
Collision attack on NaSHA-512

Li Ji1, Xu Liangyu1, and Guan Xu2

1 Sony China Research Laboratory
2 Mathematics department, Nankai university

{Ji.Li, Liangyu.Xu}@sony.com.cn
guanxu1984@mail.nankai.edu.cn

Abstract. The hash function NaSHA [1] is a new algorithm proposed
for SHA-3. The compression function adopts quasigroup transformations,
which raise obstacles to analysis. However, the high probability difference
to cause inner collision can be found in the quasigroup transformations.
We propose a collision attack to NaSHA-512 with the time complexity
2192 and negligible memory, which is lower than the complexity of birth-
day attack to NaSHA-512. Using the similar method, we find free-start
collision on all versions with negligible complexity.

1 Description of NaSHA

NaSHA [1] is a hash functions family, defined as NaSHA-(m,k,r). It adopts linear
transformations LinTr2s and quasigroup transformationsMT . The parameters
m denotes the length of hash value, k denotes the complexity of MT and 22r

denotes the order of used quasigroup.
The main transformations of MT is defined by three transformations Al, ρ

and RAl.

Definition 1 (The operation of quasigroup ∗).
The operation of quasigroup ∗ is built from the Extended Feistel Networks

FA,B,C(L,R) = (r ⊕ A,L ⊕ B ⊕ fa1,b1,c1,a2,b2,c2,a3,b3,c3,α,β,γ(R + C)), which is
illustrated in Fig 1. The operation ∗(a1,b1,c1,a2,b2,c2,a3,b3,c3,α,β,γ,A,B,C) denoted by

x ∗(a1,b1,c1,a2,b2,c2,a3,b3,c3,α,β,γ,A,B,C) y = FA,B,C(x⊕ y)⊕ y

is the quasigroup operation in Z64
2 .

Definition 2 (Quasigroup additive string transformations Al : Qt → Qt

with leader l). . Let t be a positive integer, let (Q, ∗) be quasigroup, Q = (z)2n ,
and l, xj , zj ∈ Q.

Al(x1, . . . xt) = (z1, . . . zt)⇔ zj =

{
(l + x1) ∗ x1, j = 1
(zj−1 + xj) ∗ xj , 2 ≤ j ≤ t

where + is addition modulo 2n. The element l is said to be a leader of A. The
transformation is illustrated in Fig 2.

Fig. 1. The extended Feistel networks

Fig. 2. The transformations Al

The definition of ρ and RAl can be refer to the specification of NaSHA [1].
We ignore them because them have no relation with the attack.

We give a short description of NaSHA-(512, 2, 6), which adopts 2048-bit (32
words) state and output 512-bit hash value.

Firstly, the 512-bits message block M and the 512-bits initial value H form
the state S alternately:

S = M1||H1||M2||H2||M3||H3||...||M16||H16

Secondly, update state words 32 times by the transformations of LinTr512,
which is defined by:

LinTr512(S1||S2||...||S31||S32) = (S7 ⊕ S15 ⊕ S25 ⊕ S32)||S1||S2||...||S31)

Then choose parameters for the quasigroup transformations MT according
to the values of S1 to S16. And update the state one time by quasigroup trans-
formations MT .

After all message blocks have been processed, NaSHA-(512,2,6) output:

NaSHA-(512, 2, 6)(M) = S4||S8||...||S28||S32

2 Observations of NaSHA

We observed some properties, which help us to find collision in NaSHA-512.

Observation 1 (Differential of basic calculation) (a + x) ∗ x is the basic
calculation in the transformations Al, which is defined by the Extended Feistel
Network.

when a and x satisfy the conditions (a)64...32 = ¬(x)64...32, (a)32 = 1 and
(a)31...1 = 0, the input difference ∆x = 0x00000000FFFFFFFF always lead to the
zero output difference for the calculation of (a+x) ∗x. ((x)i denotes the i-th bit
of x) For example, given x = 0xAAAAAAAA00000000, x′ = 0xAAAAAAAAFFFFFFFF
and a = 0x5555555580000000, (a+x) ∗x = (a+x′) ∗x′ always holds no matter
what parameters are set for the quasigroup operation ∗. The differential prop-
erty attributes to the structure of Extended Feistel Network. The details are
explained as follows.

