
Properties of Cryptographic Hash Functions

Michal Rjaško

Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius
University, Bratislava. E-mail: rjasko@dcs.fmph.uniba.sk

Abstract. This paper extends the work of Rogaway and Shrimpton [6], where they
formalized seven security properties: notions of preimage resistance (Pre, aPre, ePre),
second-preimage resistance (Sec, aSec, eSec) and collision resistance (Coll). They
also give all the implications and separations among the properties. In this paper we
consider three additional security properties which are important in applications of
hash functions: unforgeability (MAC), pseudo-random function (Prf) and pseudo-
random oracle (Pro). We give a new type of the implication and separation between
the security notions since the ones defined by Rogaway and Shrimpton were too
constraining, and work out all the relationships among the ten security notions
above. Some of the relations have been proven before, some of them appear to be
new. We show that a property pseudo-random oracle (Pro) introduced by Coron,
Dodis, Malinaud and Puniya [3] is (as expected) the strongest one, since it implies
almost all of the other properties.

Keywords: cryptographic hash function, provable security, properties of hash func-
tions.

1 Introduction

This paper studies the relationships among different security notions of hash function’s
security. It extends the work of Rogaway and Shrimpton [6], where they define seven basic
notions of hash function’s security (notions of preimage resistance, second-preimage resis-
tance and collision resistance) and give all implications and separations among these no-
tions. In this paper we consider three additional notions — unforgeability, pseudo-random
function and pseudo-random oracle. Thus we have ten different security notions among
which we provide all the implications and separations. Some of the relationships have been
proven before, some of them appear to be new.

Implication and separation. Rogaway and Shrimpton in [6] defined two types of the im-
plication – conventional and provisional. While the conventional implication carries usual
semantics of the word implication, the strength of the provisional implication depends on
a particular hash function. They also provide two types of separation – conventional and
unconditional, but here is the difference in the fact, whether one can assume the existence
of xxx secure hash function to prove the separation between xxx and yyy. However we
find the definitions too constraining since they are not suitable for the situation, where we
need to simulate some adversary multiple times (for more details see Section 4). Thus we
need to somehow generalize the definition of implications and separations by Rogaway and
Shrimpton. Our definition of implication (separation) between security notions arises from
a definition, when is a hash function secure against attacks in some sense (e.g. collision
resistance or preimage resistance). We consider a hash function to be secure in xxx sense
if any efficient adversary has negligible advantage in that sense. By efficient adversary we
mean an adversary running in a polynomial time. Thus the our definition of the implica-
tion informally says that a security notion xxx implies yyy if for a polynomial adversary A

1

attacking in yyy sense with non-negligible advantage there exists a polynomial adversary
B attacking in xxx sense with non-negligible advantage.

Organization. We begin by presenting some basic notation and definitions. In the Section
3 we give ten formal definitions of hash function security — notions of preimage resistance,
second-preimage resistance and collision resistance, the unforgeability notion (or MAC),
pseudo-random function and pseudo-random oracle. For a more complete discussion about
these notions we refer to the papers [6] (preimage, 2nd-preimage and collision resistance),
[5] (unforgeability and pseudo-random function), [3] (pseudo-random oracle), [2] or [1] (un-
forgeability, pseudo-random function, pseudo-random oracle). In the Section 4 we formally
define the implication and the separation between two security notions and finally in the
Section 6 we give relationships among the definitions that do not appear in [6]. The sum-
mary over all relations we provide in the Table 1.

2 Preliminaries

In the formal definitions of hash function security a hash function family is used instead
of a hash function. The hash function family is a hash function parametrized by a key. Its
is more universal object than a hash function and it enables us to formally define notions,
which are hard to define in the settings when using only hash functions. For example it
is hard to define collision resistance when we consider only hash functions, since collisions
exist in every hash function (its domains is bigger than its range) and trivial adversary can
win against any hash function – it just need to have hardwired a colliding pair (however it
can be difficult to find such adversary in practice). In hash function family settings, such
adversary would need to have hardwired a colliding pair for every key. Note that one can
consider a popular hash function SHA1 to be a member of a hash function family, which
key is the initialization vector for the SHA1 algorithm.

Definition 1 (Hash function family). A hash function family is a function H : K ×
M→ Y, where K = {0, 1}k, Y = {0, 1}y for some integers k, y > 0 and M = {0, 1}∗. Set
K is called key space, number y is called hash length of H.

