
Round-Optimal Zero-Knowledge Proofs of Knowledge
for NP

Li HongDa†1, Feng DengGuo2, Li Bao1, Xu HaiXia1

1 State Key Lab of Information Security, Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
2 State Key Lab of Information Security, Institute of software of Chinese Academy of Sciences, Beijing 100080, China

It is well known that all the known black-box zero-knowledge proofs of knowledge for NP are non-
constant-round. Whether there exit constant-round black-box zero-knowledge proofs of knowledge for
all NP languages under certain standard assumptions is a open problem. This paper focuses on the
problem and give a positive answer by presenting two constructions of constant-round (black-box)
zero-knowledge proofs of knowledge for the HC (Hamiltonian Cycle) problem. By the recent result of
Katz, our second construction which relies on the existence of claw-free functions has optimal round
complexity (5-round) assuming the polynomial hierarchy does not collapse.

zero-knowledge proofs, proofs of knowledge, black-box simulation, constant-round.

1 Introduction

Zero-knowledge proofs (ZKP), first introduced by
Goldwasser, Micali, and Rackoff [16], are protocols that
allow the prover to convince the verifier that an asser-
tion is true without providing the verifier with any addi-
tional information about the assertion being proved. What
does it mean to say an interactive proof system is zero-
knowledge? Loosely speaking, the zero-knowledge prop-
erty requires that whatever the verifier might have learned
from interacting with the prover, the verifier could actu-
ally have obtained itself. Now, the concept of ZKP has be-
come one of the fundamental notions in cryptography and
is widely used in the design and realization of many cryp-
tography tasks. This is due in large part to the result that
any language in NP has a zero-knowledge proof system
[17]. ZKP is required to protect the honest verifier from
an all powerful prover trying to convince it of the valid-
ity of a false assertion. zero-knowledge arguments (ZKA)
are a relaxation of the Zero-knowledge proofs, in which
the soundness property is required to hold only with re-
spect to a computationally bounded prover.

Proofs of knowledge, first defined by Goldwasser, Mi-
cali, and Rackoff [16], are proofs that allow the prover
to convince the verifier that it knows a secret witness w

about a given common input x. There have been sev-

eral attempts to present an adequate formalization for this
[8,21,20,9]. A simple scheme to achieve this without any
security requirement would be to reveal the secret wit-
ness in question. When one requires the proof is zero-
knowledge, the notion of proofs of knowledge, known as
zero-knowledge proofs of knowledge, becomes very use-
ful and complex. Analogous to regular interactive proofs,
proofs of knowledge protocols should thus satisfy cer-
tain constraints: completeness (if the prover knows w

then the verifier should accept) and soundness (for any
prover that does not know w, the verifier should almost
always reject). In addition, it should be zero-knowledge:
no polynomial-time verifier (no matter what possibly dis-
honest strategy is followed during the proof) can learn any
information about w. If a zero-knowledge proof (resp. ar-
gument) system for L is also a proof of knowledge sys-
tem, it is known as a zero-knowledge proof (resp. argu-
ment) of knowledge for L. Now, zero-knowledge proofs
or arguments of knowledge have since played a crucial
role in the design of cryptographic schemes and proto-
cols.

It is known that there exist constant-round zero-
knowledge arguments of knowledge for NP problems
[10,13,6]. However, to our knowledge, all the known
zero-knowledge proofs of knowledge for NP problem

†Corresponding author (email: hdli@gucas.ac.cn)

This work was partially supported by the National Basic Research Program (973 program) of China (Grant No. 2007CB311202,2007CB311201) and the

National High-Tech Research and Development Plan of China (Grant No. 2006AA01Z427)

are non-constant-round. Therefore, It is left as an open
question whether or not there exit constant-round zero-
knowledge proofs of knowledge for NP problems under
reasonable assumptions.

1.1 Related Works

There are some impossibility results about constant-
round zero-knowledge proofs. Goldreich and Oren
[18] first proved that two-round auxiliary-input zero-
knowledge proof systems do not exist for languages out-
side of BPP. Analogously, Barak et al. recently proved
that 2-round zero-knowledge proof system with perfect
completeness do not exist for any NP-complete lan-
guage[5]. Goldreich and Krawczyk [15] proved that 3-
round black-box zero-knowledge proofs do not exist for
the language outside of BPP. In [24], the authors extends
impossibility results from [15] to zero knowledge proof
of knowledge, and prove that the existence of 3-round
black-box zero knowledge proofs of knowledge for L im-
plies there exists a probabilistic polynomial time algo-
rithm which, on input x ∈ L, can output a witness for
x ∈ L with overwhelming probability. Recently, Katz
proved that NP-complete languages do not have 4-round
black-box zero-knowledge proofs assuming the polyno-
mial hierarchy does not collapse[25].

On the other hand, Goldreich and Kahan [19] first pre-
sented a 5-round black-box zero-knowledge proof sys-
tem for Graph 3-Colorability under the existence of claw-
free functions. The recent result from [25] indicates
that the round complexity of the construction in [19] for
black-box simulation is optimal. Subsequently, Rosen
[29] constructed an even simpler 7-round black-box zero-
knowledge proof system for HC assuming the existence
of two-round perfectly-hiding commitment schemes. Un-
fortunately, the constructions in [19,29] are not proofs of
knowledge. Barak et al [4,5] recently proved there do not
exist constant-round zero-knowledge strong proof or ar-
gument of knowledge for a non-trivial language.

1.2 Our main results

Note that all the known constructions of constant-round
black-box zero-knowledge proof are not proofs of knowl-
edge. This paper focuses on the existence of constant-
round (black-box) zero-knowledge proofs of knowledge
for NP under general cryptographic assumptions. The
main contribution of this paper is to show the existence
of constant-round (black-box) zero-knowledge proofs of

knowledge for HC under standard complexity assump-
tions.

Main Theorem Every NP problem has a constant-
round zero-knowledge proof of knowledge system, pro-
vided that 1-1 one way functions and two-round perfectly
hiding commitments exist. Specifically, every NP problem
has 5-round zero-knowledge proof of knowledge systems,
assuming that claw-free trapdoor permutations exist.

The known approaches to constructing a constant-
round zero-knowledge proof for NP force the verifier to
commit its challenge in advance of the prover sending its
commitments to the proved statement. This will indeed
ensure the protocol is zero-knowledge (that is, there ex-
ists a black-box simulator which will work efficiently),
but also results in the fact that the knowledge extraction
strategy by rewinding the prover no longer works effi-
ciently. In fact, it is seemingly the fact that the verifier
is forced to commit its challenge in advance that destroys
the proof of knowledge property. Therefore, to obtain a
constant-round zero-knowledge proof of knowledge pro-
tocol for NP, we need a new approach that enables the
black-box simulator (asking for the verifier to commit its
challenge in advance) and knowledge extractor (asking
for the prover to send its commitments first) to work effi-
ciently.

