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Abstract. When using pairing-friendly ordinary elliptic curves over
prime fields to implement identity-based protocols, there is often a need
to hash identities to points on one or both of the two elliptic curve
groups of prime order r involved in the pairing. Of these G1 is a group
of points on the base field E(Fp) and G2 is instantiated as a group of
points with coordinates on some extension field, over a twisted curve
E′(Fpd), where d divides the embedding degree k. While hashing to G1

is relatively easy, hashing to G2 has been less considered, and is regarded
as likely to be more expensive as it appears to require a multiplication
by a large cofactor. In this paper we introduce a fast method for this
cofactor multiplication on G2 which exploits an efficiently computable
homomorphism.
Keywords: Tate pairing, addition chains

1 Introduction

The Tate pairing (and its derivatives) on ordinary elliptic curves e(P,Q) takes
as parameters two linearly independent points P and Q. For maximum efficiency
P and Q are drawn from the groups G1 of points on E(Fp) and G2, a group of
points on the twisted curve E′(Fpd) where d divides the embedding degree k.
For the Tate pairing the first parameter P is chosen from G1 and the second Q
from G2. However recent discoveries of the faster ate [9] and R-ate [11] pairings
require P to be chosen from G2 and Q from G1. In either case P must be of
prime order r, where k, the embedding degree, is the smallest integer for which
r|Φk(t−1) [2], where Φk(.) is the k-th cyclotomic polynomial and t is the trace of
the Frobenius of the elliptic curve. The second parameter Q need not strictly be
of order r, as for these pairings it is sufficient for Q to be a coset representative.

The degree of the extension field d is a divisor of k, and can always be k/2 if
k is even. In fact we prefer k to be even as it enables the important denominator
elimination optimization in the pairing calculation [2]. Furthermore if the elliptic
curve has a Complex Multiplication (CM) discriminant of -3, and 6|k, then we
can choose d = k/6. Similarly if the curve has a CM discrimant of -4, and 4|k,
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then we can choose d = k/4. Clearly the smaller the degree of the extension, the
easier it will be to manipulate points on G2.

Pairing friendly ordinary elliptic curves can be constructed to have any arbi-
trary embedding degree. This compares favourably with the case of supersingular
curves, for which elliptic curves have a maximum embedding degree of 6. How-
ever on a supersingular curve we have a distortion map, which in effect means
that both arguments to a modified pairing can use linearly dependant points
from G1, where here G1 represents a group of points over the base field. In con-
trast on ordinary elliptic curves we must be prepared to handle points over the
potentially more awkward G2 group. However in a recent paper Galbraith and
Scott [7] observe that point multiplication of points of order r on G2 is not as
difficult as might be thought, as a useful homomorphism can be exploited.

Here we extend the ideas of [7] to the related problem of cofactor multipli-
cation on G2, as required to hash an identity to a point of order r on G2.

2 Elliptic curves over extension fields

Consider an elliptic curve defined over Fp. As is well known the number of points
on the curve is defined as #E(Fp) = p+1−t, where t is the trace of the Frobenius,
which obeys the Hasse bound t ≤ 2

√
p. Consider now points whose coordinates

are defined over an extension field Fpm , and the number of such points on the
same elliptic curve [12]. It is well known for example, that

#E(Fp2) = p2 + 1− (t2 − 2p)
#E(Fp3) = p3 + 1− (t3 − 3tp)

In the general case the number of points can be calculated by this simple
algorithm [12]

Algorithm 1 Returns #E(Fpm)
Input: m, p, t
1: τ0 ← 2
2: τ1 ← t
3: for i ← 1 to m− 1 do
4: τi+1 ← t.τi − p.τi−1

5: end for
6: q ← pm

7: τ ← τm

8: return q + 1− τ

To represent the group G2 we like to use an isomorphic group on a twisted
curve over the smallest possible extension field. The number of points on the
twisted curve can also easily be determined from the output of this algorithm.
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For example if we use the quadratic twist, then the number of points #E′(Fpk/2)
is simply q + 1 + τ . For formulae for the higher order twists we refer the reader
to [9]. Where the quartic twist applies, #E′(Fpk/4) = q + 1 − f , where f =√

4q − τ2. Where the sextic twist applies #E′(Fpk/6) = q + 1 − (3f + τ)/2,
where f =

√
(4q − τ2)/3.

