
Resettably-Sound Resettable Zero Knowledge Arguments for
NP ?

Yi Deng

State Key Laboratory of Information Security,Institute of Software,
Chinese Academy of Sciences, Beijing, 100190, China

ydeng@is.iscas.ac.cn

Abstract. We construct resettably-sound resettable zero knowledge arguments for NP based
on standard hardness assumption (the existence of claw-free permutations) in the plain model.
This proves the simultaneous resettability conjecture posed by Barak et al. in [FOCS 2001].

Our construction, inspired by the paradigm for designing concurrent zero knowledge pro-
tocols, makes crucial use of a tool called instance-dependent resettably-sound resettable WI
argument of knowledge (IDWIAOK (and a special-purpose variant), introduced recently by
Deng and Lin in [Eurocrypt 2007]). Roughly speaking, for a NP statement of the form x0∨x1,
IDWIAOK is an argument for which resettable WI property holds when both x0 and x1 are
YES instances, and resettably-sound argument of knowledge property holds when x0 is a NO
instance.

The heart of the simulator for our protocol is a new technique that allows us to embed
the (non-black-box) straight-line simulation strategy in the (black-box) recursive rewinding
simulation strategy.

1 The problem and our result

It is well known that randomness is essential to zero knowledge proofs/arguments[17]. More-
over, in the multi-executions of a zero knowledge protocol, we often require that all parties
use independent randomness in each execution for security purpose. This gives rise to natural
questions: Is it possible to achieve zero knowledge when the prover uses the same random-
ness in multi-executions? Is it possible to achieve soundness when the verifier uses the same
randomness in multi-executions? Both questions were resolved in the positive. Canetti et
al. [6] put forward and realized the concept of resettable zero knowledge (stronger than the
concept of concurrent zero knowledge[12]) argument, which allows an honest prover to use
the same random tape in polynomially many executions without sacrificing the zero knowl-
edge property; Barak et al. [3] put forward and realized the concept of resettably-sound
zero knowledge argument, which allows an honest verifier to use the same random tape in
polynomially many executions without sacrificing the soundness property.

It should be noted that the above two questions were answered separately : the proof
system presented by Canetti et al. is resettable zero knowledge but not resettably-sound,
whereas the argument system presented by Barak et al. is resettably-sound but not reset-
table zero knowledge. This leaves a challenge in this line of research: Can we construct a
single argument system for some nontrivial language that remains resettable zero knowledge
and resettably-soundness simultaneously? Indeed, Barak et al. conjectured the following [3]:

Simultaneous resettability conjecture: there exist resettably-sound resettable ZK ar-
guments for NP.

We stress that this conjecture is for the case of argument system (rather than proof
system) and non-black box zero knowledge. Previous work [3] showed that, for non-trivial

? submitted on Nov. 18.

2

language, neither resettably-sound zero knowledge proof system nor resettably-sound black-
box zero knowledge argument system exists.

Related work. Recently, Deng and Lin introduced a series of instance-dependent prim-
itive/protocols (we will give a detailed description later), and made the first attempt to
tackle this problem [9,10]. In particular, they constructed resettably-sound class-bounded
resettable zero knowledge arguments for NP [9] and proved the above conjecture in the
BPK model [10], which assumes each verifier deposits a public key in a public file before
any interaction with the prover begins.

Our result. In this paper we prove the simultaneous resettability conjecture, i.e., we con-
struct resettably-sound resettable zero knowledge arguments for NP based on standard
hardness assumption (the existence of claw-free permutations) in the plain model. Our pro-
tocol takes k = nε round for an arbitrary constant ε, i.e., the same (up to a constant factor)
round complexity as the protocol suggested by Richardson and Kilian [22], where n is the
security parameter.

Theorem 1. If there exist claw-free trapdoor permutations, then there exist resettably-
sound resettable ZK arguments for NP in the plain model.

Techniques. Our construction can be viewed as an extension of the one given in the BPK
model [10] by increasing many “rewinding slot” for simulator, which is similar in spirit to
the typical method for achieving concurrent zero knowledge [22,21]. Our protocol makes
crucial use of a tool called instance-dependent resettably-sound resettable WI argument of
knowledge (IDWIAOK, introduced recently by Deng and Lin in [9]). Roughly speaking, for
a NP statement of the form x0 ∨ x1, IDWIAOK is an argument for which resettable WI
property holds when both x0 and x1 are YES instances, and resettably-sound argument of
knowledge property holds when x0 is a NO instance.

The most important feature of our construction is a simple but useful variant of ID-
WIAOK which we call special-purpose IDWIAOK. This argument plays a pivotal role in the
security analysis of our non-black-box simulator.

The heart of the simulator for our protocol is a new technique that allows us to embed
the (non-black-box) straight-line simulation strategy in the (black-box) recursive rewinding
simulation strategy. Here the recursive rewinding strategy we use is the original one sug-
gested by Richardson and Kilian [22]. The analysis of our simulator heavily relies on the
fact that the recursive depth of the RK rewinding strategy is upperbounded by a super-
constant. The reason why we don’t adopt the more advanced PRS strategy [21] is that the
analysis of the PRS simulation strategy requires us to deal with the rewind interval, which,
given the current state of non-black-box techniques, can hardly be done in our setting where
non-black-box simulation is needed.

Rest of the paper. Due to space limitations, we postpone definitions to appendix A. In
section 3, we briefly recall several instance-dependent protocols introduced in [9,10] and
postpone its detailed description and formal analysis to appendix B. We describe our pro-
tocol and a high level description of the simulation strategy in section 4 and 5. The formal
description of our simulator and its analysis can be found in appendix C. The proof of
soundness of our protocol is postponed to appendix D. The analysis of the running time of
our simulator is presented in appendix E.

3

2 Definitions

Due to space limitations, we defer formal definitions to appendix A. Here we just give
informal definitions of class of sessions, and the class-bounded resetting attack.

A class of sessions consists of all sessions between a verifier and a fixed incarnation of
prover that share the same verifier’s first message. We denote a class containing all sessions
between P (l,m) = Pxl,wl,rm and V ∗ with the same V ∗’s first message f-msg with C

(l,m)
f-msg, where

xl is a common input, wl is the corresponding witness, and rm is the random tape.

Class-bounded resetting attack and Class-bounded resettable ZK. Class-bounded resetting
attack is a resetting attack under the restriction that there is an a-priori bound on the total
number of resetting malicious party’s distinct first messages and the incarnations of honest
party with which the malicious resetting party interact. An argument system is said to
be Class-bounded resettable ZK if it remains zero knowledge against this kind of resetting
attack mounted by malicious verifier.

3 Instance-dependent protocols of [9,10] and their variants for our
special purpose

In this section, we briefly recall the instance-dependent protocols introduced in [9,10] and
give some variants of these protocols tailored to our special requirement. For completeness,
we present the formal description of these variants and their security analysis in appendix B.

The start point of [9] is a simple observation: To prove the simultaneous resettability
conjecture, we just need to construct an instance-dependent argument such that, given
instance x as common input, the resettable zero knowledge property holds when x is a
YES instance, and the resettably-soundness holds when x is a NO instance. This inspired
the authors of [9] to introduce a series of instance-dependent protocols and made partial
progress toward this conjecture.

3.1 Instance-dependent verifiable random function.

The most basic notion introduced in [9] is instance-dependent verifiable random functions
(InstD-VRFs). Informally, an InstD-VRF is, in some sense, a verifiable random function [18]
with a special public key of the form(y, ·), where y is an instance with respect to a specific
NP language L and may be generated via an (possibly)interactive protocol, but the security
requirements on such a function are relaxed: we only require the pseudorandomness property
when y ∈ L and only require the uniqueness property when y /∈ L, instead of requiring both
pseudorandomness and uniqueness to hold simultaneously.

The InstD-VRF can be constructed as follows [9]. The querier Alice and the function
owner Bob execute a protocol KGProt to produce an key instance y, and Alice sends a first-
round message ρ of the two-round (resettable-soundness and resettable WI) proof system
ZAP [11], then Bob selects a pseudorandom function fs at random and computes a com-
mitment c = Com(s, r) to the description s of fs useing a statistical binding commitment
scheme Com. This establishes a key pair (PK = (y, c, ρ), SK = (s, r)), and gives rise to the
following InstD-VRF function:

– F(PK,SK) = (fs(·), prov(·)) (where prov is the ZAP prover strategy): On input a string a
in the domain of fs, F(PK,SK) returns fs(a) and a ZAP proof π that either this function
value is correct or y ∈ L using the witness SK.

4

It is easy to verify the uniqueness of F(PK,SK) on NO instance y (i.e., there exist no
values (a, b, b′, PK, π, π′) such that Ver(a, b, PK, π) = Ver(a, b′, PK, π′) = 1 except with
a negligible probability.). If y is a YES instance, The pseudorandomness of F(PK,SK) is
demonstrated in the following way: the output of F(PK,SK) is indistinguishable from the
output of the following function:

– FakeF(PK,wy): On input a string a in the domain of fs, FakeF(PK,SK) returns a truly
random string b (|b| = |fs(a)|), and a ZAP proof π that either this function value is
correct or y ∈ L using the witness wy.

We should note that we do not specify how to generate the instance y here, and as
we will see, designing the key generation protocol KGProt is a subtle issue and may vary
depending on specific applications.

3.2 The key instance-dependent ZK argument and our perfect ZK variant

The illuminative paradigm for the simultaneously resettable argument suggested in [9] is the
so-called key instance-dependent resettably-sound class-bounded resettable zero knowledge
argument (denoted ZKKInstD argument). In this protocol, the verifier generates an extra
key instance y in its first step, and its security properties depends on y: The class-bounded
resettable ZK holds on NO instance y and the resettable-soundness holds on YES instance
y.

Here we require class-bounded resettable perfect ZK property of the ZKKInstD argument
to hold under some specific conditions (we denote such an argument PZKKInstD argument)
for our purpose. To achieve this, we use a simple version of the Pass-Rosen variant of
Barak’s public-coin protocol[20] as a building block. This simplified Pass-Rosen protocol
satisfies both bounded concurrent perfect zero knowledge property and argument of knowl-
edge property. See appendix B for the formal description.

We construct PZKKInstD argument by applying the same transformation of [9] to the
simplified Pass-Rosen protocol, which consists of two steps:
1. From the simplified (perfect ZK) Pass-Rosen protocol to a resettably-sound bounded

concurrent ZK argument (PR, VR). This can be done using the same transformation
presented in [3], i.e., by having the verifier apply a pseudorandom function to history to
generate its messages.

2. From (PR, VR) to PZKKInstD argument. This step is depicted in figure 11

The PZKKInstD argument enjoys the following properties (see appendix B for detailed anal-
ysis).

1. It is t-class-bounded resettable ZK if all y are NO (key) instances. Note that the unique-
ness of the InstD-VRF function F(PK,SK) on NO (key) instance y guarantees that, except
with negligible small probability, there exist no (r, π) and (r′, π′) with r 6= r′ such that
(r, π) = (r′, π′) = F(PK,SK)(hist). Thus, when y is a NO instance, the class of sessions
(having the same verifier first message of form (y, ·)) with respect to (P, V) contains
only a single session with respect to (PR, VR).

2. It is t-bounded-class resettable perfect ZK if the following conditions (Conditions for
PZK) hold:

1 There is a minor difference between the transformation presented here and the one of [9]: We found that
it is not necessary to base the first prover step message ρ on the session history, and this message can be
fixed once and for all.

5

PZKKInstD

Common input: x ∈ L (|x| = n).
The Prover’s private input: the witness w such that (x, w) ∈ RL.
Prover’s randomness: (ρ, rp).
Verifier’s randomness: rv.

Stage 1: the key generation protocol KGProt

V → P : V sets (s0, r0) = frv (x), computes c0 = Com(s0, r0) to the pseudorandom function
fs0 using the statistically-binding commitment scheme Com and generates an instance
y ∈ L′ ∩ {0, 1}n, stores SK = (s0, r0); V Sends c0, y;

P → V : P sends the first message ρ for a ZAP.
At the end of this step, the key pair (PK, SK) = ((y, c0, ρ), (s0, r0)) for an InstD-VRF F
is set up for V .