(a+ x) ∗ x = FA,B,C((a+ x)⊕ x)⊕ x
= FA,B,C(0x5555555580000000)⊕ 0xAAAAAAAA00000000

= ((0x80000000⊕A)⊕ 0xAAAAAAAA)
||(f(0x80000000⊕ C)⊕B ⊕ 0x55555555)

=
(a+ x′) ∗ x′ = FA,B,C((a+ x′)⊕ x′)⊕ x′

= FA,B,C(0xAAAAAAAA80000000)⊕ 0xAAAAAAAAFFFFFFFF

= ((0x80000000⊕A)⊕ 0xAAAAAAAA)
||(f(0x80000000⊕ C)⊕B ⊕ 0x55555555)

The calculations of FA,B,C are illustrated in Fig 3.

Fig. 3. The calculation of FA,B,C

Observation 2 (The output of basic calculation) According to the defini-
tion of (a+x) ∗x, for the same parameters(a1, b1, c1, a2, b2, c2, a3, b3, c3, α, β, γ),
the output value of (a+x) ∗x can be changed by modifying the parameters A, B
and C.

Especially, given a and x, we can choose the parameters of A, B and C to make
(a + x) ∗ x = a. For the same parameters(a1, b1, c1, a2, b2, c2, a3, b3, c3, α, β, γ,
A,B,C), (a + x′) ∗ x′ = a always holds if the difference ∆x = x ⊕ x′ =
0x00000000FFFFFFFF.

Observation 3 (Continuous collisions in Al) According to the observation 1
and the observation 2, difference sequence to generate continuous collisions in
full transformation of Al can be constructed easily.

Firstly, select the triple x, x′, a to make (a + x) ∗ x = (a + x′) ∗ x′ for any
quasigroup operation ∗. Secondly, select the parameters of the operation ∗ to
make (a + x) ∗ x = a hold. For the basic calculation of (zj−1 + xj) ∗ xj , if
zj−1 = a and xj = xj+1 = . . . = xj+k = x (k denotes the length of the differential
sequence), after the transformation Al, all differences on the difference sequence
will be absorbed.

We can control the state words before the transformation Al freely to keep
xj = xj+1 = . . . = xj+k = x due to the message input scheme. It is not easy to
control the state words directly afterAl, such as zj−1. The continuous collision
requires one word conditions (64 bits) on the first leader(zj−1).

Fig. 4. Continuous collision in Al

Observation 4 (Difference absorption for parameters) The first 16-words
of state will be used as parameters of the quasigroup operations. However, it is
easy to select differences on state words to make no difference on these parame-
ters.

For example: α1||β1||γ1||α2 = S7 +S8. If ∆S7 = ∆S8 = ∆x and S7 = x, S′7 =
x′, S8 = x′, S′8 = x, then S7 + S8 = x + x′ = S′7 + S′8. Parameters α1, β1, γ1, α2

have no differences.

Observation 5 (Freedom on state words) For NaSHA-512, only 16-word
out of 32-word are used to calculate parameters of quasigroup transformation,
some state words can be changed freely while parameters of quasigroup transfor-
mation keeps.

First 16-word of state is chose to calculate parameters of quasigroup transfor-
mation Al and RAl. Eight state words are selected as parameters of quasigroup

transformation Al as follows:

S3 + S4 = l2,

S5 + S6 = a1||b1||c1||a2||b2||c2||a3||b3, c3 = a1,

S7 + S8 = α1||β1||γ1||−,
S11 + S12 = A||B,S13 + S14 = C|| − .

l2 is the 64-bit leader of Al, the 8-bit words a1, b1, c1, a2, b2, c2, a3, b3, c3, the
16-bit words α1, β1, γ1 and the 32-bit words A,B,C are parameters of the oper-
ation ∗. (The two − denotes the values do not used in Al).

These observations can be used to construct collision in full transformation
Al.