To hash to a point of order r on G2, the standard approach would be to
first hash to a general point on G2 and then multiply by the cofactor c =
#E/r. Consider now a pairing friendly curve with k = 10. In this case using
the quadratic twist this cofactor c would be of a size in bits approximately the
same as p4. This would be prohibitively slow. However as we will see, the same
outcome can be achieved in all cases with the equivalent work of a multiplication
by a value less than p, and in some cases much less than p.

3 A fast cofactor multiplication algorithm for G2

The issue of fast cofactor multiplication on the group G2 was briefly consider for
the case of BN curves by Galbraith and Scott [7], section 8. Here we generalise
and extend that idea. In that paper the authors introduce the homomorphism
ψi = φ−1πi

pφ, where φ : E′ → E is the isomorphism which takes us from the
twisted curve E′(Fpd) to the isomorphic group on E(Fpk) as actually required
by the pairing algorithm, and πp is the p-power Frobenius map on E. Note that
ψ(P ) can be calculated very quickly.

General points on G2 obey this identity [7]

ψ2(P )− [t]ψ(P ) + [p]P = 0

Our main idea is to first express the cofactor c to the base p as

c = c0 + c1.p + c2.p
2...

and then use the identity

[p]P = [t]ψ(P )− ψ2(P ) (1)

repeatedly if necessary to reduce the co-factor multiplication to a form

[c0 + c1.p + c2.p
2 + ...]P = [g0]P + [g1]ψ(P ) + [g2]ψ2(P ) + ........

where all of the gi are less than p.
Observe that for example [c1.p]P = [c1.t]ψ(P )− [c1]ψ2(P ), and that c1.t may

be of a size in bits 50% larger than p (recall that t is roughly half the size in bits
as p as a consequence of the Hasse condition). Therefore further applications of
the homomorphism may be necessary to effect a complete reduction.

In some circumstances we will also find the following identity to be useful

ψk/2(P ) = −P (2)

as it allows higher order terms to be removed from the calculation.
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4 The application to ordinary pairing friendly elliptic
curves

The most general method to create a pairing friendly elliptic curve is to use the
method of Cocks-Pinch [4]. However these curves suffer from a ρ ratio that is
close to 2, where ρ = lg(p)/ lg(r). Also they cannot exploit higher order twists on
low CM discriminant elliptic curves. Therefore it is usually preferred to choose
instead from one of the families of pairing-friendly curves identified by numerous
authors, and collated together in the taxonomy paper of Freeman et al. [6].
These often have a ρ value closer to 1, and many are of the desirable low CM
discriminant form. Also these families share another feature – the prime modulus
p, the group r and the trace t are all described as rather simple polynomials. It
is our aim to exploit this simple form in a systematic way to further speed up
the cofactor multiplication required for hashing to G2.

Before proceeding we need to formally describe the method of the previous
section as an algorithm for reducing the co-factor multiplication to the evalua-
tion of a polynomial of the powers ψi(P ), with coefficients less than p. When
p is itself expressed as a polynomial p(x), these coefficients can in turn be cal-
culated as polynomials in x, and this we choose to do as it leads to further
optimizations. Also in these cases the cofactor c itself can be calculated and
presented as a polynomial in x. However we emphasise that the basic idea (with
minor modifications) applies equally to non-parameterised Cocks-Pinch curves.
See algorithm 2.

We now proceed to use this algorithm to find the quickest way to perform
the co-factor multiplication required to hash to a point of order r on G2. We
proceed on a case-by-case basis for certain selected popular families of pairing
friendly elliptic curves.

5 The MNT curves

The MNT pairing friendly elliptic curves were first reported by Miyaji et al. [13].
For the k = 6 case the prime p and the group order r parameters are expressed
as

p(x) = x2 + 1
r(x) = x2 − x + 1

In this case ρ = 1, but although k = 6, no solution exists with a CM discrim-
inant of -3, and so the best that can be done for G2 is to represent it as a group
of points on E′(Fp3). The cofactor is c(x) = (p(x)3 +1+ t(x)3−3t(x)p(x))/r(x),
which in this case works out as

c(x) = x4 + x3 + 3x2
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Algorithm 2 Reduction of the co-factor c(x)
Input: d, k, p(x), t(x), and c(x)
Output: g0(x), g1(x).....
1: for i ← 0 to d− 2 do
2: ci(x) ← c(x) mod p(x)
3: c(x) ← c(x)/p(x)
4: end for
5: g0(x) ← c(x)
6: for i ← 0 to d− 2 do
7: for j ← 2i downto 0 do
8: gj+2(x) ← gj+2(x)− gj(x)
9: gj+1(x) ← t(x)gj(x)

