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Abstract

In this paper we consider chosen-ciphertext attacks against non-
commutative Polly Cracker-type cryptosystems. We present several
versions of these attacks, as well as techniques to counter them. First
we introduce a chosen-ciphertext attack, which assumes a very sim-
ple private key. We then present generalizations of this attack which
are valid in more general situations, and propose a simple but effec-
tive technique to counter these attacks. Finally, we show how this
technique can also be used to counter the adaptive chosen- ciphertext
attacks against noncommutative Polly Cracker-type cryptosystems.
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1 Introduction

This paper presents some applications of Gröbner bases in public-key cryp-
tography. The Algorithmic theory of Gröbner bases was developed by Bruno
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Buchberger ([4]) for the commutative case and later for the noncommutative
case by Teo Mora ([18]). The cryptosystem we are about to consider is the
Polly Cracker public-key cryptosystem. Since it was first proposed by [9],
a number of authors have studied the Polly Cracker cryptosystem, which
has its security based on the intractability of the ideal membership problem
for a polynomial algebra over a finite field. Most of these works, (see [8],
[10], [12], and [22]) have focused on various attacks against the Polly Cracker
cryptosystem. Only a few papers, such as [16], [15], [14] have attempted to
develop secure systems based on the ideal membership problem. The authors
are aware of the fact that the Polly Cracker cryptosystem is not widely sup-
ported in the cryptographic community. Nevertheless, it is also true that the
full potential of some concept may be out of reach at the moment and more
intensive study is needed to reveal it. This paper is trying to move further on
the way of understanding the Polly Cracker better, so that we might better
comprehend its weaknesses and thus giving more tools to overcome them.

The noncommutative variant of the Polly Cracker cryptosystem was first
proposed by [21] and has been studied by [1]. In this article we extend
the results of [10] and [22] in presenting a chosen-ciphertext attack against
certain instances of noncommutative Polly Cracker-type cryptosystems (ini-
tially in [5]). We then present generalized versions of this attack, which
can be used against virtually all Polly Cracker-type cryptosystems. After-
wards we propose a simple but effective technique to counter these attacks.
We also consider adaptive chosen-ciphertext attacks which were proposed in
[7] and [20]. We specifically consider an adaptive chosen-ciphertext attack
against Polly Cracker cryptosystems, which is described by [13], and present
a technique to counter it. It should be mentioned that chosen-ciphertext
attacks on public-key cryptosystems can be prevented using supplementary
techniques like hash functions. Good examples here are Optimal Asymmetric
Encryption Padding (OAEP), [3], and Rapid Enhanced-security Asymmetric
Encryption Transform (REACT), [19]. But it is definitely of interest to pro-
vide protective mechanisms within the cryptosystem itself without the use
of these supplementary techniques. This paper elaborates on the latter.

2 Preliminaries

There are several good references to public-key cryptography, for example
see [17] and [13]. Rather than re-hash this well- established concept, we

2



will concentrate on the some background information on Polly Cracker-type
cryptosystems.

[9] proposed a class of combinatorial-algebraic cryptosystems, in which
they showed how to use computationally hard combinatorial problems to find
trap-door functions that serve as the source of public keys. The generalized
version of this class of cryptosystems, which has its security based on the
intractability of the ideal membership problem for a commutative algebra
over a finite field, is called the Polly Cracker cryptosystem. We present the
generic version of the (commutative) Polly Cracker cryptosystem below:

Let K be a finite field, and X a finite set of variables. Let I be an ideal
in K[X] and suppose G = {g1, g2, . . . , gt} is a Gröbner basis for I. Then G
is used as the private key for the system.

The public key consists of a set Q = {qj}
s

j=1
of polynomials in the ideal

I, which are chosen so that the computation of a Gröbner basis for 〈Q〉 is
infeasible, and the message space M consists of polynomials, whose terms are
not contained in Lt(I), the leading term ideal of I, i.e. the message space M
consists of polynomials that are reduced with respect to I.

Encryption is achieved by randomly choosing polynomials h1, h2, . . . , hs ∈
K[X], setting p =

∑s

j=1
hjqj , and letting c = p+m (where m is the message).

Thus, the ciphertext is the sum of p ∈ 〈Q〉⊂ I and m /∈ I, where m is reduced
with respect to G. Since G is a Gröbner basis for I reducing c modulo G
yields the unique remainder NG(c) = m. Thus, the ciphertext, is decrypted
by applying the multivariable division algorithm to c = p + m. On the other
hand division by a set that is not a Gröbner basis does not yield a unique
remainder. Thus, attempts at decryption by the public key, B will not (in
theory) yield the correct plaintext message m. We note that the encryption
here is probabilistic rather than deterministic.

To summarize, we have the following:
Private Key: A Gröbner basis G = {g1, g2, . . . , gt} for an ideal I of a poly-
nomial ring K[X] over a finite field K.

Public Key: A set Q =

{

qj : qj =
sj
∑

i=1

hijgi

}s

j=1

⊂ I such that determining

a Gröbner basis for 〈Q〉 is computationally infeasible.
Message Space: The set of all polynomials M that do not reduce to 0
modulo G.

Encryption: c = p + m, where p =
m
∑

j=1

hjqj is a polynomial in J = 〈Q〉 and

m ∈ M is a message.
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Decryption: Reduction of c modulo G yields the message, m.