Our approach to solving the problem is to let the chal-
lenge the that prover must answer be jointly determined
by both the prover and verifier, and then no one can learns
or controls it in advance. The advantage that this ap-
proach holds is that the challenge is independent of the
prover’s first commitment, and need not have been com-
mitted in advance. Thus, on the one hand, the classical
knowledge extraction strategy can work efficiently. On
the other hand, instead of modifying the commitment to
fit the challenges as usual, the simulator can try to modify
the random challenges by itself in order to give a simu-
lated proof. This is possible because the random chal-
lenge are jointly determined by both the prover and veri-
fier. In other words, this interactive proof can admit both
a (black-box) simulator and a knowledge extractor.

1.3 Organization
In Section 2, the standard definitions and cryptographic

tools used in our protocols are presented. We give a 7-
round zero-knowledge proof of knowledge for HC in Sec-
tion 3. In Section 4, we construct an optimal-round (5-
round) zero-knowledge proof of knowledge for HC under

2

the existence of claw-free trapdoor permutations.

2 Preliminaries

In this paper, we use some standard notations. If A(·) is
a probabilistic algorithm, A(x) is the result of running A

on input x and y = A(x) denote that y is set to A(x). For
a finite set S, we denote by y ∈R S that y is uniformly
selected from S. We write Un to denote a uniform distri-
bution over {0, 1}n and poly(·) to denote an unspecified
polynomial. As usual, RL is the corresponding relation
of language L ∈ NP .

2.1 Zero-knowledge proof

We recall the definitions of zero-knowledge. These for-
mal definitions are taken from [16,20].

Let P and V be a pair of interactive Turing machines,
〈P, V 〉(x) be a random variable representing the local
output of Turing machine V when interacting with ma-
chine P on common input x, when the random input
to each machine is uniformly and independently chosen.
Customarily, machine P is called the prover and machine
V is called the verifier. We denote by 〈P, V 〉(x) = 1
(〈P, V 〉(x) = 0) that machine V accepts (rejects) the
proofs given by machine P .

Definition 1 A pair of interactive Turing machines
〈P, V 〉 is called an interactive proof system for a language
L if machine V is polynomial-time and the following two
conditions hold:

• Completeness: there exists a negligible function c

such that for every x ∈ L,
Pr[〈P, V 〉(x) = 1] > 1− c(|x|)

• Soundness: there exists a negligible function s such
that for every x /∈ L and every interactive machine
B,

Pr[〈B, V 〉(x) = 1] < s(|x|)

c(·) is called the completeness error, and s(·) the sound-
ness error. In the case that the soundness condition
is required to hold only with respect to a probabilistic
polynomial-time prover, 〈P, V 〉 is called an interactive
arguments system for L.

An interactive proof is said to be zero-knowledge if the
interaction between the prover and verifier reveals noth-
ing beyond the validity of the assertion to be proved to
the verifier. This is formalized by requiring that for any

polynomial-time verifier V ∗ there exists a polynomial-
time algorithm SV ∗ (a.k.a the simulator) such that the
view of V ∗ can be simulated by SV ∗ . The idea behind this
definition is that whatever V ∗ might have learned from
interacting with P , could actually have been obtained by
itself. We denote by ViewP

V ∗(x) a random variable de-
scribing the content of the random tape of V ∗ and the
messages V ∗ receives during the interaction with P on
common input x.

Definition 2 Let 〈P, V 〉 be an interactive proof sys-
tem for a language L. 〈P, V 〉 is called a zero-knowledge
proof system if for every probabilistic polynomial-time
machine V ∗ there exists a probabilistic polynomial-
time algorithm SV ∗ such that {ViewP

V ∗(x)}x∈L and
{SV ∗(x)}x∈L are computationally indistinguishable.

Black-box zero-knowledge requires that there exists a
“universal” simulator S such that for every x ∈ L and
every probabilistic polynomial-time verifier V ∗, the sim-
ulator S can simulate V iewP

V ∗(x) while using V ∗ in a
”black-box” manner.

Definition 3 (Black-Box Zero-Knowledge Proof) Let
〈P, V 〉 be an interactive proof system for a language
L. 〈P, V 〉 is called a black-box zero-knowledge proof
if there exists a probabilistic polynomial-time algorithm
S such that for every probabilistic polynomial-time ma-
chine V ∗ {V iewP

V ∗(x)}x∈L and {SV ∗
(x)}x∈L are com-

putationally indistinguishable.

2.2 Proof of knowledge

In a proof of knowledge for a relationship R, the prover,
holding a secret input w such that (x,w) ∈ R, and the
verifier interact on a common input x. The goal of the
protocol is to convince the verifier that the prover indeed
knows such w. This is in contrast to a regular interactive
proof, where the verifier is just convinced of the validity
of the statement.

The concept of “knowledge” for machines is formal-
ized by saying that if a prover can convince the verifier,
then there exists an efficient procedure that can “extract” a
witness from this prover (thus the prover knows a witness
because it could run the extraction procedure on itself).

Definition 4 An interactive protocol 〈P, V 〉 is a sys-
tem of proofs of knowledge for a (poly-balanced) rela-
tion R with knowledge error κ if the following conditions
hold:

3

• (efficiency): 〈P, V 〉 is polynomially bounded, and
V is computable in probabilistic polynomial time.

• (nontriviality): There exists an interactive machine
P such that for every (x,w) ∈ R all possible inter-
actions of V with P on common input x and auxil-
iary y are accepting.

• (validity with knowledge error κ): Denote by
p(x, y, r) the probability that the interactive ma-
chine V accepts, on input x, when interacting with
the prover specified by P ∗

x,y,r (the prover’s strategy
when fixing common x, auxiliary input y and ran-
dom tape r). If there exists an expected polynomial-
time oracle machineK and a polynomial q such that
on input x and access to oracle Px,y,r, KPx,y,r(x)
outputs w, such that (x,w) ∈ R, with probability
of at least (p(x, y, r)− κ(|x|))/q(|x|)

2.3 Claw-free trapdoor permutations
In this section we define the notion of claw-free trap-

door permutations. The reader is referred to [19,30] for
an extended background related to these definitions.

Definition 4 A collection of pairs of functions
F = {f0

e , f1
e : De → De}e∈I over some index set

I ⊆ {0, 1}∗ is called a family of claw-free trapdoor per-
mutations if the following hold:

• There exists a probabilistic polynomial-time gener-
ating algorithm, Gen(·), that on input 1n outputs a
random index e ∈ I ∩ {0, 1}n and trapdoor infor-
mation te

• There are efficient sampling algorithms D which,
on input e, output a random x ∈ De.

