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Abstract

Collusion-free protocols prevent subliminal communication (i.e., covert channels) between
parties running the protocol. In the standard communication model (and assuming the existence
of one-way functions), protocols satisfying any reasonable degree of privacy cannot be collusion-
free. To circumvent this impossibility result, Alwen et al. recently suggested the mediated
model where all communication passes through a mediator; the goal is to design protocols
where collusion-freeness is guaranteed as long as the mediator is honest, while standard security
guarantees continue to hold if the mediator is dishonest. In this model, they gave constructions
of collusion-free protocols for commitments and zero-knowledge proofs in the two-party setting.

We strengthen the definition of Alwen et al. in several ways, and resolve the key open
questions in this area by showing a collusion-free protocol (in the mediated model) for computing
any multi-party functionality.
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1 Introduction

It is well known that two or more parties running some protocol can potentially embed “disallowed”
communication in the protocol messages themselves; i.e., the parties can use the messages of the
protocol as a covert channel to communicate in a subliminal (aka steganographic) fashion. A
collusion-free protocol [13] rules out such covert communication. Unfortunately, in the standard
communication model (and assuming one-way functions exist) it is impossible for any protocol
whose messages have any entropy to be collusion free [9]. This seems to rule out collusion-free
protocols (in the standard communication model) realizing any “interesting” level of privacy [13].

Although there has been some work addressing the issue of subliminal channels in certain
limited contexts (mainly signature schemes [18, 7, 4, 20, 3]), the problem has, until recently, been
largely ignored by the cryptographic community. Presumably this is because protocol designers
generally assume a “worst-case” adversarial model, where if two parties are dishonest then they are
assumed to be coordinating their actions and communicating out of band, anyway. Recent attention
focused on applying cryptographic protocols in game-theoretic settings [13, 11, 10] (see also [12]),
however, has re-invigorated interest in designing collusion-free protocols. Preventing subliminal
communication is also important in other settings. For example, in a large-scale, distributed system
where parties are chosen randomly (from a large pool of players) to run some protocol, the set of
parties running a given instance of the protocol may not have had any chance to coordinate their
actions in advance, and may have no way to communicate out of band; in this case, the protocol
itself introduces a new vulnerability if it can be used as a means for players to initiate collusion,
or to transfer information. The problem of subliminal communication is not just of theoretical
interest: efforts to collude using covert channels have been observed in real-world auctions [6].

One approach for constructing collusion-free protocols is to rely on verifiable determinism. The
basic idea goes back to Simmons [19], who applied it to DSA signatures; Lepinski et al. [12, 13]
re-introduced the idea in the setting of general secure computation. (This latter setting is much
more difficult since here privacy is also a concern.) Roughly speaking, a verifiably deterministic
protocol ensures that at every point in the protocol there is only a single “valid” message that
a player can send; if that player sends anything else, all other parties detect this and raise an
alarm. This suffices to prevent covert communication. Unfortunately, all existing constructions of
verifiably deterministic protocols for general secure computation [13, 11, 10] rely on strong physical
assumptions such as secure envelopes and ballot boxes that cannot be realized unless the parties
running the protocol are physically co-located. Furthermore, once parties are in close physical
proximity it is unclear how to prevent them from signalling to each other using other means.

A completely different approach to the problem was recently suggested by Alwen et al. [1]. They
proposed a real-world model in which each party is able to communicate only with a mediator. (I.e.,
the communication network is a star graph with the mediator at the center.) Rather than remove
randomness from protocol messages, as when using verifiable determinism, this approach has the
mediator add randomness to (i.e., re-randomize) the messages of the protocol in order to eliminate
any subliminal communication. This, of course, assumes the mediator is honest; when the mediator
is dishonest then corrupted parties can communicate freely using the mediator as a channel. In
this case, the protocol is required to satisfy standard security guarantees.

The mediated model may, at first, appear unrealistic, but in fact the model can be realized in
many real-life settings. As an example, recently in Israel the Maccabi Health Fund (a large HMO)
ran an auction with several insurance companies as bidders. In this auction, the bidders came to
the offices of the HMO and were seated in separate rooms, with no way to communicate with the
outside world (participants were searched for cellphones and other wireless devices). The auction
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proceeded in stages with an auctioneer going from room to room, informing the participants about
the results of the previous round and taking their next bid. It would have been possible in this
case to replace the auctioneer with a server mediating the communication between all parties.

1.1 Our Contributions

In addition to introducing a definition of collusion-freeness in the mediated model, Alwen et al.
also gave the first constructions of collusion-free protocols in this setting. They showed protocols
for commitment and zero-knowledge in the two-party case, but left open the questions of general
secure computation as well as dealing with more than two parties. In this paper we solve these
open questions, and show the first multi-party protocol for collusion-free computation of arbitrary
functionalities in the mediated model. Feasibility is not trivial in this setting, in part because we aim
to satisfy a stronger definition of security than that put forth by Alwen et al.; see below. (We view
this strengthened definition as an additional contribution of our work.) As a third contribution, we
also prove composition theorems in the mediated setting that should prove useful for future work.

The paragraphs that follow briefly describe the most important differences between our defini-
tion and that of Alwen et al. [1]; formal definitions are in Section 2. The next section provides a
high-level overview of our protocol that emphasizes the technical difficulties that arise.
Aborts as a subliminal channel. The definition in [1] allows parties to communicate some large
(but bounded) number of bits by aborting the protocol; specifically, in an r-round protocol each
party can communicate roughly log r bits to all other parties. Moreover, Alwen et al. conjecture
that this is unavoidable. We show that this conjecture is false. In our definition we allow only a
single bit to be communicated, where this bit indicates whether some party aborted at some point
in the protocol but does not reveal which parties aborted or in which rounds these aborts occurred.
Achieving this stronger notion introduces many of the complications in designing our protocol.
Common randomness. The definition in [1] allows parties to use the protocol to agree on a
shared random string, even if this is not implied by the functionality being computed.1 (Indeed,
the ideal model in [1, Def. 1] allows the distinct simulators for each party to use the same random
tape R; see also the comments in [1] that follow the definition.) In game-theoretic contexts, in
particular, this is problematic [11, 10]. Our definition of collusion-freeness rules out this possibility.

1.2 Overview of our Protocol

The discussion here omits certain details, and is meant only to illustrate the high-level structure of
the protocol. A formal description of the protocol is given in Section 3.

Let P1, . . . , Pn be a set of n parties, each communicating with a mediator Pn+1, who wish to
compute some (randomized) functionality F . Let π be a protocol that securely computes F in the
standard communication model where all parties have access to a broadcast channel. (In fact, we
assume without loss of generality that all messages in π are sent over the broadcast channel.) We
compile π to obtain a collusion-free protocol Π in the following way. For each message msg sent by
some party Pi in protocol π do:

1. Pi and the mediator run a protocol for secure two-party computation of a functionality
Fπ

compute that outputs to the mediator the next message msg that Pi would send in the
underlying execution of π. (A secure computation is needed since Pi will not actually know
any of the messages sent by other parties in previous rounds of π; see step 2.)

1In [1] it is claimed that this drawback will be addressed in the full version, which we have not seen.
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If the mediator does not obtain a valid msg (i.e., if Pi aborts or provides incorrect input to
Fπ

compute), then the mediator sets msg to some default value. (This step is essential if we wish
to prevent parties from using aborts as a covert channel.)

2. The mediator sends independent commitments of msg to each of the other parties.

At the end of the protocol, the mediator runs a secure two-party computation with each party Pi

that allows Pi to learn their output, as specified by protocol π.
It is not too difficult to argue that the above protocol is collusion-free when the mediator

is honest. Intuitively, this is because each party sees only independent commitments to messages
rather than the messages themselves. However, the following issues arise if the mediator is dishonest:
Authentication. The mediator should be unable to modify the messages of honest parties. To
prevent this, we actually require Fπ

compute to output (msg, σ), where σ is a valid signature2 by Pi

on msg, and we then have the mediator send commitments on both these values to the other parties.
Furthermore, Fπ

compute will require the mediator to prove that all previous commitments contain
appropriately signed messages and, if not, will output an error.
Preventing subliminal channels based on aborts. Signing each message (as just described)
prevents a dishonest mediator from modifying honest parties’ messages, but introduces a potential
problem with collusion-freeness: now, if a party Pj aborts then the mediator has no way of gen-
erating a (commitment to a) default message along with an appropriate signature. We fix this by
allowing the mediator in this case to send a commitment to a “dummy message” with no signa-
ture; we also change Fπ

compute so that if it detects a dummy message it returns an error message to
the mediator only. Thus, parties cannot detect whether anyone has aborted until the end of the
protocol, and never learn which (or how many) parties aborted nor the round(s) in which an abort
occurred. Furthermore, if a dishonest mediator ever uses a dummy message, then it receives error
messages from then on.
Ensuring “broadcast”. Protocol π is secure under the assumption that parties communicate
over a broadcast channel. In our compiled protocol, where all communication is routed through
the mediator, we need a way to ensure that a dishonest mediator sends (different commitments to)
the same message to all parties. We implement this “mediator broadcast” by, roughly speaking,
having the mediator (1) collect signatures from all parties on the committed messages; (2) send
independent commitments on these signatures to all parties; and then (3) prove to each party
independently that all parties have signed a commitment to the same underlying message. As
above, in case of an abort we allow the mediator to send a “dummy commitment” to the parties.
Handling concurrency. When the mediator is honest, the two-party protocol computingFπ

compute,
as well as the sub-protocols used to implement mediator broadcast, are run sequentially. But when
the mediator is dishonest, it may run concurrent executions with the honest parties. We thus need
all the two-party protocols being run to be secure under (bounded) concurrent self composition.