10: gj(x) ← 0
11: end for
12: g0(x) ← cd−i−2(x)
13: end for
14: for j ← 1 to 2d− 2 do
15: w(x) ← gj(x)/p(x)
16: gj(x) ← gj(x) mod p(x)
17: gj+1(x) ← gj+1(x) + t(x)w(x)
18: gj+2(x) ← gj+2(x)− w(x)
19: end for
20: for j ← k/2 to 2d− 2 do
21: gj−k/2(x) ← gj−k/2(x)− gj(x)
22: gj(x) ← 0
23: end for
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Applying algorithm 2 we first represent c(x) to the base p(x)

c(x) = p2(x) + (x + 1).p(x) + (−x− 2)

Now apply equation (1) to each term involving a power of p(x), and use it
to calculate [c(x)].P

[−x− 2]P + [x2 + 2x + 1]ψ(P ) + [x2 + x]ψ2(P ) + [−2x− 2]ψ3(P ) + ψ4(P )

As can be seen some of the coefficients are still of the same degree as p(x),
so apply equation (1) again to get

[−x− 2]P + [2x]ψ(P ) + [2x]ψ2(P ) + [−x− 2]ψ3(P )

Finally applying equation (2) we find that multiplication of a general point
P by c(x) can be expressed as

[2x]ψ(P ) + [2x]ψ2(P ) = ψ(2xP ) + ψ2(2xP )

which can be calculated by only one multiplication by x, a point doubling,
two applications of the homomorphism and a further point addition. The savings
compared with a direct multiplication of P by c(x) are obvious.

6 The BN curves

The BN family of pairing friendly curves [3] has an embedding degree of 12, and
is parameterised as follows

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

In this case the co-factor multiplication can be effected as [7]

ψ(6x2P ) + 6x2P + ψ(P )− ψ2(P )

The major work here is the point multiplication by 6x2. Since BN curves are
plentiful it is not hard to find a value of x with a very low Hamming weight, and
this will further speed the calculation, as the point multiplication will consist
largely of point doublings, which are significantly faster than point additions in
most curve and point representations.

6



7 Freeman Curves

In [5] a construction is suggested for pairing friendly elliptic curves of embedding
degree 10.

p(x) = 25x4 + 25x3 + 25x2 + 10x + 3
r(x) = 25x4 + 25x3 + 15x2 + 5x + 1

These curves are much rarer than the BN curves, and unfortunately it is not
feasible to choose x to have a particularly small Hamming weight. Furthermore
since the embedding degree is 10, the best that can be done for G2 is to represent
it as a group of points on E′(Fp5). This is a particularly large and rather awkward
extension, and the cofactor multiplication threatens to be a large one. In fact
c(x) in this case works out as the rather intimidating polynomial

390625x16 + 4062500x14 + 7421875x13 + 10750000x12 + 12593750x11

+ 12356250x10 + 10203125x9 + 7178125x8 + 4284375x7 + 2171000x6 + 920250x5

+ 322400x4 + 89875x3 + 19120x2 + 2740x + 217

Nevertheless applying our algorithm we find that c(x) can be expressed as

g0(x).P + g1(x).ψ(P ) + g2(x).ψ2(P ) + g3(x).ψ3(P ) + g4(x).ψ4(P )

where

g0(x) = −10x2 − 20x− 4
g1(x) = −50x3 − 50x2 − 40x− 12
g2(x) = −50x3 − 40x2 − 20x− 2
g3(x) = −50x3 − 20x2 − 10x + 6
g4(x) = −50x3 − 20x2 − 10x

At this stage we could substitute for x and use a simultaneous multiple point
multiplication algorithm [8]. However a better idea is to instead calculate xP ,
x2P = x.xP , x3P = x.x2P , and then ψi(P ), ψi(xP ), ψi(x2P ) and ψi(x3P ) for
i=1 to 4 (in general not all of these values are needed). Then the calculation
becomes

50(−ψ4(x3P )− ψ3(x3P )− ψ2(x3P )− ψ(x3P )− ψ(x2P ))
+40(−ψ(xP )− ψ2(x2P )) + 20(−ψ4(x2P )− ψ3(x2P )− ψ2(xP )− xP )

+12(−ψ(P )) + 10(−ψ4(xP )− ψ3(xP )− x2P ) + 6ψ3(P ) + 4(−P ) + 2(−ψ2(P ))
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which can be considered as

50A + 40B + 20C + 12D + 10E + 6F + 4G + 2H

when A,B, C, D, E, F, G and H are calculated using a total of 17 point addi-
tions. The optimal way to proceed is to form the smallest addition chain which
includes all of the small multipliers in the above.