2.1 Noncommutative Gröbner bases

In this section, we present some background on the theory of noncommutative
Gröbner bases, on which noncommutative Polly Cracker-type cryptosystems
are based. Most of the theory is analogous to commutative Gröbner basis
theory. However one significant difference is that unlike the commutative
case, most ideals of noncommutative algebras do not have finite Gröbner
bases. We refer the reader to [11] for details.

Let K be a finite field, and let R = K〈x1, x2, . . . , xn〉 be the free asso-
ciative algebra in n non-commuting variables. By a monomial, we mean a
(finite) noncommutative word in the alphabet {x1, x2, . . . , xn}. We use the
letter B to denote the set of monomials, and note that if f ∈ R, then f can
be represented as f =

∑

i αibi, where αi ∈ K with only finitely many αi 6= 0,
and bi ∈ B. If the coefficient of bi in f =

∑

γjbj is not zero, then bi is said
to occur in f . The set of all monomials that occur in f , is called the support
of f , and is denoted supp (f).

Next, we define multiplication in B by concatenation, and note that B is
a multiplicative K-basis of R, i.e. B is a K-basis of R and b, b′ ∈ B implies
that b · b′ ∈ B.

If Y ⊂ R, we use the symbol 〈Y 〉 to denote the ideal generated by Y .
We say that an ideal I in R is a monomial ideal, if it can be generated by
elements of B.

A well-order > on B is said to be admissible if it satisfies the following
conditions for all p, q, r, s ∈ B:

1. if p < q then pr < qr

2. if p < q then sp < sq and

3. if p = qr then p ≥ q and p ≥ r.

If > is an admissible order on the monomials and f ∈ R, we say that bi is
the tip of f , denoted tip(f), if bi occurs in f and bi ≥ bj for all bj occurring
in f . We denote the coefficient of tip(f) by Ctip(f). Furthermore, if X ⊆ R,
then we write Tip(X) = {b ∈ B : b = tip(f) for some nonzero f ∈ X} and
NonTip(X) = B \ Tip(X).
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Definition 2.1 If > is an admissible order on K〈x1, x2, . . . , xn〉, and I is a
two-sided ideal of R, we say that G ⊂ I is a Gröbner basis for I with respect
to > if 〈Tip(G)〉= 〈Tip(I)〉. Equivalently, G ⊂ I is a Gröbner basis of I if
for every b ∈ Tip(I), there is some g ∈ G such that tip(g) divides b, i.e. for
every f ∈ I there exists g ∈ G, and p, q ∈ B such that p · tip(g) · q = tip(f).

We note that if I is an ideal of R, then R = I ⊕ Span(NonTip(I)), as
vector spaces over K. In particular, every nonzero r ∈ R can be written
uniquely as r = ir + NI(r), where ir ∈ I and NI(r) ∈ Span(NonTip(I)).
NI(r) is called the normal form of r with respect to I.

Next, we define the concept of reduced (noncommutative) Gröbner bases.
In order to do this, we note that if I is a monomial ideal of R, then I has a
minimal monomial generating set. That is, there is a unique set of generators
of I, none of which can be omitted and still generate I. We note, however,
that this minimal monomial generating set need not be finite. This differs
from the commutative case, in which Dickson’s lemma [6] states that every
monomial ideal of a commutative ring can be generated by a finite number
of monomials. We are now ready to give the following:

Definition 2.2 Let I be an ideal in R, let IMON be the ideal generated by
Tip(I), and let T be the unique minimal monomial generating set of IMON .
Then the reduced Gröbner basis for I, is G = {t − N(t) : t ∈ T}.

The following properties of a reduced Gröbner basis are easy to see:

1. G is a Gröbner basis for I.

2. If g ∈ G then the coefficient of tip(g) is 1.

3. If gi, gj ∈ G with gi 6= gj , and bi is any monomial that occurs in gi,
then tip (gj) does not divide bi.

4. If g ∈ G then g − tip(g) ∈ Span(NonTip(I)).

5. Tip(G) is the minimal monomial generating set for IMON .

We also emphasize that in this setting, the reduced Gröbner basis of
an ideal may be infinite. In fact, even finding partial Gröbner bases for
many ideals seems intractable. These facts are used in the construction of
noncommutative Polly Cracker-type cryptosystems.

5



Before presenting the system, we need the notion of reduction (division)
of a polynomial g by a set of polynomials, which may be defined as follows:

Given an ordered subset, F = {f1, f2, . . . , fk} of R, and g ∈ R, reduc-
ing (dividing) g by F means finding non-negative integers t1, t2, . . . , tk and
elements uij, vij, r ∈ R, for 1 ≤ i ≤ k and 1 ≤ j ≤ ti such that:

1. g =
∑k

i=1

∑ti
j=1

uijfivij + r.

2. tip(g) ≥ tip(uijfivij) for all i and j.

3. tip(fi) does not divide any monomial that occurs in r, for 1 ≤ i ≤ k.

If r 6= 0, then tip(r) ≤ tip(g), and r is the remainder of the division.

As in the commutative case, the order on the set F = {f1, f2, . . . , fk}
affects the outcome of the division algorithm. However, if G is a Gröbner
basis, then the remainder r of the division of f by G, is independent of the
order of g1, g2, . . . , gk in G.