2 Definitions

Preliminaries. We denote the security parameter by k. A function µ(·) is negligible if for every
polynomial p(·) there exists a value N such that for all k > N it holds that µ(k) < 1

p(k) . Let
X =

{
X(1k, a)

}
a∈{0,1}∗,k∈N and Y =

{
Y (1k, a)

}
a∈{0,1}∗,k∈N be distribution ensembles. Then X

2We assume players begin the protocol with a consistent PKI. (We do not assume honestly-generated keys or
require parties to prove knowledge of their keys.) See further discussion in the following section.
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and Y are computationally indistinguishable, denoted X
c≡ Y , if for every non-uniform polynomial-

time distinguisher D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(1k, a)) = 1]− Pr[D(Y (1k, a)) = 1]| < µ(k).

Security in the mediated model – preliminaries. We use the real/ideal paradigm for defining
security of protocols, but our real and ideal worlds differ somewhat from the standard ones and
collusion-freeness is defined in a different manner than usual. Our real world is essentially standard
except that all communication is between parties P1, . . . , Pn and the mediator Pn+1, and there
is no direct communication between Pi and Pj , for i, j ≤ n, unless the mediator allows it. We
define two different ideal worlds depending on whether the mediator is honest (and collusion-
freeness is the goal) or dishonest (in which case we default to the standard notion of security).3

We also explicitly incorporate a PKI into our real and ideal models; see the discussion below. As
in [1], we capture collusion-freeness (when the mediator is honest) by requiring the existence of
independent simulators, one for each malicious party, such that their joint output in the ideal world
is indistinguishable from the joint output of the malicious parties in the real world.

Let F = (f1, . . . , fn+1) denote the functionality the parties wish to compute, where each fi

maps n + 1 inputs to a single output. (We allow the mediator to provide input and receive output,
something not done in [1].) We implicitly assume that any protocol under discussion for com-
puting F is correct : i.e., if parties P1, . . . , Pn+1 hold a consistent PKI, have inputs x1, . . . , xn+1,
respectively, and run the protocol honestly, then each party Pi receives output fi(x1, . . . , xn+1),
distributed appropriately in case these functions are randomized.
PKI. Alwen et al. [1] suggest that public keys for each party should be generated as part of
the protocol itself. Unfortunately, if all communication is done via the mediator this means that a
corrupt mediator can impersonate parties and “disconnect” the parties into disjoint groups running
independent computations (as in [2]). For this reason, Alwen et al. assume a “broadcast-honest”
mediator who reliably forwards all public keys at the beginning of the protocol. We simplify things
by just assuming that all players begin the protocol with a consistent PKI. (We do not assume
honestly generated keys or require parties to prove knowledge of their keys.)

Both our approach and that of Alwen et al. introduce the possibility that a party’s public
key can be used as a subliminal channel, but we do not view this as a serious concern. For one,
public keys are generated before inputs are given to the parties, so any such communication will
be independent of parties’ inputs. Furthermore, parties that are not aware of each other before
execution of the protocol will necessarily generate their keys independently, whereas parties that are
aware of each other before executing the protocol cannot be prevented anyway from communicating
an arbitrary amount of information in advance.

2.1 Execution in the Real World (the Mediated Model)

We first consider the real world in which an (n + 1)-party protocol Π is executed. Channels are
available only between the mediator Pn+1 and Pi (for all i). The channels to/from Pn+1 are assumed
to be private and authenticated for simplicity.

We assume here that the mediator is honest, and consider a dishonest mediator in Section 2.3.
Let I ⊆ [n] denote the set of corrupted parties4 and denote by H = [n] \ I the set of uncorrupted
parties (not including the mediator). An execution in the real world proceeds as follows:

3In [1] a single ideal world encompassing both cases was given, but we find it simpler to treat them separately.
4We remark that, in contrast to the usual case, a meaningful definition is obtained even when I = [n].
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PKI establishment: For i ∈ H, party Pi honestly generates a pair of signature keys (pki, ski).
Each corrupted party Pi may output any public key pki of its choice. At the end of this stage,
all parties (including the mediator) are given the vector (pk1, . . . , pkn) of public keys.

Input determination and protocol execution: Each party Pi (for 1 ≤ i ≤ n + 1) is given in-
put xi. (We stress that this is done only after the PKI is established.) Party Pi is also given
auxiliary input auxi; honest players ignore this input. Independent random coins r1, . . . , rn+1

for the parties are also chosen. The parties then run the protocol, with honest parties (in-
cluding the mediator) acting as directed by Π, and corrupted parties behaving arbitrarily.

Result of the experiment: At the conclusion of the protocol, let outi, for i ∈ I, denote the
entire view of the corrupted party Pi, and let outi, for i ∈ H ∪ {n + 1}, denote the final
output of Pi (as dictated by Π). Given a set of adversarial strategies AI = {Ai}i∈I , define

realmediated
Π,AI( ~aux)(1

k, ~x) def= (out1, . . . ,outn+1)

to be the random variable consisting of the stated outputs following an execution of Π where
the parties are given inputs and auxiliary inputs as specified.

2.2 Collusion-Freeness (with an Honest Mediator)

Throughout this section, we assume the mediator is honest. In this ideal world, all parties com-
municate only with a trusted party computing F . In particular, corrupted parties are unable to
communicate with each other and therefore cannot communicate information about their inputs
or coordinate their actions (beyond what they have agreed upon in advance). Let I be the set of
corrupted parties, and let H be the set of honest parties (other than the mediator) as before. An
execution in this ideal world proceeds as follows:

PKI establishment: A PKI is established exactly as in the real world. That is: for i ∈ H, party
Pi honestly generates signature keys (pki, ski). Each corrupted party Pi outputs any public
key pki of its choice. All parties are then given the vector (pk1, . . . , pkn) of public keys.

Input determination: Each party Pi (for 1 ≤ i ≤ n + 1) is given their input xi. Party Pi is also
given auxiliary input auxi; an honest player ignores this input. Independent random coins
{ri}i∈I for the corrupted parties are also chosen.

An honest party sets x′i = xi and sends x′i to F . A corrupted Pi may send any x′i of its choice.
Unless otherwise specified, if any x′i =⊥ then all parties get output ⊥ from F . Otherwise, F
hands fi(x′1, . . . , x

′
n+1) to party Pi, for 1 ≤ i ≤ n + 1.

Note that a malicious party who “aborts” by sending ⊥ to F communicates (at most) one
additional bit to all other parties beyond what is directly implied by F . Furthermore, this
decision to abort must be made independently of the output of F on the given inputs.

Result of the experiment: At the conclusion of the protocol, let outi, for i ∈ I, denote an
arbitrary value output by Pi, and let outi, for i ∈ H ∪ {n + 1}, denote the value given to Pi

by F . Given a set of adversarial strategies SI = {Si}i∈I , define

idealcf
F ,SI( ~aux)(1

k, ~x) def= (out1, . . . ,outn+1)

to be the random variable consisting of the stated outputs following an ideal-world execution
where the parties are given inputs and auxiliary inputs as specified.
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Having defined the ideal and real models, we can now define collusion-freeness of a protocol.
If we followed the standard definitional paradigm, we would require that for all I and any set of
efficient real-world strategiesAI = {Ai}i∈I , there should exist a set of efficient ideal-world strategies
SI = {Si}i∈I such that the corresponding real- and ideal-world outcomes are computationally
indistinguishable. A deficiency of this approach is that it allows each Si to depend on I as well
as all the Aj (i.e., even for j 6= i), and thus this approach does not adequately model collusion-
freeness. Since we want each Si to depend only on Ai, we instead require the existence of a set
of efficient transformations {Simi}i∈[n] such that setting Si = Simi(1k,Ai) for i ∈ I makes the
real and ideal worlds indistinguishable. While this is not the most general definition possible, we
achieve this definition in our work (and, moreover, all our transformations are black-box).

Definition 1 Let F be a functionality, and Π an (n+1)-party protocol computing F in the mediated
model. Π is a collusion-free protocol computing F if there is a set {Simi}i∈[n] of efficiently-computable
transformations such that, for all I ⊆ [n] and any ppt strategies {Ai}i∈I , setting Si = Simi(1k,Ai)
for i ∈ I implies

{
idealcf

F ,SI( ~aux)(1
k, ~x)

}
~x, ~aux∈∈({0,1}∗)n+1, k∈N

c≡
{
realmediated

Π,AI( ~aux)(1
k, ~x)

}
~x, ~aux∈({0,1}∗)n+1, k∈N

.

2.3 Security (with a Dishonest Mediator)

The definition in the case of a dishonest mediator is essentially the standard one, with the main ex-
ception being that honest parties cannot communicate directly in the real world. For completeness,
we include the definition in Appendix A.

A protocol satisfying the definitions of both this and the previous section will be called a
collusion-free protocol securely computing F .