We write M
$
←S for the experiment of choosing random element from the distribution

S. If S is a finite set, then M is chosen uniformly from S. Concatenation of finite strings M1

and M2 we denote by M1||M2 or simply M1M2. Bitwise complement of string M we write as
M . Empty string is denoted by µ. If i is an integer, then 〈i〉r is r-bit string representation of
i. Let Func(D, R) represent the set of all functions ρ : D → R and let RFD,R be a function

chosen randomly from the set Func(D, R) (i.e. RFD,R
$
←Func(D, R)). We sometimes write

RFd,r when D = {0, 1}d and R = {0, 1}r. By Prefixn(M) we denote the n-bit prefix of
message M , similarly by Suffixn(M) we denote the n-bit suffix of M .

Definition 2 (Adversary). An adversary is a random access machine (RAM) with any
number of inputs (i.e. it can access ith bit of input j in unit time) that can toss a coin in
unit time (i.e. it can choose a sample from the set {0, 1} in a unit time). Running time of
an adversary A on some input is the average time needed to compute an output (relative
to some fixed RAM model) plus the description size of A (relative to some fixed coding of
RAMs).

Let H : K ×M → Y be a hash function family. We denote by TimeH,n the running
time of an algorithm P (i.e. some random access machine) computing H that has the

2

best worst case running time over all inputs (K, M); K ∈ K; M ∈ M; |M | = n, that is,
any other algorithm P ′ computing H has the worst case running time over all the inputs
(K, M); K ∈ K; M ∈ M; |M | = n greater or equal to P ’s. Informally speaking, TimeH,n is
the time needed to compute HK on any input of length n.

A function f : N→ R
+ is negligible, if it descends faster than any polynomial powered

to −1. The formal definition is following.

Definition 3 (Negligible function). A function f : N → R
+ is negligible, if for every

constant c > 0, there exists an integer N0 ∈ N, such that for all integers n > N0 it holds

f(n) <
1

nc
.

The term negligible we mostly use when considering an advantage of an adversary
attacking a hash function family H : K×M→ Y. We consider some advantage as negligible
when it is a function of k or y and this function is negligible.

3 Definitions of the security notions

Standard notions. The seven security notions defined below are those from Rogaway-
Shrimpton [6] – notions of collision resistance, second-preimage resistance and preimage
resistance. We note, that the parameter [λ] is used in the definitions to avoid random se-
lection from the possibly infinite setM and also to bound the length of randomly selected
messages.

Let H : K × M → Y be a hash function family and let λ be a number such that
{0, 1}λ ⊆M. Let A be an adversary. Then we define the following advantage measures:

Adv
Pre[λ]
H (A) = Pr

[

K
$
←K; M

$
←{0, 1}λ; Y ← HK(M); M ′ ← A(K, Y) : HK(M ′) = Y

]

Adv
ePre
H (A) = max

Y ∈Y

(

Pr
[

K
$
←K; M ← A(K) : HK(M) = Y

])

Adv
aPre[λ]
H (A) = max

K∈K

(

Pr
[

M
$
←{0, 1}λ; Y ← HK(M); M ′ ← A(Y) : HK(M ′) = Y

])

Adv
Sec[λ]
H (A) = Pr

[

K
$
←K; M

$
←{0, 1}λ; M ′ ← A(K,M) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
]

Adv
eSec[λ]
H (A) = max

M∈{0,1}λ

(

Pr
[

K
$
←K; M ′ ← A(K) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
])

Adv
aSec[λ]
H (A) = max

K∈K

(

Pr
[

M
$
←{0, 1}λ; M ′ ← A(M) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
])

Adv
Coll
H (A) = Pr

[

K
$
←K; (M, M

′)← A(K) : (M 6= M
′) ∧ (HK(M) = HK(M ′))

]

We say that H is (t, L, ε)-xxx for xxx ∈ {Pre, aPre, Sec, eSec, aSec} if any adversary A

running in time at most t and outputting messages of length less than or equal to L has

advantage Adv
xxx[λ]
H (A) ≤ ε for all positive integers λ. We say that H is (t, L, ε)-yyy for

yyy ∈ {ePre, Coll}, if any adversary A running in time at most t and outputting messages

of length less than or equal to L has advantage Adv
yyy
H (A) ≤ ε.

Message authentication codes. Hash function families used for message authentication
should be strong in the following sense. Let H : K ×M → Y be a hash function fam-
ily. Let A be an adversary. Consider the following advantage measure:

Adv
MAC
H (A) = Pr

[

K
$
←K; (M,Y)← A

HK : HK(M) = Y ∧M not queried
]

3

We say that a hash function family H is (t, q, L, ε)-MAC if any adversary A running in
time at most t, outputting or querying messages of length less than or equal to L and

making at most q queries to its oracle has advantage AdvMAC
H (A) ≤ ε.