Stage 2: the modified resettably-sound t-bounded concurrent perfect ZK argument (PR, VR)

V : Given the current history hist of execution of (PR, VR) (excluding those ZAP proofs),
V sends (r, π) = F(PK,SK)(hist) = (fs0(hist), prov(hist)), where V applies frv to hist
to generate the randomness used by prov. V accepts if only if VR accepts the transcript
that generated by PR and VR.
Note that r can be viewed as the output of VR(s0, hist).

P : sets r′p = frp(x, c0, y) and feeds PR with random tape r′p. P checks that the current
message (r, π) received from V is correct, if so, P runs PR to produce the next prover
message; Otherwise, aborts.

Fig. 1. The PZKKInstD Argument.

– The honest incarnation of the prover feeds PR with independent and truly random
tape in stage 2 under the consistence condition that the random tape for PR is the
same in every session having the same verifier first message (y, c0);

– The verifier never sends two “correct” messages (r, π) and (r′, π′) with r 6= r′ for the
same history hist in stage 2 of PZKKInstD.

3. It is resettable-sound argument of knowledge if all y are YES (key) instances.

Remarks on Conditions for PZK. We stress that the first condition for PZK mentioned
above does not hold for the actual honest provers of our protocol, and hence the subprotocol
PZKKInstD therein is not (class-bounded resettable) perfect zero knowledge. This perfect ZK
property is only used to analyze our simulator (see Lemma 2 in appendix C): we construct
a hybrid simulator (without doing any non-black-box simulation) and use the perfect ZK
property of the subprotocol PZKKInstD to show that this hybrid simulator is identical to
the actual simulator. We think of the hybrid simulator as the honest provers (with valid
witnesses) of the PZKKInstD arguments, and for the hybrid one, the conditions for PZK hold.

3.3 The instance-dependent resettably-sound resettable WI AOK (IDWIAOK)

To make PZKKInstD argument secure in the real world (instead of depending on the verifier’s
behavior), Deng and Lin [9] introduce another instance-dependent protocol — the instance-
dependent resettably-sound resettable WI argument of knowledge (IDWIAOK)— to settle
the problem of generating the key instance y securely and fairly. Informally, IDWIAOK is an
argument for NP statement of the form x0∨x1 for which resettable WI property holds when
both x0 and x1 are YES instances, and resettably-sound argument of knowledge property

6

holds when x0 is a NO instance2. It is interesting to note that, this IDWIAOK, aiming at
settling the key instance generation issue arising in the PZKKInstD argument, uses PZKKInstD

argument as a building block itself.
The construction of IDWIAOK[9,10] employs the classic 3-round WI argument of knowl-

edge [5] as a building block. Let (a, e, z) be the three messages exchanged in an execution of
this argument. Note that the argument of [5] has the following property: we can efficiently
extract the witness for the statement from two different transcripts (a, e, z) and (a, e′, z′)
when e 6= e′. Given x0 ∈ L0 or x1 ∈ L1 as the common input, the original IDWIAOK in
[9] proceeds as follows. The verifier first sends a commitment to a pseudorandom function;
Upon receiving the first message a of the underlying 3-round WI argument from the prover,
it generates the query e by applying the committed function to a and executes a PZKKInstD

argument to prove the query e is correct. In the PZKKInstD argument, the instance x0, serves
as the key instance for an InstD-VRF used by the verifier (the prover in the global system)
in the stage 2. We note that the original construction of IDWIAOK [9] satisfies only a weak
type of resettable-soundness on NO instance x0, and fortunately, this was improved and in
a follow-up [10], in which the full-fledged IDWIAOK (as defined in definition 5) was finally
constructed. This is done by plugging an extra InstD-VRF-like component into the original
IDWIAOK. In particular, in the improved IDWIAOK the prover sends a commitment ca to a
pseudorandom function as initial message. Upon receiving the verifier’s message ce (the first
message sent in the original IDWIAOK), the prover produces the message a using the rand-
domness generated by applying the pseudorandom function committed in ca to the history
so far and uses a ZAP to prove that x0 ∈ L0 or a is computed correctly3. The rest part of
this improved IDWIAOK proceeds as the original one. The key idea of this modification al-
lowing us to achieve fully resettable soundness on NO instance x0 is that, when x0 /∈ L0, for
each verifier’s first message ce, any resetting prover cannot produce two different messages
a and a′ (if V produces ce depending on ca).

Note also that with this improvement, the verifier can commit to the challenge e directly
in its first step, not necessarily commit to a pseudorandom function.

We present the construction of [10] in figure 2, and postpone the detailed security anal-
ysis to appendix B. For simplification, we view the 2-round perfect-hiding commitment
scheme Comv, which can be based on claw-free trapdoor permutations, as a non-interactive
scheme.

We would like to emphasize the following features of the IDWIAOK.

– The key instance of the underlying PZKKInstD argument is the first instance x0 of the
common input for the IDWIAOK. This leads the IDWIAOK to be instance-dependent.

– The commitment scheme Comv is perfect hiding. (whereas The commitment scheme
Comp is statistically-binding). This typically requires the underlying argument PZKKInstD

to be argument of knowledge (on YES key instance) for the purpose of security analysis,
since for any challenge e, the statement “e is correct” is true. Actually, to show “e is
correct”, the verifier proves its knowledge of s such that ce = Comv(e, s) via argument
PZKKInstD.

– Note that 1-class-bounded resettable ZK property of the underlying PZKKInstD argument
on NO instance x0 is sufficient to achieve full-fledged resettable-soundness (due to the

2 It should be noted that the resettably-sound resettable WI proof system ZAPs do not statisfy proof of
knowledge property.

3 This requires the first message a to be uniquely determined by the randomness used in this step and
the common input. We note that the classic parallelized version of Blum’s (WI) proof of knowledge for
Hamiltonian Cycle satisfies this property.

7

IDWIAOK

Common input: two instances x0 ∈ L0 or x1 ∈ L1, a security parameter n.
The Prover’s private input: the witness w such that (x0, w) ∈ RL0 or (x1, w) ∈ RL1 .
Prover’s randomness: rp.
Verifier’s randomness: rv.
P → V P sets (r1

p, r2
p) = frp(x0, x1) and r1

p = (s′, r′), where frp is the pseudorandom function
specified by rp, and computes ca = Comp(s′, r′) using a statistically binding commitment
scheme Comp.
Using the randomness r2

p, P invokes the PZKKInstD argument (it is sufficient to use a
PZKKInstD that is only 1-class-bounded resettable ZK) in which P plays the role of verifier,
produces the first message c0 of this PZKKInstD argument.
Sends ca,c0;

V → P V sets (r1
v, ρ′) = frv (x0, x1, c

a, c0) and r1
v = (e, s), where frv is the pseudorandom func-

tion specified by rv, and computes ce = Comv(e, s) using a perfect-hiding commitment
scheme Comv. ρ′ will serve as the first message of a ZAP used in next P ’s step.
Sends ce, ρ′;

P → V P reduces the instance (x0, x1) to a Hamiltonian graph G, and sets (rπ, rM) =
fs′(x0, x1, c

a, c0, c
e, ρ′), here rπ represents a permutation over the vertices of G, and

rM is a random string matrix as defined before.
P invokes the 3 round WI argument for Hamiltonian Cycle in which it proves G (or,
equivalently, x0 ∈ L or x1 ∈ L) has a Hamiltonian cycle, produces the first message
a = Com(Mrπ(G), rM) (where Com is also a statistically-binding commitment scheme),
and uses the witness s′ and r′ to prove that x0 ∈ L0 or there exist s′ and r′ such that
ca = Comp(s′, r′)∧ (rπ, rM) = fs′(x0, x1, c

a, c0, c, ρ
′)∧ a = Com(Mrπ(G), rM) via a ZAP

(with the first message ρ′). Let the second message (the proof) be τ .
Sends a, τ ;

V → P Sends e (the string committed in ce);
V ⇒ P V sets r2

v = frv (x0, x1, c
a, c0, a, τ, e). Using r2

v as random tape, V runs the PZKKInstD ar-
gument in which he plays the role of prover, and proves that there exists s such that
ce = Comv(e, s). In this PZKKInstD argument, the public key for P ’s InstD-VRF func-
tion (P plays the role of the verifier in this subprotocol) consists of (x0, c0) and the
first V ’s (prover’s) message ρ sent in this execution of the PZKKInstD argument, and the
corresponding secret key is the decommitment to c0.

Comment: The key instance of the underlying PZKKInstD argument is x0, the first in-
stance of the common input for the IDWIAOK. Note also that the argument PZKKInstD

satisfies argument of knowledge property on YES instance x0.

P → V Sends the answer z to the query e according to the 3 round WI argument for Hamiltonian
Cycle if the above transcript is accepting.

V ’s Decision V accepts if only if the transcript (a, e, z) is accepting.

Fig. 2. The instance-dependent resettably-sound resettable WI argument of knowledge.

fact that we just need to focus on a single class of sessions to justify soundness).
However, for some IDWIAOK used as building block in our global protocol presented
in next section, we need log n-class-bounded resettable ZK property of the underlying
PZKKInstD argument.

For common input of the form x0 ∈ L0 or x1 ∈ L1, the IDWIAOK satisfies (see appendix
B.3 for detailed proof):
1. Resettable WI (with respect to the witness for x0 and the witness for x1), as in defini-

tion 3.

2. Resettably-sound argument of knowledge property when x0 /∈ L0.
Remark on the extraction strategy. We present an extraction strategy E in appendix
B.3, which will be used in the proof of resettable-soundness for our main protocol. However,

8

we adopt a different and simpler extraction strategy in the simulation (for establishing
resettable ZK) of the main protocol.

3.4 The overall paradigm for simultaneously resettable argument of [9]

The paradigm for simultaneously resettable argument in the plain model in [9] is to modify
the stage 1 of the argument PZKKInstD in the following way: instead of letting verifier choose
the key instance y, we have the honest prover generate an NO instance y for the verifier and
carry out the IDWIAOK to prove that the statement x ∈ L (the common input) is true or y
is a YES instance. The stage 2 of the argument PZKKInstD remains unchanged. As showed
in [9], the resulting protocol satisfies some restricted version of simultaneous resettability.

4 The Resettably-sound Resettable Zero Knowledge Argument.

We extend the simultaneously resettable argument in the BPK model recently proposed in
[10] to the plain model by adding many rewinding slots (with some crucial modifications).
Increasing the rewinding opportunities is a typical method used to achieve concurrent zero
knowledge. Our argument takes k = nε rounds for an arbitrary constant ε, i.e., the same
(up to a constant factor) round complexity as the protocol suggested by Richardson and
Kilian [22], where n is the security parameter.

Let G be a pseudorandom generator and f be an one-way function. Roughly, the protocol
proceeds as follows. The prover first chooses a random string γ and proves that x ∈ L (the
common input) or there exists δ such that γ = G(δ) via an IDWIAOK (denoted IDWIAOKS

p),
then the verifier chooses a random string α, computes β = f(α), and repeats an special-
purpose IDWIAOK (defined below) k times (which gives the simulator many opportunities
to rewind), in each iteration (denoted IDWIAOKi

v, i = 1, ..., k) he proves that there exist δ
such that γ = G(δ) or he knows a preimage of β; At the last stage, the prover proves that
x ∈ L or he knows a preimage of β via an IDWIAOK (denoted IDWIAOKM

p).
Keep in mind that the IDWIAOK is sensitive to the order of the OR statements (given

as its common input), and that the first instance (statement) of its common input serves
as the key instance of the underlying argument PZKKInstD.

The formal description of our construction is depicted in figure 3. We point out here the
most distinguishing features of our protocol.