• Two functions f0
e , f1

e specified by e are efficiently
computable given index e and input x ∈ De.

• f0
e and f1

e are permutations over De and easy to
invert given index e and its trapdoor te. That is,
given te, (f0

e)−1(y), (f1
e)−1(y) are efficiently com-

putable for any y ∈ De.

• It is hard to find a claw for index e. Formally, there
exists a negligible function µ(·), such that for ev-
ery probabilistic polynomial-time algorithm A and
sufficiently large n, we have
Pr[(e← Gen(1n), (x0, x1)← A(e) : f0

e (x0) =

f1
e (x1)] < µ(n)

We remark that claw-free trapdoor permutations can be
constructed from certain general assumptions, and more
examples are given in [20,30].

2.4 Commitment Schemes

Commitment schemes are used to enable a party,
known as the sender, to commit itself to a value while
keeping it secret from another party, called the receiver.
This property is called hiding. Furthermore, the commit-
ment is binding, and thus at a later stage when the com-
mitment is opened, it is guaranteed that the “opening” can
yield only a single value determined in the committing
phase. We sketch the two properties. General definitions
can be found in [20].

• Perfectly binding commitments: the binding
property holds against unbounded senders, while
the hiding property only holds against computation-
ally bounded receivers.

• Perfectly hiding commitments: the hiding prop-
erty holds against unbounded receivers, while the
binding property only holds against computation-
ally bounded senders.

In this paper, we use two types of commitment
schemes. One is a non-interactive perfectly-binding com-
mitment scheme which can be constructed using any 1-1
one-way function (see Section 4.4.1 of [20]). The other
is a two-round perfectly-hiding commitment scheme. In
particular, this scheme can be constructed based on claw-
free collections [19].

3 Constant-round zero-knowledge
proofs of knowledge for HC

Suppose that the language HC consists of all directed
graphs that contain a Hamiltonian cycle. Our goal in this
section is to construct a constant-round zero-knowledge
proof of knowledge for HC.

Recall the classical form of 3-round interactive proofs
by reviewing the basic protocol for HC presented
by Blum in [1]. Here and throughout this paper,
Comm(·; ·) is a non-interactive perfectly binding com-
mitment scheme, that can be constructed using any 1-1

4

one-way function (see Section 4.4.1 of [20]). For conve-
nience, we denote by Comm(G; r) the commitment to
the adjacency matrix of G.

• The prover first sends its commitment c: The prover
selects randomly a permutation π over V and r ∈R

{0, 1}poly(|V |), computes c = Comm(π(G); r),
and sends c to the verifier.

• The verifier sends a challenge σ: The verifier uni-
formly selects σ ∈R {0, 1} and sends it to the
prover.

• The prover responds to the challenge with aσ: If
σ = 0, the prover reveals the partial commitments
(of c) corresponding to the edges of the Hamilto-
nian cycle π(H). If σ = 1 then the prover reveals
all the commitments of c and π.

• Upon receiving the response aσ from the prover,
the verifier checks whether Checkσ(c, aσ) =
1. (Here and throughout this paper, we define
Checkσ(c, aσ) = 1 if that all the values revealed
by aσ are 1 and the corresponding edges form a
simple Hamiltonian cycle when σ = 0, or aσ cor-
rectly reveals all the commitments of c and π such
that the revealed graph is indeed isomorphic G via
π when σ = 1)

The above construction is a proof of knowledge with
knowledge error 1/2 for HC. Furthermore, it is also a
weak zero-knowledge proof system because its soundbess
error is 1/2 but not negligible.

To reduce the knowledge error, a straightforward
method can be used, that is, sequentially running the ba-
sic protocol many times. Clearly, sequentially repeating
the basic protocol sufficient many times yields a zero-
knowledge proof of knowledge for HC (with negligible
knowledge error), but this is not a constant-round proof
system. To obtain constant-round proofs of knowledge,
one can run the basic protocol many times in parallel. Of
course, the parallel protocol is also a proof of knowledge
with negligible knowledge error too. In fact, the classical
knowledge extraction strategy is given below.

• Obtain the first message from P ∗.

• Pick a random challenge σ = σ1 · · ·σn ∈ {0, 1}n,
and feed P ∗ with this challenge. If P ∗ does not
answer correctly, stop.

• Otherwise, repeatedly choose a random challenge
σ′ ∈ {0, 1}n, and then rewind P ∗ by feeding σ′

until P ∗ answers correctly a second time.

• If σ′ 6= σ, compute H from the answer and outputs
it.

However, the protocol yielded from paralleling n basic
protocols cannot be proved to be zero-knowledge.

By forcing the verifier to commit (using a perfectly-
hiding commitment scheme) to its challenges σ =
σ1 · · ·σn in advance, we can recover the zero-knowledge
property of n parallel repetitions of the basic protocol,
such as in [19,29]. However, the resulting protocol is no
longer a proof of knowledge, because the fact that the ver-
ifier is forced to commit to σ in advance will result in the
above classical strategy no longer being valid. In fact,
to invoke P ∗ with a new different challenge, knowledge
extractor K must rewind P ∗ back to the point where P ∗

receives the verifier’s commitment, and consequentially,
P ∗ might change its commitments.

The zero-knowledge property requires that there exists
a simulator that rewinds a possible cheating verifier V ∗ to
simulate a proof without knowing a witness, while proofs
of knowledge require that there exists a knowledge ex-
tractor that accesses the prover’s strategy P ∗ to extract a
witness from P ∗. We know that the approach forcing the
verifier to commit to its challenges in advance ensures the
zero-knowledge property, but then seemingly destroys the
proof of knowledge property. To obtain a constant-round
protocol that admits both a (black-box) simulator and a
knowledge extractor, we will consider a new type of inter-
active proof, in which the challenge is jointly determined
by both the prover and verifier, and neither has outright
control over it. The advantage that this approach holds is
that the challenge is independent of the prover’s first com-
mitment, and need not have been committed in advance.
Thus, on the one hand, the classical knowledge extrac-
tion strategy can work efficiently. On the other hand, the
simulator can simulate the proof by modifying the chal-
lenge all by itself. In other words, this interactive proof
can admit both a (black-box) simulator and a knowledge
extractor.

The details of our construction are given below. Let
Commph(·; ·) be a two-round perfectly hiding commit-
ment scheme.

Construction 1

5

Common input: G = (V,E) ∈ HC, |V | = n.
Auxiliary input to the prover: A Hamilton cycle H in G

such that (G, H) ∈ RHC .

P1 The prover first proceeds as follows:

– Randomly select n permutations π1, · · · , πn

over V and commit to the adjacency matrix
of πj(G) for j = 1, · · · , n. That is, com-
pute Ck = Comm(πj(G);Rj) for Rj ∈R

{0, 1}n2·poly(n), j = 1, · · · , n.