2.2 Noncommutative Polly Cracker-type cryptosystems

[21] presents a class of cryptosystems whose security is based on the in-
tractability of the ideal membership problem for a noncommutative free al-
gebra over a finite field. In this section, we summarize the generic version
of these cryptosystems, which form a noncommutative analogue of the Polly
Cracker cryptosystem. We also summarize some of the techniques for deter-
mining private keys, which were originally presented in [21].

Let K be a finite field, and R = K〈x1, x2, ..., xn〉 be the noncommutative
free algebra in n variables over K. Let I be a two-sided ideal of R, and
suppose G = {g1, g2, . . . , gt} is a finite Gröbner basis for I. Then G is used
as the private key.

The public key, Q = {q1, q2, . . . , qs}, is a finite set of polynomials in
I, which are constructed as follows: Given G = {g1, g2, . . . , gt}, fix r ∈
{1, 2, . . . , s}. For each i, 1 ≤ i ≤ t, suppose dir ∈ N. For each i, r, j, 1 ≤ i ≤
t, 1 ≤ j ≤ dir, choose frij , hrij ∈ R, and set qr =

∑t

i=1

∑dir

j=1
frijgihrij . In

addition, Q is constructed so that J = 〈Q〉 does not have a finite Gröbner
basis, and such that finding a partial Gröbner basis for J is intractable. In
this context, we have the following cryptosystem:
Private Key: A Gröbner basis, G = {g1, g2, . . . , gt} for a two-sided ideal,
I, of a noncommutative algebra K〈x1, x2, ..., xn〉 over a finite field, K.
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Public Key: A set, Q =
{

qr : qr =
∑t

i=1

∑dir

j=1
frijgihrij

}s

r=1

⊂ I, chosen so

that 〈Q〉 does not have a finite Gröbner basis, and such that finding a partial
Gröbner basis for J is intractable.
Message Space: The message space consists of polynomials that do not
reduce to zero modulo I. i.e. M ⊆ {m ∈ R : supp (m) ∈ NonTip(I)}, where
supp (f) is the support of f .
Encryption: c = p+m, where m ∈ M is a message and p =

∑s

i=1

∑kir

j=1
FrijqiHrij

is a polynomial in J = 〈Q〉⊂ I. Here the Frij and the Hrij are randomly
chosen.
Decryption: Reduction of c modulo G yields the message, m.

Some simple examples of cryptosystems of this type that are presented
in [21] include:

Example 2.3 Let K be a finite field, K〈x1, x2, . . . , x6〉 be the free algebra
over K in six non-commuting variables. Let Z =

∏

6

i=1
xi and c0, c1, . . . , c6 ∈

K \{0} be arbitrary constants. Set g = Z+
∑

6

i=1
cixi+c0 ∈ K〈x1, x2, . . . , x6〉

as the private key. The public key B = {q1, q2} consists of the polynomials
q1 = fgh + hg, q2 = hgf + gh, where f = X +

∑

6

i=1
aixi + a0, h = Y +

∑

6

i=1
bixi+b0 ∈ K〈x1, x2, . . . , x6〉, X = x1·

∏

5

i=2
ρ(xi)·x6, Y = x1·

∏

5

i=2
σ(xi)·

x6, where ρ, σ are distinct, nontrivial permutations of {x2, x3, x4, x5}, and
a0, a1, . . . , a6, b0, b1, . . . , b6 ∈ K are nonzero constants. In this setting, the
message space M ⊆ span (NonTip(〈g〉)) could consist of linear polynomials
in K〈x1, x2, . . . , x6〉. Alternatively, fix D ∈ N, then M could consist of
univariate polynomials of degree ≤ D in one of the variables.

Example 2.4 Let K be a finite field, K〈x, y〉 the noncommutative free alge-
bra in two variables (over K). Let α, β, γ, δ ∈ K, and set g = αxy+βx+γy+δ
as the private key. Since the public key has no direct effect on the attacks
that we consider in this article, we omit its description here, and refer the
reader to [21] for the same. As in the previous example, the message space,
M ⊆ span (NonTip(〈g〉)) could consist of linear polynomials. Alternatively,
fix D ∈ N. Then M could consist of univariate polynomials of degree ≤ D
in one of the variables.
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3 The Attack

Several issues related to the security of the commutative version of the Polly
Cracker cryptosystem have been raised by [2], [8], [10], [12], and [22]. In
the noncommutative case, some of these issues (e.g. linear algebra attacks)
and possible countermeasures against them are discussed by [21]. The linear
algebra attacks are ciphertext-only attacks, i.e. an attacker only has one
ciphertext and tries to decipher it without determining or using the secret
key. Even if such attacks are successful, they do not result in a total compro-
mise of the system, since the attacker is only able to decrypt the ciphertext
to which he/she has access - and that too, after a substantial amount of
computation. In this section we what to address so-called chosen-ciphertext
attacks. In these attacks, the attacker has access to the decryption device
as a black box, i.e. he/she has the ability to decrypt a finite number of
ciphertext messages, without actually knowing the details of the decryption
algorithm. In this case, the attacker can encrypt carefully chosen messages
using the public key, and then decrypt the corresponding ciphertest using
his/her temporary access to the decryption black box. By using publicly
known information to construct “chosen” ciphertext, which reveals parts of
the private key, when decrypted, he/she is able to reconstruct a version of
the private key in a finite number of steps. In the adaptive chosen-ciphertext
attacks (discussed in section 6) the choice of ciphertext to generate depends
on some previous information obtained by the attacker. We now describe a
basic chosen-ciphertext attack against the cryptosystems presented in exam-
ples 2.3 and 2.4, which reveals the private key, thus completely compromising
the security of these systems. We need the following

Definition 3.1 Let f ∈ K〈x1, x2, . . . , xn〉. We define the tail of f by tail(f) =
f − Ctip(f) · tip(f).