– All IDWIAOKi
v are special-purpose IDWIAOK. The only difference between (ordinary)

IDWIAOK and special-purpose IDWIAOKi
v is the following:

• In the special-purpose IDWIAOKi
v, to show the correctness of the challenge e, the

verifier (the prover of the global protocol) proves an OR statement that it knows s
such that ce = Comv(e, s) or x ∈ L;

• In the (ordinary) IDWIAOKS
p and IDWIAOKM

p , to show the correctness of the challenge
e, the verifier proves a sole statement that it knows r such that ce = Comv(e, s).

– The PZKKInstD argument used in those IDWIAOKi
v satisfies log n-class-bounded resettable

zero knowledge on NO key instance (i.e., the random string γ), whereas the PZKKInstD

argument used in IDWIAOKS
p and IDWIAOKM

p satisfies only 1-class-bounded resettable
zero knowledge on NO key instance (i.e., the common input x). Note that the former can
be constructed from the simplified Pass-Rosen log n-bounded concurrent ZK protocol.

Note that the common input for every special-purpose IDWIAOKi
v consists of two in-

stances γ and β, and that γ serves as the key instance of the underlying argument PZKKInstD.
With the above modification, the special-purpose IDWIAOKi

v has the following properties,
which play a pivotal role in the security analysis of the main protocol.

9

1. The special-purpose IDWIAOKi
v remains the resettably-sound argument of knowledge

property on NO instance γ (i.e., γ is truly random). This is because that the extraction
strategy for (ordinary) IDWIAOK applies to the special-purpose IDWIAOKi

v by simply ig-
noring the second statement x ∈ L of the OR statements being proven via the underlying
argument PZKKInstD.

2. When x ∈ L, the knowledge of the witness for x ∈ L enables us to do extraction from
the special-purpose IDWIAOKi

v without using any non-black-box simulation. Observe that
in execution of the special-purpose IDWIAOKi

v, to show the challenge e is valid, we can
use the witness for x ∈ L to carry out the underlying argument PZKKInstD (to prove the
knowledge of s such that ce = Comv(e, s) or x ∈ L).
Note that we only need the resettably-sound argument of knowledge property of the
special-purpose IDWIAOKi

v to establish the resettable ZK for our main protocol (see
appendix C for the detailed proof), and that the zero knowledge condition refers only
to YES instance x.

3. When x /∈ L, the special-purpose IDWIAOKi
v remains the resettable WI property. The

proof of resettable WI property of the special-purpose IDWIAOK is exactly the same as
the one for ordinary IDWIAOK in case x /∈ L.
Note that we only need the resettable WI property of the special-purpose IDWIAOKi

v to
establish the resettable-soundness for our main protocol (see appendix D for the detailed
proof), and that the soundness condition refers only to NO instance x.

The above second observation allows us to construct a hybrid simulator for our main
protocol (given all witnesses for the common inputs) that does not use any non-black-box
technique, which plays a crucial role in analysis of the actual non-black-box simulator (see
proof of Lemma 2 in appendix C.2). This is the motivation for introducing the special-
purpose IDWIAOK.

Intuition behind our construction. Consider the following simulator. In every session, it
generates a YES instance γ (i.e., ∃δ s.t. γ = G(δ)) and uses δ as witness to execute the first
IDWIAOKS

p , and then it takes a recursive rewinding strategy, as the simulator in the concur-
rent model, to extract a preimage to β from executions of those special-purpose IDWIAOKi

v;
Once a preimage is obtained, it can complete the last stage IDWIAOKM

p successfully. Note
that IDWIAOKS

p and IDWIAOKM
p are resettable WI. Thus, to prove zero knowledge prop-

erty, we need to make sure: 1) The extraction can be done by using the extractor associated
with special-purpose IDWIAOKi

v even though γ is a YES instance in this setting (Note that
special-purpose IDWIAOKi

v is an argument of knowledge when γ, the first instance of the
common input to this argument, is NO instance.4); and 2) Develop an recursive rewinding
strategy that works with non-black-box extraction.

To prove resettable-soundness, we construct an algorithm B that break the one-wayness
of f in the following way: B first extracts the solution to the puzzle γ from the malicious
resetting prover P ∗ in execution of IDWIAOKS

p , and uses this preimage to complete all those
special-purpose IDWIAOKi

v, then it extracts a preimage to β in execution of IDWIAOKM
p (i.e.,

finds the preimage of β). B works since IDWIAOKS
p and IDWIAOKM

p are resettably-sound
argument of knowledge when x /∈ L, and all special-purpose IDWIAOKi

v are resettable WI in
case of x /∈ L.
4 It seems that the extractor for IDWIAOK (presented in appendix B.3, as mentioned before, it works also

for special-purpose IDWIAOK) works only in case the first instance γ is NO instance. However, as we will
see, assuming the language defined by G is a hard-to-decide, we can also do extraction even when γ is a
YES instance in our setting where the YES instance γ is generated by the simulator. This is implied by
lemma 2 and lemma 3 presented in appendix C.

10

The Resettably-Sound Resttable ZK Argument (P, V)

Common input: x ∈ L (|x| = n).
P ’s private input: the witness w such that (x, w) ∈ RL.
P ’s randomness: (γ, rp), where γ is chosen uniformly at random and |γ| = 2n.
V ’s randomness: rv.

/*Important note: Keep in mind that for every IDWIAOK (including those special-purpose ones) used here,
the key instance of the underlying argument PZKKInstD is the first instance of the common input (consisting
of an OR statement) to the corresponding IDWIAOK, and thus the order of these OR statements can not be
changed.

Common input to IDWIAOKS
p: (x, γ); key instance of the underlying PZKKInstD: x

Common input to special-purpose IDWIAOKi
v: (γ, β); key instance of the underlying PZKKInstD: γ

Common input to IDWIAOKM
p : (x, β); key instance of the underlying PZKKInstD: x /*

Stage Initiation

P −→ V : P sends γ;
V −→ P : Set (α, r1

v, ..., rk
v) = frv (x, γ), computes β = f(α), where f is an one-way function; V

invokes k special-purpose IDWIAOK1
v, ..., IDWIAOKk

v , in each IDWIAOKi
v, V uses ri

v as
the prover’s randomness and proves to P that there exists δ such that γ = G(δ) or
there exists α such that β = f(α), where G is a pseudorandom generator specified by
P ; V computes the first messages (ca

1 , c1
0), ..., (c

a
k, ck

0) of these IDWIAOKi
v.

V sends β and (ca
1 , c1

0), ..., (c
a
k, ck

0);
P −→ V : Set (r1

p, ..., rk
p) = frp(x, γ, β, ca

1 , c1
0, ..., c

a
k, ck

0). For each i, P computes the second mes-
sage ce

i , ρ
i of the special-purpose IDWIAOKi

v, in which P plays the role of verifier and
uses ri

p as verifier’s random tape.
P sends (ce

1, ρ1), ..., (c
e
k, ρk);

V −→ P : For each i, V computes the third message ai, τi of the special-purpose IDWIAOKi
v. V

sends (a1, τ1), ..., (ak, τk);

/*Comment: note that the verifier’s action in all these special-purpose IDWIAOKi
v is essentially determined

by its first message./*

Stage Setup

P =⇒ V : If all ai are correct (otherwise, P aborts), P and V execute an IDWIAOKS
p in which

P proves that x ∈ L or there exists δ such that γ = G(δ) by using w as witness; At
the beginning of IDWIAOKS

p, P (V) applies frp (frv , resp.) to the history sofar (the
statement and the above four messages) to generates its random tape for the prover
(verifier) in this subprotocol.

Stage Iteration

For i = 1 to k do

P −→ V : P sends ei (committed in ce
i) according to the special-purpose IDWIAOKi

v.
P =⇒ V : P and V execute the subprotocol PZKKInstD (which is log n-class-bounded resettable

ZK on NO (key) instance γ) in the special-purpose IDWIAOKi
v, in which P uses si as

witness to proves the following OR statements: there exist si such that (ei, si) is a
valid decommitment to ce

i or x ∈ L.
/*Note that proving an OR statements to justify the challenge is the only speciality of the
special-purpose IDWIAOKi

v./*
V −→ P : If the above subproof is accepting, V sends zi, the last message of the subprotocol

3-round WI argument in the special-purpose IDWIAOKi
v; Otherwise, V aborts.

Stage Mainproof

P =⇒ V : P and V execute an IDWIAOKM
p in which P proves that x ∈ L or there exists α such

that β = f(α) by using w as witness; Again, at the beginning of IDWIAOKM
p , P (V)

applies frp (frv , resp.) to the history sofar to generates its random tape for the prover
(verifier) in this subprotocol.

Fig. 3. The resettably-sound resettable ZK argument for a NP language L.

11

Hardness assumption. Note that the 2-round perfect-hiding commitment scheme can be
based on claw-free trapdoor permutations, which already implies existence of the instance-
dependent VRF and statistically-binding commitment scheme. Note also that claw-free
trapdoor permutations implies collision-free hash functions, thus we can base Barak’s public-
coin zero knowledge argument on the sole assumption of existence of claw-free trapdoor
permutations.

Observation on the structure of a class of sessions. We categorize the real interaction
into different classes of sessions. Recall that a class C

(l,m)
f-msg contains all sessions between

P (l,m) = Pxl,wl,rm and V ∗ with the same V ∗’s first message f-msg.

We observe the following: 1) In the real interaction between honest provers and a ma-
licious resetting verifier V ∗, except with negligible probability, all sessions in a single class
share the same sequence of main messages (except for those ZAP proofs for validating the
corresponding verifier’s messages in stage 2 of the PZKKInstD argument5.) in the stage Iter-
ation, due to that γ, which serves as the key instance of all arguments PZKKInstD in stage
Iteration, is NO instance; 2) Different classes are (almost) independent due to the fact that
the prover refreshes its randomness after the verifier’s first message.

These observations indicate that V ∗ acts as a malicious concurrent verifier in some sense.
This enable us to adopt the recursive rewinding strategy as a high level framework for our
simulator, though it is not enough.

With the above observations, We will abuse the term class a little bit for the sake of
simplifying presentation. For example, when we say a class reaches the ith iteration (i.e.,
the ith phase of stage Iteration), we mean the challenge message of the ith iteration is first
reached by a session in this class; If a session belonging to a specific class reaches the end
of its stage Iteration, we say that this class completes its stage Iteration.

·· tranS,1 (··, ··, ··) . . . (··, ··, ··) . . . (··, ··, ··) tranM,1 session 1
...

...
...

...
...

...
...

(γ, f-msg, ·, ·) tranS,s (e1, tr1,s, z1) . . . (ei, tri,s, zi) . . . (ek, trk,s, zk) tranM,s session s
...

...
...

...
...

...
...

··| {z }
stage Initialization

tranS,p| {z }
stage Setup

(··, ··, ··) . . . (··, ··, ··) . . . (··, ··, ··)| {z }
stage Iteration

tranM,p| {z }
stage Mainproof

session p

Fig. 4. The class C
(l,m)
f-msg (all ZAP proofs for validating the corresponding verifier’s messages are ignored).

Here tranM,j and tranS,j represent the transcripts of IDWIAOKM
p and IDWIAOKS

p in session j respec-
tively; tri,j is the transcript of the subprotocol PZKKInstD in the IDWIAOKi

v in session j; By “··” we
mean this message is exactly the same one in the same position in session s. From above figure, we see
that all sessions in a single class share the same messages e1, tr1,s, z1, · · ·, ek, trk,s, zk in stage Iteration.

5 Note that, even in a single class of sessions, these ZAP proofs may differ from one session to another (V ∗

might use different randomness to generate these proofs). However, the honest prover (in the PZKKInstD

argument) just check these proofs to decide whether or not to continue, but does not base its next message
on these proofs (see the description of PZKKInstD argument.). In our analysis, we will (w.l.o.g) assume V ∗

always sends valid messages, and therefore we can assume they do not exist at all.

