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Abstract

In this short note, we present an extension of Nguyen’s bilinear-map based accumulator scheme [8]
to supportnon-membership witnessesand correspondingnon-membership proofs, i.e., cryptographic
proofs that an element has not been accumulated to a given set. This complements the non-membership
proofs developed by Liet al. [7] for the RSA accumulator [2, 3, 5], making the functionality of the
bilinear-map accumulator equivalent to that of the RSA accumulator. Our non-membership extension of
Nguyen’s scheme [8] makes use of theq-Strong Diffie-Hellman assumption the security of the original
scheme is based on.

1 Introduction

Dynamic accumulators are cryptographic authentication primitives for optimally verifying set-membership
relations. Given a setX of elements, an accumulator can be used to compute anaccumulation value, a
short (namely, of constant size) secure descriptionA(X) of X, subject to which there exist short (namely,
of constant size)witnessesfor any element inX that has been “accumulated” toA(X). Each element-
specific witness can be used to provide an efficient (namely, of constantverification time) cryptographic
proof that the corresponding element is a member ofX. Element insertions in or deletions from setX result
in corresponding updates on the accumulation values and the element witnesses.

Accumulators were first introduced by Benaloh and de Mare [3], and were later further studied and
extended by Baric and Pfitzmann [2]. Both constructions were based on the RSA exponentiation function
and proved secure under thestrong RSAassumption. Camenisch and Lysyanskaya [5] further advanced
the RSA accumulator by introduced dynamic extensions, as well as privacy-preserving membership proofs.
Consequently, many extensions of the RSA accumulator have been proposed, including accumulation of
composite integers [11], bounded number of accumulated elements [1], set-up without trapdoor [10], and,
finally, non-membership witnesses and corresponding non-membership proofs, introduced by Liet al. [7].
Non-membership witnesses extend the functionality of accumulators by supporting cryptographic proofs
that a given element is not a member of the set, that is, it was never accumulated to the current set. Finally,
works improving on the efficiency of the RSA accumulator include [6, 9].
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The first alternative construction of a dynamic accumulator (beyond the one based on RSA) is due to
Nguyen [8]. This scheme is based on bilinear pairings and the constructionis proven secure under the
q-strong Diffie-Hellmanassumption [4] on general groups. We refer to this accumulator scheme asbilinear-
map accumulator. Recently a new construction based onPaillier’s encryptionsystem has been proposed
that additionally offers batch element updates [12].

In this short note, we describe an extension of Nguyen’s bilinear-map accumulator scheme to support
non-membership witnesses and non-membership proofsand prove the security of this extended scheme.

2 Non-Membership Verification for Bilinear-map Accumulators

We first present some necessary preliminaries related to the underlying computational hardness assump-
tion our non-membership extension (and also the original scheme by Nguyen[8]) is based on. We then
build on Nguyen’s original accumulator scheme to define the new non-membership witnesses, describe their
corresponding verification test and finally prove their security.

2.1 Theq-strong Diffie-Hellman Assumption

We first present theq-strong DH assumption [4] over general groups, which has been usedin many contexts.

Definition 2.1 (q-Strong Diffie-Hellman Assumption.) LetG =< g > be a cyclic group of prime orderp
andκ ∈ Z∗

p. Under theq-strong Diffie-Hellman assumption, any probabilistic polynomial-time algorithm

A that is given set{gκi
: 0 ≤ i ≤ q}, finds a pair(x, g

1
x+κ ) ∈ Z∗

p × G with at mostO(1/p) probability,
where the probability is over the random choice ofκ ∈ Z∗

p and the random bits chosen byA.

In the sequel, whenever operating on group elements inG of prime orderp, we always make use of the
fact thatgx = gx mod p, x ∈ Z; i.e., all operations in the exponent can be reduced modulo the group order p.

2.2 Accumulators Based on Bilinear Maps

We now present Nguyen’s scheme and appropriately extend it to support non-membership proofs.
Given the security parameterλ, let G be a multiplicative cyclic group of prime orderp that is generated

by g, wherep grows exponentially withλ.1 Additionally, groupG is chosen such that it supports a (non-
degenerate) bilinear pairing to a target cyclic groupGT of prime orderp. That is, if G is generated by
elementg, then there exists a bilinear, non-trivial, mape : G × G → GT from pairs of elements inG
to elements of target groupGT , such that for any two integersa, b it holds thate(ga, gb) = e(g, g)ab and
where, additionally, elemente(g, g) ∈ GT generatesGT .