– Send (C1, · · · , Cn),m to the verifier, where
m is the first message of the commitment
scheme Commph(·; ·).

V1 After receiving the first messages from the prover,
the verifier proceeds as follows:

– Select σ = σ1 · · ·σn ∈R {0, 1}n, θ0
j , θ

1
j ∈R

{0, 1}n, such that σ = θ0
j⊕θ1

j , j = 1, · · · , n.

– Commit to σ: Concretely, compute y =
Commph(σ; r) for r ∈R {0, 1}poly(n).

– Commit to θ0
1, θ

1
1, · · · , θ0

n, θ1
n: That is,

compute y0
j = Commph(θ0

j ; r
0
j), y1

j =
Commph(θ1

j ; r
1
j), where r0

j , r
1
j ∈R

{0, 1}poly(n), j = 1, · · · , n.

– Send y, (y0
1, y

1
1), · · · , (y0

n, y1
n) to the prover.

P2 The prover sends δ = δ1 · · · δn ∈R {0, 1}n to the
verifier.

V2 The verifier reveals (θδ1
1 , rδ1

1), · · · , (θδn
n , rδn

n).

P3 The prover verifies the received revealment. If the
verification fails, the prover aborts. Otherwise, the
prover picks ε = ε1 · · · εn ∈R {0, 1}n and sends ε

to the verifier.

V3 The verifier reveals σ and θ1−δ1
1 , · · · , θ1−δn

n .

P4 The prover first verifies the revealment. If the ver-
ification fails, the prover aborts. Otherwise, the
prover answers the challenge αj = εj ⊕ σj by re-
vealing the partial commitments or all the commit-
ments (of Cj), j = 1, · · · , n. That is, the prover
sends A1, · · · , An to the verifier, where Aj reveals
the partial commitments (of Cj) corresponding to
the edges of the Hamiltonian cycle πj(H) when
αj = 0, or reveals all the commitments of π(G)
and π when αj = 1, j = 1, · · · , n.

V4 After receiving (A1, · · · , An), the verifier checks
n∧

j=1

(
Checkαj

(Ck, Aj) = 1
)

where αj = εj ⊕ σj . The verifier accepts if and
only if the verification succeeds.

Theorem 1 Construction 1 constitutes a zero-
knowledge proof of knowledge (with negligible knowl-
edge error) for HC, assuming Comm(·; ·) is a non-
interactive perfectly binding commitment scheme and
Commph(·; ·) is a two-round perfectly hiding commit-
ment scheme.

Proof: Completeness is obvious. Soundness fol-
lows directly from the perfectly hiding property of
Commph(·; ·). The (black-box) simulator SV ∗

showing
its zero-knowledge property operates as follows:

1. Uniformly select a string r ∈ {0, 1}poly(n) to be
used as the content of the local random tape of V ∗.

2. From j = 1 to n,

• Randomly chooses a simple Hamiltonian cy-
cle Hj , a permutation πj over V and Rj ∈R

{0, 1}n2·poly(n).

• Randomly pick αj ∈R {0, 1}. If αj = 0, then
compute Cj = Comm(Hj;Rj). Otherwise,
compute Cj = Comm(πj(G);Rj).

3. Feed V ∗ with C = (C1, · · · , Cn) and m (the
first message of Commph(·; ·)), that respond to
y, (y0

1, y
1
1), · · · , (y0

n, y1
n).

4. Randomly selects δ = δ1 · · · δn ∈ {0, 1}n,
and feed δ to V ∗, which answers by revealing
(θδ1

1 , rδ1
1), · · · , (θδn

n , rδn
n).

5. If some of the decommitments are not correct, out-
put (r, C, m, δ) and stop. Otherwise, proceed to
the next step.

6. Repeatedly choose δ′ = δ′1 · · · δ′n ∈ {0, 1}n,
rewind the V ∗, and feed V ∗ with δ′ until V ∗ de-
commits y

δ′1
1 , · · · , yδ′1

1 correctly.

7. If δ = δ′, output ⊥ and stop.

8. Otherwise, there exists 1 6 i 6 n such that
δi 6= δ′i. Let σ = σ1 · · ·σn = θδi

i ⊕ θ
δ′i
i .

6

9. Feed V ∗ with ε = α⊕σ, and receive V ∗’s response
σ and θ1−δ1

1 , · · · , θ1−δn
n .

10. Verify the revealed values. If this verification fails,
output (r, C, m, δ, ε) and stop.

11. Otherwise, let Aj be the revealment of the partial
commitments (of Cj) corresponding to the edges
of the Hamiltonian cycle Hj when αj = 0, or be
the revealment of all the commitments of Cj and
πj when αj = 1, j = 1, · · · , n. Then output
(r, C, m, δ, ε, (A1, · · · , An)) and stop.

It is easy to see that the expected running time of
SV ∗

(G) is strictly polynomial-time. Next, we move on
to show that {SV ∗

(G)}G∈HC is computationally indis-
tinguishable from {ViewP

V ∗(G)}G∈HC .
Note that the two differences between SV ∗

(G) and
ViewP

V ∗(G) are: (1) SV ∗
(G) = ⊥ when δ′ = δ, and (2)

some of the committed values of C1, · · · , Cn are differ-
ent. Note that Pr[SV ∗

(G) = ⊥] is negligible 1. Thus, it
follows directly from the hiding property of Comm(·; ·)
that {SV ∗

(G)}G∈HC is computationally indistinguish-
able from {ViewP

V ∗(G)}G∈HC .
Next, we show the validity by defining the knowledge

extractor K, which has access to the prover-strategy ora-
cle P ∗. On input x, K proceeds as follows:

1. On input G, invoke P ∗ and obtains its responses:
C = (C1, · · · , Cn) and m.

2. Select σ, θ0
1, θ

1
1, · · · , θ0

n, θ1
n ∈R {0, 1}n, com-

pute commitments y, (y0
1, y

1
1), · · · , (y0

n, y1
n) as V1.

Feed P ∗ with (y, (y0
1, y

1
1), · · · , (y0

n, y1
n)), and then

obtain the response δ = δ1 · · · δn.

3. Query the oracle P ∗ with (θδ1
1 , rδ1

1) · · · , (θδn
n , rδn

n),
(the decommitment of (yδ1

1 , · · · , yδn
n)), and then

obtains ε.

4. Query P ∗ with (σ, r) (the decommitment of y)
and (θ1−δ1

1 , r1−δ1
1) · · · , (θ1−δn

n , r1−δn
n) (the com-

mitments of (y1−δ1
1 , · · · , y1−δn

n)), and then obtain
its responses (A1, · · · , An).

5. After receiving (A1, · · · , An), verify
n∧

j=1

Checkαj
(Ck, Aj) = 1

where α = α1 · · ·αn = ε ⊕ σ. If the verification
fails, stop without any output.