12

5 A high level description of the simulator

In this section, we give a high level description of our simulator. Due to space limitation,
we postpone the detailed description and its analysis to appendix C.

As mentioned in introduction, we employ a mix of recursive rewinding simulation strat-
egy (as used for black-box concurrent zero knowledge proofs in [22,6]) and straight-line
simulation strategy (as used for non-black-box zero knowledge argument in [1]). We briefly
describe the two strategies below and show how our non-black-box simulator works in this
complex setting.

A high level description of the recursive rewinding strategy. We adopt the original
RK strategy of [22] (a detailed description of this strategy appeared in [6]). The main reason
for not using the more advanced PRS strategy of [21] is that we don’t know how to deal
with the rewind interval in the analysis of the simulator. For the RK strategy, we just need
to deal with recursive depth, which is upperbounded by a superconstant.

Assume that a malicious resetting verifier V ∗ initiates at most K class of sessions, where
K is some polynomial. We set the recursive depth to be T = 2 log K

k/128. Our simulator
assumes that K is fixed in advance. However, it can be extended to deal with the situation
where K is not known in advance in standard way6.

We say a session solved if for some i, a transcript (ai, e
′
i, z

′
i) of the underlying 3-round

WI argument in IDWIAOKi
v was obtained, where e′i is a challenge different from the honest

one ei, and say a class C
(l,m)
f-msg solved if some session in this class is solved. Note that, for

a solved class, the simulator can carry out any session belonging to this class: It executes
the honest prover strategy to obtain the transcript (ai, ei, zi) of the underlying 3-round WI
argument in IDWIAOKi

v (where the challenge message ei is an honest one); When a session
in this class reaches stage Mainproof, it can extract an valid witness (that should be the
preimage to β with overwhelming probability7) from these two transcripts and then uses it
to complete the stage Mainproof of this session.

Given a malicious verifier V ∗ as input, our simulator S makes recursive calls to a pro-
cedure Simulate to simulate the view of V ∗.

The procedure Simulate maintains a table Q, a waiting (to be solved) list consisting of
tuples of the form (C(l,m)

f-msg, i, (ai, e
′
i), t) which indicates the executions of ith iteration of class

C
(l,m)
f-msg (in which the simulator proves its knowledge of s′i such that ce

i = Comv(e′i, s
′
i) or

x ∈ L via the argument PZKKInstD) is currently being simulated, where t is the recursion
level where this tuple is created. Initially, Q = ∅.

At the level t (1 ≤ t ≤ T) of the recursion, the procedure Simulate proceeds as follows. For
any solved session, Simulate acts as honest prover except that it generates a YES instance γ,
and uses the corresponding witnesses δ (such that γ = G(δ)) and α (such that β = f(α)) to
execute the IDWIAOKS

p and IDWIAOKM
p respectively; For every session belonging to a class

C
(l,m)
f-msg listed in the table Q (let the corresponding entry be (C(l,m)

f-msg, i, (ai, e
′
i), t

′), t′ ≥ t),
Simulate forwards the V ∗’s message in the ith iteration of this session to a non-black-box
simulator Simt

KID, and replies with what Simt
KID replies; When a challenge message in ith

6 As pointed out in [6], we can keep running the simulator with exponentially increasing values of K until a
successful simulation is generated. This applies to our non-black-box simulator, and the key point is that
for any K, the recursive depth to be T = 2 log K

k/128 < log n. (Recall that the the subprotocol PZKKInstD in

the special-purpose IDWIAOKi
v is log n-class-bounded resettable ZK on NO (key) instance γ).

7 In case the witness extracted from these two transcripts is the seed (δ) of γ, we still cannot complete
Mainproof. Fortunately, the Lemma 3 (presented in appendix C) says this occurs only with negligible
probability.

13

iteration of a unsolved class (say C
(l,m)
f-msg) is reached for the first time, Simulate invokes a

procedure called Solve at level t − 1 to look ahead, aiming at solving this class or one of
the classes on the current waiting list Q; Once the procedure Solve returns, Simulate acts as
honest prover in the ith iteration of the current session, regardless of whether this session
was solved or not; When an unsolved session reaches its stage Mainproof, or there are too
many (set to be (k/128)t/16+1st) new class of sessions appearing within this invocation of
Simulate, Simulate aborts and returns.

At the bottom level t = 0, Simulate acts as the one at higher level except that it does
not invoke Solve any more.

The procedure Solve at level t− 1, invoked at the beginning of the ith iteration of class
C

(l,m)
f-msg, makes many independent attempts to solve one of classes in the current table Q or

the class C
(l,m)
f-msg, where we refer to a single execution of step 1 within a call of Solve (see 10)

as an attempt. At the beginning of an attempt, Solve chooses a random challenge e′i, extends
Q to include the entry (C(l,m)

f-msg, i, (ai, e
′
i), t−1), and then run the procedure Simulate at level

t− 1 on input of the new table Q.

The output of S. We call a simulation path in which the states of V ∗ evolve consecutively
a thread, and call the top level simulation path main thread. Note that in the main thread, S
executes the stage Iteration of any session honestly. At the end of the simulation, S outputs
the main thread.

Key observation. We observe that, in a single thread, as the recursion goes down by one
level (say from level t to level t− 1), only one new entry of the form (C(l,m)

f-msg, i, (ai, e
′
i), t− 1)

was appended to the table Q, and a new class of sessions with respect to the argument
PZKKInstD

8(i.e., the executions of the PZKKInstD in the ith iteration in class C
(l,m)
f-msg) needs to

be simulated. Note also that for each level 0 ≤ t < T − 1, the waiting list Q contains only
one entry of the form (·, ·, ·, t). This means in a single thread there are at most T < log(n)
classes of subsessions with respect to the argument PZKKInstD being simulated.

A high level description of our non-black-box simulation strategy.
A slightly simplified treatment. With the above observation and the observation
on the structure of a single class of sessions9, we simply think of a class of subsessions
with respect to the argument PZKKInstD mentioned above a single session, and show how
to simulate these T subsessions (with respect to the relevant subprotocol PZKKInstD.) in
concurrent model in a thread here. (The actual non-black-box simulator is a little more
involved.)

Since T < log n, one may think of using Barak’s simulator for log n-bounded concurrent
ZK protocol: This non-black-box simulator stands at level T , handles all messages belonging
to these T subsessions in a thread.

However, this strategy does not work. Note that once Barak’s simulator is invoked at
the beginning of the ith iteration of class C

(l,m)
f-msg, it is active as long as this the ith iteration of

class C
(l,m)
f-msg is still being simulated, and note also that this iteration may go through many

threads. Thus, Barak’s simulator needs to handle all subsessions (we cannot bounded the
number of these subsessions by any polynomial) that needs to be simulated in all threads
8 Observe that all subexecutions of this PZKKInstD in a specific iteration of a single class (with respect to the

global protocol) form one class of sessions with respect to the PZKKInstD argument, i.e., the class specified
by the same incarnation of prover in the global protocol and the verifier’s first message with respect to
this PZKKInstD that appeared in the verifier’s first message with respect to the global protocol.

9 Though this observation holds on NO instance γ, as we will see in appendix C, it holds in the simulation
where γ is a YES instance.

14

that appear during the simulation of the ith iteration of class C
(l,m)
f-msg. This is impossible

because Barak’s simulator works only in bounded concurrent model.
We use a novel technique to handle this situation. Instead of having a single Barak’s

simulator handle all these T subsessions in a thread, We have the Simulate at each level
t in a thread use a Barak’s simulator (for log n-bounded concurrent ZK protocol) Simt

KID

to handle the current subsession for which this invocation of Simulate was initiated. In
particular, when Simulate at each level t is invoked at the beginning of the ith iteration of
class C

(l,m)
f-msg (letting (C(l,m)

f-msg, i, (ai, e
′
i), t) be the corresponding entry in Q), it runs a Barak’s

simulator (for log n-bounded concurrent ZK protocol) Simt
KID, which mainly handle the

current subsession. This simulator Simt
KID acts as follows.

– (Main task) For every query from V ∗ regarding the subsession with respect to the ith

iteration of the current class C
(l,m)
f-msg, Simt

KID performs in the following way:
• At the first prover step of this session (where the Barak’s simulator needs to commit

a code), Simt
KID commits to the hash value of the joint code of Simulate at level t

(except the current subroutine Simt
KID, of course) and V ∗.

We stress that the code this Simulate at level t includes all codes of the subprocedures
Solve at level t− 1 invoked by it, which in turn includes all codes of Simulate at level
t′ and Simt′

KID
10 for t′ < t that are invoked by the above Solve at level t− 1.

• After the first prover step, Simt
KID acts as the same as Barak’s simulator by treating

the messages output by Simt′
KID at higher level t′ > t as external message (which will

be used as witness to carry out the current session).
– (Minor task) For any query from V ∗ regarding a subsession belonging to class C

(l′,m′)
f-msg’

with an entry of the form (C(l′,m′)
f-msg’ , ·, ·, t′) in Q, t′ > t, Simt

KID forwards this query to
Simt′

KID, stores its response and forwards it to V ∗.

Note that, in a single thread, for each 0 ≤ t ≤ T , there is only one invocation of Simulate
at level t, in which Simt

KID is invoked only once. Also, observe that, for each t ≤ ti ≤ T − 1,
there is only one subsession belonging to the class with an entry of the form (·, ·, ·, ti) in
Q (handled by Simti

KID) being simulated during a specific execution of Simulate at level t,
but for tj < t, this Simulate at level t may see many simulated subsessions (each of them
requires an independent execution of Sim

tj
KID) that appear in many executions of Simulate

at level tj , due to that it may go through many threads.
The crux of this non-black-box simulation strategy is that, during a specific execution

of Simt
KID, Simt

KID does not handle these simulated subsessions that appear in execution of
Simulate at lower level tj < t, which are handled by some Sim

tj
KID internally. Note that the

code that Simt
KID commits to in its first step already includes these subroutines Sim

tj
KID. In

the execution of Simt
KID, we view the joint code Simulate at level t (includes all subroutines

at lower level therein but except the current Simt
KID) and V ∗ as a malicious verifier. It is

easy to verify that Simt
KID succeeds as long as the total length of the external messages is

“short”. This is the case because there are only T − t < log n subsessions (that simulated by
some Simt′

KID at higher level t′ > t.) for which Simt
KID treats the prover’s messages therein

as external messages.
10 It should be noted that when the simulator commits to a code, this code needs to be well-defined, thus

the simulator Simt′′
KID at lower level is not able to commit to the simulator Simt

KID at higher level; In our
setting, at the bottom level, all Sim0

KID is well defined; Note that Sim1
KID is well defined as long as all Sim0

KID

is well defined; Repeating this, it is easy to see that when Simt
KID commits to the code of Simulate at level

t (except the Simt
KID), all codes of Simt′

KID at lower level t′ < t therein are well defined.

15

Extension to the resettable model. As observed in last section, in the resettable
model, all these T class of subsessions mentioned above are actually T subsessions: A class
of subsessions is just a class of copies of the same session. Thus, the above non-black-box
simulator Simt

KID can be easily extended to the resettable model by simply replying with
the same answer to the same query. In the actual procedure Simt

KID, this is done by an
intermediator Intermedt, which is a part of Simt

KID (See figure 11 in appendix C for its
actual description).

Some subtle problems. We point out some subtle technical problem in the actual analysis
of our simulator.
1. In our simulation, the first prover message γ is a YES instance. Thus the first thing we

needs to do is to prove that the structure of a class of sessions in the simulation remains
the same as in the real interaction (depicted in last section), where γ is a NO instance.

2. The malleability issue. The malicious resetting verifier may learn how to simulate a
proof for the correctness of its challenge.