Let Aκ : 2Z
∗
p → G be an accumulation function that is parameterized byκ ∈ Z∗

p and maps setsX of
integers inZ∗

p to elements inG according to the mapping

Aκ(X) = g
Q

x∈X(x+κ) .

This has been the accumulation function used by Nguyen in [8] to constructthe first accumulator scheme that
is not based on the RSA exponentiation function. In Nguyen’s construction, κ is the trapdoor information
and set{gκi

|0 ≤ i ≤ q} is the public key,q in an upper bound on|X| = n that grows polynomially with

1The security parameter can be equal to the bit-length of either a group element or an exponent in the group (integers modulop).
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the security parameterλ = O(log p). Seen as a polynomial onκ of degree|X| = n, let fX(κ) denote the
product in the exponent ofAκ(X), that is,

fX(κ) ,
∏

x∈X

(x + κ) .

As in [8], for anyx ∈ X, we define themembership witnesswx ∈ G of x with respect to accumulation
valueAκ(X) to be the valuewx satisfying themembership verification test

w(x+κ)
x = Aκ(X) , (1)

which, using the bilinear mape(·, ·) and the publicly known group elementh = gκ, is realized in practice as

e(wx, gx · h) = e(Aκ(X), g) . (2)

That is, any memberx of setX has auniquecorresponding membership witnesswx , g
fX (κ)

x+κ = gqX,x(κ)

(since(x + κ)|fX(κ)), for some polynomialqX,x(κ) of degreen− 1 that is uniquely defined by setX − x.

2.3 Non-membership Verification for Accumulators Based on Bilinear Maps

Inspired by the non-membership test proposed by Liet al. in [7] for the RSA accumulator, we introducenon-
membership witnessesfor the accumulation functionAκ(·). For anyy /∈ X, thenon-membership witness
ŵy of y with respect toAκ(X) is a pair of values(wy, uy) ∈ G×Z∗

p, subject to the requirements(i) uy 6= 0
and(ii) (y + κ)|[fX(κ) + uy], additionally satisfying thenon-membership verification test

w(y+κ)
y = Aκ(X) · guy , (3)

which, using the bilinear mape(·, ·) and the publicly known group elementh = gκ, is realized in practice as

e(wy, g
y · h) = e(Aκ(X) · guy , g) . (4)

In particular, any non-membery of setX has auniquecorresponding non-membership witnessŵy =
(wy, uy), by setting

uy , −fX(−y) mod p = −
∏

x∈X

(x − y) mod p , (5)

and then accordingly setting

wy = g
fX (κ)−fX (−y)

y+κ = gq̂X(κ) , (6)

for some polynomial̂qX(κ) of degreen − 1 that is uniquely defined by setX. Note that, sincey /∈ X,
it holds thatuy 6= 0. Also note that, ifhX(κ) = fX(κ) − fX(−y), thenhX(−y) = 0, thus it holds that
(y + κ)|hX(κ) (thus, justifying the last part of Equation 6) and, in fact, that(y + κ)|[fX(κ) + uy]. Thus,
in addition to Equations 3 and 4, the pair of values(wy, uy) defined above satisfies the required conditions
uy 6= 0 and(y + κ)|[fX(κ) + uy]. We require that the verification process immediately rejects ifuy = 0.

Also, observe that the non-membership witness fory /∈ X can be computed efficiently (in polynomial in
|X| time), using only setX and the public key, by evaluating polynomial−fX(κ) on−y and then computing
the group elementwy through Equation 6.
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We say that a membership, respectively non-membership, witnesswx, respectivelyŵy = (wy, uy), is
fakeif x /∈ X, respectivelyy ∈ X, and, still, the corresponding membership. respectively non-membership,
verification test (in particular, expressed through Equations 1 and 3 respectively) is satisfied.