Note that the adversary A in the advantage measure above does not have access to the
key K. It takes function HK : M → Y as a black-box and can not output message, that
was queried. Otherwise it would be easy to find such adversary for every function family
H (it would query some message M and return a pair (M, HK(M))).

Also note that it makes no sense to think about maximizing the MAC advantage over
all K (i.e. defining always MAC), as for a given function H : K×M→ Y we can construct
an adversary A always returning pair (M, HK0(M)) for some fixed K0. The advantage of
such adversary, if the key K0 is chosen, is 1, thus if we maximize the advantage over all
keys, it can not be smaller than 1.

Pseudo-random function and oracle. Hash functions are often used as a basic primitive,
from which more complex cryptosystems are build. It can be very difficult, even impossible
to prove the security of a cryptosystem that uses some complicated hash function. To
simplify the task, one first proves that the cryptosystem is secure when we replace the hash
function with some idealized object, i.e. random oracle. Then one proves that the hash
function is “indistinguishable” from that idealized object and therefore the security of the
system is not affected when the idealized object is replaced with the hash function.

Two concepts of the “indistinguishability” have been defined so far – indistinguishability
and more general indifferentiability defined in [4]. We consider a hash function family H

to be a pseudo-random function (Prf) when it is indistinguishable from the random oracle.
Similarly, a hash function family is pseudo-random oracle (Pro), if it is indifferentiable from
the random oracle.

The formal definitions of Prf and Pro arise from the definitions of indistinguishability
and indifferentiability ([4]). The definition of Pro requires the hash function family to be
built from some smaller “compression” function f : {0, 1}y+1 → {0, 1}y, i.e. we can consider
a hash function family to be some domain extension over the compression function f .

Let H : K×M→ Y be a hash function family. Let A be an adversary, f = RFy+d,y for
some integer d > 0 (f represents an ideal compression function) and let S be a simulator
(the simulator S is an algorithm (i.e. a RAM), which simulates f to make distinguishing
more difficult). Then we define the following advantage measures:

Adv
Prf
H (A) =

∣

∣

∣
Pr

[

K
$
←K; 1← A

HK(·)
]

− Pr
[

F
$
←Func(M,Y); 1← A

F
]∣

∣

∣

Adv
Pro
H,f,S(A) =

∣

∣

∣
Pr

[

K
$
←K; 1← A

H
f

K
(·),f(·)(K)

]

−

−Pr
[

K
$
←K;F

$
←Func(M,Y); 1← A

F(·),SF(K,·)(K)
]∣

∣

∣

We say that H is (t, q, L, ε)-Prf if any adversary A running in time at most t and mak-
ing at most q queries to its oracle each of length less than or equal to L has advantage

AdvPrf
H (A) ≤ ε. We say that H is (tA, tS , q1, q2, L, ε)-Pro if for any adversary A running

in time at most tA and making at most q1 (q2) queries to its first (second) oracle each of
length less than or equal to L, there exists a simulator S running in time tS such that the

advantage AdvPro
H,f,S(A) ≤ ε.

Again, it makes no sense to maximize the advantages APrf and APro over all keys, since
then a trivial adversary would prevail. Note that no adversary can have advantage equal
to 1 in the senses above, since there is a probability, that the randomly selected function
F equals to some function HK from the family H .

4

4 Implication and separation

We consider a hash function family H to be secure in some sense (Pro, Prf, MAC, Sec,...),
if any polynomial adversary has negligible advantage against H : K ×M → Y in that
sense. Polynomial adversary runs in a time that is a polynomial of k, y and l, where l is
the length of its input (if it has some).

Informally, we say that a security notion xxx implies security notion yyy, when for all
hash function families H holds, that if H is secure in the xxx sense, then it is secure in
yyy sense. Our formal definition of the implication comes straightly from this intuition. We
note that in the following definition, and later, [·] is a placeholder which is either [λ] (for
Pre, aPre, Sec, aSec, eSec, CTFP, aCTFP) or empty (for ePre, Coll, Prf, Pro). We also

write Adv
xxx[·]
H,·,· , which is either Adv

xxx[·]
H,S,f (when xxx is Pro), or Adv

xxx[·]
H,f (when xxx is

something else than Pro, but we are comparing it to Pro (e.g. yyy is Pro)), or Adv
xxx[·]
H

(when both security notions xxx and yyy are different from Pro).