3 Collusion-Free Multiparty Computation in the Mediated Model

We construct a collusion-free protocol Π for secure computation of an arbitrary (poly-time) func-
tionality F = (f1, . . . , fn+1). We first introduce the components of our protocol, and describe the
protocol in full detail in Section 3.4. High-level intuition for the protocol was given in Section 1.2.

3.1 Tools and Building Blocks

Our protocol uses a number of standard cryptographic primitives and tools, which we review here.

Some standard primitives and functionalities:

– Commitments. Let C be a perfectly binding commitment scheme, where C(m; r) denotes a
commitment to m using random coins r. The decommitment of com = C(m; r) is dec = (m, r).
We assume all commitments are some known, fixed function of the message length.

– Signature schemes. Let (Gen, Sign, Vrfy) be a signature scheme that is existentially unforgeable
under adaptive chosen-message attacks. Range(Gen) denotes the set of possible outputs of Gen,
and we assume that one can decide in polynomial time whether a given (sk, pk) lies in Range(Gen).
(This is without loss of generality, since we may always take sk to be the random coins used by
Gen.) We assume all valid signatures are some known, fixed function of the message length.
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– Two-party functionalities. We use ideal functionalities to model various sub-protocols used
in Π. Standard functionalities we use are the commitment functionality Fcom, the coin-tossing
functionality Fct, the zero-knowledge functionality Fzk, and the signature functionality FSign:

1. Fcom is defined by Fcom((m, r), λ) = (⊥, C(m; r)), where λ denotes the empty string.
2. The coin-tossing functionality is defined by Fct(1`, λ) = ((r, s), C(r; s)), where |r| = ` and

both r and s are uniformly distributed.
3. Let R be an NP-relation. Functionality Fzk for the relation R is defined by

Fzk((x,w), x′) =
{

(⊥, R(x, w)) if x = x′

(⊥, 0) otherwise

4. The signature functionality is defined as:

FSign((sk, pk, m), (pk′,m′)) =





(⊥, Signsk(m)) if (pk, m) = (pk′,m′) and
(sk, pk) ∈ Range(Gen)

(⊥,⊥) otherwise

A protocol π that securely computes F (in the standard sense): Let π be an (n+1)-party
protocol that securely computes F in the standard sense [8], in the standard communication model
where all parties have access to a public (but authenticated) broadcast channel. Precisely, π is
secure-with-designated-abort for any number t ≤ n+1 corrupted parties, where the mediator Pn+1

is designated as the party who can prematurely abort the protocol. Roughly speaking, this means
that the protocol guarantees privacy and correctness regardless of how many parties are corrupted,
and guarantees output delivery and complete fairness as long as the mediator is not corrupted. For
technical reasons, we also assume that π is proven secure using a black-box simulator.

We assume the following about π, all of which can be ensured using standard techniques:

– All messages in π have the same, fixed length. In any given round only a single party broadcasts,
and the identity of the party who broadcasts depends on the current round number only.

– Say π has r rounds. Then Pn+1 learns its output in round r − 1; party Pn+1 broadcasts in
round r; and every other party learns its output in this final round.

Dummy commitments: As described in Section 1.2, everything the mediator sends to the par-
ties will be “wrapped” inside a commitment. When all parties behave honestly, these will all be
commitments to legitimate protocol messages of π along with a digital signature. If some party Pi

aborts (or otherwise deviates from the protocol), however, an honest mediator will not be able to
generate a valid commitment of this sort (in particular, the mediator will be unable to forge an
appropriate signature). Nevertheless, we do not want some other party to learn that Pi aborted
the protocol. We achieve this by allowing the mediator to send special “dummy commitments”
to a distinguished value dummy. (I.e., a dummy commitment takes the form C(dummy; r).) For
the sake of concreteness, dummy can be taken to be a string of 0s of the appropriate length if we
require that all legitimate messages be prefixed by a ‘1’.

3.2 Oblivious Computation of π

The general structure of protocol Π, as described in Section 1.2, has the mediator send to each Pj

commitments to all the protocol messages of π. Thus, Pj cannot compute its π-messages directly
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Functionality Fπ
compute

The parties’ public keys are (pk1, . . . , pkn). Functionality Fπ
compute runs with two parties Pj and Pn+1

and works as follows:
– Pj inputs a pair of commitments cominput and comrand; a vector of commitments ~C; and a round

number rid. In addition, Pj sends two strings decinput and decrand, and its signing key skj .

– Pn+1 inputs a pair of commitments cominput
j and comrand

j ; a vector of commitments ~Cj ; and a round
number rid′. In addition, Pn+1 sends a vector ~decj .

– Upon receiving the above, Fπ
compute does:

1. If (cominput, comrand, ~C, rid) 6= (cominput
j , comrand

j , ~Cj , rid
′) or if (skj , pkj) 6∈ Range(Gen), then send

⊥ to Pn+1 and halt.
2. If decinput is not a valid decommitment to cominput

j , or decrand is not a valid decommitment to
comrand

j , or ~decj does not contain valid decommitments to all the commitments in ~Cj , then send
⊥ to Pn+1 and halt.

3. Let (msg1, σ1), . . . , (msg`, σ`) be the committed values in ~Cj . If any of these are dummy val-
ues, send ⊥ to Pn+1 and halt. For 1 ≤ i ≤ `, let `i denote the index of the party who is
supposed to broadcast in round i of π. If there exists an i such that (1) `i 6= n + 1 and
(2) Vrfypk`i

((msgi, 0i), σi) 6= 1, then send ⊥ to Pn+1 and halt.

4. Let xj and rj be the committed values in cominput
j and comrand

j respectively. Compute the next
message msg that party Pj would send in protocol π when running with input xj , random tape
rj , and after receiving messages msg1, . . . , msg`. In addition, compute σ = Signskj

(msg, rid).
Send (msg, σ) to Pn+1 and halt.

Figure 1: The functionality computing the next message of π

(since it cannot directly observe the π-messages of other parties), but must instead compute these
messages by executing a two-party protocol with the mediator. Specifically, we define a functionality
Fπ

compute that computes the next π-message of Pj along with a signature of Pj on that message,
and a functionality Fπ

output that enables Pj to obtain its π-output. (The actual functionalities we
require are more complex because we must also check for incorrect behavior on the part of the
mediator.) These are defined formally in Figures 1 and 2. Observe that only the mediator Pn+1

receives output from Fπ
compute, and only Pj receives output from Fπ

output.

3.3 Mediator Broadcast

Protocol π assumes that all parties communicate over a broadcast channel. When the mediator
is corrupt, we therefore must ensure that the mediator sends (commitments to) the same message
to all honest parties. Note that checking for signatures on protocol messages, as done by Fπ

compute

and Fπ
output, only ensures that this holds for the messages of honest parties; it does not prevent a

dishonest mediator from sending different messages on behalf of corrupted parties (who may collude
with the mediator and sign multiple messages).

We achieve the above using what we refer to as “mediator broadcast”. The mediator Pn+1

begins holding a message m, and at the end of the protocol each party Pi obtains an (independent)
commitment comi to a message mi that is unknown to Pi. (Note that mi is well-defined, since C
is perfectly binding.) The desired functionality is, informally, as follows: If all parties are honest,
then mi = m for all Pi. If Pn+1 is honest, then there is an m′ ∈ {m, dummy} such that mi = m′
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Functionality Fπ
output

The parties’ public keys are (pk1, . . . , pkn). Functionality Fπ
output runs with two parties Pj and Pn+1

and works as follows:
– Pj inputs a pair of commitments cominput and comrand, and a vector of r commitments ~C. In addition,

Pj sends two strings decinput and decrand.

– Pn+1 inputs a pair of commitments cominput
j and comrand

j , and a vector of r commitments ~Cj . In
addition, Pn+1 sends a vector ~decj .

– Upon receiving the above, Fπ
compute does:

1. If (cominput, comrand, ~C) 6= (cominput
j , comrand

j , ~Cj), then send ⊥ to Pj and halt.

2. If decinput (resp., decrand) is not a valid decommitment to cominput
j (resp., comrand

j ), or ~decj does
not contain valid decommitments to all the commitments in ~Cj , then send ⊥ to Pj and halt.

3. Let (msg1, σ1), . . . , (msgr, σr) be the committed values in ~Cj . If any of these are dummy val-
ues, send ⊥ to Pj and halt. For 1 ≤ i ≤ r, let `i denote the index of the party who is
supposed to broadcast in round i of π. If there exists an i such that (1) `i 6= n + 1 and
(2) Vrfypk`i

((msgi, 0i), σi) 6= 1, then send ⊥ to Pj and halt.

4. Let xj and rj be the committed values in cominput
j and comrand

j . Compute the value outj that
party Pj would output in protocol π when running with input xj , random tape rj , and after
receiving the messages msg1, . . . , msgr. Send outj to Pj and halt.

Figure 2: The functionality computing the output of π

for all honest parties Pi. If Pn+1 is dishonest, then there is an m′ such that mi ∈ {m′, dummy} for
all honest parties Pi. This is a weak form of broadcast, but suffices for our application.