{1, 2, 4, 6, 10, 12, 20, 40, 50}
In this case it is easily done - only a 1 needs to be added to the start.
Now we apply the Olivos algorithm [14], (see also [1], section 9.2) to find the

optimal sequence of point additions and doublings to finally effect the cofactor
multiplication.

T0 = A + B

T1 = A + E

T0 = 2.T0

T0 = T0 + C

T0 = 2.T0

T0 = T0 + T1

T1 = 2.D

T1 = T1 + F

T1 = T1 + T0

T0 = T0 + G

T0 = T0 + T1

T1 = T1 + H

T0 = 2.T0

T0 = T0 + T1

T0 = 2.T0

The final result is in T0. This part of the calculation requires only 10 extra
point additions and 5 point doublings.

8 KSS Curves

Recently Kachisa et al. [10] described a new method for generating pairing-
friendly elliptic curves.

8.1 The k = 8 family of curves

Here are the parameters for the family of k = 8 KSS curves.
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p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x + 125)/180
r(x) = x4 − 8x2 + 25
t(x) = (2x3 − 11x + 15)/15

For this curve ρ = 3/2. Like the BN curve x can be chosen to have a low
Hamming weight. Proceeding as above we find

g0(x) = (2x5 + 4x4 − x3 + 50x2 + 65x− 36)/6
g1(x) = (2x5 + 4x4 − x3 − 7x2 − 25x + 75)/6
g2(x) = (−15x2 − 30x− 75)/6

A minor difficulty arises due to the common denominator of 6 which occurs
here. We suggest a simple solution – complete the hashing to G2 with the point
multiplication [6.c(x)]P . Now the denominator can be ignored. To complete the
calculation we need an addition chain which includes all of the integer coefficients
that arise here.

{1, 2, 4, 5, 6, 7, 10, 15, 25, 30, 36, 50, 65, 75}
Proceeding as for the Freeman curve case, the computation using this addi-

tion chain can be completed with 18 point additions and 5 point doublings.

8.2 The k = 18 family of curves

Here are the parameters for the family of k = 18 KSS curves.

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21
r(x) = x6 + 37x3 + 343
t(x) = (x4 + 16x + 7)/7

In this case ρ = 4/3 and like the BN curves x can in practise be chosen with
a low Hamming weight. Proceeding again as above we find

g0(x) = (−5x7 − 26x6 − 98x5 − 381x4 − 867x3 − 1911x2 − 5145x− 5774)/3
g1(x) = (−5x7 − 18x6 − 38x4 − 323x3 − 28x2 + 784x)/3
g2(x) = (−5x7 − 18x6 − 38x4 − 323x3 + 1029x + 343)/3
g3(x) = (−11x6 − 70x5 − 98x4 − 176x3 − 1218x2 − 2058x− 686)/3
g4(x) = (28x2 + 245x + 343)/3
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As before we actually evaluate [3.c(x)].P to remove the awkward denomina-
tor of 3. In this case the best addition chain we could find that includes all of
the small multipliers was

{1,2,3,5,7,8,11,18,26,28,31, 38,45,69,70,78,98,176,245,253,323,343,381,389,686,
784,829,867,1029,1218,1658,1911,2058,4116,5145,5774}.

which can be used to complete the calculation in 51 point additions and 5
point doublings.

9 Discussion

Since in most cases (dependent on the curve representation and the projec-
tive coordinate method used) point doublings are significantly faster than point
additions, it may be sometimes preferable to select a slightly longer addition
chain which trades additions for doublings. However the situation is complex
and requires further study. For example if multiplying a point on E′(Fp5) it is
likely that affine coordinates will in fact be faster than any kind of projective
coordinates, in which case, using the standard short Weierstrass representation,
additions may actually be faster than doublings [8].

Addition-subtraction chains may also be an attractive alternative in other
cases.

10 Conclusions

We have suggested a general method for deriving a point on G2 of order r given
an initial hashing to a general point on G2, on an ordinary pairing-friendly elliptic
curve. The proposed method is significantly faster than the naive approach which
would require multiplication by a very large cofactor.
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