3 Collision attack of NaSHA-512

According to these observations in section 2, we can choose differences on state
words to find collision. Some differential patterns can be found. The differential
pattern illustrated in Fig 5 can generate collision with least conditions and most
free state words. We set three continuous differentials on state words, which
results in the complexity of 23∗64 because three words conditions need to be
fulfilled. We have enough free words to satisfied all conditions. Following we
explain the details.

3.1 Differential Pattern

Following we give a differential pattern with three continuous differentials.

Fig. 5. The differential pattern

Following the differential pattern, we set differences on the state words after
LinTr512: ∆S9 = ∆S10 = ∆S17 = ∆S18 = ∆S19 = ∆S20 = ∆S21 = ∆S29 =
∆S31 = ∆x = 0x00000000FFFFFFFF. No difference exists on other state words.
Set the value of state words S9 = x, S10 = x′ and set S17, S18, S19, S20, S21, S29, S30, S31

as x or x′.
The state words will be process by the transformation Al:

Al(S1, S2, ..., S31, S32) = (z1, z2, ..., z31, z32).

According to the observation 3, if three headers z8 = z16 = z21 = a, all
differences on the state words absorbed. That is sufficient conditions for the
differential pattern to generate collision attack.

Following we explain how to select free state words to fulfill the three words
conditions.

3.2 Free State Words

To use the given differential pattern to generate collision, we need some free
state words to satisfy these three words conditions.

Denote H as initial value, M32×16
LinTr512

as the transformation matrix from the
state S to H.

H =

H1

H2

· · ·

H16

 = M16×32
LinTr512

×

S1

S2

· · ·

S31

S32

According to the linear transformation of LinTr512, we can get the algebraic
equations among state words as follows.

S′ =

S1

S2

S3

S4

S12

S13

S15

S16

S22

S23

S24

S25

S26

S27

S28

S32

= H ′ ⊕ Sfix ⊕

S7 ⊕ S11

S5

S5 ⊕ S6

S11

S7 ⊕ S8

S6

S5 ⊕ S7 ⊕ S8

S5 ⊕ S7

S7 ⊕ S14

S5 ⊕ S7

S5 ⊕ S7

S5 ⊕ S8

S5 ⊕ S8 ⊕ S11

S5

S6 ⊕ S8

S14

(1)

Where H ′ is a constants vector, which denotes the linear relationship of ini-
tial value words. Sfix denotes the linear relationship of these 10 state words
(S9, S10, S17, S18, S19, S20, S21, S29, S30, S31), which need to be pointed by follow-
ing the differential pattern, refer to Appendix A. In S′ 16 state words are limited
by the 16 equations in (1). There are still 6 free words(S5, S6, S7, S8, S11, S14)left.
We need set right parameters A, B and C to make (a+x)∗x = a. The parameters
of A, B and C can be calculated by:

S11 + S12 = S11 + (S7 ⊕ S8 ⊕ C1), (2)
S13 + S14 = S14 + (S6 ⊕ C2). (3)

Where C1 and C2 denote the fixed values in H ′ and Sfix. This two equations
(2) and (3) need to be fulfilled and will cost 2 words out of 6 free words.

As a result, we can find 4 free state words left to satisfy three words con-
ditions. For example, we use S11 and S14 for the calculation of parameters and
select S5, S6, S7, S8 as free state words.

3.3 Generate Collision

Following the differential pattern and select free state words, we can find right
state words to generate continuous collision of Al. If after the transformation
Al, these values of state words z8 = z16 = z28 = a hold, generate continuous
collision of Al will happen and we can find collision. Algorithm 1 explains how
to find message pairs to generate collision for details.

Algorithm 1 Searching message pairs causing collision
Input: x, x′, a s.t. (a+ x) ∗ x = (a+ x′) ∗ x′

Output: the message pairs M and M ′ causing collision on NaSHA-512.

1. Choose S5, S6, S7, S8 randomly
2. Calculate parameters a1, b1, c1, a2, b2, c2, a3, b3, c3, α1, β1, γ1:

a1||b1||c1||a2||b2||c2||a3||b3 = S5 + S6, c3 = a1,
α1||β1||γ1||− = S7 + S8.