In Figure 3, we formally define a functionality F sid
bcast, parameterized by a session id sid, imple-

menting the above. (An honest mediator chooses r1, . . . , rn uniformly at random, and sets H = [n];
an honest Pi sends bi = 1.) We stress that the functionality always outputs a commitment for each
party, even if some (dishonest) party uses input ⊥. Our protocol Πsid

bcast realizing F sid
bcast proceeds,

roughly speaking in the following three stages:

1. Pn+1 sends comi = C(m; ri) to each party Pi.

2. Pi generates a signature σi on (comi, sid), and sends σi to Pn+1.

3. If any Pi fails to send a valid signature, then Pn+1 sends (independent) dummy commitments
to all parties. Otherwise, Pn+1 sends an independent commitment to (com1, σ1, . . . , comn, σn)
to all parties. In either case, Pn+1 then proves to each party in zero knowledge that the
commitments it sent take one of these forms.

The actual protocol Πsid
bcast is slightly more complex. Furthermore, for technical reasons we do not

use commitments, signatures, or zero-knowledge proofs directly but instead work in the (Fcom,
FSign, Fzk)-hybrid model. The complete protocol and a proof of security are given in Appendix B.

3.4 A Protocol Π for Collusion-Free Secure Computation

We now describe a collusion-free protocol Π that securely computes F in the (Fcom, Fct, Fπ
compute,

Fπ
output, F sid

bcast)-hybrid model. When these functionalities are realized using protocols designed for
the mediated model, we obtain a protocol for the real mediated model.

9



F sid
bcast

Functionality F sid
bcast runs with P1, . . . , Pn, Pn+1 as follows:

– For j ∈ [n], each Pj inputs a bit bj . (If Pj sends ⊥, set bj = 0.) Let b =
∧

i bi.

– The mediator Pn+1 inputs a message m, random coins r1, . . . , rn, and a set H ⊆ [n].

– If b = 1, then:

– For i ∈ H, send comi = C(m; ri) to Pi.
– For i ∈ [n] \ H, send comi = C(dummy; ri) to Pi.

If b = 1, then for i ∈ [n] send comi = C(dummy; ri) to Pi. In either case, send b to Pn+1.

Figure 3: “Mediator broadcast”

Our protocol consists of three stages. In the first stage, the parties commit to their inputs and
random coins for a protocol π that securely computes F (in the standard sense). In the second
stage, the parties simulate π, round-by-round, as follows. If it is Pj ’s turn to speak (for j ∈ [n]),
then Pj runs Fπ

compute with the mediator; in this way, the mediator obtains the next message msg
of the protocol along with a signature of Pj on this message (and the current round number). If it
is the mediator’s turn to speak, then the mediator simply computes the next message msg of the
protocol on its own. The mediator then runs “mediator broadcast” using msg and the signature.
As long as everyone behaves honestly, each party thus learns commitments to all messages of the
protocol. In the third stage, the mediator runs Fπ

output with each Pj to enable Pj to learn its output.
We now describe the protocol formally.

The protocol begins with all parties holding the same vector of public keys ~pk = (pk1, . . . , pkn);
party Pi also holds input xi and, if 1 ≤ i ≤ n, its own secret key ski.

Stage 1 – input commitment and coin tossing:

1. Each Pj executes Fcom with Pn+1, where Pj chooses random sj and provides input decinput
j =

(xj , sj) to Fcom. Let cominput
j be the commitment received by Pn+1 from Fcom.

2. Each Pj executes Fct with Pn+1, where the input length ` is the number of coins needed to
run π. We denote by decrand

j = (rj , s
′
j) the output of Pj and by comrand

j the output of Pn+1.

Stage 2 – round-by-round emulation of π: The mediator Pn+1 initializes abort = false. Then,
for i = 1 to r − 1, the parties run the following:

1. (Pn+1 learns the round-i message of π.)

Case 1: Party Pj , for 1 ≤ j ≤ n, is supposed to broadcast in the ith round of π.

– Let ~Cj = (comj
1, . . . , comj

i−1) be the commitments that Pj output in the previous i−1 rounds.

– Pj and Pn+1 run an instance of Fπ
compute. Here, Pj sends Fπ

compute its commitments cominput
j

and comrand
j , the vector of commitments ~Cj , the round identifier rid = 0i, the decommitments

decinput
j and decrand

j , and its signing key skj .

Pn+1 sends Fπ
compute the commitments cominput

j and comrand
j , the commitments (comj

1, . . . ,
comj

i−1), the round identifier rid = 0i, and the decommitments (decj
1, . . . , decj

i−1).
– If Fπ

compute returns ⊥ to Pn+1, then Pn+1 sets abort = true and mi = dummy. Otherwise, if
Fπ

compute returns (msgi, σi) to Pn+1, then Pn+1 sets mi = (msgi, σi).

10



Case 2: Pn+1 is supposed to broadcast in the ith round of π:

– If abort = true then Pn+1 sets mi = dummy. If abort = false then Pn+1 locally computes
the message msgi as instructed by π (this is possible since Pn+1 sees all π-messages “in the
clear”), and sets mi = msgi.

2. (Pn+1 “broadcasts” the round-i message of π.) Let sid = 1i. The mediator Pn+1

chooses random r1, . . . , rn and runs F sid
bcast with all the other parties, where Pn+1 provides

input (mi, r1, . . . , rn,H = [n]) and every other party Pj provides input 1.

Each party Pj defines comj
i to be the commitment that it received from F sid

bcast. Note that
Pn+1, given its output from F sid

bcast, can compute the commitments {comj
i}j∈[n], and knows the

corresponding decommitments.

Stage 3 – output determination:

1. If abort = true then Pn+1 sets msgr = dummy and sets outn+1 =⊥. If abort = false then
Pn+1 computes its π-output outn+1 and final message msgr locally (it can do this since
Pn+1 sees all π-messages “in the clear”). In either case, the mediator then sets sid = 1r,
chooses random r1, . . . , rn, and runs F sid

bcast with all the other parties, where Pn+1 provides
input (msgr, r1, . . . , rn,H = [n]) and every other party Pi provides input 1. The mediator
outputs outn+1.

Each party Pj defines comj
r to be the commitment that it received from F sid

bcast. Note that Pn+1

can compute the commitment, and knows the corresponding decommitment.

2. The mediator Pn+1 runs Fπ
output with each Pj , where Pj provides input cominput

j , comrand
j ,

(comj
1, . . . , comj

r), decinput
j , and decrand

j , and Pn+1 sends cominput
j , comrand

j , the commitments
(comj

1, . . . , comj
r), and the decommitments (decj

1, . . . , decj
i−1).

Each party Pj outputs the value it receives from Fπ
output in this step.

4 Proof of Security

We first prove that Π is a collusion-free protocol that securely computes F in the (Fcom, Fct, F sid
bcast,

Fπ
compute, Fπ

output)-hybrid model. A proof of the following appears in Appendix C.

Theorem 4.1 Let π be a protocol that securely computes F (as required in Section 3.1); let C be a
perfectly binding commitment scheme; and let (Gen, Sign, Vrfy) be a secure signature scheme. Then
protocol Π from the previous section is a collusion-free protocol for securely computing F in the
(Fcom, Fct, F sid

bcast, Fπ
compute, Fπ

output)-hybrid model.

We now show that when the ideal-world functionalities are instantiated using protocols satisfying
appropriate definitions of security, we obtain a collusion-free protocol that securely computes F in
the real mediated model. We obtain this as a corollary of the following composition theorems.

Theorem 4.2 Let Π be a collusion-free protocol computing F in the G-hybrid model, where Π
contains polynomially many sequential calls to G, and let ρ be a collusion-free protocol computing G.
Then the composed protocol Πρ is a collusion-free protocol computing F in the real mediated model.

A proof of Theorem 4.2 follows along the lines of [5] and is given in Appendix D.1.
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Theorem 4.3 Let G be a two-party functionality, and let Π be a multi-party protocol that securely
computes F in the G-hybrid model for concurrent self composition. Assume further that Π only
makes calls to G (i.e., there are no other messages in Π), and that Pn+1 plays the role of the second
party in all calls to G. Let m denote the overall number of calls to G in Π.

If ρ is a two-party protocol that securely computes G under m-bounded concurrent self-composition,
then the composed protocol Πρ securely computes F in the real mediated model.

Note that even if Π instructs the parties to make sequential calls to G, Theorem 4.3 requires
ρ to be secure under (bounded) concurrent self-composition since a dishonest mediator may run
concurrent executions with different honest parties. Theorem 4.3 follows immediately from the
definition of m-bounded concurrent self composition; a proof is given in Appendix D.2.

We can now prove our main result:

Corollary 4.4 Let F be a polynomial-time, multi-party functionality. Then assuming the existence
of enhanced trapdoor permutations, there exists a collusion-free protocol for securely computing F
in the real mediated model.

Proof: Let Πcf denote the protocol of Section 3.4, where:

– C is a perfectly binding commitment scheme and (Gen, Sign, Vrfy) is a secure signature scheme;

– π securely computes F (in the standard communication model) as specified in Section 3.1;

– Fcom, Fct, Fπ
compute, and Fπ

output are instantiated by a single protocol5 ρ that is secure under
m-bounded concurrent self-composition [14] (m will be specified in the proof below);

– F sid
bcast is instantiated using protocol Πsid

bcast of Appendix B, where Fcom,FSign, and Fzk are realized
by the same protocol ρ as above.