Definition 4 (xxx → yyy). Let K = {0, 1}k, M = {0, 1}∗ and Y = {0, 1}y for some
fixed k and y, let λ be some fixed positive integer, f = RFy+d,y and suppose, that xxx,
yyy ∈ Atks. We say that the definition of security notion xxx implies security notion yyy
(shortly xxx → yyy), if for any hash function family H : K ×M → Y and any adversary
A running in polynomial time t, with non-negligible advantage (with respect to k, y or λ)
in yyy sense (for all polynomial simulators S if yyy is Pro), there exists an adversary A′

such that A′ runs in polynomial time t′ and has non-negligible advantage in xxx sense (for
all polynomial simulators S if xxx is Pro).

Note that the definition above is different from the Rogaway-Shrimpton’s one [6]. We
find their definition too constraining, since it does not allow to construct adversary A′ by
simulating A several times. For example consider the definition of provisional implication
from [6] (we note that by Advxxx

H (t) we denote the maximum advantage against a hash
function family H in xxx sense over all adversaries running in time at most t):

Fix K,M, m and n. Suppose that xxx and yyy are some notions for hash function
security. We say that xxx implies yyy to ε, if Adv

yyy
H (t) ≤ cAdvxxx

H (t′)+ ε for all
hash function families H : K ×M → {0, 1}n where c is an absolute constant and
t′ = t + c TimeH,m.

Now consider that we have two security notions xxx and yyy about which we prove that
any adversary A attacking in yyy sense with advantage ε can be converted into an adversary
A′ attacking in xxx sense with advantage ε2 (i.e. A′ simulates A twice and wins when A

wins in both simulations). Our intuition says, that such security notion xxx should imply
yyy, however the definition above restricts the running time of A′ to be only constantly
greater than the running time of A (i.e. if we want to prove xxx implies yyy with respect
to the definition above, A′ does not have enough time to simulate A twice), and it also
restricts the advantage of A′ to be the constant multiple of the A’s advantage, what is not
the our case. Thus some generalization of the Rogaway-Shrimpton’s definition was needed,
what lead to the our definition above.

We note that the definition of the implication by Rogaway and Shrimpton [6] implies
our definition. Thus all the proofs of implications from [6] holds also with the respect to
the our definition of the implication.

Intuitively, a security notion xxx does not imply yyy, if there exists a hash function
family H , which is secure in xxx sense, but insecure in yyy sense. We have two possibilities
how to formalize this idea. The difference is in the condition, whether one can assume the

5

existence of the xxx-secure hash function family or not. The first definition, conventional
separation informally says, that xxx non-implies yyy if for any xxx-secure hash function
family H we can construct a hash function family H ′, that is secure in xxx sense, but
insecure in yyy sense. We note that the following definition generalizes the definition of
conventional separation from [6] in the same way as in the case of implications.

Definition 5 (xxx 6→ yyy). Let K = {0, 1}k,M = {0, 1}∗ and Y = {0, 1}y for some fixed
k and y, let λ be some fixed positive integer, f = RFy+d,y and suppose that xxx, yyy ∈ Atks.
We say that the definition of security notion xxx non-implies security notion yyy (shortly
xxx 6→ yyy), if for any hash function family H : K ×M → Y there exists a hash function

family H ′ : K ×M → Y, such that if Adv
xxx[·]
H′,·,· (t) is non-negligible (for all polynomial

simulators S if xxx is Pro), then so is Adv
xxx[·]
H,·,· (t′) (for all polynomial simulators S if xxx

is Pro), and Adv
yyy[·]
H′,·,· (t

′) is non-negligible too (for all polynomial simulators S if yyy is
Pro), where t and t′ are some polynomial running times.

On the other hand, unconditional separation between security notions xxx and yyy does
not need to assume the existence of a xxx secure hash function family. It says, that xxx
non-implies yyy in unconditional sense, if there exists a hash function family H , which is
secure in xxx sense, but insecure in yyy sense.

Definition 6 (xxx 6⇀ yyy). Let K = {0, 1}k, M = {0, 1}∗ and Y = {0, 1}y for some
fixed k and y, let λ be some fixed positive integer, f = RFy+d,y and suppose that xxx,
yyy ∈ Atks. We say that the definition of security notion xxx non-implies security notion
yyy in the unconditional sense (shortly xxx 6⇀ yyy), if there exists a hash function family

H : K×M→ Y, such that Adv
xxx[·]
H′,·,· (t) is negligible for all polynomial t, and Adv

yyy[·]
H,·,· (t′)

is non-negligible for some polynomial time t′.