3. Calculate parameters A,B,C s.t.(a+ x) ∗ x = (a+ x′) ∗ x′ = a:
Choose parameters C randomly, A← 0; B ← 0;
calculate z = ((a+ x) ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A,B,C x,
A||B ← (z ⊕ a).

4. Calculate State words:
S12 = S7 ⊕ S8; S13 = S6;
S11 = (A||B)− S12; S14 = (C||−)− S13;
S1 · · ·S4, S15, S16, S22, · · · , S28, S32 according to equation (1).

5. Calculate the leader l2.
6. Do the transformation of Al and check:

if

z8 = Al(S1, S2, · · · , S8) = a and
z16 = Al(S1, S2, · · · , S16) = Al(z8, S9, · · · , S15, S16) = a and
z28 = Al(S1, S2, · · · , S28) = Al(z16, S17, · · · , S21, S22, · · · , S28) = a

Calculate message pair M and M ′ by inversing transformation LinTr512,
then return the message pair (M and M ′);

Else go to the step 1.

Generally the conditions(3 words, 192 bits) will cost 3 words out of 4 left free
state words. According to the Proposition 4 and Remark 1 in [1], after trying
2192 times and we can expect to find the right one.

Complexity analysis: The main complexity comes from the 2192 times call
ofAl and requires negligible memory. Finally, we can find collision to NaSHA-512
with the complexity of 2192. 3

4 Free-start collision of NaSHA

Considering of free-start collision attack, we can find more differentials patterns.
Fig 6 shows a free-start differential pattern of NaSHA-256. Fig 7 shows a free-
start differential pattern of NaSHA-512.

Fig. 6. The free-start differential pattern of NaSHA-256

Fig. 7. The free-start differential pattern of NaSHA-512

In the two free-start differential patterns, differences only are deposited on
S1 and S2. We select their values as: S1 = x, S2 = x′. Choose the value of S3

and S4 to make: S3 + S4 = a. Using the similar steps in 3, we can get free-start
collisions for all version of NaSHA-(m,k,r). The complexity is trivial. Appendix B
gives examples of a message pair and initial values to make free-start collision
on NaSHA.

3 In [2] and Appendix D give a further discussion about the complexity of collision.

5 Conclusion

NaSHA adopts quasigroup transformations, which raises an obstacle to analysis.
However, we can find the differential with the high probability in quasigroup
transformations. For NaSHA-512, only 16 words out of 32 words are used as
parameters of quasigroup transformations. By analysis the algebraic structure
of linear transformation, we can find a collision with the time complexity 2192

and negligible memory. The similar differential can be used to find free-start
collision for all version with the negligible complexity.

The attacks still work after applying two patches in [3], refer to Appendix C.

References

1. Smile Markovski, Aleksandra Mileva, Algorithm Specications of NaSHA, 2008.
http://inf.ugd.edu.mk/images/stories/file/Mileva/Nasha.htm

2. S. Markovski, A. Mileva, V. Dimitrova and D. Gligoroski, On a Conditional Collision
Attack on NaSHA-512, Cryptology ePrint Archive, Report 2009/034, 2009.

3. Smile Markovski, Aleksandra Mileva, NaSHA family of cryptographic hash
functions, February 23, 2009. http://csrc.nist.gov/groups/ST/hash/sha-
3/Round1/Feb2009/documents/NaSHA.ppt.

A The linear relationships

H ′ denotes the linear relationship of initial value words(Hi) as follows.

