Semi-free start collision attack on Blender

Xu Liangyu and Li Ji
Sony China Research Laboratory
{Liangyu.Xu, Ji.Li}{@sony.com.cn

Abstract. Blender is a cryptographic hash function submittedNIST's SHA3 competition. We
have found a semi-free start collision attack oenBer with trivial complexity. One pair of
semi-free start collision messages with zero initidues is presented.

1. Description of Blender

The hash function Blender consists of two procestungreparing message, and hash
computing. Blender has four variants regardinght® lit length of digest (224, 256, 384, 512).
The procedures differ just a little among the feariants. The attack approach presented in this
paper on different variants is almost the same.h8@ we just give a brief description of
Blender-256 with digest length of 256 bits.

Blender-256 uses eight 32-bit state variablespad@rt eight 32-bit result variables, HO to H7,
and two single-bit carry variables, c1 and c2; ¢hesnstitute the “state” of the algorithm carried
from round to round. This algorithm also uses tI82éit intermediate values, T, T1 and T2, and
one intermediate integer value r used to hold a@timt factor.

In the preparing message procedure of Blenderid&ée are 5 steps.

Sep 1: Padding. The message M to be hashed with lengthr obits is padded to P with p
bytes, where p =A + 7) >> 3. If the length of the message M is aactxnultiple of 8 bits, no
padding is added and the padded message P iscaldntithe original message M. Otherwise, the
complement of the last bit of the message shaldpended repeatedly until the resulting length
reaches the next exact multiple of 8 bits. The arhofipadding added is at most seven bits.

Sep 2: Filling. The fill data F is the padded message P trundatedB bytes if necessary,
unless the message M has zero length in whicheasd.3 bytes of all zeros. The amount of fill
data to be appended to the padded message depetidshiock size and the message length. For
the detail of filling, please refer to the spedtion of Blender [1].

Sep 3: Appending the M essage L engths. After the message has been filled to the appnapria
length, the message length as held in the byty arimappended to the message. The single byte
«~, the length of the length, is then appended tad¢kalt to complete the assembled message. The
latter should be two 32-bit words short of an exauttiple of the block size.

Sep 4: Parsing the Assembled Message. After a message has been assembled as described
above, it must be parsed into a number of 32-bitd&/defore the hash computation can begin.
The first byte of the message becomes the leasifisant byte of the first 32-bit word and
successive bytes of the message become the prioghedsigher order bytes within the word.
Successive words are defined similarly.

Sep 5: Appending the Checksums. The final step in preparing the message is to appea
32-bit checksum words. The first checksum is theyglement of the sum moduld?f all the
32-bit words in the parsed message. The secondksimecis the sum modulo®2of the
complement of all the 32-bit words in the parsedsage.

The hash computing procedure includes 2 steps.
Sep 1: Initialization
Before hash computation begins, the working vaeigbla0 to a7, are initialized to the
following eight 32-bit words in hex:
a0 = 6a09e667
al = bb67ae85
a2 = 3c6ef372
a3 = ab4ff53a
a4 = 510e527f
ab = 9b05688c
a6 = 1f83d9ab
a7 = 5be0cd19
Sep 2: Round function
1. Compute the preliminary intermediate valuesgisidd-with-carry:
[c1,T1]=(a5@® W)+ (al ® ROTL®(a3)) +cl
[c2,T2] = (a0® ROTR (W))+ (a4 ® ROTR (a2)) + c2
where, Wis the ¥ 32-bit word of the result after preparing messameedure.
2. Compute the rotation factor:
r=8-(cl+c2)
3. Rotate the intermediate values:
T1=ROTL(T1)
T2=ROTR (T2)
4. Compute the next state:
T =ROTRY7 (a0)
a0=ale T2
al=a2e T1
a2=a3e T2
a3=ade T1
ad=ab5e T2
ab=a6e T1
ab=are T2
ar=Te T1
5. Update the hash result variables:
HO =HO + a0
H1=H1+al
H2=H2 + a2
H3=H3 + a3
H4=H4 + a4
H5=H5+ a5
H6 = H6 + a6
H7 =H7 + a7
After repeating step 2 for each word in the pregparessage, the resulting 256-bit message
digest of the message M is
HO || H1 || H2 || H3 || H4 || H5 || H6 || H7

2. Observations

The round function of Blender is depicted in thikofming Figure 1.
P | S

— e

e — >>>8

A
v —
y
_ e

>>>r <<<r
N
T2
T1
v) 4) 4 .) 4) 4) 4 A
9 < - N - < < N

< <

al a2 a3
N T L e e B [Tt B) 1 g 8 N L e Bl [g

Figure 1 The round function of Blender

Observation 1: Local collision in round function

The round function plays an important role in difiece diffusion. But some special
differences at aO~a7 will cancel with each othetarrsome conditions in one round. An example
of the special differences (xor difference)As= Oxffffffff at a0~a7 and at message word Wt. If
the two add-with-carry and the 8 final modular &éiddis can be seen as xor operations, the
differences at output a0~a7 will disappear. We stiasr differential in the following Figure 2. It
should be pointed that, rotations ah= Oxffffffff don’t change the difference value.