Note that Πcf is defined in the real mediated model, and all the components above can be con-
structed under the assumption that enhanced trapdoor permutations exist. We now prove that Πcf

is a collusion-free protocol securely computing F .
In the case of an honest mediator, this follows directly from Theorems 4.1 and 4.2 using the

fact that the “mediator broadcast” protocol of Section 3.3 is collusion-free and the observation that
any two-party protocol secure in the standard sense is trivially collusion-free. (If ρ is secure under
m-bounded concurrent self-composition, it is also secure in the stand-alone sense.)

In the case of a dishonest mediator, the proof is slightly more involved since the hybrid-world
protocol Π, as specified, does not fulfill the requirements of Theorem 4.3 (because Πsid

bcast is not
a two-party protocol). Nevertheless, observe that Πsid

bcast consists only of calls to the two-party
functionalities Fcom, FSign, and Fzk. Thus, if we define Π′ to be the same as protocol Π but using
Πsid

bcast instead of F sid
bcast, it follows that Π′ does fulfill the requirements of Theorem 4.3. Observing

that this changes the output distribution by at most a negligible amount (by security of Πsid
bcast),

we have that Π′ securely computes F in the (Fcom,Fct,FSign,Fzk,Fπ
compute,Fπ

output)-hybrid model.
Using an appropriate protocol ρ as required by Theorem 4.3, where m is the total number of ideal
calls in Π′, we conclude that Πcf = Π′ρ securely computes F in the real mediated model.

5This means we simply “wrap” these functionalities in one larger functionality, and have parties provide an
additional input selecting which sub-functionality to run.
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A Definitions of Security for a Dishonest Mediator

In this section, we assume a dishonest mediator. The real-world model is, of course, unchanged.
Since a corrupted mediator can allow arbitrary communication between corrupted parties, however,
we treat all corrupted players as a single coordinated adversary A and syntactically re-write the
definition that way. (Note that honest parties still have no direct communication with each other.)
The definition that we present is otherwise the standard definition of security with abort, meaning
that fairness and output delivery are not guaranteed. We allow any number of corruptions.

Let I ⊂ [n]∪{n+1} denote the set of corrupted parties including the mediator, and denote by
H = [n] \ I the set of uncorrupted parties. An execution in the real world proceeds as follows:

PKI establishment: A PKI is established as before. We stress that, even though the mediator
is dishonest, we continue to assume that a consistent PKI is established. (We view the PKI
as something that is established long before protocol execution begins.)

Input determination and protocol execution: A is given the inputs {xi}i∈I of the corrupted
parties, along with auxiliary information aux. Each honest Pi is given input xi. Independent
random coins rA and {ri}i∈H for the parties are also chosen. The parties then execute the
protocol with honest players acting as directed by Π, and the adversaryA behaving arbitrarily.

Result of the experiment: At the conclusion of the protocol, let outA denote the entire view
of A, and let outi, for i ∈ H, denote the final output of the honest Pi (as dictated by Π).
Given an adversary A, define

realΠ,A(aux)(1
k, ~x) def= (outA, {outi}i∈H)

to be the random variable consisting of the stated outputs following an execution of Π where
the parties are given inputs (and A given auxiliary input) as specified.

The second ideal world. Let I and H be as above. As in the previous ideal model, honest
parties only communicate with the trusted party computing F . Because the mediator is dishonest,
corrupted parties may now freely communicate with each other and we therefore view these parties
as a single coordinated adversary S. An execution in this ideal world proceeds as follows:

PKI establishment: There is no PKI in this ideal world. Note that this is the usual convention
when defining security of protocols, and the only reason we include a PKI in the ideal world
defined in Section 2.2 is because there we needed to explicitly model information “leaked”
via corrupted parties’ public keys.
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Input determination: The adversary S is given the set of inputs {xi}i∈I of the corrupted parties,
along with some auxiliary information aux. Each honest party Pi is given its own input xi.
Independent random coins rS are also chosen.

An honest party sets x′i = xi and sends x′i to F . The adversary S sends {x′i}i∈I to F , where
these may be determined arbitrarily. F then hands {fi(x′1, . . . , x

′
n+1)}i∈I to S, after which S

specifies a set ∅ ⊆ H′ ⊆ H. Each honest party i ∈ H′ is given fi(x′1, . . . , x
′
n+1), whereas each

i ∈ H \ H′ is given ⊥.

Note that output delivery, agreement, and fairness cannot be guaranteed regardless of the
number of corruptions, since the corrupted mediator controls all communication.

Result of the experiment: At the conclusion of the protocol, let outS be an arbitrary value
output by S, and let outi, for i ∈ H, denote the value given to Pi by F . Define

idealF ,S(aux)(1
k, ~x) def= (outS , {outi}i∈H)

to be the random variable consisting of the stated outputs following an ideal-world execution
where the parties are given inputs and auxiliary inputs as specified.

Here, the definition takes the standard form:

Definition 2 Let F be a functionality, and Π an (n+1)-party protocol computing F in the mediated
model. Π is a protocol securely computing F if for all I and every probabilistic polynomial-time
adversary A corrupting the parties in I, there is a probabilistic polynomial-time adversary S cor-
rupting the same parties with:

{
idealF ,S(aux)(1

k, ~x)
}

~x,aux∈({0,1}∗)n+1, k∈N
c≡

{
realΠ,A(aux)(1

k, ~x)
}

~x,aux∈({0,1}∗)n+1, k∈N
.

B A Protocol for Mediator Broadcast

We describe a protocol Πsid
bcast implementing mediator broadcast, and prove its security. Parties

begin holding the same values for sid and ~pk, and each honest Pj holds a signing key skj . The
mediator holds as input a message m of some fixed length, coins r1, . . . , rn, and a set H. (Note that
for an honest mediator running Πsid

bcast in our protocol, it will always be the case that r1, . . . , rn are
chosen at random and H = [n].) Each party Pj holds a bit bj . (For an honest party bj = 1.) The
protocol proceeds as follows:

1. Pn+1 chooses random values ρ′1, . . . , ρ
′
n. Then Pn+1 runs Fcom with each Pj , where the

mediator uses (m, ρ′j) as its input. The output of Pj from Fcom is denoted com′
j .

2. Pn+1 runs FSign with each Pj , where Pn+1 sends (pkj , (com′
j , sid)) as its input. Pj sends

(skj , pkj , (com′
j , sid)) as its input if bj = 1, and sends ⊥ otherwise.

Let σj be the output given by FSign to Pn+1.

3. If σi 6=⊥ for all i, Pn+1 sets b = 1 and then runs two instances of Fcom with each Pj :

• Pn+1 chooses random ρj and sends ((com′
1, σ1, . . . , com′

n, σn), ρj) to the first instance
of Fcom.
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• If j ∈ H, the mediator Pn+1 sends (m, rj) to the second instance of Fcom. If j 6∈ H, the
mediator Pn+1 sends (dummy, rj) to the second instance of Fcom.

If there exists an i with σi =⊥, Pn+1 sets b = 0 and then runs two instances of Fcom with
each Pj :

• Pn+1 chooses random ρj and sends (dummy, ρj) to the first instance of Fcom.

• Pn+1 sends (dummy, rj) to the second instance of Fcom.

Let comj , comj denote the output of Pj from the first (resp., second) instance of Fcom.

4. Define relation R, parameterized by sid and ~pk, as follows: R
(
(com, com), (dec, ~dec′, dec)

)
= 1

iff all the following hold:

(a) dec is a valid decommitment to com. Let (com′
1, σ1, . . . , com′

n, σn) be the underlying
message in this case.

(b) dec is a valid decommitment to com. Let m be the underlying message in this case.

(c) Either m = dummy, or the following hold:

i. ~dec′ contains valid decommitments to each of com′
1, . . . , com′

n. Let mi denote the
message committed to by com′

i in this case.
ii. m = m1 = · · · = mn and, for all i, we have Vrfypki

((com′
i, sid), σi) = 1.

Pn+1 runs Fzk (for the above relation R) with each Pj . The input of Pj is comj , comj , and
the input of Pn+1 contains these commitments and the appropriate decommitments.

5. Each party Pj , for j ∈ [n], decides on its output as follows: if it receives ‘1’ from Fzk, then it
outputs comj ; otherwise, it outputs C(dummy; 0k). The mediator Pn+1 outputs b.

We highlight that the above protocol consists only of calls to the ideal functionalities Fcom,FSign,
and Fzk; there are no other protocol messages. We now prove security of Πsid

bcast:

Theorem B.1 Let C be a perfectly binding commitment scheme, and let (Gen,Sign,Vrfy) be a
secure signature scheme. Then Πsid

bcast is a collusion-free protocol for securely computing F sid
bcast in

the (Fcom, FSign, Fzk)-hybrid model.

Proof: We consider separately the case of an honest mediator and a dishonest mediator.

Claim B.2 Let C be a perfectly binding commitment scheme. Then Πsid
bcast is a collusion-free

protocol computing F sid
bcast in the (Fcom, FSign, Fzk)-hybrid model.

Proof: Here we have an honest mediator. Let I denote the set of corrupted parties. We need to
show independent transformations {Simi}i∈I that satisfy Definition 1. In fact, our transformations
will be black-box. Simi, given oracle access to Pi, does as follows:

0. Simi runs Pi to generate pki. Then Simi is given the vector of public keys ~pk = (pk1, . . . , pkn),
a bit bi, and an auxiliary input auxi, and it runs Pi on these inputs.