3. Handling external messages in analysis of security. Typically, we prove the output of
a simulator is indistinguishable from the real interaction by setup a series of hybrid
simulators, each of which is slightly different from its neighbors. However, we must be
careful with even simple claims in the non-black-box simulation. For example, when we
claim S1 and S2 are indistinguishable unless we can break the pseudorandomness of a
pseudorandom function, we need to have S1 (or S2) take this function as an oracle (thus
its code is unavailable to S1 and S2), in this case, S1 needs to handle the answers from
this oracle as external messages. The problem is that, in some cases, the non-black-box
simulator S1 (S2) is not able to handle many external messages.

As we will see in appendix C (Lemma 2 and lemma 3), our solution to these problems relies
on two facts: All IDWIAOKi

v are special-purpose IDWIAOK and the PZKKInstD arguments
in IDWIAOKi

v are perfect zero knowledge under some conditions, as stated in section 3.2.
These two facts enable us to construct a non-uniform simulator that performs as the same
as our non-black-box simulator without doing any non-black-box simulation!

Acknowledge. We thank Vipul Goyal11, Pino Persiano, Amit Sahai, Ivan Visconti and Moti
Yung for helpful discussions on an earlier version of [10].

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. of IEEE FOCS 2001, pp.106-115.
[3] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell. Resettably sound Zero Knowledge and its Applica-

tions. In Proc. of IEEE FOCS 2001, pp. 116-125.
[4] B. Barak, O. Goldreich. Universal Arguments and Their Applications. In Proc. of IEEE CCC 2002,

pp. 194-203.
[5] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proc. of ICM’86, pp. 1444-1451,

1986.
[6] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. Resettable Zero Knowledge. In Proc. of ACM STOC

2000, pp.235-244
[7] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge requires Ω(

logn) rounds. In Proc. of ACM STOC 2001, pp.570-579.
[8] D. Dolev, C. Dwork and M. Naor. Non-malleable Cryptography. SIAM J. on Computing 30(2):391-437,

2000.
[9] Yi Deng, Dongdai Lin. Instance-Dependent Verifiable Random Functions and Their Application to

Simultaneous Resettability. In Advances in Cryptology-Eurocrypt’07, LNCS4515, pp.148-168, 2007.

11 When we were working on this problem , we were told that Vipul Goyal and Amit Sahai also had a similar
result. Their independent work is available at http://eprint.iacr.org/2008/545.

16

[10] Yi Deng, Dongdai Lin. Simultaneously Resettable Argument with Public Keys. Manuscript.
[11] C. Dwork, M. Naor. Zaps and Their Applications. In Proc. of IEEE FOCS 2000, pp.283-293
[12] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In Proc. of ACM STOC 1998, pp.409-

418.
[13] U.Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In Proc. of ACM

STOC 1990, pp.416-426.
[14] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University Press, 2001.
[15] O. Goldreich, A. Kahan: How to Construct Constant-Round Zero-Knowledge Proof Systems for NP.

J. Cryptology 9(3): 167-190,,1996.
[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM.

J. Computing, 18(1):186-208, 1989.
[17] O. Goldreich, Y. Oren: Definitions and Properties of Zero-Knowledge Proof Systems. J. Cryptology

7(1): 1-32, 1994.
[18] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proc. of IEEE FOCS’99, pp.

120-130, 1999.
[19] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In Proc. of

ACM STOC 2004: 232-241.
[20] R. Pass, A. Rosen. Concurrent Non-Malleable Commitments. In Proc. of IEEE FOCS 2005, pp. 563-572,

2005.
[21] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with Logarithmic Round Com-

plexity. Manoj Prabhakaran, Alon Rosen and Amit Sahai. Concurrent Zero-Knowledge with Logarith-
mic Round Complexity. In Proc. of IEEE FOCS’02, pp.366-375, 2002.

[22] R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge proofs. In Advances in
Cryptology-Eurocrypt’99, LNCS1592, pp.4158-431, 1999.

A Definitions

In this section we give formal definitions of zero knowledge and soundness in the resettable
setting.

Resetting and class-bounded resetting attacks. We first recall resetting attack intro-
duced in [6].

Resetting attack [6]. Let poly be an arbitrary polynomial, and Let x = x1, · · ·, xpoly ∈
L∩{0, 1}n be a sequence of distinct common inputs and w = w1, ···, wpoly be a corresponding
witness sequence for x. The verifier V ∗’s resetting attack is defined by the following random
process depending on P and V . 1) Randomly pick and fix poly random tapes, r1, · · ·, rpoly,
resulting in poly2 deterministic incarnations P (i,j) = Pxi,wi,rj defined by Pxi,wi,rj (α) =
P (xi, wi, rj , α), for (i, j) ∈ {1, · · ·, p(n)} × {1, · · ·, poly}; 2) V ∗ is allowed to run polynomial
many sessions with the P (i,j)’s. Throughout those sessions, V ∗ is allowed to schedule all
sessions in interleaving way 12: V ∗ can send arbitrary messages to each of the P i,j , and
obtain the responses of P (i,j) to such messages immediately; 3) Once V ∗ decides it is done
interacting with the P (i,j)’s, it produces an output based on its view of the whole interaction.
We denote this output by (P (w), V ∗)(x).

A restricted version of the resetting attack—the so-called class-bounded resetting attack—
was introduced in [9], where a class (of sessions) contains all sessions between verifier and
a fixed incarnation of prover into a class that share the same verifier’s first message msg.
For instance, all sessions associated with the same incarnation P (i,j) and sharing the same
verifier’s first message f-msg belong to the same class (denoted by C

(l,m)
f-msg).

Class-bounded resetting attack.[9] This is a resetting attack under the following restric-
tions: 1) the malicious verifier V ∗ is only allowed to interact with an a-priori bounded

12 Actually, in the resettable setting, V ∗ cannot gain more power from concurrent scheduling than from
sequential scheduling (cf. [6]).

17

number of incarnations; 2) the number of different V ∗’s first messages to each incarnation
is also a-priori bounded. Formally, a t3-bounded-class (t be an a-priori fixed polynomial)
resetting attack is executed by V ∗ in the way as defined above, but in which V ∗ is only
allowed to interact with t2 incarnations of Pxi,wi,rj ’s, (i, j) ∈ {1, · · ·, t} × {1, · · ·, t}, and the
number of different V ∗’s first messages to each incarnation Pxi,wi,rj is a priori bounded by t,
where x = x1, ···, xt ∈ L∩{0, 1}n is a sequence of distinct common inputs and w = w1, ···, wt

is a correspondingly witness sequence for x as defined in resetting attack, r1, · · ·, rt are those
provers’ random tapes. Note that this results in at most t3 classes of sessions during the
whole execution of this attack.

Definition 1. [resettable ZK argument] Let poly be a polynomial, x = x1, · · ·, xpoly ∈
L ∩ {0, 1}n is a sequence of distinct common inputs and w = w1, · · ·, wpoly is a correspond-
ingly witness sequence for x. An interactive argument (P, V) for a language L is said to be
resettable ZK if for every PPT adversary V ∗ mounting resetting attack, there exists a PPT
M so that (P (w), V ∗)(x) and M(x) are computational indistinguishable.

Definition 2. [class-bounded resettable ZK argument] Let t be a polynomial, x = x1, ···, xt ∈
L∩{0, 1}n is a sequence of distinct common inputs and w = w1, · · ·, wt is a correspondingly
witness sequence for x. An interactive argument (P, V) for a language L is said to be t3-
class-bounded resettable ZK if for every every PPT adversary V ∗ mounting t3-class-bounded
resetting attack, there exists a PPT M so that (P (w), V ∗)(x) and M(x) are computational
indistinguishable.

Definition 3. (Resettable WI) Let p be an arbitrary polynomial, L0 and L1 be two (possibly
the same) NP languages. Let L = L0 ∨ L1 = {(x0, x1) : x0 ∈ L0 or x1 ∈ L1}13. An
interactive argument (P, V) for language L is said to be resettably witness indistinguishable
if for any PPT V ∗ mounting (unbounded) resetting attack, the distribution (P (w0), V ∗)(x)
is computationally indistinguishable from (P (w1), V ∗)(x), where x = x1, · · ·, xpoly, xi =
(xi

0, x
i
1) ∈ L, wb = w1

b , · · ·, wpoly
b such that (xi

b, w
i
b) ∈ RLb

for 1 ≤ i ≤ poly, b ∈ {0, 1}.
Resettably-sound argument of knowledge. Resetting attack also gives rise to the
notion of resettably-sound argument of knowledge introduced in [3].

Definition 4. [Resettably-sound argument of knowledge.] A resetting attack of a malicious
prover P ∗ on a resettable verifier V is defined by the following random process, indexed by a
security parameter n: 1) Uniformly pick and fix poly random-tapes, denoted r1, · · ·, rpoly, for
V , resulting in deterministic incarnations V (j)(x) = Vx,rj , x ∈ {0, 1}n and j ∈ {1, · · ·, poly},
defined by Vx,rj (α) = V (x, rj , α); 2) Taking as input 1n, P ∗ is allowed to initiate poly number
sessions with the V (j)(x)’s, and is allowed to schedule all sessions in interleaving way as
usual: P ∗ can send arbitrary messages to each of the V (j)(x), and obtain the responses of
V (j)(x) to such messages immediately.

We say an argument system (P, V) is a resettably-sound argument of knowledge system
if it satisfies:

1. Resttable-completeness: Considering an arbitrary resetting attack of a PPT P ∗. If P ∗

follows the strategy of P in some sessions after selecting an incarnation V (j)(x) and
x ∈ L, then V (j)(x) rejects with negligible probability.

2. Resettably-soundness: For every weak resetting attack of a PPT P ∗, the probability
that in some sessions the corresponding V (j)(x) has accepted a false statement (x /∈ L)
is negligible.

13 In our applications, it is sufficient to consider only the ”OR” statements.

18

3. Argument of knowledge: For every PPT P ∗, there exists a PPT machine E such that
for every resetting attack of P ∗, the probability that E, upon input the description of
P ∗, outputs a witness for the statement in a session is negligibly close to the probability
that P ∗ convinces V in a session.

Definition 5. [Instance-dependent resettably-sound resettable WI (IDWIAOK)] Let L0 and
L1 be two (possibly the same) NP languages. Let L = L0 ∨L1 = {(x0, x1) : x0 ∈ L0 or x1 ∈
L1}. An interactive argument (P, V) for language L is said to be instance-dependent resettably-
sound resettable WI if it satisfies:

1. Resettable WI, as in definition 3.

2. For any statement (x0, x1) ∈ L, the resettably-sound argument of knowledge property
holds when x0 /∈ L0.

B The simplified Pass-Rosen protocol and the security proofs of
PZKKInstD and IDWIAOK

B.1 The simplified Pass-Rosen protocol

The Pass-Rosen variant of Barak’s protocol [20] (the protocol ZKtag in[20], an earlier version
of this protocol appeared in [19]) was originally tailored to their specific application in
non-malleable commitment. There are two notable features of this variant: it is (bounded
concurrent) perfect ZK and satisfies the argument of knowledge property (rather than the
weak argument of knowledge property of Barak’s protocol).

Before giving a formal presentation of the simplified Pass-Rosen protocol, we recall
the Barak’s constant round public-coin t-bounded concurrent zero knowledge argument [1].
Informally, Barak’s protocol for a NP language L consists of two subprotocol: a generation
protocol and a WI universal argument. An execution of the generation protocol will generate
an instance with respect to the following language Λ. Let n be security parameter and
{Hn}n∈N be a collection of hash functions where a hash function h ∈ Hn maps {0, 1}∗
to {0, 1}n, and let Com be a statistically binding commitment scheme. We say a triplet
(h, c, r) ∈ Hn×{0, 1}n×{0, 1}tn3

is in Λ, if there exist a program Π, string s ∈ {0, 1}poly(n)

and a string ω such that ω ≤ |r|/2 = tn3/2, such that z = Com(h(Π), s) and Π(z, ω) = r
within superpolynomial time (i.e., nω(1)).

The simplified Pass-Rosen protocol used in this paper can be viewed as a hybrid of
Pass-Rosen protocol and Barak’s protocol: it uses perfect hiding commitment scheme Com
and the special-purpose universal argument like Pass-Rosen protocol, but has only one slot
like Barak’s protocol. See figure 5 for a detailed description.