We begin by summarizing a simplified version of the attack, which is used
to cryptanalyze the cryptosystems described in Examples 2.3 and 2.4:

Attack 3.2

Assumptions:

1. Alice’s private key consists of a single polynomial, g, and tip(g) is
publicly known or can be easily determined from her public key.
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2. The cryptanalyst, Catherine, has temporary access to Alice’s decryp-
tion black box, i.e. Catherine is able to decrypt at least one

ciphertext message that she sends, without actually knowing Alice’s
private key.

Method:
Catherine creates a fake ciphertext message, by encrypting tip(g). i.e.

she constructs a ciphertext polynomial, C =
∑s

i=1

∑kir

j=1
FrijqiHrij + tip(g),

where Q = {q1, q2, . . . qs} is Alice’s public key, and Frij , Hrij are arbitrary
polynomials. She then uses her temporary access to Alice’s decryption black
box to “decrypt” this pseudo-ciphertext. Since

∑s

i=1

∑kir

j=1
FrijqiHrij ∈ 〈g〉, it

vanishes, when reduced modulo g, and the output of the decryption algorithm
(reduction of C modulo g) yields f = tip(g)− [Ctip(g)]−1 ·g = − [Ctip(g)]−1 ·
tail(g). Next, Catherine constructs g′ = tip(g) + [Ctip(g)]−1 · tail(g). Since
Ctip(g) · g′ = Ctip(g) · tip(g) + tail(g) = g, it follows that 〈g〉= 〈g′〉, and
that g′ is a Gröbner basis for 〈g〉. Hence, Catherine can decrypt all of Alice’s
messages by using g′, i.e. knowing g′ has the same effect as knowing Alice’s
private key.

We next show that this attack works against any Polly Cracker-type cryp-
tosystem (commutative or noncommutative), in which the private key is a
reduced Gröbner basis, consisting of more than one polynomial. We now
describe how such an attack might work:

Attack 3.3

Assumptions:

1. Alice’s private key consists of a finite reduced Gröbner basis G =
{g1, g2, . . . gm}.

2. tip(gα) is publicly known for all α = 1, 2, . . .m, or can be easily deter-
mined from Alice’s public key.

3. The cryptanalyst, Catherine, has temporary access to Alice’s decryp-
tion black box, i.e. Catherine is able to decrypt a limited number of
ciphertext messages that she sends, without actually knowing Alice’s
private key.
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Method:
As in Attack 3.2, Catherine begins by constructing a “ciphertext” poly-

nomial C1 =
∑s

i=1

∑kir

j=1
FrijqiHrij + tip(g1), which encrypts the fake plain-

text, tip (g1). She then uses her temporary access to Alice’s decryption
black box to “decrypt” this pseudo-ciphertext. Once again, the encipher-
ing polynomial,

∑s

i=1

∑kir

j=1
FrijqiHrij ∈ 〈G〉 vanishes, when reduced mod-

ulo G. Moreover, since G is a reduced Gröbner basis, tip (gα) does not
divide any monomial that occurs in tail (g1) for any gα = 2, 3, . . .m. So
the output of the decryption algorithm (reduction of C1 modulo G) yields
f1 = tip(g1) − [Ctip(g1)]

−1 · g1 = − [Ctip(g1)]
−1 · tail(g1). Next, Cather-

ine constructs g′

1
= tip(g1) + [Ctip(g1)]

−1 · tail(g1). She repeats this pro-
cess for each α = 1, 2, . . .m, and obtains a set, G′ = {g′

1
, g′

2
, . . . g′

m}, where
g′

α = tip(gα) + [Ctip(gα)]−1 · tail(gα) ∀α = 1, 2, . . .m. Since Ctip(gα) · g′

α =
Ctip(gα) · tip(gα) + tail(gα) = gα ∀α = 1, 2, . . .m, it follows that 〈G〉= 〈G′〉,
and that G′ is a Gröbner basis for 〈G〉. Hence, Catherine can decrypt all of
Alice’s messages by using G′. In fact, G′ is an alternative version of Alice’s
private key.

We note that in most implementations of chosen-ciphertext attacks, it
is a convention to disguise the fake message which is used. This is done to
obscure the fact that the ciphertext contains some aspect of the private key
hidden within it. One technique that can be used to do this in the case of
the attacks that we have presented above, could be as follows:

Given tip(gα) ∈ Tip(G), Catherine chooses polynomials tα and sα, such
that tip (gβ) does not divide any monomial that occurs in tα · tip (gα) · sα,
for any gβ ∈ G \ {gα}. She then creates the pseudo-ciphertext, Cα =
∑s

i=1

∑kir

j=1
FrijqiHrij+tα·tip (gα)·sα. Proceeding, as above, she uses her tem-

porary access to Alice’s decryption black box to “decrypt” the fake cipher-
text, and obtains the plaintext f = − [Ctip(gα)]−1 tα · tail (gα) · sα. She then
uses linear algebra, and her knowledge of tα and sα to deduce − [Ctip(gα)]−1 ·
tail (gα) from fα, and constructs the polynomial, g′

α = tip(gα)+[Ctip(gα)]−1 ·
tail(gα). She proceeds with the rest of the attack, as above.