H ′ =

H1 ⊕H2 ⊕H4 ⊕H5 ⊕H6 ⊕H7 ⊕H8 ⊕H12 ⊕H13 ⊕H16

H1 ⊕H6

H6 ⊕H10

H2

H2 ⊕H3 ⊕H4 ⊕H5 ⊕H6 ⊕H8 ⊕H10 ⊕H12 ⊕H14 ⊕H15 ⊕H16

H3

H2 ⊕H3 ⊕H5 ⊕H6 ⊕H8 ⊕H10 ⊕H11 ⊕H12 ⊕H14 ⊕H15 ⊕H16

H1 ⊕H2 ⊕H3 ⊕H4 ⊕H5 ⊕H10 ⊕H11 ⊕H12 ⊕H13 ⊕H14 ⊕H15 ⊕H16

H5 ⊕H12

H3 ⊕H4 ⊕H6 ⊕H7 ⊕H8 ⊕H9 ⊕H10 ⊕H11 ⊕H12 ⊕H15 ⊕H16

H1 ⊕H3 ⊕H4 ⊕H6 ⊕H7 ⊕H9 ⊕H10 ⊕H11 ⊕H12 ⊕H15 ⊕H16

H2 ⊕H3 ⊕H6 ⊕H7 ⊕H8 ⊕H9 ⊕H10 ⊕H11 ⊕H14 ⊕H15

H2 ⊕H3 ⊕H5 ⊕H6 ⊕H8 ⊕H9 ⊕H10 ⊕H11 ⊕H15

H6

H2 ⊕H3 ⊕H5 ⊕H7 ⊕H8 ⊕H9 ⊕H11 ⊕H14 ⊕H15

H5 ⊕H7 ⊕H12

Sfix denotes the linear relationship of these words need to fix for the differ-
ential pattern.

Sfix =

S17 ⊕ S19 ⊕ S21 ⊕ S29 ⊕ S30

S9 ⊕ S17 ⊕ S19 ⊕ S20 ⊕ S30

S10 ⊕ S18 ⊕ S19 ⊕ S20 ⊕ S21 ⊕ S30 ⊕ S31

S19 ⊕ S29

S17 ⊕ S18 ⊕ S19 ⊕ S20 ⊕ S29 ⊕ S30 ⊕ S31

S21 ⊕ S31

S17 ⊕ S18 ⊕ S19 ⊕ S30 ⊕ S31

S17 ⊕ S18 ⊕ x30

S17 ⊕ S31

S10 ⊕ S19 ⊕ S21 ⊕ S30 ⊕ S31

S9 ⊕ S10 ⊕ S19 ⊕ S21 ⊕ S30

S18 ⊕ S19 ⊕ x21 ⊕ S29

S10 ⊕ S17 ⊕ S19 ⊕ S29

S19 ⊕ S20 ⊕ S30

S10 ⊕ S17 ⊕ S18 ⊕ S20 ⊕ S29 ⊕ S30 ⊕ S31

S17 ⊕ S21 ⊕ S29 ⊕ S31

B Message pairs for free-start collision of NaSHA

B.1 Message pairs and initial values for NaSHA-224 and
NaSHA-256

M0: (length: 512 bits)
FFFFFFFF0000000000000080FFFFFFFF0514FF7FFFFFFF7FFFFFFFFF00000000
00000080FFFFFFFF00
H0:
0x7FFFFFFF7FFF1405, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x00000000FFFFFFFF, 0x80000000FFFF1405,
0x0000000000000000, 0x0000000000000000
M1:(length:512 bits)
000000000000000000000080FFFFFFFF0514FF7FFFFFFF7F0000000000000000
00000080FFFFFFFFFFFFFFFF00
H1:
0x7FFFFFFF8000EBFA, 0x0000000000000000,

0x0000000000000000, 0x00000000FFFFFFFF,
0x0000000000000000, 0x80000000FFFF1405,
0x0000000000000000, 0x0000000000000000

The message digest of NaSHA-256 is:
D96E238F061CED9AB4FC687C33875EFD29EC5DEF0DC7173E61C852B21967F58B

The message digest of NaSHA-224 is:
D96E238F061CED9AB4FC687C33875EFD29EC5DEF0DC7173E61C852B2

B.2 Message pair and initial values for NaSHA-384 and NaSHA-512

M0: (length: 1024 bits)
000000000000000000000080FFFFFFFF0514FF7FFFFFFF7F0000000000000000
FFFFFFFF00
00000080FFFFFFFFFFFFFFFF000000000000000000000000FFFFFFFF00000000
0000000000000000FFFFFFFF000000000514FF7FFFFFFF7F00000080FFFFFFFF

H0:
0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x00000000FFFFFFFF,
0xFFFFFFFF80000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x00000000FFFFFFFF, 0xFFFFFFFF80000000,
0x7FFFFFFF8000EBFA, 0xFFFFFFFF80000000,
0x00000000FFFFFFFF, 0xFFFFFFFF80000000,
0x7FFFFFFF7FFF1405, 0x00000000FFFFFFFF