As the Pass-Rosen protocol, the above simplified version is also bounded concurrent
perfect zero knowledge and satisfies the argument of knowledge property.

B.2 Security proof of PZKKInstD

When applying the same transformation of [3](i.e., having the verifier generate its coins by
applying a pseudorandom function to the history so far) to the above simplified Pass-Rosen
(t-bounded concurrent ZK) protocol, we obtain an argument (PR, VR) that satisfies:

1. t-bounded concurrent perfect ZK property. This is due to that the transformation pre-
serves perfect zero knowledge.

2. Resettable-sound argument of knowledge. This is guaranteed by proposition 2.5 of [3].

19

The simplified Pass-Rosen protocol (P, V)

Common input: x ∈ L (|x| = n).

Stage 1 (Generation)

V −→ P : send a random hash function h.
P −→ V : send c = Com(0n). (all commitment schemesCom are perfect hiding.)

V −→ P : send r ←R {0, 1}tn3
.

Stage 2 (Encrypted UARG)

V −→ P : send α ←R {0, 1}n.
P −→ V : send β′ = Com(0n).
V −→ P : send γ ←R {0, 1}n

P −→ V : send δ′ = Com(0n).

Stage 3 (Main body of the proof)

P =⇒ V : P and V execute a witness independent argument of knowledge in which P proves
the OR of the following statements:

1. ∃w ∈ {0, 1}poly(n) so that (x, w) ∈ RL.
2. ∃(β, δ, s1, s2) so that β′ = Com(β, s1), δ′ = Com(γ, s2), and (α, β, γ, δ) is an

accepting transcript of the universal argument UARG proving the statement
(h, c, r) ∈ Λ.

Fig. 5. The simplified Pass-Rosen (t-bounded concurrent ZK) protocol for language L.

Given a resettably-sound t-bounded concurrent perfect ZK argument (PR, VR), we prove
that the transformation presented in section 3.2 leads to an argument PZKKInstD that enjoys
the following properties:

1. It is t-class-bounded resettable ZK if all y are NO (key) instances.
2. It is t-bounded-class resettable perfect ZK if the following conditions (Conditions for

PZK) hold:
– The honest incarnation of the prover feeds PR with independent and truly random

tape in stage 2 under the consistence condition that the random tape for PR is the
same in every session having the same verifier first message (y, c0);

– The verifier never sends two “correct” messages (r, π) and (r′, π′) with r 6= r′ for the
same history hist in stage 2 of PZKKInstD.

3. It is resettable-sound argument of knowledge if all y are YES (key) instances.

proof of item 1 and item 2. We first note that the simulators for both the simplified Pass-
Rosen protocol and the argument (PR, VR) proceed exactly the same as Barak’s simulator.

We construct a simulator SimKID for the t-class-bounded resettable ZK argument PZKKInstD.
The main part of SimKID is the (slightly modified) Barak’s simulator SimB for t-session-
bounded concurrent ZK argument. For our simulator to work in resettable model, we have
SimKID use an intermediator Intermed to store the output of SimB and reply with the same
answer for the same query from V ∗. The simulator SimKID is depicted in figure 6.

It is easy to check that the underlying procedure SimB performs well: It takes only
t sessions (in concurrent model), and whenever a session reaches the stage 2 (Encrypted

20

SimKID:

Run the joint code of the intermediator Intermed and the (slightly modified) Barak’s simulator SimB

on the common inputs and the code of V ∗, output what Intermed outputs.

Intermed: Create an interface with V ∗ and an interface with SimB. Upon receiving a session history h
from V ∗, act as follows.

1. If the current verifier message (i.e., the last message in h) is not correct, abort this session; Other-
wise, do the following.

2. If the next scheduled prover message is the first prover message of Stage 1 a and V ∗ does not query
on h before, Intermed sends an random string ρ to V ∗ as the honest prover, and stores it on a table
R; If V ∗ queried on h before, Intermed retrieves the same answer from R and sends it to V ∗.

3. If the next scheduled prover message is a prover message of Stage 2, Intermed retrieves the subtran-
script tr of the underlying argument (PR, VR). Let tr = (tr′||r). (r is the current verifier message.)

(a) If a session history (tr′, r′) with r 6= r′ is stored in R (This breaks the uniqueness of the
InstD-VRF function F(PK,SK),), output ⊥;

(b) If V ∗ does not query on h before, send it to SimB. Once the next message is obtained, store
it in R and forward it to V ∗; If V ∗ queried on h before, retrieve the same answer from R and
send it to V ∗.

(c) If V ∗ terminates the interaction, output the whole V ∗’s view.

SimB: Act as exactly the same as Barak’s simulator for the (t-session-bounded concurrent ZK) simplified
Pass-Rosen protocol except that, when the Barak’s simulator is instructed to commit to hash value of
the joint code of the residual procedures Intermed and V ∗, i.e., SimB treats the joint code of Intermed
and V ∗ as the concurrent adversary. (Note that both Intermed and V ∗, i.e., SimB are well-defined.)

Fig. 6. The procedure SimKID.

UARG), it already knew the corresponding “valid” witness (i.e., the joint code of the residual
procedures Intermed and V ∗, and some relevant prover messages sent in other sessions) to
carry out the stage 2 and 3 of this session.

We denote the output of SimKID with OutSimKID
, and denote the view of V ∗ in the real

world with Viewreal
V ∗ . The proof of item 1 and item 2 can be done by the following steps:

1. We first prove item 2. Let Viewideal
V ∗ denote the V ∗’s view in an interaction with honest

provers in the ideal world where the Conditions for PZK hold. We prove that OutSimKID

and Viewideal
V ∗ are identical.

2. We then consider a semi-ideal world where only the first Condition for PZK is as-
sumed to hold. Let Viewsemi

V ∗ denote the view of V ∗ in an interaction with honest prover
in this semi-ideal world. It is easy to show that Viewsemi

V ∗ is computational indistinguish-
able from Viewideal

V ∗ due to the fact that the second Condition for PZK holds in any
world except with negligible probability (because of the uniqueness of the InstD-VRF
function F(PK,SK) on NO (key) instance y).

3. Finally, observe that if a PPT algorithm can distinguish between Viewsemi
V ∗ and Viewreal

V ∗ ,
then we can use this algorithm to distinguish output of a pseudorandom function (which
the honest prover uses to generate the random tape for the underlying PR in the real
world) and the truly random string. Thus, we conclude that Viewsemi

V ∗ and Viewreal
V ∗ are

computational indistinguishable.
This implies that OutSimKID

is computational indistinguishable from Viewreal
V ∗ , which

establishes item 1.

21

Now we only need to establish step 1 to complete the proof of item 1 and item 2. Consider
a concurrent adversary V ∗∗ = (Intermed, V ∗) (i.e., V ∗∗ is the joint code of Intermed and V ∗)
that interacts with t incarnations of the prover PR of the simplified Pass-Rosen protocol in
the concurrent model and outputs what Intermed outputs. We use the following procedure
Sim’B to simulate the output14 of V ∗∗: Sim’B is exactly the same as SimB except that it
outputs what V ∗∗ outputs when V ∗∗ terminates the whole interaction.

Let Outreal
V ∗∗ denote the output of V ∗∗ at the end of the real interaction with t honest

provers PR of the simplified Pass-Rosen protocol, and let OutSim’B denote the output of
Sim’B. We have:

– OutSimKID
is identical to OutSim’B . This is simply due to that Sim’B outputs what SimKID

outputs;
– OutSim’B is identical to Outreal

V ∗∗ . This is simply due to the t-bounded concurrent perfect
zero knowledge property of the simplified Pass-Rosen protocol.

The remaining task is to show that Outreal
V ∗∗ is identical to Viewideal

V ∗ . Recall that V ∗ is
a t-class-bounded resetting adversary. Hence the whole interaction between V ∗ and honest
incarnations of prover in the ideal world consists of at most t class of sessions. Denote these
classes with C

(l1,m1)
f-msg1

,..., C
(li,mj)
f-msgk

,..., where the number of distinct tuple (li,mj , f-msgk) is at
most t. (hence the number of honest incarnations P (li,mj) of the prover of the argument
PZKKInstD is at most t.)

Thinking of the Intermed (incorporating with the honest provers PR of the underlying
argument (PR, VR)) as those provers of the argument PZKKInstD in the ideal model. Note
that the interaction between V ∗ and the above provers in the ideal model is identical to
Outreal

V ∗∗ (recall that V ∗∗ = (Intermed, V ∗)). We make the following observations.

– The first prover message ρ sent by Intermed (incorporating with the honest provers
PR) is identical to the one sent by the the honest prover of the argument PZKKInstD in
every session, and in both Outreal

V ∗∗ and Viewideal
V ∗ , different sessions either share the same

first prover message or have independent ones. Furthermore, the first prover message is
independent of all prover messages in stage 2 of PZKKInstD in a session.

– By the first Condition for PZK, in a single class of sessions C
(li,mj)
f-msgk

, the honest
incarnation P (li,mj) of the prover of the argument PZKKInstD runs the underlying PR

only once (we ignore those repeated invocations of PR on the same session history), and
for different classes, the incarnations therein of the prover runs independent copies PR

(each with independent random tape). The same happens to Intermed.
This guarantees that the stage 2 prover messages of PZKKInstD in each class of sessions
in Outreal

V ∗∗
15 is identical to the one in Viewideal

V ∗ , and that in both Outreal
V ∗∗ and Viewideal

V ∗ ,
the stage 2 prover messages in one class of session is independent of the ones in another
class of sessions.

– By the second Condition for PZK, Intermed never outputs ⊥. Note that the honest
prover of the argument PZKKInstD never aborts or output ⊥ even in the case that V ∗

sends two “correct” messages (r, π) and (r′, π′) with r 6= r′ for the same history hist

14 Here we adopt the formulation of zero knowledge that requires the simulator to simulate the output of
the (malicious) verifier just for simplifying the presentation. Note that this is equivalent to the original
formulation of zero knowledge that requires the simulator to simulate the view of the (malicious) verifier
(cf. [14]).

15 Since Outreal
V ∗∗ is the output of Intermed that interacts with PR’s, we can define class of session in the same

way as in the resettable model.

22

in stage 2 of PZKKInstD. (Recall that the honest prover checks only whether the current
verifier’s message is correct or not.)

It follows that Outreal
V ∗∗ and Viewideal

V ∗ are identical, and hence OutSimKID
and Viewideal

V ∗

are identical. This complete the proof of item 2. ¤
proof of item 3. The pseudorandomness of the InstD-VRF function F(PK,SK) on YES (key) in-
stance y enables us to construct a malicious resetting prover P ∗

R of the underlying argument
(PR, VR) from a malicious resetting prover P ∗ of the argument PZKKInstD with negligibly
close cheating probability. This can be done by using the witness of y to generate a valid
proof for each message from external honest verifier VR as showed in [9]. Note that (PR, VR)
satisfies resettable-sound argument of knowledge, so does the argument PZKKIinsD (on YES
(key) instance y). ¤

B.3 Security proof of IDWIAOK

For completeness, we present the security proof of IDWIAOK of [10] here.

Proof of resettably-sound argument of knowledge when x0 /∈ L. The basic extrac-
tion strategy is to obtain two different accepting transcripts of the underlying 3-round WI
argument by sending different challenges (an honest one and a random one with simulated
correctness proof), and apply the Goldreich and Kahan [15] technique to bound its running
time. Assume that a resetting prover P ∗ can convince an incarnation V j(x) on statement
x = (x0, x1) ∈ L such that x0 /∈ L0 with probability p in the last session16, the extractor E
can be constructed as follows.