6. Otherwise, repeat the following.

• Select σ′, θ0
1, θ

1
1, · · · , θ0

n, θ1
n ∈R {0, 1}n,

such that θ0
1 ⊕ θ1

1 = · · · = θ0
n ⊕ θ1

n =
σ′, compute the commitments y, (y0

1, y
1
1), · · · ,

(y0
n, y1

n) as V1. Feed P ∗ with y, (y0
1, y

1
1), · · · ,

(y0
n, y1

n), then get the response δ = δ1 · · · δn.

• Invoke P ∗ with (θδ1
1 , rδ1

1), · · · , (θδn
n , rδn

n),
and then obtains ε′.

• Query P ∗ with (σ′, r) and (θ1−δ1
1 , r1−δ1

1),
· · · , (θ1−δn

n , r1−δn
n), and then obtain its re-

sponses (A′
1, · · · , A′

n).

• After receiving (A′
1, · · · , A′

n), verify
n∧

j=1

Checkα′
j
(Ck, A

′
j) = 1

where α′ = α′
1 · · ·α′

n = ε′ ⊕ σ′, If the verifi-
cation succeeds, terminate the repeat and pro-
ceed to the next step.

7. If α = α′, stop without any output. Otherwise,
there exists at least k, such that αk 6= α′

k. Compute
a cycle H from Ak and A′

k. Output H and stop.

Let p be the probability that P ∗ convinces the verifier
of the proved statement. Note that K always stops at step
5 and then runs in strict polynomial time when p = 0. So
consider p > 0 in what follows. Let E denote the event
that the knowledge extractor K terminates the repeat suc-
cessfully, p′ = Pr[E]. Note that p′ > p (in fact, p′ = p),
and then the expected number of times of running the re-
peat is 1

p′
. Therefore, the expected running time of K

given by
(1−p)·poly(n)+p·(1

p′
·poly(n)+poly(n)) = poly(n)

is polynomial-time.
Let Eα denote the event that K obtains α = α1 · · ·αn

and (A1, · · · , An) such that
n∧

j=1

Checkαj
(Ck, Aj) = 1

1 In fact, let E denote the event that V ∗ answers the SV ∗
’s query δ correctly, and note that q = Pr[δ′ = δ|E]Pr[E]. Therefore, q 6 2−n when

p = Pr[E] 6 2−n, whereas q = p
∑

k=0(1 − m−1
2n)k · 2−n = 2−np · 2n

m−1
= 2−n · m

m−1
when p = Pr[E] = m

2n (m > 2). Overall, q 6 2−n+1.

7

and T denote the event thatK terminates the repeats. Ob-
viously, p =

∑
α Pr[Eα]. Assume p = m

2n > 2−n, we
have

Pr[(G, H) ∈ RHC : H ← K(G)]

=
∑

α Pr[Eα ∧ T ∧ (α 6= α′)]

=
∑

α Pr[Eα] · Pr[T ∧ (α 6= α′)|Eα]

where α′ is determined when T occurs. Since

Pr[T ∧ (α 6= α′)|Eα]

= (m−1
2n + · · ·+ (1− m

2n)k · m−1
2n + · · ·)

= m−1
m

we obtain

Pr[(G, H) ∈ RHC : H ← K(G)]

= pm−1
m

= p− 2−n

That is, K succeeds in computing a Hamiltonian cycle in
G with probability of at least p− 2−n when p > 2−n. �

4 Round-optimal zero-knowledge proofs
of knowledge for HC

In [25], Katz shows that 4-round black-box zero-
knowledge proofs do not exist for any NP-complete lan-
guage assuming the polynomial hierarchy does not col-
lapse. In this section, our aim is to construct a round-
optimal zero-knowledge proof of knowledge for HC. In
other word, we will present a 5-round zero-knowledge
proof of knowledge for the NP-complete language HC by
modifying the above construction.

The details of our construction are given below. Note
that the pseudorandom generator Gl(n)(·) used in the con-
struction is derived from one trapdoor permutation of the
claw-free permutations generated by the prover, where
l(n) is any polynomial that specifies the output length.
Note the verifier can obtain the claw-free permutation
from the prover, so the verifier can hold Gl(n)(·).

Construction 2

Common input: G = (V,E) ∈ HC, |V | = n.
Auxiliary input to the prover: A Hamilton cycle H in G

such that (G, H) ∈ RHC .

P1 The prover first proceeds as follows:

– Randomly selects n permutations
π1, · · · , πn over V and n3 strings
R1 = (r(1)

1,1, · · · , r(1)
n,n), · · · , Rn =

(r(n)
1,1 , · · · , r(n)

n,n), where r
(k)
i,j ∈R

{0, 1}poly(n), and poly(·) is determined by
the commitment scheme. Then computes

Ck = Comm(πk(G);Rk), k = 1, · · · , n

– Set A0
k = (πk(H), Rπk(H)), A1

k = (πk, Rk),
k = 1, · · · , n, where Rπk(H) = {r(k)

i,j :
r
(k)
i,j ∈ Rk, h

(k)
i,j = 1}, and (h(k)

j,k)n×n is the
adjacency matrix of πk(H). Assume p0(n) =
|A0

1| = · · · = |A0
n|, p1(n) = |A1

1| = · · · =
|A1

n|.
– e← Gen(1n).

– Send C = (C1, · · · , Cn), e to the verifier.

V1 After receiving the first messages from the prover,
the verifier proceeds as follows:

– Select σ = σ1 · · ·σn ∈R {0, 1}n, θ0
j =

θ0
j,1 · · · θ0

j,n, θ1
j = θ1

j,1 · · · θ1
j,n ∈R {0, 1}n,

such that σ = θ0
j ⊕ θ1

j , j = 1, · · · , n.

– Select x1, · · · , xn ∈R De, and compute
yi = fσi

e (xi), i = 1, · · · , n. Let y =
(y1, · · · , yn).

– Pick x0
j,k, x

1
j,k ∈R De and compute y0

j,k =

f
θ0

jk
e (x0

j,k), y
1
j,k = f

θ1
j,k

e (x1
j,k), for j, k =

1, · · · , n. Let y0
j = (y0

j,1, · · · , y0
j,n), y1

j =
(y1

j,1, · · · , y1
j,n), j = 1, · · · , n.

– Send y, (y0
1, y

1
1), · · · , (y0

n, y1
n) to the prover.

P2 The prover sends δ = δ1 · · · δn ∈R {0, 1}n to the
verifier.

V2 The verifier reveals θδ1
1 , · · · , θδn

n . That is, the
verifier sends (θδ1

1 , · · · , θδn
n), and (xδ1

1,1 ,· · · ,
xδ1

1,n), · · · , (xδn

n,1, · · · , xδn
n,n) to the prover.