We note that in this paper, no unconditional separation is proved. An unconditional sep-
aration can be consequence of the matter, that for some domains and ranges secure hash
functions trivially exist, for example identity function HK(M) = M is trivially collision
resistant, but it is definitely not preimage resistant. However for standard domains and
ranges (e.g. M = {0, 1}∗ and Y = {0, 1}y), it is very hard to prove the unconditional
separation xxx 6⇀ yyy, since one has to find a hash function family secure in xxx sense
(what would be a very important discovery).

5 Equivalent definitions with a two stage adversary

In the definitions of aPre, ePre, aSec, eSec, aCTFP we maximize over some quantity (over
all keys or messages). However, there exist equivalent definitions to these already mentioned,
where the specific value (key or message) is chosen by an adversary. That is, in the “first
phase” the adversary choses that value, then a random choice is made by the environment
and in the ”second phase” the adversary continues, where it ended, but with given that
randomly chosen value. The corresponding definitions are as follows.

Let H : K × M → Y be a hash function family, and let λ be a number such that
{0, 1}λ ⊆M. Let A be an adversary. Then we define:

Adv
aPre[λ]
H (A) = Pr

[

(K, S)← A;M
$
←{0, 1}λ; Y ← HK(M); M ′ ← A(Y,S) : HK(M ′) = HK(M)

]

Adv
ePre
H (A) = Pr

[

(Y, S)← A; K
$
←K; M ′ ← A(K,S) : HK(M ′) = Y

]

Adv
aSec[λ]
H (A) = Pr

[

(K, S)← A;M
$
←{0, 1}λ; M ′ ← A(M, S) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
]

6

Adv
eSec
H (A) = Pr

[

(M, S)← A;K
$
←K; M ′ ← A(K, S) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
]

The proof of the equivalence between two-stage versions and normal versions of the defi-
nition is quite straightforward and its sketch can be found in [6].

6 Relationships among the definitions

Here we provide the relationships (implication or separation) among the definitions of
security notions. Rogaway and Shrimpton [6] proved the relationships among notions of
preimage resistance, second-preimage resistance and collision resistance, relationship be-
tween MAC and Prf were mentioned in [5]. Other relationships appear to be new.

We give an overview over all of the relations in the Table 1. In the Figure 1 we provide
all the constructions used in the proofs of separations.

Pre aPre ePre Sec aSec eSec Coll MAC Prf Pro

Pre x 6→ [6] 6→ [6] 6→ [6] 6→ [6] 6→ [6] 6→ [6] 6→ 2 6→ 4 6→ 7

aPre → [6] x 6→ [6] 6→ [6] 6→ [6] 6→ [6] 6→ [6] 6→ 2 6→ 4 6→ 7

ePre → [6] 6→ [6] x 6→ [6] 6→ [6] 6→ [6] 6→ [6] 6→ 2 6→ 4 6→ 7

Sec → [6] 6→ [6] 6→ [6] x 6→ [6] 6→ [6] 6→ [6] 6→ 2 6→ 4 6→ 7

aSec → [6] → [6] 6→ [6] → [6] x 6→ [6] 6→ [6] 6→ 2 6→ 4 6→ 7

eSec → [6] 6→ [6] 6→ [6] → [6] 6→ [6] x 6→ [6] 6→ 2 6→ 4 6→ 7

Coll → [6] 6→ [6] 6→ [6] → [6] 6→ [6] → [6] x 6→ 2 6→ 4 6→ 7

Mac 6→ 1 6→ 1 6→ 1 6→ 1 6→ 1 6→ 1 6→ 1 x 6→ 4 6→ 7

Prf 6→ 3 6→ 3 6→ 3 6→ 3 6→ 3 6→ 3 6→ 3 → 3 x 6→ 7

Pro → 5 6→ 6 → 5 → 5 6→ 6 → 5 → 5 → 5 → 5 x

Table 1. Relationships among the definitions. Numbers in brackets [·] are citations, other numbers
are numbers of theorems, where the proof of the corresponding relation can be found.