We note that the conditions on tα and sα are necessary to ensure that
the fake ciphertext, Cα, decrypts to − [Ctip(gα)]−1 tα · tail (gα) · sα, and that
none of its terms vanish during the decryption process. We note also that
polynomials which satisfy this condition could exist in theory. This is due
to the fact that G is a reduced Gröbner basis. So tip (gβ) does not divide
tip (gα), for any gβ ∈ G \ {gα}. Furthermore, since Tip(G), does not contain
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any monomials that are in the message space M the polynomials, tα and sα

could be made up of monomials in M . This does not guarantee that the
polynomials will satisfy the required condition, since it does not preclude the
possibility that there exists some β 6= α such that tip (gβ) divides tα · tip (gα)
or tip (gα) · sα. However, in the absence of concrete examples, this is a good
starting point if Catherine wishes to disguise the fake ciphertext. On the
other hand an element of Tip(G) could always occur in a legitimate ciphertext
polynomial, and any technique used to disguise the fact that tip (gα) is part
of the message may be redundant.

4 Generalizing the attack

In view of the attacks presented in the previous section, one might be tempted
to achieve security against chosen-ciphertext attacks, by designing a Polly
Cracker-type cryptosystem, whose private key is a Gröbner basis which con-
tains more than one polynomial, and which is not reduced. However, in this
section, we show how the attack presented in section 3 can be used against
a Polly Cracker-type cryptosystem, even if the private key is not a reduced
Gröbner basis. First, we do this under the assumption that the tip set of
the private key is publicly known or that it can be easily determined from
publicly known information. In a second version of this attack, we also show
how it can be used without knowledge of the tip set of the private key, if the
admissible order used in the decryption algorithm is known.

Theorem 4.1

Any Polly Cracker-type cryptosystem is vulnerable to chosen-ciphertext
attacks if the following conditions are satisfied:

1. The private key consists of a finite Gröbner basis G = {g1, g2, . . . gm}.

2. tip(gα) is publicly known or can be easily determined from publicly-
known information for all gα ∈ G, where G = {g1, g2, . . . gm}.

3. The cryptanalyst has temporary access to the decryption black box.

Proof.

Let G = {g1, g2, . . . gm} be the private key. Then the public key is of

the form Q =
{

qr : qr =
∑t

i=1

∑dir

j=1
frijgihrij

}s

r=1

⊂ 〈G〉. We show that
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it is possible to construct an alternative version of the private key, if the
conditions described in the theorem are met.

First, we encrypt the fake plaintext tip (g1) by constructing a pseudo-
ciphertext polynomial C1 =

∑s

i=1

∑kir

j=1
FrijqiHrij +tip(g1). We then use our

temporary access to the decryption black box to “decrypt” this pseudo ci-
phertext. Since Q ⊂ 〈G〉, the enciphering polynomial

∑s

i=1

∑kir

j=1
FrijqiHrij ∈

〈G〉. Therefore, it vanishes, when reduced modulo G. Similarly, tip (g1) van-
ishes, when reduced modulo G. In fact, the first step in the reduction of C1

modulo G, yields tip(g1) − [Ctip(g1)]
−1 · g1 = − [Ctip(g1)]

−1 · tail(g1). Sub-
sequent steps of the decryption algorithm then yield the same output as the
reduction of g1 modulo G. In other words, the output of the decryption al-
gorithm yields NG (tip (g1)). Next, we construct g′

1
= tip(g1)−NG (tip (g1)).

As noted in the remarks preceding Definition 2.2, if I is an ideal and r 6= 0,
then ir = r − NI(r) ∈ I. In particular, for r = tip(g1) and I = 〈G〉, we have
g′

1
= tip(g1) − NG (tip (g1)) ∈ 〈G〉.
Next, by repeating this process for each α = 1, 2, . . .m, we obtain a set

G′ = {g′

1
, g′

2
, . . . g′

m}, where g′

α = tip(gα)−NG (tip (gα)) ∀α = 1, 2, . . .m. By
using the same argument as in the case of g′

1
, we see that g′

α ∈ 〈G〉 ∀α =
1, 2, . . .m, i.e. 〈G′〉 ⊂ 〈G〉. Furthermore, Tip (G′) = Tip (G). It follows that
〈G〉= 〈G′〉, and that G′ is a Gröbner basis for 〈G〉. In other words, G′ is an
alternative version of the private key, and we can decrypt all messages by
using G′. ⋄

It is not completely clear a priori that it is easy for the attacker to obtain
Tip(G). It is, however, possible to obtain it for the few examples of the
noncommutative Polly Cracker that have been studied, and in the absence of
concrete instances of the noncommutative Polly Cracker, in which Tip(G) is
completely hidden, it seems reasonable to assume that attacker can actually
obtain it. In any case the cryptosystem needs to be prepared for such kind
of attacks.