P3 The prover verifies the revealment. If the verifica-
tion fails, the prover aborts. Otherwise, the prover
acts as follows:

– Randomly pick ε = ε1 · · · εn ∈R {0, 1}n.

– Compute z0
j = (f εj

e)−1(yj), z1
j =

(f1⊕εj
e)−1(yj), j = 1, · · · , n.

– Randomly pick w0
1, w

1
1, · · · , w0

n, w1
n ∈R De

and compute d0
1 = z0

1 ⊕ w0
1, d

1
1 = z1

1 ⊕ w1
1 ,

· · · , d0
n = z0

n ⊕ w0
n, d1

n = z1
n ⊕ w1

n

8

– Compute s0
1 = A0

1 ⊕ Gp0(n)(w0
1), s

1
1 =

A1
1 ⊕ Gp0(n)(w1

1), · · · , s0
n = A0

n ⊕
Gp0(n)(w0

n), s1
n = A1

n ⊕Gp0(n)(w1
n).

– Set T 0
j = (d0

j , s
0
j), T 1

j = (d1
j , s

1
j), Tj =

(T 0
j , T 1

j), j = 1, · · · , n. Send T =
(T1, · · · , Tn) and ε to the verifier.

V3 After receiving T = (T1, · · · , Tn), the verifier sets
α = α1 · · ·αn = σ ⊕ ε and computes: Bαk

k =
sαk

k ⊕Gpαk
(n)(xk ⊕ dαk

k), k = 1, · · · , n. The ver-
ifier accepts if and only if the following condition
holds

n∧
k=1

(Checkαk
(Ck, B

αk

k) = 1)

Theorem 2 Construction 2 constitutes a zero-
knowledge proof of knowledge (with negligible knowl-
edge error) for HC, assuming Comm(·; ·) is a non-
interactive perfectly binding commitment scheme and
F = {f0

e , f1
e }e∈I is a claw-free collection.

Proof: Completeness and Soundness are obvious.
In the following, we first prove the zero-knowledge

property. To achieve this, we define a (black-box) sim-
ulator SV ∗

for any V ∗ on input G as follows:

1. Uniformly select a string r ∈ {0, 1}poly(n) to be
used as the content of the local random tape of V ∗.

2. From j = 1 to n,

• Randomly choose a simple Hamilton cycle
Hj , a permutations πj over V and Rj ∈R

{0, 1}n2·poly(n).

• Randomly pick αj ∈R {0, 1}. If αj = 0,
then compute Cj = Comm(Hj;Rj), set
A0

j = (Hj, RHj
) (here, RHj

is analogous to
Rπk(H) in P1) and randomly pick A1

j . Other-
wise, compute Cj = Comm(πi(G);Ri), set
A1

j = (πj, Rj) and randomly picks A0
j .

3. e← Gen(1n).

4. Feed V ∗ with C = (C1, · · · , Cn) and e, which re-
sponds with y, (y0

1, y
1
1), · · · , (y0

n, y1
n).

5. Randomly selects δ = δ1 · · · δn ∈ {0, 1}n, and
feed V ∗ with δ, which responds by decommitting
yδ1
1 , · · · , yδ1

1 . That is, V ∗ output (θδ1
1 , · · · , θδn

n),
and (xδ1

1,1 ,· · · , xδ1
1,n), · · · , (xδn

n,1, · · · , xδn
n,n).

6. If some of the decommitments of yδ1
1 , · · · , yδ1

1 are
not correct, outputs (C, e, δ) and stop. Otherwise,
proceed to the next step.

7. Repeatedly choose δ′ = δ′1 · · · δ′n ∈ {0, 1}n,
rewind the V ∗, and feed V ∗ with δ′ until V ∗ de-
commits y

δ′1
1 , · · · , yδ′1

1 correctly.

8. If δ = δ′, output ⊥ and stop.

9. Otherwise, there exists 1 6 i 6 n so that δi 6= δ′i.
Let σ = σ1 · · ·σn = θδi

i ⊕ θ
δ′i
i

10. Proceed as follows:

• Set ε = α ⊕ σ, where α = α1 · · ·αn is se-
lected in step 2.

• Compute, for j = 1, · · · , n,
z0

j = (f εj
e)−1(yj), z1

j = (f1⊕εj
e)−1(yj)

• Randomly pick w0
1, w

1
1 , · · · , w0

n, w1
n ∈R De

and compute d0
1 = z0

1 ⊕ w0
1, d

1
1 = z1

1 ⊕ w1
1 ,

· · · , d0
n = z0

n ⊕ w0
n, d1

n = z1
n ⊕ w1

n

• Compute, for j = 1, · · · , n,
s0

j = A0
j ⊕Gp0(n)(w0

j)
s1

j = A1
j ⊕Gp1(n)(w1

j)

• Finally, set T 0
j = (d0

j , s
0
j), T 1

j = (d1
j , s

1
j),

Tj = (T 0
j , T 1

j), j = 1, · · · , n.

11. Output (r, (C1, · · · , Cn), e, δ, (T1, · · · , Tn), ε)
and stop.

Let p be the probability that V ∗ correctly reveals
(θδ1

1 , · · · , θδn
n). It is easy to see that SV ∗

(G) runs in strict
polynomial time when p = 0. Consider the case where
p > 0. The expected running time of the simulator is
bounded by

poly(n) + p(
1
p
poly(n) + poly(n)) 6 poly(n))

Overall, S runs in the expected polynomial time.
Let SV ∗

(G) be the distribution induced by SV ∗
on in-

put G. We now prove that {SV ∗
(G)}G∈HC is computa-

tionally indistinguishable from {ViewP
V ∗(G)}G∈HC .

Note that q = Pr[SV ∗
(G) = ⊥] = Pr[δ′ = δ] is

negligible 2. So consider the case where SV ∗
(G) never

outputs ⊥ in what follows. That is, we only need to show
that {S(G)}G∈HC conditional on it not being ⊥ is com-
putationally indistinguishable from {ViewP

V ∗(G)}G∈HC .
2 Analogous to 1.

9

In addition, because the probability that the simu-
lator outputs (C, e, δ) is equal to the probability that
the prover aborts in P3, we only need to show that
{ViewP

V ∗(G)}G∈HC is computationally indistinguish-
able from {S(G)}G∈HC conditional on it being in form
of (r, (C1, · · · , Cn), e, δ, (T1, · · · , Tn), ε).

We define a hybrid simulator S ′, which follows the
same strategy as the simulator S on input G, except that,
instead of performing step 2, it is given the Hamiltonian
cycle H in G and then does as the following:

2’ From j = 1 to n,

– Randomly choose a permutation πj , Rj ∈
{0, 1}poly(n) and ρj ∈R {0, 1}.