H
(1)
K (M) = Y [0 · · · y − 1]||0 if HK(M) = Y

H
(2)
K (M) =

{

0y if M = 0
HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}
HK(M) otherwise

H
(4)
K (M) = HK(M [1 . . . |M | − 1]||0)

H
(5)
K (M) =

{

HK(M) if K 6= K0

0y if K = K0

Fig. 1. Constructions of hash function families used in proofs of separations. The constructions
H(2), H(4) and H(5) come from the work [6]

7

6.1 MAC

An adversary attacking in MAC sense does not have access to the key K, which is chosen
randomly by the environment. However adversaries attacking in xPre, xSec, Coll senses have
that access. Thus if we use the key K to bundle some information, which makes finding
preimages or collisions easier, adversary in MAC sense cannot find that information, what
is the idea the behind following separations.

Theorem 1 (MAC 1).

(1) MAC 6→ Coll
(2) MAC 6→ Sec, aSec, eSec
(3) MAC 6→ Pre, aPre, ePre

Proof. Let H : K ×M→ Y be a hash function family and consider the construction H(3)

from the Figure 1. Let A be an adversary running in polynomial time t with non-negligible
advantage AdvMAC

H(3) (A). We construct an adversary A′, which simulates A and outputs
the same as A. Since A has no access to the key K chosen randomly be the environment,
the probability that it queries a message of length (k + 1 + y) with prefix K is at most q

|K| ,

what is the maximum probability that A′H returns different output that AH(3)

. Since A

runs in a polynomial time, it can make at most polynomial number of queries. Therefore
q
|K| is negligible and thus AdvMAC

H (A′) is non-negligible, what completes the first part of

the proof.

One can easily see, that H(3) is not Coll secure, since H
(3)
K (K||1||Y) = H

(3)
K (K||0||Y)

for every key K ∈ K and arbitrary image Y . For the same reason it is not Sec, aSec and
eSec secure. Finally, H(3) is not Pre, aPre, ePre secure, as for a given image Y we can
construct a message M = K||1||Y and HK(M) = Y .

Theorem 2 (MAC 2).

(1) Coll 6→ MAC
(2) Sec, aSec, eSec 6→ MAC
(3) Pre, aPre, ePre 6→ MAC

Proof.
(1),(2) We use the construction H(2). In Rogaway-Shrimpton [6] one can find the proof

that if H is secure in Coll (Sec, aSec, eSec) sense, then so is H(2), what is the first part of

the proof. The second part is easy — H(2) is clearly not MAC secure, since H
(2)
K (0) = 0y

for all keys K ∈ K.
(3) The separation comes from the construction H(4), which is clearly not MAC secure,

since an adversary B, which first queries arbitrary message M , gets output HK(M) and then
returns the pair (M ′, HK(M)), where M ′ equals to M but with the last bit inverted, has
advantage 1 in MAC sense against H(4). On the other hand, from a polynomial adversary A

that attacks H(4) in Pre (aPre, ePre) sense with non-negligible advantage we can construct
an adversary A′ as follows:

Adversary A′(Y, K)
M ← A(Y,K)
if HK(M) = Y then return M

else let b := M [|M |]; return M [1 . . . |M | − 1]||b

It is clear that if A returns correct preimage, then so does A′, thus if A has non-negligible
probability of success, then so has A′.

8

6.2 Prf

Similarly to the MAC notion, adversaries attacking in Prf sense do not have access to the
key. Therefore, to prove the separations between Prf and Coll, xSec or xPre, we can use
the same idea as we did in the MAC case.

Theorem 3 (Prf 1).

(1) Prf 6→ Coll
(2) Prf 6→ Sec, aSec, eSec
(3) Prf 6→ Pre, aPre, ePre
(4) Prf → MAC

Proof.
(1),(2),(3) We follow the steps of the proof of the Theorem 1. Only difference is in

the part (a) where we need to note, that the second part Pr[F
$
←Func(M,Y); 1← AF] of

the advantage in Prf sense is the same for both advantages AdvPrf
H(4) (A) and AdvPrf

H (A′).

Therefore we need to consider only the first part Pr[K
$
←K; 1 ← AHK(·)] of the advantage

in Prf sense. However A′HK returns different output than AH
(4)

K only when A′ queries a
message of length (k + 1 + y) with prefix K. The probability that such case happens is at
most q

|K| , therefore if A’s advantage is non-negligible, then so is the advantage of A′. Other

parts of the proof are nearly identical to those in the proof of the Theorem 1.
(4) This implication comes from the fact, that an adversary attacking in Prf sense can

simulate an adversary attacking in MAC sense and verify, whether its output is correct. If
so, then it returns 1, otherwise it returns 0. Therefore if we have an adversary A attacking
an arbitrary hash function family H in MAC sense with non-negligible probability, we can
construct (as described above) an adversary A′, which has non-negligible probability against

H in Prf sense. Note that the second part of Prf-advantage Pr[F
$
←Func(M,Y); 1← A′F]

for the adversary A′ is negligible, since the probability that A wins against a random
function is negligible.