In the next theorem however, we show that it is not necessary to know
Tip(G), if the admissible order (see paragraph before Definition 2.1) used in
the decryption algorithm is known. This version of the attack varies from
the previous ones in that it uses ciphertexts created from the largest tip T
of the polynomials in the public key, and monomials that are smaller than
T under the admissible order used in the decryption algorithm. In fact, it
requires no knowledge of the structure of the private key, and as such, is a
significantly greater threat than the attacks described above.
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Theorem 4.2

Any Polly Cracker-type cryptosystem is vulnerable to chosen-ciphertext
attacks if the following conditions are satisfied:

1. The private key consists of a finite Gröbner basis G = {g1, g2, . . . gm}.

2. The admissible order used in the decryption algorithm is publicly known.

3. The cryptanalyst has temporary access to the decryption black box.

Proof.

Let G = {g1, g2, . . . gm} be the private key. Then, the public key is of

the form, Q =
{

qr : qr =
∑t

i=1

∑dir

j=1
frijgihrij

}s

r=1

⊂ 〈G〉. We show that

it is possible to construct an alternative version of the private key, if the
conditions described in the theorem are met.

First, since we know the admissible order used in the decryption algo-
rithm, we can determine the largest tip T that occurs in public key Q.
Next, since Q ⊂ 〈G〉, we know that T ∈ 〈Tip (G) 〉. Considering the
structure of the polynomials in Q we also have that if t ∈ Tip(G), then
t ≤ T (in practice, t < T ). We begin by constructing a pseudo-ciphertext
polynomial CT =

∑s

i=1

∑kir

j=1
FrijqiHrij + T , which encrypts the fake plain-

text T . We then use our temporary access to the decryption black box to
“decrypt” this pseudo-ciphertext. Once again, the enciphering polynomial
∑s

i=1

∑kir

j=1
FrijqiHrij ∈ 〈G〉 vanishes, when reduced modulo G, and so does

T . In fact, the output of the decryption algorithm is the same as the reduc-
tion of T modulo G. In other words, the output of the decryption algorithm
yields NG (T ). Next, we construct g′

T = T −NG (T ). As noted in the remarks
preceding Definition 2.2, if I is an ideal and r 6= 0, then ir = r − NI(r) ∈ I.
In particular, for r = T and I = 〈G〉, we have g′

T = T − NG (T ) ∈ 〈G〉.
We repeat this process for each b ∈ BT , where BT is the set of monomi-

als which are ≤ T , i.e. for each b ∈ BT we construct a pseudo-ciphertext
polynomial, Cb =

∑s

i=1

∑kir

j=1
FrijqiHrij + b, and use our temporary access

to the decryption black box to “decrypt” the resulting pseudo-ciphertext.
Now, for each b ∈ BT , there are two possible results of the decryption
process: if b ∈ 〈Tip (G) 〉, then the decryption process yields NG (b) 6= b,
and if b 6∈ 〈Tip (G) 〉, then the decryption process returns NG (b) = b. If
b ∈ 〈Tip (G) 〉, and the decryption process yields NG (b) 6= b, we construct
g′

b = b−NG (b), and if b 6∈ 〈Tip (G) 〉, we discard b. Since there are only a finite
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number of monomials in BT , this process ends in a finite number of steps, and
we obtain the set G′ = {g′

b = b − NG (b) : b ∈ BT ∩ 〈Tip (G) 〉}. By using the
same argument as in the case of g′

T , we see that g′

b ∈ 〈G〉 ∀b ∈ BT ∩〈Tip (G) 〉.
i.e. 〈G′〉⊂ 〈G〉. Furthermore, Tip (G) ⊂ Tip (G′). It follows that 〈G〉= 〈G′〉,
and that G′ is a Gröbner basis for 〈G〉. Hence, G′ is an alternative version
of the private key, and we can decrypt all messages by using G′. ⋄

We note that although Theorems 4.1 and 4.2 are presented here in the
notation and terminology of noncommutative Gröbner bases, they are equally
valid against the generic commutative Polly Cracker cryptosystem.

Another point to note here is what we mean by vulnerability. In fact the
Theorem above does not give us an efficient attack in the sense that it is not
polynomial-time. What we do have, though, is the realistic attack scenario
controlled by the parameter |BT |, where |BT | is the cardinality of BT . Thus
in order to prevent such an attack one should take care that this parameter
is high enough, so that searching through BT is not feasible.

5 Countering the attack

As seen in the previous section, chosen-ciphertext attacks pose a serious
threat to the Polly Cracker-type cryptosystems. However, in this section, we
present a very simple technique to counter these attacks, by programming
the decryption algorithm to recognize illegitimate ciphertexts, such as those
required to execute these attacks. We then show how a similar technique can
be used to counter an adaptive chosen- ciphertext attack that is described
by [13].

We begin by presenting the following countermeasure, which can be used
to secure noncommutative Polly Cracker-type cryptosystems from the chosen-
ciphertext attacks presented above.

Countermeasure 5.1

1. Restrict the message space, M , so that NonTip(G) \ M 6= ∅.

2. Ensure that at least one monomial bi occurs in each gi ∈ G such that
bi ∈ NonTip(G) \ M and u · bi · v /∈ M for all u, v ∈ B.