– Compute C ′
j = Comm(πi(G);Ri). Set

A0
j = (πj(H), RHj

) and randomly pick A1
j

when ρj = 0, set A1
j = (πj, Rj) and ran-

domly pick A0
j when ρj = 1.

Let S ′(G, H) be the distribution output by S ′. It then
follows directly from the hiding property of the commit-
ment scheme Comm(·; ·) that {S ′(G, H)}G∈HC is com-
putationally indistinguishable from {S(G)}G∈HC . Thus,
all we need to show is that {S ′(G, H)}G∈HC is com-
putationally indistinguishable from {ViewP

V ∗(G)}G∈HC .
Note that, by the definition,
V iewP

V ∗(G) = (r, (C1, · · · , Cn), e, δ, (T1, · · · , Tn), ε)
We rewrite Tj = (T αj

j , T
1⊕αj

j), where αj = σj⊕εj ,j =
1, · · · , n. For convenience, we write
S ′(G, H) = (r′, (C ′

1, · · · , C ′
n), e′, δ′, (T ′

1, · · · , T ′
n), ε′)

where T ′
j = (T αj

j , T
1⊕αj

j), j = 1, · · · , n.
For every k ∈ {0, 1, · · · , n}, define a new hybrid

simulation procedure S ′k: S ′k follows the same strat-
egy as the simulator S ′ on input G, except for setting
A0

1, A
1
1, · · · , A0

k, A
1
k as the prover does in step P1.

We define hybrid random variables S ′k(G, H) which
are induced by the output of the hybrid simulation pro-
cedure Sk. Clearly, S0(G, H) = S ′(G, H), whereas
Sn(G, H) = ViewP

V ∗(G, H).
Suppose that there is a PPT algorithmD that can distin-

guish {S ′(G, H)}G∈HC from {ViewP
V ∗(G, H)}G∈HC .

It follows that there exist 0 6 k < n and an algo-
rithm D′, such that D′ can distinguish a pair of neigh-
boring hybrids S ′k(G, H) and S ′k+1(G, H). Note that
the only difference between S ′k(G, H) and S ′k+1(G, H)
is that T ′

k+1 is different from Tk+1. Therefore, us-
ing D′ we can derive a non-uniform algorithm to dis-

tinguish Tk+1 from T ′
k+1. Note that the only differ-

ence between Tk+1 and T ′
k+1 is T

1⊕αk+1
k+1 : T

1⊕αk+1
k+1 =

(Aεk+1
k+1 , x

εk+1
k+1) ⊕ (G(wεk+1

k+1), wεk+1
k+1) in Tk+1, whereas

T
1⊕αk+1
k+1 = (U1⊕αk+1 , Ue) in T ′

k+1 because A
1⊕αk+1
k+1 and

w
εk+1
k+1 are all uniformly distributed in T ′

k+1. Thus, the fact
that D′ can distinguish Tk+1 from T ′

k+1 will contradict
the assumptions that Gl(n)(·) is pseudorandom and F is
a claw-free collection. Overall, {S(G)}G∈HC is compu-
tationally indistinguishable from {ViewP

W∗(G)}G∈HC .
Next, we turn to prove its validity by construct-

ing a knowledge extractor K. For convenience, we
refer to (B0

1 , B
1
1), · · · , (B0

n, B1
n) as an accepted an-

swer to ζ = ζ1 · · · ζn if checkζ1(C1, B
ζ1
1) =

1, · · · , checkζn
(Cn, Bζn

n) = 1.
On input x and access to the prover-strategy oracle P ∗,
K proceeds as follows:

1. On input x, invoke P ∗ and obtains its responses:
C = (C1, · · · , Cn) and e.

2. Compute y, (y0
1, y

1
1), · · · , (y0

n, y1
n) as in V1, and

then feed P ∗ with (y, (y0
1, y

1
1), · · · , (y0

n, y1
n)).

Next, obtain the response δ = δ1 · · · δn.

3. Query P ∗ with (θδ1
1 , · · · , θδn

n), and (xδ1
1,1 ,· · · ,

xδ1
1,n), · · · , (xδn

n,1, · · · , xδn
n,n), and then obtain

(T1, · · · , Tn) and ε, where T 0
j = (d0

j , s
0
j), T

1
j =

(d1
j , s

1
j).

4. Compute B0
k = s0

k ⊕ Gp0(n)(z0
k), B1

k = s1
k ⊕

Gp1(n)(z1
k), k = 1, · · · , n, where zb

k = xk +
db

k. If there exists ζ = ζ1 · · · ζn, so that
(B0

1 , B
1
1), · · · , (B0

n, B1
n) is an acceptable answer

to ζ , then proceed to the next step. Otherwise, stop
without any output.

5. If there exists k such that check1−ζk
(Ck, B

1−ζk

k) =
checkζk

(Ck, B
ζk

k) = 1, compute a cycle H from
Bζk

k and B1−ζk

k . Output H and stop.

6. Otherwise, repeat the following.

• Feed P ∗ with (y, (y0
1, y

1
1), · · · , (y0

n, y1
n))

computed as in V1, and then get the response
δ′ = δ′1 · · · δ′n.

• Invoke P ∗ with (θδ′1
1 , · · · , θδ′n

n) and (xδ1
1,1 ,· · · ,

xδ1
1,n), · · · , (xδn

n,1, · · · , xδn
n,n), and then obtain

(T1, · · · , Tn) and ε.

10

• Compute B′0
j = s0

j ⊕ Gp0(n)(z0
j) and

B′1
j = s1

j ⊕ Gp1(n)(z1
j) (j = 1, · · · , n)

as in step 4. If there exists k, such
that check1−ζk

(Ck, B
′1−ζk

k) = 1 or
check0(Ck, B

′0
k) = check1(Ck, B

′1
k) = 1

then terminate the repeat and proceed to the
next step.

• Else if (B′0
1 , B′1

1), · · · , (B′0
n , B′1

n) is accept-
able only for ζ , then terminate the repeat and
stop without output.

7. Compute a cycle H from Bζl

k and B′1−ζk

k or from
B′0

k and B′1
k . Output H and stop.

We now show two facts: (1) K runs in the expected
polynomial time, and (2) if the probability (denoted by
p) that P ∗ convinces the verifier of the proved statement
is greater than 2−n/3, then K succeeds in computing a
Hamiltonian cycle in G with a probability of at least
p− 2−2n/3.

Note thatK clearly runs in strict polynomial time when
p = 0. So we assume that p > 0 in what follows. Let
E denote the event that the knowledge extractor K ter-
minates the repeat successfully, p′ = Pr[E]. Note that
p′ > p, and then the expected number of times of is 1

p′
.

