512 bit message block is encrypted using a 128 bit key. Following
the notation in [5], a plaintext is given as

X = B[0]||B[1]||B[2]||B[3]

and its corresponding ciphertext is

C = B∗[0]||B∗[1]||B∗[2]||B∗[3].

Let MC be the MixColumns operation. Let D be the key entered the
encryption, P = MC(D), Q = MC(DT), where DT is the transpose of
data D and let P ′ = P (1)||Q(0) and Q′ = Q(1)||P (0). The encryption of
X is described as:

B[2] = B[2] ⊕ P ⊕ blockno, (1)

B[3] = B[3] ⊕ Q ⊕ blockno,

K[3] = K[3] ⊕ P ′,

K[5] = K[5] ⊕ Q,

K[7] = K[7] ⊕ P,

K[11] = K[11] ⊕ Q′,

B∗[0] = B[2],

B∗[1] = B[3],

B∗[2] = ARF r(B[2]) ⊕ B[0] ⊕ K[9] ⊕ K[0],

B∗[3] = ARF r(B[3]) ⊕ B[1] ⊕ K[10] ⊕ K[1].

The Attack: E. Fleishmann and M. Gorski propose an attack on SHAMATA-
BC. The key can be extracted using only one plaintext/ciphertext pair
by assuming that K is empty at the beginning. The key is deduced by
solving:

SB−1(SR−1(MC−1(B∗[2] ⊕ B[0]))) ⊕ B[2] ⊕ blockno = P (2)

SB−1(SR−1(MC−1(∆B∗[3] ⊕ ∆B[1]))) ⊕ B[3] ⊕ blockno = Q. (3)

3 Design Flaws and Improved Cryptanalysis

Flaws: It is evident that SHAMATA-BC is not well-defined. First of all,
it is given as a function with a domain space and a range space given in
[5] as

SHAMATA-BC : {0, 1}512 × {0, 1}128 → {0, 1}512.

However, the input space of SHAMATA-BC includes some block of 1536-
bit register K as well as B-register and the data D. Hence, the domain
space does not fit the given parameters. It seems that SHAMATA-BC
takes some parameters different from plaintext and key. People may ask
what, for instance, K[0] is in the definition of SHAMATA-BC. Well, in-
deed, we do not know as well. In addition, we should notice that we could
not give a meaning to the ∆ operations in Equation 3.

Another flaw is the ambiguous definition of blocks of the B regis-
ter. For instance, B[2] is updated by Equation 1. However, B[2] used in
Equation 2 is the original plaintext block without updating. In general,
the updating procedure should update the outputs (B∗s) rather than the
inputs (B’s). So, we can rewrite the update procedure simply as

B∗[2] = B[2] ⊕ P ⊕ blockno,

B∗[3] = B[3] ⊕ Q ⊕ blockno,

K∗[3] = K[3] ⊕ P ′,

K∗[5] = K[5] ⊕ Q,

K∗[7] = K[7] ⊕ P,

K∗[11] = K[11] ⊕ Q′,

B∗[0] = B∗[2],

B∗[1] = B∗[3],

B∗[2] = ARF r(B∗[2]) ⊕ B[0] ⊕ K[9] ⊕ K[0],

B∗[3] = ARF r(B∗[3]) ⊕ B[1] ⊕ K[10] ⊕ K[1].

One more flaw is the definition B∗[0] and B∗[1]. They should be de-
fined as

B∗[0] = B[2] ⊕ P ⊕ blockno,

B∗[1] = B[3] ⊕ Q ⊕ blockno

rather than

B∗[0] = B[2], (4)

B∗[1] = B[3] (5)

according to the set of equations given in the description of SHAMATA-
BC. It is clear from the equations in the definition of SHAMATA-BC
that the half of the plaintext, i.e., B[2] and B[3], is influenced by the
cipher key. However, the designers of SHAMATA-BC claims the opposite
by pointing at the misleading equations, e.g., Equation 4:

At this stage it is obvious that half if 1 the plaintext, i.e., B[2]
and B[3], is not influenced by the cipher key.