Theorem 4 (Prf 2).

(1) Coll 6→ Prf
(2) Sec, aSec, eSec 6→ Prf
(3) Pre, aPre, ePre 6→ Prf
(4) MAC 6→ Prf

Proof.
(1),(2),(3) These separations comes from the fact proven before in the Theorem 3 part

(4), that if a hash function family is insecure in MAC sense, then it is insecure in Prf sense
too. Therefore if the separations from the Theorem 2 hold, then also these separations hold.

(4) Consider the construction H(1) from the Figure 1 and an adversary A that has
non-negligible advantage against H(1) in MAC sense. Let A′ be the following adversary:

Adversary A′f

run (M, Y)← Af

let b
$
←{0, 1}

return (M, Y [1 . . . y]||b)

9

One can see, that if A returns the pair (M, Y) such that H
(1)
K (M) = Y , then A′ returns

a pair (M, Y ′), where HK(M) = Y ′ with probability 1
2 . Therefore the advantage in MAC

sense of the adversary A′ against H is equal to the half of the advantage of A against H(1)

in MAC sense. Thus A′ has non-negligible advantage in MAC sense against H . On the
other hand, H(1) is clearly not Prf secure, since adversary attacking in Prf sense can verify
by querying some number of messages, whether its oracle returns images with the last bit
always equal to 0. If so, it returns 1, otherwise 0.

6.3 Pro

When a hash function family is Pro secure, then it is indifferentiable from a random oracle
and it is hard (effectively unfeasible) to win in any kind of presented attacks against the
random oracle. Therefore Pro is expected to be the strongest property.

In the following text we will assume, that a hash function family H : K ×M → Y is
build from some ideal compression function f : {0, 1}y+d → Y; d > 0 and an algorithm
computing H has oracle access to f . For that reason we need to give the oracle access to f

also to adversaries attacking in non-Pro sense (i.e. in Pre, aPre, ePre, Sec, aSec, eSec, Coll,
MAC and Prf), adversaries attacking in Pro sense already have such access. For example,
the advantage in Pre sense of an adversary A would look like follows:

AdvPre
H,f (A) = Pr

[

K
$
←K; M

$
←M; Y ← HK(M); M ′ ← Af (K, Y) : H

f
K(M ′) = Y

]

Advantages in other senses are modified similarly. We omit writing Hf (we write only H),
since all the hash functions used in the following text has oracle access to f .

Theorem 5 (Pro 1).

(1) Pro → Pre, ePre
(2) Pro → Sec, eSec
(3) Pro → Coll
(4) Pro → MAC
(5) Pro → Prf

Proof. All these implications above are based on the fact, that adversaries attacking in Pro
sense have access to the key K chosen randomly by the environment and therefore they can
simulate any other adversary attacking in xPre, xSec, Coll, MAC or Prf sense and return
1 if and only if the simulated adversary returns correct output. Let xxx represent one of
the security notions Pre, ePre, Sec, eSec, Coll, MAC or Prf. Let f = RFy+d,y be a random
function and let A be a polynomial adversary attacking a hash function family H in xxx
sense and let B be the following adversary performing attack in Pro sense:

Adversary Bf1,f2(K)
generate random input for A

simulate Af2 with that input
by querying oracle f1 verify, whether Af2 returned correct output
return 1 if the output is correct
return 0 otherwise

Clearly B runs in polynomial time, if A runs in polynomial time. Suppose, that Advxxx
H,f (A) =

ε is non-negligible. From the description of B it is clear that the first part of B’s Pro ad-

vantage Pr[K
$
←K; 1← BH

f

K
(·),f(·)(K)] = ε. The second part of the advantage

Pr[K
$
←K;F

$
←Func(M,Y); 1← BF(·),SF(K,·)(K)] (1)

10

utilizes a random function F and a simulator with oracle access to that function SF .
However any polynomial adversary performing attack against a random function is doomed
to fail thus this second part of the B’s advantage seems to be negligible, only problem can
be the simulator SF , which can somehow assist in attacking F (and therefore raise the

probability, that BF ,SF

returns 1). On the other hand, both A and S run in a polynomial
time, therefore at most polynomial number of queries can be made by S to F during the

attack and therefore ASF

can succeed only with negligible probability (since F is a random
function). Therefore B has non-negligible advantage in Pro sense, what completes the proof.