> 18]
=
R

> 18]
T
5

A A A A A A
y .
D | S W
. 8 o e g
0
> <A M >>v>8
0
A
I .
C14>C‘5<7 1 .
0 — D 2
. 0
EE <<<r
0 0lT2
T]]
0 0 0 0 0 0 0 A 0
Al Ao o, a s Aola el A8 A a
Al a0 N al Al a2 Al a3 A | a4 Al a5 ab Al a7
b 4 5 VB b 4 b 4 b 4 AB h 4
poleh filah (D (D gD beleh D el
0

, 0 , 0 0 0 0 0 0
Figure 2 The local collision in round function

Observation 2: Generate the special differences at a0~a7

The initial values a0~a7 have no difference, artdtlse difference at W to A =0xffffffff.
Again, if the two add-with-carry and the 8 final dudar additions can be seen as xor operations,
the differences at output aO~a7 are alk Oxffffffff. This is just the input differences aDaa7 in
observation 1. The Figure 2 shows the procedugenérating the special differences at a0~a7.

!
[
OLO
I «
E

‘x

Ao

H
&
f

o

>

>

1
A D
|

A

Figure 3 Generate difference& at all output a0~a7

3. Semi-free start collision attack on Blender

From the above two observations, we can easilytagisuch a pair of message M1 and M2,
each of which has 2 32-bit words. MM?2 = Oxffffffff ffffffff. For example, M1 = 0x0000@O0
frffffff, M2 = Oxffffffff 00000000. If all the addtions can be seen as xor operations, M1 and M2
will lead to a two-round collision. Now we pay atten to the step 2 and step 5 in the preparing
message procedure. In step 2, filling data witlytlerof 13 bytes truncated from message will be
appended. We must make sure there is no differendbe filling data. So we insert 4 additional
zero message words (16 bytes > 13 bytes) beforandIM2. And checking the step 5, we make
sure that the appended checksums are also the Sartfee two messages (0x00000000 00000000
00000000 00000000 00000000 ffffffff and 0x00000MWO0000 00000000 00000000 ffffffff
00000000) will collide under some conditions.

Now let's discuss these conditions. We have jusntioeed that the precondition of
observation 1 and observation 2 is that the twowitltlcarry and the 8 final modular additions
can be seen as xor operations in each round. Alarodddition has the some effect when there is
no carry occurring at each bit of the additionvéf can make sure that one operand in the modular
addition with two operands is always zero, themycatill never occur. In fact, if we set the initial
values of a0~a7 in Figure 2 to zeros in roundM1,and M2 mentioned above will collide with
probability of 1 within two rounds. And the 4 zenmrds inserted before M1 and M2 will not

change the initial zero values if we set the ihNi@ues to zeros. Now we come to the semi-free
start collision, i.e., we set the initial valueszteros (the real initial values for a0~a7 are presk

in Sep 1. Initialization), and then we use two messages (0x00000000 000000000000
00000000 00000000 ffffffff and 0x00000000 00000@@@O0O000 00000000 ffffffff 00000000) to
construct a collision for whole hash function Blen@56. The attack is so-called semi-free start
collision.

4. Discussion on semi-free start collision and callsattack on Blender.

In fact, the semi-free start collision message paim be longer than the pair we presented
above. Because, at first, we can insert zero wited any message word without change the state
variables. And the second, we can repeat the ggD@O00O0 ffffffff and Oxffffffff 00000000 after
the pair respectively for any times.

We can construct collision attack from semi-fregrtstollision. 2°° pre-computations can be
done to search a message block which results arastate variables a0~a7. And appending the
semi-free start collision message pair, we caragetlision message pair.

5. Conclusion

We showed that Blender is not semi-free startgioli resistant. As Blender utilizes the same
initial values as SHA2, the differential presentdzbve will never generate a real collision (or
collide with trivial probability). So we don’'t annace Blender is fully broken. We recommend the
authors of Blender to use some random constantsonfular additions in the round function to
avoid such kind of attack.

Reference

[1] Colin Bradbury, specification of Blender.
http://csrc.nist.gov/groups/ST/hash/sha-3/Roundididwents/Blender.zip

Appendix

The two semi-free start collision messages for &e256.
The initial values:
al=al=a2=a3=a4=a5=a6=a7=0x00000000
Message 1:
0x00000000 00000000 00000000 00000000 OO0 fiff
Message 2:
0x00000000 00000000 00000000 00000000 ffffffff COOOO
Semi-free start collision hash digest:
f50b433f415f9700f50b433f415f9700f50b433f415f970074E2fe 04206179