Improved Attack: Deducing the key from the amended block cipher
is much easier this time. Even, we do not need to assume that K is empty.
It is obvious that one can deduce both P and Q just by XOR’ing the left
part of the ciphertext with the right part of the corresponding plaintext:

P = B∗[0] ⊕ B[2] ⊕ blockno and

Q = B∗[1] ⊕ B[3] ⊕ blockno.

So, we do not need to operate the inverse functions of SubBytes, ShiftRows
and MixColumns to extract P and Q.

4 Conclusion and Discussion

In this note, we have shown some flaws in the design of the block ci-
pher SHAMATA-BC. We fix the flaws and then improve the attack on
SHAMATA-BC mounted by the designers of SHAMATA-BC. Hence, we
have shown that the block cipher SHAMATA-BC is extremely weak.

SHAMATA is a register based hash function. Data is loaded into the
registers and then the registers are clocked like sponge constructions [2].
The clocking mechanism is invertible. Roughly speaking, the clocking and

1 should be “of” we guess!

data loading mechanism is described as SHAMATA-BC. Hence, It is in
fact somehow trivial that SHAMATA-BC is a very weak block cipher.
Indeed, one can recover the current data (which is perceived as key in
[5]) if the current internal state (which is perceived as plaintext in [5])
and the next internal state (which is perceived as ciphertext in [5]) is
known. Almost all the register based hash constructions including sponge
constructions have such a property.

The security of a hash function based on a block cipher depends on
the security of its internal block cipher like SHA-1[6]. The underlying
block cipher SHACAL-1 has been successfully attacked in [3, 4] which
influences the security level of SHA-1. Consequently, it is a plausible and
also a common strategy to analyze the underlying block cipher of a block
cipher based hash function to deduce information about its security.

SHAMATA is not a block cipher based hash function and it has no
internal block cipher. However, several block ciphers can be designed by
using the building blocks of SHAMATA. One of them, and maybe the
weakest one, is SHAMATA-BC. Nevertheless, we should emphasize that
this attempt can neither make SHAMATA a block cipher based hash func-
tion nor assign SHAMATA-BC as the internal block cipher of SHAMATA.

Disclaimer

We, as the designers of SHAMATA, have no concern with the block ci-
pher SHAMATA-BC and cannot give any guarantee or warranty that
SHAMATA-BC is fit for any particular purpose.

References

1. A.Atalay, O.Kara, F.Karakoc, C.Manap. SHAMATA Hash Function Algorithm

Specifications, 2008. Available online at http://www.uekae.tubitak.gov.tr

/uekae content files/crypto/SHAMATA Specification.pdf

2. G.Bertoni, J.Daemen, M. Peeters, G.V. Assche. Sponge Functions. Ecrypt Hash

Workshop 2007

3. E.Biham, O.Dunkelman, N.Keller. A simple Related-Key Attack on the Full

SHACAL-1. In M. Abe, editor. CT RSA, LNCS volume 4377, p20-30, Springer

2007.

4. O.Dunkelman, N.Keller, J.Kim. Related-Key Rectangle Attack on the Full

SHACAL-1. In E.Biham and A.M.Youssef, editors, Selected Areas in Cryptography,

LNCS volume 4356, p28-44,Springer,2006.

5. E.Fleishmann and M.Gorski. Some Observations on SHAMATA, 2008. Available

online at http://www.uni-weimar.de/cms/fileadmin/medien/medsicherheit

/Research/SHA3/Observations for SHAMATA.pdf

6. National Institute of Standards and Technology. Cryptographic Hash Project.

Available online at http://csrc.nist.gov /groups /ST/hash/index.html

7. X.Wang, Y.Lisa, H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor

CRYPTO, LNCS volume 3621, p17-36, Springer, 2005.