Note that in the extraction process, the subroutine SimE
KID needs to take the code of P ∗ as

input, hence E is an non-black-box extractor. It is easy to verify that the underlying Barak’s
simulator SimE

B handles only a single session, and the joint code of the residual procedures
IntermedE and E(except the current subroutine SimE

KID) and P ∗ is a proper (partial) witness
for SimE

B to carry out this session.
We also observe that, for a session with prefix ((ca

0, c0), (ce
0, ρ

′), a) and a session with
prefix ((ca

1, c
′
0), (c

e
1, ρ

′′), a′), ((ca
0, c0), (ce

0, ρ
′), a) 6= ((ca

1, c
′
0), (c

e
1, ρ

′′), a′) in the real interaction,
the statements “the challenge is correct” in the above two sessions are (almost) uncorrelated:
since ((ca

0, c0), (ce
0, ρ

′), a) 6= ((ca
1, c

′
0), (c

e
1, ρ

′′), a′), it must be the case (ca
0, c0) 6= (ca

1, c
′
0)

17, and
this will cause the verifier to choose different and (almost) independent challenges (and
randomness used in the commitment ce) via a pseudorandom function.

This crucial observation enables us to employ argument PZKKInstD satisfying only 1-
class-bounded resettable zero knowledge property (for verifier to prove “the challenge is
correct”) is that all executions of argument PZKKInstD in those sessions with the same
prefix ((ca, c0), (ce, ρ′), a) fall into a single class (namely, the class specified by the same
incarnation of verifier V j(x) – the prover in argument PZKKInstD, and the same P ∗’s (the
verifier in PZKKInstD argument) first message c0 of argument PZKKInstD), and E needs only
to simulate this class of sessions and plays as honest verifier in any other sessions (that are
uncorrelated to the simulated class of sessions) in straight line way.

Assume P ∗ convinces an incarnation V j(x) on statement x = (x0, x1) ∈ L but x0 /∈ L0

with probability p in the last session.
16 This is just for simplicity, see definition 4.
17 Note that for the deterministic V j(x), if (ca

0 , c0) = (ca
1 , c′0), then we have (ce

0, ρ
′) = (ce

1, ρ
′′). By the fact

that message a is uniquely determined by the first two round messages (for simplicity we consider the
same common input x = (x0, x1) ∈ L) when x0 /∈ L0, we have ((ca

0 , c0), (c
e
0, ρ

′), a) = ((ca
1 , c′0), (c

e
1, ρ

′′), a′),
which contradicts the condition ((ca

0 , c0), (c
e
0, ρ

′), a) 6= ((ca
1 , c′0), (c

e
1, ρ

′′), a′).

23

The extractor E:

1. E selects a random tape for P ∗.
2. E interacts with P ∗. In this step, E executes the honest verifier’s strategy except that when

the honest verifier is instructed to applying the pseudorandom function specified by its random
tape to generate randomness, it uses truly random coins, making sure that on the same session
prefix the same coins are used in computing the next message (We make this exception just
for simplifying the analysis.). In the last session, if E obtains an accepting transcript (a, e, z)
of the underlying 3 round WI argument in the last session, E goes to the next step; Otherwise,
outputs “⊥”.
Suppose the first three messages exchanged in the last session are (ca, c0), (c

e, ρ′) and (a, τ), and
suppose τ∗ was the valid correctness proof for a that appeared for the first time in all sessions
with the prefix ((ca, c0), (c

e, ρ′), a) (note that τ∗ doesn’t necessarily equal τ , and this possibly
happens due to the resetting attack from P ∗).

3. (Estimation) E rewinds P ∗ to the point (we call it rewinding point) where the prefix
((ca, c0), (c

e, ρ′), (a, τ∗)) was first appeared, and repeats the following until it receives the ac-
cepting transcript (a, e, z) of the underlying 3 round WI argument n2 times: choose independent
randomness to complete the experiment described as in step 2.
We denote by X the total number of iterations of step 2.

4. E rewinds P ∗ to the same point as in step 3, and repeats the following until it obtains another
accepting transcript (a, e′, z′) with e 6= e′ or the X +1st trial is reached. If all trials fails, output
“⊥”.

– For those sessions having the same prefix (ca, c0), (c
e, ρ′) and a valid a (we call them target

sessions), E chooses another query e′ 6= e randomly, and sends e′ to P ∗, then runs the
non-black-box simulator SimE

KID = (IntermedE, SimE
B) for the underlying PZKKInstD to prove

knowledge of s such that e′ = Comv(e′, s), where SimE
KID proceeds exactly as the same as

SimKID (presented in figure 6) except that:

• SimE
KID handles only a single class of sessions with respect to the underlying argument

PZKKInstD. Note that all executions of PZKKInstD argument in those sessions having the
same prefix ((ca, c0), (c

e, ρ′), a) fall into a single class, that is, all these executions are
carried out with the same incarnation of verifier V j(x) under the same P ∗’s (the verifier
in PZKKInstD argument) first message c0 of PZKKInstD.

• When SimB is instructed to commit to hash value of a code, the corresponding sub-
routine SimE

B of SimE
KID commits to the joint code of the residual procedures IntermedE

and E(except the current subroutine SimE
KID, we view it as an external procedure.) and

P ∗, where IntermedE is exactly the same as Intermed presented in figure 6.

– For all other sessions, E executes the strategy described in step 2.

5. E computes the witness for x1 (note that we assume x0 /∈ L) from the two transcripts (a, e, z)
and (a, e′, z′), outputs it.

Fig. 7. The extractor E.

24

Recall the extractor E chooses independent random coins whenever the honest verifier
would have generated these coins by applying a pseudorandom function to the current
session history. We first give some notations.

– R: the set of all possible choices of random string that E uses in its step 2.
– Rgood and Rpre. We call a random string used by E in step 2 that causes E to accept good,

and denote by Rgood the set of all good random strings. Given a good random string
r ∈ Rgood, we call its prefix r0 used in E’s step 2 before the rewinding point rewinding-
prefix, and denote by Rpre the set of the rewinding-prefixes of all good random strings.
Note that the rewinding-prefix of a single good random string is unique, and different
good random strings may have the same rewinding-prefix.

– r0-good and Gr0 . A good random string r is called r0-good if the rewinding-prefix of r is
r0. In other words, if the segment of execution of E’s step 2 using r0 ends with a session
prefix ((ca, c0), (ce, ρ′), (a, τ)), then a r0-good random string r causes E to accept in a
session with the prefix of form ((ca, c0), (ce, ρ′), (a, τ∗)) (τ∗ may be different from τ). We
denote Gr0 the set of all r0-good random strings. Obviously,

Rgood = ∪r0∈RpreGr0 , and Gr0 ∩Gr′0 = ∅ when r0 6= r′0

– Rbad. We call a random string r in R bad if any prefix of r does not fall into Rpre, and
denote Rbad the set of all bad random strings. Warning: Rbad 6= R \Rgood!

A random experiment equivalent to E’s step 2. We can view E’s step 2 as the following
random process: 1) E picks a string t from the following set uniformly:

R′ = (Rbad, r1
0, r

1
0, ...r

1
0︸ ︷︷ ︸

|{r1
1 :r1

0 ||r1
1∈R}|

, r2
0, ...r

2
0︸ ︷︷ ︸

|{r2
1 :r2

0 ||r2
1∈R}|

, ..., ri
0, ..., r

i
0︸ ︷︷ ︸

|{ri
1:ri

0||ri
1∈R}|

, ...)

where ri
0 ∈ Rpre (i ≥ 1) and “||” represents concatenation. For instance, E picks ri

0 with
probability |{ri

1 : ri
0||ri

1 ∈ R}|/|R′|. 2) If t ∈ Rbad, outputs “⊥”; If t ∈ Rpre, chooses a
string r1 from the set {r1 : t||r1 ∈ R} at random, then if t||r1 is t-good18, E goes to step 3,
otherwise, outputs “⊥”.

The equivalence between the above random experiment and E’s step 2 is implied by the
condition 2 of fact B1 (below).

We now define the following probabilities:

– p′: the probability that E goes to step 3 in the above random experiment. This probability
takes over R.

– pr0 : the probability that, given a random string r0 ∈ Rpre, E picks r1 such that r0||r1 is
r0-good. This probability takes over {r1 : r0||r1 ∈ R}.

– p′r0
: the probability that, given a random string r0 ∈ Rpre, P ∗ convinces E in a single

execution of step 4. This probability takes over the randomness used by E in an single
execution of its step 4.

18 Note that the random string r = t||r1 may be good but not t-good, for example, it may be t′-good, and
t′ is a prefix of t with t 6= t′, and then it seems that E should go to step 3 because the random string t||r1

caused it to accept in step 2. However, in this case, we have E in this experiment output ⊥, because this
good random string r = t||r1 was counted into Gt′ with the form r = t′||r′1. We will see the probability
that E goes to its step 3 in this random experiment is exactly the same as in its step 2 in the proof of
fact 1.

25

We now prove the following fact and claims to complete the analysis of resettably-sound
argument of knowledge property. In what follows, we denote by neg(n) be an negligible
function.

Fact B1. The following conditions hold:

1. p− p′ < neg(n);
2. p′ =

∑
r0∈Rpre

Pr[t = r0]pr0 ;
3. For any r0 ∈ Rpre, pr0 − p′r0

< neg(n).

proof. The first condition follows from pseudorandomness of the pseudorandom function
that the honest verifier uses to generate randomness in its first step.

For the second condition, we observe that p′ = |Rgood|/|R| and |R| = |R′| (R′ defined in
the above random experiment), then we have

∑

r0∈Rpre

Pr[t = r0]pr0

=
∑

ri
0∈Rpre

|{ri
1 : ri

0||ri
1 ∈ R}|/|R′| × |Gri

0
|/|{ri

1 : ri
0||ri

1 ∈ R}|

=
∑

r0∈Rpre

|Gr0 |/|R′|

=|Rgood|/|R|
=p′

Note also that the probability p that E goes to step 3 in the actual extraction presented
in figure 7 equals

∑
r0∈Rpre

Pr[t = r0]pr0 = p′. This implies that the equivalence between
the aforementioned random experiment and E’s step 2.

The condition 3 is valid due to the 1-class-bounded resettable zero knowledge property on
NO key instance x0 of the underlying argument PZKKInstD and the perfect-hiding property
of scheme Comv. We can use a simple hybrid argument to establish this. ¤

Claim B2 E runs in expected polynomial time.

proof. Note that E enters step 3 with probability p′ =
∑

r0∈Rpre
Pr[t = r0]pr0 . Given r0 ∈

Rpre, the expected number of trials (i.e., X) in step 3 is n2/pr0 . Let poly0 be the running
time of a single run of step 3 and poly1 be the running time of a single run of step 4. So
the expected running time of E is (poly0 + poly1)(

∑
r0∈Rpre

Pr[t = r0]pr0 × n2/pr0) < 2n2.
(Note that

∑
r0∈Rpre

Pr[t = r0] < 1.) ¤

Claim B3. E extracts a witness of x1 with probability negligibly close to p.

proof. Note that the Goldreich-Kahan technique [15] guarantees that, for every r0 ∈ Rpre, the
estimation n2/X of pr0 in step 3 is within a constant factor of pr0 except with exponentially
small probability, thus, we conclude that X > n2/(c · pr0) holds for some constant c except
with exponentially small probability.

Conditioned on t = r0 ∈ Rpre, the probability that E enters step 4 without extracting a
witness is pr0(1− p′r0

)X , and thus the probability that E enters step 4 without extracting a
witness (Observe that a single successful run of step 4 will enable E to extract a witness) is

26

∑
r0∈Rpre

Pr[t = r0]pr0(1− p′r0
)X . By fact 1, we have

∑

r0∈Rpre

Pr[t = r0]pr0(1− p′r0
)X

≤
∑

r0∈Rpre

Pr[t = r0]pr0(1− pr0 + neg(n))n2/(c·pr0)

If pr0 is negligible, then
∑

r0∈Rpre
Pr[t = r0]pr0(1 − p′r0

)X is negligible; If pr0 > 1/poly for

some polynomial poly, then (1 − pr0 + neg(n))n2/(c·pr0) is negligible, thus
∑

r0∈Rpre
Pr[t =

r0]pr0(1− p′r0
)X is also negligible.