The security of non-membership test relies on the following: ify is in X theny + κ divides polynomial
fX(κ), and thereforey + κ cannot divide polynomialfX(κ) + uy for any choice ofuy 6= 0. (Recall that the
verifier first checks whetheruy 6= 0, according to the definition of non-membership witnesses.) Based on
the fact that(y + κ) ∤ [fX(κ) + uy], one can easily reduce any fake non-membership witness to an attack to
theq-Strong DH assumption, using a simple polynomial division and the public key. For completeness we
present the security proof for both membership and non-membership witnesses.

Lemma 1 Under theq-Strong Diffie-Hellman assumption, any PPT algorithmB, given any setX, |X| ≤ q
and set{gκi

|0 ≤ i ≤ q}, finds a fake non-membership witness of a member ofX or a fake membership
witness of a non-member ofX with respect toAκ(X) with probability at mostO(1/p), measured over the
random choice ofκ ∈ Z∗

p and random bits ofB.

Proof: Consider the case of membership witnesses first. Suppose that there existsPPT algorithmB that
with non-negligible probability outputs a fake membership witnesswx for x /∈ X with respect toAκ(X).

Then,wx+κ
x = Aκ(X) = gfX(κ), wherefX(κ) =

∑|X|
i=0 ci · κi, with ci being a known coefficient that

depends on the elements ofX, 0 ≤ i ≤ |X|. Sincex /∈ X, it is (x + κ) ∤ fX(κ). Thus, using polynomial
division and givenX, x, one can compute a non zero integerc and a polynomialq(κ) of degree|X|−1 such

thatfX(κ) = c + q(κ) · (x + κ). Therefore,wx = gq(κ) · g
c

x+κ andg
1

x+κ = [wx · [gq(κ)]−1]c
−1

, computed
efficiently using the public key, which contradicts theq-strong DH assumption.

The case of non-membership witnesses is very similar. Indeed, suppose that there exists PPT algorithm
B that with non-negligible probability outputs a fake non-membership witnessŵy = (wy, uy), uy 6= 0,
for y ∈ X with respect toAκ(X). Then,wy+κ

y = gfX(κ)+uy . Sincey ∈ X, (y + κ)|fX(κ), so(y + κ) ∤
[fX(κ)+uy] for anyuy 6= 0. Thus, as before, using polynomial division and givenuy, X, y, one can express
fX(κ) + uy asc + q(κ) · (y + κ) for some non zeroc and some polynomialq(κ). This again allows the

efficient computation ofg
1

y+κ , contradicting theq-strong DH assumption.
Note that both reduction arguments can be extended to the case where fakewitnesses are defined with

respect to the verification tests of Equations 2 and 4. In this case, knowledge of fake witnesses satisfying
equationse(wx, g)x+κ = e(g, g)fX(κ) ande(wy, g)y+κ = e(g, g)fX(κ)+uy , implies knowledge ofwx and
(wy, uy) that correspondingly satisfywx+κ

x = gfX(κ) andwy+κ
y = gfX(κ)+uy . �

Therefore, we have a new secure non-membership verification test forthe accumulation functionAκ(·).

Theorem 1 (Non-membership witnesses.)Under theq-Strong Diffie-Hellman assumption, for any non-
member of setX there exists a unique non-membership witness with respect to the accumulation value
Aκ(X) and a corresponding efficient and secure non-membership verification test.

3 Conclusion

In this short note, we extend the accumulator scheme that is based on bilinearpairings, which was introduced
by Nguyen in [8], to also support non-membership witnesses and corresponding cryptographic proofs of
non-membership in a given set. That is, given the (authentic) accumulation value of a setX, the public key,
and a corresponding short (of size that is independent of the size ofX) non-membership witness, a verifier
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can efficiently (in time independent of the size ofX) verify that a given elementy is not a member ofX,
i.e.,y /∈ X. The security of this new non-membership verification test is proved using the q-strong Diffie-
Hellman assumption on general groups, the exact cryptographic assumption the original scheme [8] by
Nguyen is based on. Similar to the non-membership extension of the RSA accumulator (see, e.g., [2, 3, 5])
that was proposed by Liet al. in [7], this non-membership extension enriches the functionality of the
bilinear-map accumulator [8] and widens its usability in real-life security applications.
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