M1: (length: 1024 bits)
FFFFFFFF0000000000000080FFFFFFFF0514FF7FFFFFFF7F0000000000000000
00FFFFFFFF00000000
00000080FFFFFFFF00
00000000000000000000000000000000FAEB0080FFFFFF7F00000080FFFFFFFF

H1:
0x00000000FFFFFFFF, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0xFFFFFFFF80000000, 0x0000000000000000,
0x0000000000000000, 0x00000000FFFFFFFF,
0x0000000000000000, 0xFFFFFFFF80000000,
0x7FFFFFFF7FFF1405, 0xFFFFFFFF80000000,
0x0000000000000000, 0xFFFFFFFF80000000,
0x7FFFFFFF8000EBFA, 0x0000000000000000

The message digest of NaSHA-512 is:
9401156AAA365B353FB7B3FD8A7D4CA944F4BA788C7FCFADBE1411E4ADCBEBD9
ECB7ECF86528134A30C639FB083EC658782D9FBFE730051E15458227E96C3DCF

The message digest of NaSHA-384 is:
9401156AAA365B353FB7B3FD8A7D4CA944F4BA788C7FCFADBE1411E4ADCBEBD9
ECB7ECF86528134A30C639FB083EC658

C On the Patches of NaSHA

On [3], two patches are given to fix these attacks on NaSHA. However, the two
patches can not fix the attacks on NaSHA.

Patch 1 Instead of the EFN defined by FA,B,C(L||R) = (R⊕A)||(L⊕B⊕f(R⊕
C)), we take the EFN defined by FA,B,C(L||R) = (R+A)||(L+B + f(R+C)),
where + is addition modulo 232. This will not affect the speed of NaSHA, but
will increase the security.

Patch 2 Instead of l1 = S1 +S2, and l2 = S3 +S4 we could take l1 = S1⊕S2⊕
S3 ⊕ · · · ⊕ S16(32) and l2 = S1 + S2 + S3 + · · ·+ S16(32). This fixing will have a
negligible effect on the speed, but will improve the security of NaSHA drasticall.

C.1 Differential of Basic Operation with Patch 1

for the new defined EFN FA,B,C(L||R) = (R+A)||(L+B + f(R+C)) in patch
1, the same differential on observation 1 still holds under one condition. The
details are explained as follows.

When we adopt new EFN:

(a+ x) ∗ x = FA,B,C((a+ x)⊕ x)⊕ x
= FA,B,C(0x5555555580000000)⊕ 0xAAAAAAAA00000000

= ((0x80000000 +A)⊕ 0xAAAAAAAA)
||((f(0x80000000 + C) +B + 0x55555555)⊕ 0x00000000) (4)

(a+ x′) ∗ x′ = FA,B,C((a+ x′)⊕ x′)⊕ x′

= FA,B,C(0xAAAAAAAA80000000)⊕ 0xAAAAAAAAFFFFFFFF

= ((0x80000000 +A)⊕ 0xAAAAAAAA)
||((f(0x80000000 + C) +B + 0xAAAAAAAA)⊕ 0xFFFFFFFF) (5)

If (f(((a + x) ⊕ x)32···1 + C) + B = 0 or (f(((a + x) ⊕ x)32···1 + C) + B =
0x80000000, equations 4 and 5 collide. Then collision on the basic operation will
still happen, because . Due to parameters B and C can be set by attackers, the
condition is not difficult to satisfy.

Under the condition, some triples a, x, x′ make (a+ x) ∗ x = (a+ x′) ∗ x′ = a
still hold. For example:

a = 0xFFFFFFFF80000000

x = 0x000000007FFFFFFF

x′ = 0x0000000080000000

Except of the three conditions on the differences in section 2, these triples
a, x, x′ satisfy another two conditions then (a + x) ∗ x = (a + x′) ∗ x′ = a still

hold.

C4 : (x)31...1 = ¬(x)63...33
C5 : (x)64 = 0

The two conditions can be deduced as follows. According to the condition
C1 : (a)64...32 = ¬(x)64...32, we can get:

(a+ x)⊕ x)64···33 = ((¬x+ x)⊕ x)64···33 = (¬x)64···33.