1. Simi simulates an ideal call to Fcom by giving Pi a commitment com′
i to a 0-string of the

appropriate length.
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2. Simi simulates an ideal call to FSign by extracting inputs (ski,1, pki,1, (com′
i,1, sidi,1)) from Pi,

and returning output ⊥ to Pi. Then:

• If (pki,1, com′
i,1, sidi,1) 6= (pki, com′

i, sid) or (ski,1, pki) 6∈ Range(Gen) (these include the
case when Pi’s input is ⊥), then Simi sends 0 to the trusted party computing F sid

bcast.

• Otherwise, Simi sends 1 to the trusted party computing F sid
bcast.

Simi receives in return a commitment comi.

3. Simi simulates the first ideal call to Fcom by giving Pi a commitment comi to a 0-string of the
appropriate length. It simulates the second call to Fcom by giving Pi the commitment comi.

4. Simi then simulates an ideal call to Fzk by extracting (comi,2, comi,2) from Pi. Then:

• If (comi,2, comi,2) 6= (comi, comi), then Simi returns 0 to Pi.

• Otherwise, Simi returns 1 to Pi

Finally, Simi outputs whatever Pi outputs, and halts.

It is straightforward to see that Definition 1 holds for the {Simi}i∈I defined as above. Indeed, the
only difference between the hybrid-world execution of protocol Πsid

bcast and the ideal-world execution
of F sid

bcast is with regard to the commitments {com′
i, comi}i∈I . Since, when the mediator is hon-

est, these commitments are generated independently with fresh random coins in each experiment,
computational hiding of C implies that the two experiments are indistinguishable.

Claim B.3 Let C be a perfectly binding commitment scheme, and let (Gen, Sign, Vrfy) be a secure
signature scheme. Then Πsid

bcast securely computes F sid
bcast in the (Fcom, FSign, Fzk)-hybrid model.

Proof: We now have a dishonest mediator. Let I denote the set of corrupted parties, including
the mediator, and let H denote the honest parties. In the proof that follows, we assume that every
honest party Pi holds input bi = 1; this is justified since, in our protocol that makes calls to Πsid

bcast,
this will always be the case.

Given an adversary A controlling the parties in I, we construct a simulator S with black-box
access to A that works as follows:

0. For each i ∈ H, the simulator S runs (ski, pki) ← Gen(1k). The simulator runs A to obtain
the public keys {pki}i∈I . Let ~pk = (pk1, . . . , pkn) denote the vector of public keys.

S is given inputs {xi}i∈I and auxiliary input aux. It runs A on these inputs and ~pk.

1. For each j ∈ H, the simulator S simulates an ideal call to Fcom by extracting (mj , ρ
′
j) from A.

Let com′
j = C(mj ; ρ′j).

If all the {mj}j∈H are equal, then S sets m∗ = m1. Otherwise S sets m∗ = dummy.

2. For each j ∈ H, the simulator simulates an ideal call to FSign as follows: it first extracts
(pkj,n+1, (com′

j,n+1, sidn+1)) from A and then:

• If (pkj,n+1, (com′
j,n+1, sidn+1)) = (pkj , (com′

j , sid)), then S computes the signature σj =
Signskj

(com′
j , sid) and gives σj to A as the output of FSign.

• Otherwise, S gives ⊥ to A as the output of FSign.
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3. For each j ∈ H, the simulator S simulates two ideal calls to Fcom. Let (m̄j , ρj) denote the
inputs submitted by A to the first instance of Fcom, and let comj = C(m̄j ; ρj). Let (m′

j , rj)
denote the inputs submitted by A to the second instance of Fcom, and let comj = C(m′

j ; rj).

4. S initializes H′ = H. Then for each j ∈ H it does:

(a) Extract the inputs (decj , ~decj
′, decj) submitted by A to the relevant instance of Fzk.

(b) If Fzk would output 1 to Pj (note that S can easily compute this, since an honest Pj

would input (comj , comj) to Fzk), then

• If m′
j = m∗, do nothing.

• If m′
j = dummy, remove j from H′.

• If m′
j 6∈ {m∗, dummy}, set fail = true.

(c) If Fzk would output 0 to Pj , then set rj = 0k and remove j from H′.
5. S sends m, r1, . . . , rn,H′ to F sid

bcast on behalf of Pn+1, and sends 1 to F sid
bcast on behalf of the

other parties in I. It then outputs whatever A outputs, and halts.

It is straightforward to see that S, as above, satisfies Definition 2 (under the assumption that
every honest party Pi holds input bi = 1). Indeed, the view of A in a hybrid-world execution of
protocol Πsid

bcast is distributed identically to its view when run as a subroutine by S in an ideal-world
execution of F sid

bcast. The only difference is with regard to the outputs of the honest parties, where a
difference occurs only in case fail is set to true at the end of S’s execution. (If fail is false then in the
hybrid world every honest party Pj outputs a commitment comj to a message mj ∈ {m∗, dummy},
just as in the ideal world.) But it is easy to see what whenever fail is set to true then A has forged
a valid signature with respect to one of the honest party’s public keys.

The two claims above prove the theorem.

C Proof of Theorem 4.1

We prove Theorem 4.1 by separately proving that Π satisfies Definitions 1 and 2.

C.1 Collusion-Freeness of Π (Honest Mediator)

Let I denote the set of corrupted parties. We show independent transformations {Simj}j∈I that
satisfy Definition 1. The proof is quite straightforward, given the construction of Π, since parties
essentially learn nothing until the final round of the protocol. We remark that, in this proof, we
rely only on the hiding property of the commitment scheme C.

Simj , given oracle access to Pj , does as follows:

1. Simj runs Pj to generate pkj . Then Simj is given the vector of public keys (pk1, . . . , pkn), an
input xj , and auxiliary input auxj . It runs Pj on these inputs.

2. Simj simulates Fcom by extracting decinput
j = (x′j , sj) from Pj . Let cominput

j = C(x′j ; sj).

3. Simj simulates an ideal call to Fct by choosing random decrand
j = (rj , s

′
j) and giving these

values to Pj . Let comrand
j = C(rj ; s′j).

4. Initialize abort = false. Then for i = 1 to r:
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(a) If it is Pj ’s turn to speak in π, then Simj simulates a call to Fπ
compute as follows:

– Let ~Cj = (comj
1, . . . , comj

i−1) be the commitments given to Pj in the previous rounds.

– Extract inputs (cominput, comrand, C, rid, dec
input

, dec
rand

, skj) from Pj .

– If (cominput, comrand, C, dec
input

, dec
rand) 6= (cominput

j , comrand
j , ~Cj , decinput

j , decrand
j ), or

rid 6= 0i, or (skj , pkj) 6∈ Range(Gen), then set abort = true.
– In any case, Simj returns ⊥ to Pj .

(b) Simj simulates a call to F sid
bcast by extracting a bit bj from Pj . If bj = 0 then Simj sets

abort = true. In any case, Simj returns to Pj a commitment comj
i to a 0-string of the

appropriate length.

5. If abort = false then Simj sends x′i to the trusted party computing F . Otherwise, Simj sends
⊥ to the trusted party computing F . In return, Simj is given output outj .

6. To complete the simulation, Simj simulates a call to Fπ
output:

– Let ~Cj = (comj
1, . . . , comj

r).

– Extract (cominput, comrand, C, dec
input

, dec
rand) from Pj . If this is not equal to (cominput

j ,
comrand

j , ~Cj , decinput
j , decrand

j ) then Simj gives ⊥ to Pj . Otherwise, Simj gives outj to Pj .
It then halts and outputs whatever Pj outputs.

It is straightforward to see that Definition 1 holds for the {Simj}j∈I defined above. Indeed, the only
difference between the hybrid-world experiment in which Π is run, and the ideal-world execution
with ideal functionality computing F , is with regard to the commitments {comj

i}i∈[r],j∈I . But since
these commitments are computed independently with fresh random coins in each experiment, the
hiding property of C immediately implies that these two experiments are indistinguishable.

C.2 Security of Π (Corrupt Mediator)

In this section we prove that Π satisfies Definition 2; i.e., that it securely computes F in the case of
a dishonest mediator, in a hybrid model where a trusted party computes the functionalities Fcom,
Fct, F sid

bcast, Fπ
compute and Fπ

output. We are thus given a single, coordinated adversary A a set of
corrupted parties I that includes the mediator, and we construct a single simulator S controlling
the same parties. The simulator S uses the black-box simulator Sπ that is guaranteed to exist for
the protocol π that securely computes F in the stand-alone model.

We let H = [n] \ I denote the set of honest parties. Let z denote the auxiliary input received
by the adversary and let xi be the input of party Pi. The simulator S works as follows:

Simulation of the PKI setup:

1. For each i ∈ H, the simulator S runs (ski, pki) ← Gen(1k). It also runs A to obtain the public
keys {pki}i∈I . Let ~pk = (pk1, . . . , pkn) denote the vector of public keys.