3. Program the decryption algorithm to check whether any elements of
NonTip(G) \ M occur in the normal form of a ciphertext polynomial
after it has been reduced modulo the private key.
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4. If the decryption algorithm encounters an element of NonTip(G) \ M
in the normal form of a ciphertext polynomial, program it to return an
error message (or the original ciphertext polynomial without reduction).

For example, if g = αxy+βx+γy+δ, as in Example 2.4, the message space
could be restricted to linear polynomials in y. The decryption algorithm
could be programmed to recognize the fact that any ciphertext which reduces
to a polynomial containing x is not a legitimate ciphertext.

Similarly, if g = x1x2x3x4x5x6 +
∑

6

i=1
cixi + c0 ∈ K〈x1, x2, . . . , x6〉, as

in Example 2.3 the message space could be restricted to linear polynomials
in only some of the variables. For example, it could be restricted to linear
polynomials in x1, x2, x3, x4, x5 and exclude any polynomials that contain x6.
In this case, the decryption algorithm could be programmed to recognize the
fact that any ciphertext which reduces to a polynomial that contains x6 is
not a legitimate ciphertext, and be programmed to return an error message,
whenever it encounters such a ciphertext.

We note that in the versions of the cryptosystems presented in Examples
2.3 and 2.4, in which the message space M consists of univariate polynomials
of degree ≤ D in one of the variables, where D ∈ N is fixed, Countermeasure
5.1 could be implemented without any modification of the message space.

Theorem 5.2 Any Polly Cracker-type cryptosystem in which Countermea-
sure 5.1 is implemented, is secure against the chosen-ciphertext attacks which
depend on the use of illegitimate ciphertexts to obtain the private key. In par-
ticular, it is secure against Attacks 3.2 and 3.3 and the attacks described in
Theorems 4.1 and 4.2.

Proof.

Suppose Countermeasure 5.1 is implemented in a Polly Cracker-type cryp-
tosystem, and suppose an adversary has temporary black box access to the
decryption black box. Suppose also, that this adversary uses the public key
to encrypt a fake message m, which is not in the message space. Let C be
the polynomial obtained by encrypting this illegitimate message m. Next,
suppose that the adversary uses her temporary access to the decryption black
box to decrypt C.

Let G = {g1, g2, . . . gt} be the private key. We note that there exists some
gi ∈ G and some monomial X which occurs in C, such that tip (gi) divides
X, i.e. X = uitip (gi) vi for some X which occurs in C, and some gi ∈ G.
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For, if no such X and gi exist, then C ∈ NonTip(G) and dividing C by G
has no effect on C. So running C through the decryption black box returns
C if C ∈ M , or it returns an error message if C ∈ NonTip(G) \ M .

Without loss of generality, we assume that tip (g1) divides some mono-
mial X1 that occurs in C, and that X1 is the largest such monomial that
occurs in C. i.e. if Y is some other monomial that occurs in C with the
property that Y = uitip (gi) vi for some gi ∈ G, then X1 ≥ Y . Next, suppose
X1 = u1tip (g1) v1. Then, in the first step of the division algorithm, C is
reduced to C1 = C −Ctip (g1)

−1 · a1 · u1tip (g1) v1 · g1, where Ctip (g1) is the
coefficient of the tip (g1), and a1 is the coefficient of X1 in C. Now, item 2 of
Countermeasure 5.1 guarantees that a monomial, b1 occurs in g1 such that
b1 ∈ NonTip(G) − M , and u · b1 · v /∈ M , for all u, v ∈ B. Therefore, the
monomial u1 · b1 · v1 occurs in C1 and u1 · b1 · v1 /∈ M .

Next, if there is no gi ∈ G such that tip (gi) divides some monomial X that
occurs in C1, then u1 · b1 · v1 /∈ M occurs in C1 = NG (C), and the decryption
algorithm returns an error message as specified by items 3 and 4 of Coun-
termeasure 5.1. If on the other hand, tip (gi) divides some monomial X that
occurs in C1 for some gi ∈ G, then the division algorithm proceeds as above,
with a monomial of the form uα · bα ·vα being introduced into the polynomial
Cα which is obtained as the reduced form of the ciphertext polynomial at the
end of the αth step of the algorithm. Since G is a finite Gröbner basis, the
division algorithm ends in a finite number of steps, yielding NG (C). Now, if
gν ∈ G is the polynomial used in the final step of the division C by G, then
it is clear that uνbνvν occurs in NG (T ) and uνbνvν /∈ M . So the decryption
algorithm detects this monomial in NG (C), and returns an error message or
the original polynomial, without reducing it.

Hence, any Polly Cracker-type cryptosystem, in which Countermeasure
5.1 is implemented is secure against chosen-ciphertext attacks which depend
on the use of illegitimate ciphertexts to obtain the private key. In particular,
it is secure against the chosen ciphertext attacks that are described in Attacks
3.2 and 3.3 and in Theorems 4.1 and 4.2. ⋄

Next, we consider an adaptive chosen-ciphertext attack, which uses legit-
imate ciphertext in its modus operandi. We begin by describing the attack,
which appears in [13], chapter 5, section 3, exercise 11, page 110.