Therefore, the expected running time of K is given by
(1− p) · poly(n) + p · 1

p′
· poly(n) = poly(n)

To show the second fact, we note that K termi-
nates its execution without output when either (1) it

does not obtain (B0
1 , B

1
1), · · · , (B0

n, B1
n) that is ac-

ceptable, or (2) assuming (B0
1 , B

1
1), · · · , (B0

n, B1
n) is

acceptable for ζ , it terminates the repeat on finding
(B′0

1 , B′1
1), · · · , (B′0

n , B′1
n) which is acceptable only for

ζ ′ = ζ .

If the prover does not know of any Hamilton cycle in
G, the probability that P ∗ gives a successful proof is at
most 2−n, that is, p 6 2−n. In fact, it is the probabil-
ity that the prover correctly guesses σ = σ1 · · ·σn. If
p > 2−n/3, then there must exist 1 6 k0 6 n such that

Check0(Ck0 , A
0
k0

) = Check1(Ck0 , A
1
k0

) = 1
Therefore, p′ = Pr[E] > p > 0. Note ζ ′ is uniformly
distributed and then Pr[ζ ′ = ζ] = 2−n. Thus, the prob-
ability that case (2) takes place is given by

2−n + (1− p′) · 2−n + · · ·+ (1− p′)k · 2−n + · · ·
= 2−n · 1

p′
6 2−2n/3

It follows that K outputs a Hamilton cycle H ⊂ G with
probability p− 2−2n/3 when p > 2−n/3. �

Since claw-free trapdoor permutations imply the ex-
istence of non-interactive perfectly binding commitment
schemes, we get the following theorem.

Theorem 3 Every NP language has 5-round zero-
knowledge proofs of knowledge (with negligible knowl-
edge error), provided that claw-free trapdoor permuta-
tions exist.

By combining Theorems 1 and 3, we obtain our main
theorem.

1 M. Blum. How to prove a theorem so no one else can claim it. Pro-
ceedings of the International Congress of Mathematicians, California,
USA,1986:1444-1451.

2 B. Barak. How to go beyond the black-box simulation barrier. In 42th
Annual Syposium on Foundation of Computing Science,IEEE Com-
puter Society, 2001:106-115.

3 B. Barak. Non-black-box techniques in cryptography. Thesis
for the Ph. D. Degree, Weizmann Institute of Science, 2004:53-
102.(http://www.math.ias.edu/ boaz/index.html)

4 B. Barak, Y. Lindell, and S. Vadhan. Lower bounds for non-black-
box zero knowledge. In 44th Annual IEEE Symposium Foundations of
computer science, IEEE Computer Society 2003: 384-393.

5 B. Barak, Y. Lindell, and S. Vadhan. Lower bounds for non-black-
box zero knowledge. Journal of Computer and System Sciences, 2006,
72(2): 321-391.

6 B. Barak, Y. lindell. Strict polynomial-time in simulation and extrac-
tion. In 34th STOC, 2002, pasges 484-493.

7 G. Brassard, C. Crepeau, and M. Yung. Constant-round perfect zero-
knowledge computationally convincing protocols. Theoretical Com-

puter Science, 1991, Vol.84:23-54.
8 M. Bellare, O. Goldreich. On defining proofs of knowledge. Advances

in Cryptology-CRYPT’92, LNCS, vol.740, Springer-Verlag,1992, pages
390-420.

9 M. Bellare, O. Goldreich. On probabilistic versus deterministic provers
in the definition of proofs of knowledge.

10 M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-
knowledge arguments base on any one-way function. In EURO-
CRPT’97, LNCS, Vol.1233, Spring-Verlag,1997:280-305.

11 M. Bellare, A. Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocol. http://eprint.iacr.org/2003

12 M. Bellare, M. Yung. Certifying permutations: non-interactive zero-
knowledge based on an trapdoor permutation. Journal of Cryptology,
1996, 9(1):149-166.

13 U. Feige, A. Shamir. Zero knowledge proofs of knowledge
in two rounds. In proceedings of CRYPTO’89, Berlin:Springer-
Verlag,1989:526-545.

14 O. Goldreich, L.Levin. A hard predicate for all one-way functions. In
Proceeding of the 21st Annu. ACM Symp. on the theory of Computing,

11

1989:25-32.
15 O. Goldreich, H. Krawczyk. On the composition of zero-knowledge

proof systems. SIAM Journal of Computing, 1996, 25(1):169-192.
16 S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complex-

ity of interactive proof systems. SIAM Journal on computing, 1989,
18(16):186-208.

17 O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. J. of the ACM, 1991, 38(3):691-729.

18 O. Goldreich, Y. Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 1994, 7(1):1-32.

19 O. Goldreich, A. Kahan. How to construct constant-round zero-
knowledge proof system for NP. Journal of Cryptology, 1996,9(3):167-
189.

20 O. Goldreich. Foundations of Cryptography - Basic Tools. Cambridge
University Press, 2001.

21 S. Halevi, S. Micali. More on proofs of knowledge.
http://eprint.iacr.org/1998/015.

22 S. Hada, T. Tanaka. On the existence of 3-round zero-knowledge
protocol. Advances in Cryptology-CRYPT’98, LNCS, vol.1462,
H.Krawczyk ed., Springer-Verlag,1998. (Preliminary version of [23])

23 S. Hada, T. Tanaka. On the existence of 3-round zero-knowledge pro-

tocol. http://eprint.iacr.org/1999/009. (Final version of [22])
24 Itoh Toshiya, Sakurai Kouichi. On the Complexity of Constant Round

ZKIP of Possession of Knowledge. IEICE TRANS. FUNDAMEN-
TALS, 1993, VOL. E76-A, NO, 1:31-39.

25 J. Katz. Which languages have 4-round zero-knowledge proofs. In
Fifth Theory of Cryptography Conference, LNCS Vol. 4948, Spring-
Verlag,2008:73-88.

26 M. Lepinski. On the existence of 3-round zero-knowledge proofs.
Thesis for the degree of master, Massachusetts Institute of Technol-
ogy,2002.(http://citeseer.ist.psu.edu/lepinski01existence.html)

27 Li Hongda, Li Bao. The existence of 3-round zero-knowledge proof
systems for NP. Science in China Series F-Information Sciences, 2008,
51(3):273-282.

28 M. Naor. On Cryptographic Assumptions and Challenges. In In pro-
ceedings of Advances in Cryptology-CRYPT’2003, LNCS, vol 2729,
2003, pages 96-109.

29 A. Rosen. A note on constant-round zero-knowledge proofs for NP. In
First Theory of Cryptography Conference(TCC), LNCS 2951, Spring-
Verlag, 2004:191-202.

30 Y. Dodis, L. Reyzin. On the power of claw-free permutations. In Third
Conference on Security in Communication Networks’02, LNCS, Vol.
2576, Spring-Verlag,2003:55-73.

12