Simulation of input commitment/coin-tossing stage:

1. S invokes A with inputs {xi}i∈I , auxiliary input z, and the vector of public keys ~pk.

2. For every j ∈ H, the simulator S simulates Fcom by sending to Pn+1 the commitment
cominput

j = C(0k; sj) for a random sj . (Since A controls Pn+1, from now on we will refer
to S handing messages directly to A and not to Pn+1.)
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3. For every j ∈ H, the simulator S simulates Fct by handing A the commitment comrand
j =

C(0`; s′j), where ` is the length of the random-tape that is generated by Fct.

Simulation of the round-by-round emulation stage:
S invokes Sπ to simulate the messages of π to A; recall that Sπ is a black-box simulator and so it
does not receive any auxiliary input, and works by querying the adversary with vectors of messages
sent in the protocol. We let (α1, . . . , α`) denote the messages corresponding to the first ` rounds
of the protocol. If j denotes a round of π in which a malicious party speaks, we may assume
that Sπ does not query the adversary with (α1, . . . , αj , . . . , α`) unless it has previously queried the
adversary with vector (α1, . . . , αj−1) and received message αj in return. We further assume that
whenever Sπ sends a vector of length ` to the adversary then it is always a corrupted party who
speaks in round ` + 1. Finally, we assume that Sπ’s output is a vector containing all r messages
sent in the protocol.

S runs Sπ as follows:

• When Sπ sends a vector of messages (α1, . . . , α`) to its adversary in the simulation of π, let
`′ < ` denote the largest index such that a malicious party speaks in round `′. Thus, the
values α`′+1, . . . , α` all denote messages that are sent by honest parties in π.

1. S rewinds A to the point where it received response α`′ . Then S simulates rounds `′+1
through ` of the round-by-round emulation phase as follows. For i = `′ + 1, . . . , `:

(a) Say honest party Pj speaks in round i. S first extracts A’s input to the relevant
instance of Fπ

compute. Then:
– If the input is not valid (i.e., would cause Fπ

compute to send ⊥ as output), then
S returns ⊥ to A.

– Let (msg1, σ1), . . . , (msgi−1, σi−1) denote the committed values in the vector ~Cj

submitted by A (cf. step 3 of Fπ
compute in Figure 1). If msgk 6= αk for some k,

then S also returns ⊥ to A. (This is different than what would happen in an
execution of Π, but implies that A has forged a signature of an honest party.)

– Otherwise, S returns (αi, σi) to A, where σi = Signskj
(αi, 0i).

(b) S then simulates a call to F sid
bcast by extracting the relevant inputs from {Pj}j∈I ,

returning the relevant outputs to {Pj}j∈I , and computing outputs for the honest
parties in the obvious way.

2. In round ` + 1 it is the turn of some corrupted party to speak. Say that the next round
in which an honest party speaks is round `′′+1, and that honest party Pk speaks in that
round. Then for i = `+1 to `′′, the simulator S simulates calls to F sid

bcast by extracting the
relevant inputs from {Pj}j∈I , handing the relevant outputs to {Pj}j∈I , and computing
the outputs of F sid

bcast for Pk; these will be a sequence of commitments comk
`+1, . . . , comk

`′′ .
From the inputs to all the calls of F sid

bcast, the simulator can determine the messages
(α`+1, σ`+1), . . . , (α`′′ , σ`′′) underlying these commitments. If any of these are dummy
commitments, these are treated as an abort. S returns (α`+1, . . . , α`′′) to Sπ.

• When Sπ wishes to send inputs {x′i}i∈I to the trusted party computing F , then S sends
{x′i}i∈I to its trusted party and hands to Sπ the outputs {outi}i∈I it receives in return.

• When Sπ outputs the final vector of messages (α1, . . . , αr), then S rewinds A to the point
where it received response αr and proceeds to the next step of the simulation.
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Simulation of output determination stage:

1. S initializes H′ = H. For each honest party Pj , the simulator S simulates Fπ
output with A.

• If the inputs of A would cause Fπ
output to send ⊥, then S removes j from H′.

• Let (msg1, σ1), . . . , (msgr, σr) denote the committed values in the vector ~Cj submitted
by A (cf. step 3 of Fπ

output in Figure 2). If msgk 6= αk for some k, then S also removes j
from H′. (Again, this event implies that A has forged a signature of an honest party.)

2. S sends H′ to the trusted party and halts, outputting whatever A outputs.

We let idealF ,S(z)(1k, ~x) denote the output of the honest parties and S in the ideal-world
execution above, and let hybΠ,A(z)(1k, ~x) denote the output of the honest parties and A in the
hybrid-model execution of Π. We sketch the proof that these two experiments are computationally
indistinguishable. The proof proceeds using two hybrid experiments:

Hybrid H1: Here we execute hybΠ,A(z)(1k, ~x), except that we change the way Fπ
compute and Fπ

output

are defined. Specifically, for a round i in which an honest party speaks in π, let msg∗i denote the
message output by the invocation of Fπ

compute in that round. (I.e., msg∗i is the round-i message
generated by an honest party in π via the call to Fπ

compute.) Then we add a step between steps 3
and 4 of both Fπ

compute and Fπ
output as follows:

• If there is an i where an honest party speaks in round i but msgi 6= msg∗i , then return ⊥
to Pn+1.

It is not hard to see that the outcome of this experiment is statistically close to hybΠ,A(z)(1k, ~x),
since the above rule is only applied when A has forged a signature of an honest party.

Hybrid H2: This experiment is the same as H1, except that we substitute commitments to garbage
for the outputs of Fcom and Fct in the input commitment/coin-tossing phase. It is straightforward
to show that the output distributions of H2 and H1 are computationally indistinguishable by
reduction to the hiding property of the commitment scheme.

The indistinguishability of the output distributions in H2 and idealF ,S(z)(1k, ~x) follows from
the assumption that Sπ is a “good” simulator for π. In particular, given a vector of messages
~α = (α1, . . . , αr), a distinguisher D can run the same steps as in experiment H2, but using ~α
instead of generating the π-messages itself. Now, if ~α is generated by a real execution of π, then
the experiment is exactly H2. In contrast, if ~α is the output of Sπ, then the experiment is exactly
idealF ,S(z)(1k, ~x). This completes the proof.

D Composition Theorems in the Mediated Model

Once again, we deal separately with the case of an honest mediator and a dishonest mediator.

D.1 Proof of Theorem 4.2

Here we have an honest mediator, and prove a composition theorem for the property of collusion-
freeness. A proof of the theorem follows exactly along the lines of [5], and so we only sketch the
details. We assume for simplicity that Π makes only a single call to ρ though, as in [5], the proof
easily extends to the general case.
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Let I ⊂ [n] denote a set of corrupted parties, and let {Ai}i∈I denote a collection of probabilistic
polynomial time adversaries executing the real-world protocol Πρ. We first construct a collection
{Aρ

i }i∈I of adversaries attacking the real-world protocol ρ. Adversary Aρ
i is defined as follows:

Aρ
i ignores its input, and views its auxiliary input as an internal state of Ai. It then

runs Ai from this state, with messages to/from the real-world mediator relayed to Ai.
When Ai halts, Aρ

i outputs the current internal state of Ai and halts.

Collusion-freeness of ρ implies the existence of a set of efficient transformations {Simρ
i }i∈I such

that, setting SGi = Simρ
i (Aρ

i ), we obtain adversaries {SGi }i∈I running in an ideal-world computation
of G for which

{
idealcf

G,SGI ( ~aux)
(1k, ~x)

}
~x, ~aux∈∈({0,1}∗)n+1, k∈N

c≡
{
realmediated

ρ,Aρ
I( ~aux)(1

k, ~x)
}

~x, ~aux∈({0,1}∗)n+1, k∈N
. (1)

Next, we construct adversaries {AΠ
i }i∈I running Π in the G-hybrid model. Adversary AΠ

i is
defined as follows:

• Given input xi and auxiliary input auxi, run Ai on these inputs up to the round in which G
is called.

• Run SGi using arbitrary input but with the auxiliary input set equal to the current state of Ai.
When SGi sends input x′i to its trusted party computing G, use this input in the current call
to G and return the output from G to SGi .

• The output of SGi is an internal state of Ai. Run Ai from this state until the end of the
protocol, then output whatever Ai outputs and halt.

As in [5], it follows from Equation (1) that
{
hybG

Π,AΠ
I ( ~aux)

(1k, ~x)
}

~x, ~aux∈({0,1}∗)n+1, k∈N
c≡

{
realmediated

Πρ,AI( ~aux)(1
k, ~x)

}
~x, ~aux∈({0,1}∗)n+1, k∈N

.

Collusion-freeness of Π in the G-hybrid model implies the existence of a set of efficient trans-
formations {SimΠ

i }i∈I such that, setting SΠ
i = SimΠ

i (AΠ
i ), we obtain adversaries {SΠ

i }i∈I running
in an ideal-world computation of F for which

{
hybG

Π,AΠ
I ( ~aux)

(1k, ~x)
}

~x, ~aux∈({0,1}∗)n+1, k∈N
c≡

{
idealcf

F ,SΠ
I ( ~aux)

(1k, ~x)
}

~x, ~aux∈∈({0,1}∗)n+1, k∈N
,

and thus
{
idealcf

F ,SΠ
I ( ~aux)

(1k, ~x)
}

~x, ~aux∈∈({0,1}∗)n+1, k∈N
c≡

{
realmediated

Πρ,AI( ~aux)(1
k, ~x)

}
~x, ~aux∈({0,1}∗)n+1, k∈N

,

as desired. To complete the proof, we need only argue that SΠ
i depends only on Ai (and not the

entire collection {Ai}i∈I). Following the chain of constructions above, we see that this is the case:

• By construction, Aρ
i depends only on Ai.