Consider of (f(((a+ x)⊕ x)32···1 + C) +B = 0,

a = (a+ x) ∗ x
⇒ a = FA,B,C((a+ x)⊕ x)⊕ x
= ((((a+ x)⊕ x) +A)32···1 ⊕ (x)64···33)
||((f(((a+ x)⊕ x)32···1 + C) +B + ((a+ x)⊕ x)64···33)⊕ (x)32···1)

= ((((a+ x)⊕ x) +A)32···1 ⊕ (x)64···33)
||((((a+ x)⊕ x)64···33)⊕ (x)32···1)

= ((((a+ x)⊕ x) +A)32···1 ⊕ (x)64···33)
||(¬x)64···33 ⊕ (x)32···1

⇒ (¬x)64···33 ⊕ (x)32···1 = (a)32···1 = 0x80000000
⇒ C4&C5

As a result, it is still possible to construct continuous collision on the state words.

C.2 Free-start collision and collision with Patch 2

After modifying by the method on the patch 2, free-start collision is still easy
to find by these almost same differential patterns.

On the fee-start differential patterns in section 4, differences only are de-
posited on S1 and S2. We select their values as: S1 = x, S2 = x′. After patching,
differences still are deposited on S1 and S2. However, we will set their values as:
S1 = x, S2 = x, S′1 = x′ and S′2 = x. Then no difference will happen on the pa-
rameter l1 = S1⊕S2⊕S3⊕⊕S16(32), since S1⊕S2 = x⊕x = 0 = S′1⊕S′2 = x′⊕x′.
As a result, we still can find message pairs for free-start collision with trivial
complexity.

It is similar that the patch 2 has no affect to the differential pattern to make
collision. Because it is easy for the differential pattern to keep no difference on
l1 and l2.

D On the condition of collision attack on NaSHA-512

In [2], Proposition 1 describe the conditions of collision attack on NaSHA-512
as three quasigroup equations with five variables.

Be more exact, The operation ∗ is also the functions of five variables x, y5, y6, y7, y8.
We describe these three quasigroup equations as:

Proposition 1

(z7(x, y5, y6, y7, y8) + S8(x, y5, y6, y7, y8)) ∗x,y5,y6,y7,y8 S8(x, y5, y6, y7, y8) = a(x)
(z15(x, y5, y6, y7, y8) + S16(x, y5, y6, y7, y8)) ∗x,y5,y6,y7,y8 S16(x, y5, y6, y7, y8) = a(x)
(z27(x, y5, y6, y7, y8) + S28(x, y5, y6, y7, y8)) ∗x,y5,y6,y7,y8 S28(x, y5, y6, y7, y8) = a(x)

Two examples in [2] are used as the evidences that the three conditions can
not be satisfied. However, the two examples are different with the equations on
proposition 1.

Example 1 gives a system of two quasigroup equations with 3 unknown vari-
ables. Example 2 give the system of three quasigroup equations with 5 unknown
variables. However, in these two examples, the quasigroup operations ∗ are fixed,
they are not the functions of unknown variables. If we change to different oper-
ations ∗, sometimes each system will include more than one solutions.

We use the same system of two quasigroup equations in the example 1 and
the quasigroup in the example 2 as a example.

Example 1 The system of two quasigroup equations with 3 unknowns x,y,a:

((1 + x+ y) ∗ (1 + y) + 2 + x+ y) ∗ y = a

((3 + x+ y) ∗ y + x+ y) ∗ (x+ y + 1) = a

has 4 solutions in the quaigroup

* 0 1 2 3

0 0 1 2 3
1 3 2 1 0
2 2 3 0 1
3 1 0 3 2

On the average, we can expect to find solutions when enough operations ∗
and values of variables are tried for the two systems.

For these three equations on propositions 1, considering of the quasigroup
transformation has good distribution property, we can assume the solutions of
three equations distribute randomly. It is reasonable to expect to find a solutions
when we try 2192 values of the five variables x, y5, y6, y7, y8.