Attack 5.3 ([13])
Suppose that two companies, Bob’s company, and Catherine’s company

are communicating with Alice’s company, using Alice’s public key. On many
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questions, Catherine is cooperating with Alice, but there is one extremely
important customer who is taking competing bids from a group of compa-
nies led by Alice and Bob, and from a different consortium led by Catherine.
Catherine knows that Bob has just sent Alice the encrypted amount of their
bid, and she desperately wants to know what it is. Suppose that Bob’s mes-
sage m is sent as ciphertext c and that Catherine is able to see the ciphertext
c. Catherine creates ciphertext c′ = p + c + m0, where p =

∑s

i=1
Fiqi is an

encrypting polynomial and m0 is an arbitrary element of the message space.
She then sends c′ to Alice, supposedly part of the message on an unrelated
subject. She then informs Alice that she had a computer problem due to
which she lost her plaintext, and she thinks that an incomplete message was
encrypted for Alice. Could Alice please send her the decrypted message m′

that she obtained from c′, so that Catherine can reconstruct the correct mes-
sage and re-encrypt it? Since p vanishes during the decryption process, and
c decrypts to m it follows that c′ decrypts to m′ = m + m0. So Catherine
is able to use m′ to find m = m′ − m0. Alice is willing to give Catherine
m′, because she is unable to see any connection between c′ and c or between
m′ and m, and because Catherine’s request seems reasonable when they are
exchanging messages about a matter on which they are cooperating.

We note that the ciphertext c′ sent by Catherine in Attack 5.3 is a le-
gitimate ciphertext, thus making it difficult for Alice (or her decryption al-
gorithm) to recognize it as a security threat. However, the richness of the
message spaces of noncommutative Polly Cracker-type cryptosystems enables
us to develop a technique that is similar to Countermeasure 5.1 to overcome
this attack. We present this technique next.

Countermeasure 5.4

1. Alice chooses a private key G and develops a public key such that the
message space M contains several polynomials, and can be partitioned
into disjoint sets.

2. She picks MBob ⊂ M and MCatherine ⊂ M , such that MBob∩MCatherine =
∅.

3. She assigns MBob as Bob’s message space and MCatherine as Catherine’s
message space.
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For example, suppose Alice chooses a private key based on Example 2.3,
i.e. suppose her private key consists of a single polynomial of the form
g = x1x2x3x4x5x6 +

∑

6

i=1
cixi + c0 ∈ K〈x1, x2, . . . , x6〉. She then implements

Countermeasure 5.1 by leaving all monomials that contain x6 out of her
message space, thus securing her private key from attacks that use illegitimate
ciphertexts, such as the ones described in the previous sections. Next she
assigns the variable x1 to Bob and x2 to Catherine, i.e. Bob’s message space
MBob consists of univariate polynomials in x1 of degree d, where 0 < d ≤ D,
and Catherine’s message space MCatherine consists of univariate polynomials
in x2 of degree d, where 0 < d ≤ D, where D ∈ N is fixed. Note that in this
scenario, constants in the field K, are not legitimate messages.

Now, if Catherine sends Alice a ciphertext c′, which decrypts to m′ ∈
MBob, it would immediately make Alice suspicious of Catherine’s intentions.
On the other hand, if Catherine sends Alice a ciphertext of the form c′ =
p + c + m0, where c is a ciphertext used to encrypt a message m ∈ MBob

and m0 ∈ MCatherine, c′ would reduce to an element of NonTip(G), which
is neither in MCatherine nor in MBob, and would immediately draw Alice’s
attention to the suspicious nature of Catherine’s ciphertext.

As was pointed out to us by the anonymous referee, Catherine can under-
take the following attack. She can send a ciphertext c′ = b · c, where b ∈ K is
a constant. Then upon decryption she obtains m′ = b · m and thus m itself.
We note, however, that if Countermeasure 5.4 is implemented, we still have
m′ = b · m ∈ MBob, which would make Alice suspicious of the message she
received from Catherine.

Before ending this section, we note that Countermeasure 5.4 introduces
an element of symmetric key encryption into the cryptosystem. However, it
differs from traditional symmetric key schemes, in that there is no need for
MBob or MCatherine to be kept secret. Thus the scheme remains, in essence,
a public key cryptosystem.

6 Conclusion

In the present work we have shown how one can use the theory of noncommu-
tative Gröbner bases to construct a public key cryptosystem. We have also
presented some attacks that can be undertaken against such a system. The
chosen ciphertext attacks described in this article are a serious concern and
should be taken into consideration in the design of a noncommutative Polly
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Cracker-type cryptosystems. However, they do not appear to be a major
threat to the security of the system, since they can be easily countered by
a minor modification to the decryption algorithm. In fact, even the simple
examples that were presented in [21] can be made secure against chosen-
ciphertext attacks by implementing the countermeasures proposed above.
We believe that these attacks and the techniques to counter them, are small
steps in an evolutionary process leading towards the development of a secure
cryptosystem.
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Verlag, 2004.

[15] L. Ly. Polly two – a new algebraic polynomial-based public-key scheme.
AAECC, 17(3–4), aug 2006.

20



[16] L. Van Ly. Polly Two – A Public Key Cryptosystem based on Polly
Cracker. PhD thesis, Rhur Universität Bochum, Germany, 2002.

[17] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied
cryptography. CRC Press, 1997.
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