Theorem 6 (Pro 2).

(1) Pro 6→ aPre
(2) Pro 6→ aSec

Proof. Consider the construction H(5) and an adversary A with non-negligible advantage

AdvPro
H(5)(A). Since 1

|K| is negligible, adversary A has also non-negligible advantage in Pro

sense against H (1
|K| is the probability, that the key K0 is chosen by the environment, what

is the only case when A attacking H can notice some difference from the case it attacks
H(5)). On the other hand H(5) is clearly not aPre or aSec secure.

Theorem 7 (Pro 3).

(1) Pre, aPre, ePre 6→ Pro
(2) Sec, aSec, eSec 6→ Pro
(3) Coll 6→ Pro
(4) MAC 6→ Pro
(5) Prf 6→ Pro

Proof. The separations (1),(2),(3),(4) comes from the fact that the same separations hold
for Prf on the right side (see the Theorem 4) and if some hash function family is not Prf
secure, then it is definitely not Pro secure (as Pro implies Prf). So the only separation
left is (5). For this separation we use the construction H(3), about which we have already
proved, that it is Prf secure, if H is. However it is easy to find an adversary, which attacks
H(3) with non-negligible advantage in Pro sense:

Adversary Cf1,f2(K)
if f1(K||0||0

y) = f1(K||1||0
y) = 0y then return 1

otherwise return 0

7 Conclusion

In this paper we analyzed the relationships among different notions of hash function secu-
rity. We extended the work of Rogaway and Shrimpton [6] by adding three more notions
(MAC, Prf and Pro) and proving all the implication and separations among MAC, Prf, Pro
and the notions of preimage resistance, second-preimage resistance and collision resistance.
We also defined the new type of the implication and separation between two security no-
tions, since the ones from [6] were too constraining. The summary of the relationships can
be found in the Table 1.

Our results indicate that the Pseudo-random oracle (Pro) notion is the strongest one
(as was expected), since it implies almost all of the other notions. However Pro requires

11

a hash function family to be built from some kind of compression function, therefore we
rather speak of Pseudo-random oracle as a domain extension transform, which extends
the domain of a “small” compression function to the “big” hash function family. One can
also speak about Pseudo-random oracle preserving domain extension transform (Pro-Pr),
which transforms an ideal compression function to a hash function family, which is secure
in Pro sense. As Bellare and Ristenpart [2] showed, if a Pro-Pr domain extension transform
is applied to a non-ideal compression function f , it can actually “weaken” the security
properties of a resulting hash function family, that is if f is a collision-free compression
function, then the resulting hash function family need not to be collision resistant (i.e. Coll
secure). On the other hand, we showed that when and ideal compression function is used,
then the resulting hash function family must be Coll secure. Thus Pro-Pr domain extension
transforms gives us beliefs, that there are no structural flaws in the construction and when
used with well selected compression function, it can be sufficiently “secure” (especially,
when the domain extension is besides Pro-Pr also Coll-Pr, Pre-Pr etc.).

Acknowledgments

This paper was supported by VEGA grant no. 1/3106/06.

References

1. M. Bellare and T. Ristenpart. Hash Functions in the Dedicated-Key Setting: Design Choices
and MPP Transforms. In International Colloquim on Automata, Languages, and Progamming,

LNCS vol. 4596, pages 399–410. Springer, 2006.
2. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension and the

EMD Transform. In Advances in Cryptology - ASIACRYPT 2006, LNCS vol. 4284, pages
299–314. Springer, 2006.

3. J.S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard Revisited: How to Con-
struct a Hash Function. In Advances in Cryptology – CRYPTO 2005, LNCS vol. 3621, pages
430–448. Springer, 2005.

4. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility Results on Reduc-
tions, and Applications to the Random Oracle Methodology. In Theory of Cryptography, LNCS

vol. 2951, pages 21–39. Springer, 2004.
5. M. Naor and O. Reingold. From Unpredictability to Indistinguishability: A Simple Construction

of PseudoRandom Functions from MACs. In Advances in Cryptology – CRYPTO ‘98, LNCS

vol. 1462, pages 267–281. Springer, 1998.
6. P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Definitions, Implica-

tions, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision
Resistance. In Fast Software Encryption, LNCS vol. 3017, pages 371–388. Springer, 2004.

12