• By collusion-freeness of ρ, we have that SGi depends only on Aρ
i .

• By construction, AΠ
i depends only on SGi and Ai.

• By collusion-freeness of Π in the G-hybrid model, SΠ
i depends only on AΠ

i .
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D.2 Proof of Theorem 4.3

Let Π be a protocol that securely computes F in the G-hybrid model for concurrent self composition,
where Π makes m calls to G and Pn+1 plays the role of the second party in all calls to G. Let ρ
be a two-party protocol that securely computes G under m-bounded concurrent self-composition.
(See Appendix E for appropriate definitions.) We need to prove that the composed protocol Πρ

satisfies Definition 2; that is, that it is secure when the mediator is dishonest. A proof of this
statement boils down to the observation that, when considering a malicious mediator, there are
only syntactic differences between the experiment in which Πρ is run in the real mediated model and
the experiment in which multiple concurrent executions of ρ are run. Specifically, the instructions
of Π for each honest party define a set of input-selecting machines as in the definition of concurrent
self composition (see Appendix E). Furthermore, since Π makes at most m calls to G, the security
of ρ under m-bounded concurrent self composition implies that for every A there exists a simulator
S such that the output of an execution of Πρ in the real model with adversary A is computationally
indistinguishable from an execution of Π with S in the G-hybrid model. By the assumed security
of Π in the G-hybrid model, we then have that for every S there exists an S ′ such that the output
of an execution of Π with S in the G-hybrid model is indistinguishable from the output of an ideal
execution with S ′ and a trusted party computing F . Combining these results, we conclude that Πρ

securely computes F as required.

E Security Under Bounded-Concurrent Self Composition

In this section we present the definitions for security under m-bounded concurrent self composi-
tion [15]. Loosely speaking, this relates to a setting where a single protocol computing a function-
ality F = (f1, f2) is run m times concurrently, and is the only protocol being run. We focus only
on two-party protocols, as this is all we use in this work.

Overview. Fix a two-party functionality F = (f1, f2). Security of a protocol ρ computing F is,
as usual, analyzed by comparing what an adversary can do in the real world to what it can do in
an ideal world that is clearly secure. In both worlds, we will consider parties who perform multiple
(concurrent) computations of F . In the real world, these computations are performed by having
the parties run multiple executions of ρ; in the ideal world, these computations are done by having
the parties interact in multiple sessions with a trusted party who computes F on their behalf.

We assume an adversary who takes part in all computations of F , always playing the role of P2.
We also have several parties P 1

1 , P 2
1 , . . . taking part in various computations of F , always playing

the role of P1. In both the real and ideal worlds, the adversary may coordinate its actions in the
various executions/sessions, but each honest P j

1 may choose its input depending on prior outputs
it has received, but otherwise acts independently in each execution/session.

The process by which an honest P j
1 determines its inputs for the various computations of F is

modeled by a probabilistic polynomial-time Turing machine M j
1 called an input-selecting machine.

The input for the next computation is determined as a function of the initial input xj of P j
1 , the

number of computations of F initiated by P j
1 thus far, and any outputs that were obtained by P j

1

from previous computations of F that have already concluded. We assume M j
1 always produces

input values of the same fixed, known length (that is polynomial in k).

Concurrent computation in the ideal model. We have an adversary S who always plays the
role of P2. The ideal world execution proceeds as follows:

Inputs: Each P j
1 is given initial input xj ; S is given initial input y and auxiliary input z.
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Session initiation: S initiates a new session by sending a (start− session, j) message to the trusted
party. The trusted party then sends (start-session, i) to P j

1 , where i is the index of the session
(i.e., this is the ith session to be initiated with P j

1 ).

Honest party sends input to trusted party: Upon receiving (start-session, i) from the trusted
party, the honest party P j

1 applies its input-selecting machine M j
1 to its initial input xj , the

session number i, and any outputs it has received in previous sessions. This results in a
value xj

i , and P j
1 sends (i, xj

i ) to the trusted party.

S sends input to the trusted party and receives output: Whenever the adversary wishes,
it may send a message (j, i, yj

i ) to the trusted party, for any yj
i of its choice. Upon sending

this pair, it receives back (j, i, f2(x
j
i , y

j
i )) where xj

i is the value that P j
1 previously sent the

trusted party. (If i start-session messages have not yet been sent to the trusted party, then
the (j, i, yj

i ) message from the adversary is ignored. In addition, once an input indexed by
j, i has already been sent by the adversary, the trusted party ignores any subsequent such
messages.)

Adversary instructs trusted party to answer honest party: When the adversary sends a
message of the type (send-output, j, i) to the trusted party, the trusted party sends (i, f1(x

j
i , y

j
i ))

to the honest party P j
1 , where xj

i and yj
i are the respective inputs sent by P j

1 and the adver-
sary for this session. (If (j, i, xj

i ) and (j, i, yj
i ) have not yet been received by the trusted party,

then this message is ignored.)

Outputs: An honest party P j
1 always outputs the vector of outputs that it received from the

trusted party. Formally, whenever it receives an output, it writes it to its output-tape. Thus,
the outputs do not appear in ascending order according to the session numbers, but rather
in the order they are received by P j

1 . The adversary may output an arbitrary function of its
auxiliary input z, initial input y, and the outputs obtained from the trusted party.

The ideal execution of F (with security parameter k, input-selecting machines M = (M1
1 , . . .), initial

inputs (~x, y), and auxiliary input z to S), denoted idealF ,S(z),M (1k, ~x, y), is defined as the pair
consisting of the outputs of the honest parties and the output of S from the above ideal execution.

Execution in the real model. We next consider the real model in which a real two-party protocol
is executed (and there is no trusted party). Formally, a two-party protocol ρ is defined by two sets
of instructions for parties P1 and P2, respectively. A protocol is said to be polynomial-time if the
running-time of each party in a single execution is bounded by a fixed polynomial in the security
parameter k, irrespective of the length of the input.

Let F be as above and let ρ be a probabilistic polynomial-time, two-party protocol for com-
puting F . Let A be a non-uniform probabilistic polynomial-time adversary controlling P2, and let
P 1

1 , . . . be honest. The parties run concurrent executions of the protocol, where an honest party
P j

1 follows the instructions of ρ1 in all of the executions. Here, the ith session for some party P j
1 is

initiated by the adversary’s sending a start-session message to the honest party. The honest party
then applies its input-selecting machine to its initial input, the session number i, and its previously
received outputs, and obtains the input for this new session. Upon the conclusion of an execution
of ρ, the honest party writes its output from that execution on its output-tape. The scheduling
of all messages is controlled by the adversary. That is, the execution proceeds as follows. The
adversary sends a message of the form (i, α) to the honest party P j

i . The honest party then adds
the message α to the view of its ith execution of ρ and replies according to the instructions of ρ
and this view. The adversary continues by sending another message, and so on.
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In the setting of m-bounded concurrency, the scheduling by the adversary must fulfill the fol-
lowing condition: for every execution, from the time that execution begins until the time that it
ends, messages from at most m other executions can be sent. This definition of concurrency covers
the case when m executions are run simultaneously; it also includes the more general case where
more than m executions take place overall, but each execution overlaps with at most m other ex-
ecutions. In this setting, the value m is fixed ahead of time, and the protocol design may depend
on the choice of m. The real m-bounded concurrent execution of ρ (with security parameter k,
input-selecting machines M = (M j

1 , . . .), initial inputs (~x, y), and auxiliary input z to A), denoted
realm

ρ,A(z),M
(1k, ~x, y), consists of the outputs of the honest parties and the output of the adversary

in the above execution.

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, a protocol is secure if for
every real-model adversaryA and input-selecting machines M , there exists an ideal model adversary
S such that for all initial inputs ~x, y, the outcome of an ideal execution with S is computationally
indistinguishable from the outcome of a real protocol execution with A. Notice that the order of
quantifiers is such that S may depend on M . Thus, S knows the strategies used by the honest
parties to choose their inputs. However, S does not know the initial inputs of the honest parties,
nor the random tapes used by its input-selecting machines. We now present the definition:

Definition 3 Let F and ρ be as above, and let m = m(k) be a fixed polynomial. Protocol ρ is said
to securely compute F under m-bounded concurrent self composition if for every non-uniform proba-
bilistic polynomial-time adversary A controlling P2, and every set of probabilistic polynomial-time
input-selecting machines M , there exists an non-uniform probabilistic polynomial-time adversary S
controlling P2, such that

{
idealF ,S(z),M (1k, ~x, y)

}
k∈N;~x,y,z∈{0,1}∗

c≡
{
realm

ρ,A(z),M
(1k, ~x, y)

}
n∈N;~x,y,z∈{0,1}∗

.

The hybrid model for concurrent self composition. In, e.g., Theorem 4.3 we refer to “the
hybrid model for concurrent self composition”. What we mean by this is a model whereby the
parties have access to a trusted party who behaves exactly as described in the ideal model above.
The only reason we call it a “hybrid” model is that there is another protocol that instructs the
parties how to behave.
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