We now conclude that the probability that E extracts a witness of x1 with probability
at least p′(1− neg(n)) = p− neg(n). ¤
¥
Remark On choosing commitment scheme Comv. It seems really hard to do a prob-
ability analysis for our extraction strategy when we replace the perfect-hiding commitment
scheme Comv with a statistically-binding one. The difficulty lies in that this time we can-
not claim pr0 − p′r0

< neg(n) for any r0 ∈pre as in fact 1 because the computational-hiding
property of Comv guarantees only the expected values of pr0 and p′r0

(over choices of r0)
are negligible close.

Proof of resettable witness indistinguishability. Let L = L0 ∨ L1 = {(x0, x1) : x0 ∈
L0 or x1 ∈ L1}, poly(·) be an arbitrary polynomial and V ∗ be an arbitrary malicious PPT
verifier strategy mounting resetting attack. Let x = x1, · · ·, xpoly(n), xi = (xi

0, x
i
1) ∈ L,

wb = w1
b , · · ·, wpoly(n)

b such that (xi
b, w

i
b) ∈ RLb

for i = 1, · · ·, poly(n), b = 0, 1. We set up
hybrid experiments, in which the distribution in one of the hybrids is indistinguishable from
that in preceding one, to prove the Resettable witness indistinguishability.

Hybrid 0 The distribution (P (w0), V ∗)(x) (V ∗’s view in interaction with honest prover us-
ing w0 as witnesses).

Hybrid 1 The distribution (P1,w0(w0), V ∗)(x), where P1,w0 follows the P ’s strategy except
that for every i, 1 ≤ i ≤ poly(n), P1,w0 uses the witness wi

0 for xi
0 to execute the ZAP in

P ’s second step in which it proves xi
0 ∈ L0 or the a is computed correctly (in Hybrid 1,

Hybrid 2 and Hybrid 3, we use the subscript w0 to indicate that the prover will use the
witness in the sequence w0 to execute the ZAP in its second step). Note that in Hybrid 0
the honest prover always uses the witness for the statement that a is computed correctly
to prove that xi

0 ∈ L0 or the a is computed correctly (see the protocol in figure 1). So,
we can claim that this hybrid is indistinguishable from the Hybrid 0 due to the witness
indistinguishability of the ZAP.

Hybrid 2 The distribution (P2,w0(w0), V ∗)(x), where P2,w0 follows P1,w0 ’s strategy, except
that it selects a pseudorandom function fs′′ at random (independent of fs′ that com-
mitted in its first message ca) and produces a in the P ’s second step using randomness
generated by applying this function to the history so far, and for all session shared the
same ca, P2 always uses the same function fs′′ . This hybrid is indistinguishable from the
Hybrid 1 due to computationally hiding of the commitment scheme Comp.

Hybrid 3 The distribution (P2,w0(w1), V ∗)(x), where P2,w0 , given both w0 (used to execute
the ZAP in its second step) and w1, follows prover’s strategy in Hybrid 2, except that
for all i, 1 ≤ i ≤ poly(n), it uses wi

1 for xi
1 to execute the underlying 3-round WI

27

argument for Hamiltonian Cycle . We will show that if there is a distinguisher can tell
this hybrid and Hybrid 2, then there exists a PPT verifier strategy in concurrent model
that violates the witness indistinguishability of the underlying 3-round WI argument.
Note that witness indistinguishability is preserved in concurrent model, thus we conclude
that this hybrid is indistinguishable from the Hybrid 2. Detailed proof follows shortly.

Hybrid 4 The distribution (P3,w0(w1), V ∗)(x), where P3,w0 follows P2,w0 ’s strategy, except
that it produces a in the same way that the honest prover does, that is, in the P ’s second
step it uses randomness generated by applying fs′ that committed in its first message
ca to the history so far to produce a (still, P3,w0 uses the witness in the sequence w0 to
execute the ZAP in its second step). Again, the indistinguishability between this hybrid
and Hybrid 3 is due to computationally hiding of the commitment scheme Comp.

Hybrid 5 (P (w1), V ∗)(x). Note that the prover P in this hybrid follows the honest prover’s
strategy with the witness sequence w1, and therefore the only difference between the P ’s
strategy and the prover’s strategy P3,w0 in Hybrid 4 is that P uses the witness s′ and
r′ that is used in its first step to compute ca (ca = Comp(s′, r′)) to prove x0 ∈ L0 or a
is computed correctly via a ZAP in its second step, while the prover’s strategy P3,w0 in
Hybrid 4 uses the witness wi

0 for xi
0. The indistinguishability between this hybrid and

Hybrid 4 is due to the same reason for the indistinguishability between Hybrid 0 and
Hybrid 1, i.e., the witness indistinguishability of the ZAP.

Let (PW, VW) be the underlying 3-round WI argument for Hamiltonian Cycle. Now we show
that Hybrid 2 is indistinguishable from Hybrid 3. Assume otherwise, there exists an al-
gorithm D distinguishes the two distributions ((P2,w0(w0), V ∗)(x) and ((P2,w0(w1), V ∗)(x),
then we can construct a PPT V ∗

W in concurrent model, such that two distributions (PW(w0), V ∗
W)(x)

and (PW(w1), V ∗
W)(x) are distinguishable. This contradicts the witness indistinguishability of

(PW, VW) (note that WI holds even in concurrent model, cf [13]).
V ∗
W , given (w0) as input19, incorporates V ∗ and handles V ∗’s messages as follows. 1)

When V ∗ initiates a session with incarnation P i,j
2,w0

(1 ≤ i, j ≤ poly(n)), V ∗
W computes ca

and c0 as the honest prover does, and replies with ca and c0 internally. 2) When V ∗ sends
a kth new first message (i.e., ce and ρ′) to incarnation P i,j

2,w0
(1 ≤ i, j ≤ poly(n)), V ∗

W

initiates a session with an new incarnation P i,jk
W (defined by P i,jk

W (α) = PW(xi, wi, rjk
, α),

where xi = (xi
0, x

i
1), wi = (wi

0, w
i
1), rjk

’s are selected independently), obtains the P i,jk
W ’s

first message a, uses the witness wi
0 to produce the proof τ that the first message a of the

PZKKInstD argument is computed correctly, stores a and τ and then forwards them to V ∗;
3) when V ∗ sends a query e to P i,j

2,w0
for its kth first message a, V ∗

W holds on and continues
the execution of the argument PZKKInstD with V ∗, and once V ∗

W accepts this proof from V ∗,
forwards the query e to P i,jk

W , stores its response z and forwards it to V ∗. All V ∗’s repeated
messages are replied with the same answer.

Noth that if V ∗ does not send different challenges to P i,j
2,w0

regarding the same P i,j
2,w0

’s
(actually produced by P i,jk

W) first message a, then V ∗
W works in concurrent model (i.e., it

holds at most one session with each incarnation P i,jk
W). Furthermore, if all incarnations of

PW use the witness sequence wb = w1
b , · · ·, wpoly(n)

b in above interaction, the V ∗’s view in the
above experiment is identical to ((P2,w0(wb), V ∗)(x) (note the fact that both P2,w0 and V ∗

W

use the same witness in the sequence w0 to produce the proof τ), and furthermore, notice
that the V ∗

W ’s view (i.e., (PW(wb), V ∗
W)(x)) is just the copy of V ∗’s view, Thus, we conclude

19 Note that WI is required to hold against malicious verifiers that take both (w0) and (w1) as the auxiliary
input

28

if D can distinguish ((P2,w0(w0), V ∗)(x) and ((P2,w0(w1), V ∗)(x), it also can distinguish
(PW(w0), V ∗

W)(x) and (PW(w1), V ∗
W)(x).

We claim the probability that V ∗
W sends different challenges to P i,jk

W ’s first message a
is negligible. Otherwise, we can use resettably-sound argument of knowledge property on
YES instance x0 of the underlying PZKKInstD argument to break the computational binding
property of Comv (See proof of lemma 2 in appendix C for details). This completes the
proof that Hybrid 2 is indistinguishable from Hybrid 3.
¥

C Proof of resettable zero knowledge of our protocol

C.1 Description of the Simulator

In this section, we give detailed description of our simulator.

Convention: In the each prover step, whenever the honest prover is instructed to apply the
pseudorandom function defined by its random tape20 to generate random bits, our simulator
Simulate tosses coins (i.e., uses truly random bits), following the consistence restriction that
these random bits are the same in all those sessions for which the honest prover is expected
to use the same pseudorandom coins.

For convenience of presentation, we first define some variables and notions.

– t, the recursion depth. We set T = 2 log K
k/128 to the initial value of t.

– Q, the waiting (to be solved) list, consisting of tuples of the form (C(l,m)
f-msg, i, (ai, e

′
i), t)

which indicates the executions of ith iteration of class C
(l,m)
f-msg (in which the simulator

proves that e′i is correct via PZKKInstD argument) is currently being simulated, where ai

is the first message of underlying 3-round WI argument in the corresponding IDWIAOKi
v,

t is the recursion level where this tuple is created. We initialize Q = ∅.
– h, the current execution history of V ∗. Initially, h = (x1, · · ·, xpoly).
– Ct, a table containing the solved classes. We say a session solved if for some i, a transcript

(ai, e
′
i, z

′
i) of the underlying 3-round WI argument in IDWIAOKi

v was obtained, where
e′i is a challenge chosen at random (therefore different from the honest one), and say a
class C

(l,m)
f-msg solved if some session in this class is solved. Note that, for a solved class, the

simulator can carry out any session belonging to this class: It executes the honest prover
strategy to obtain the transcript (ai, ei, zi) of the underlying 3-round WI argument in
IDWIAOKi

v (where the challenge message ei is an honest one); When a session in this
class reaches stage Mainproof, it can extract an valid witness from these two transcripts
and then uses it to complete the stage Mainproof of this session21.

– Unfortunate message. We call a message sent by V ∗ unfortunate messages with respect to
the view of V ∗22 (with respect to the view of the simulator S) if:
1. It is a second V ∗’s message in Stage Initiation or a stage Iteration V ∗’s message in

which the main part of this message23 is different from the corresponding one sent
20 This should not be confused with the case in which the honest party needs to apply some pseudorandom

function to which it already committed in a previous step to produce the current message.
21 In case the witness extracted from these two transcripts is the seed (δ) of γ, we still cannot complete

Mainproof. Fortunately, the Lemma 3 (presented in next subsection) says this occurs only with negligible
probability.

22 Note that the view of V ∗ is the history of the current simulation thread, whereas the view of S is the
whole simulation history so far, which may include many threads.

23 I.e, the current message excluding those ZAP proofs in this step

29

in a previous session belonging to the same class that appears in the current thread
(appears in the whole simulation history so far, resp.). Note that the two sessions
have the same first three messages, and when the first prover message γ is NO
instance, an unfortunate message of this type means that V ∗ breaks the uniqueness
of the relevant InstD-VRF function. Or,

2. It is a V ∗’s last message of an accepting correctness proof for a challenge message
e of IDWIAOKS

p or IDWIAOKM
p in the current session, which has the same session-

prefix till just before this challenge delivery with a previous session appearing in the
current thread (appearing in the whole simulation history so far, resp.) where the
corresponding challenge is different than e and V ∗ already completed the correctness
proof successfully for it. This implies that V ∗ can open a commitment ceto the
challenge into two distinct values.

The following table are accessible to all algorithms at all levels of the recursion.

– S, a table containing triplets of the form (C(l,m)
f-msg, i, (ai, e

′
i, z

′
i)), the information of the

solved class C
(l,m)
f-msg.

Remark on unfortunate message. We stress our simulator checks only the current thread,
and outputs ⊥ when the current message is a unfortunate message with respect to this thread
(i.e., with respect to the view of V ∗). However, in the analysis of our simulator, we need
to show that the probability that our simulator receives an unfortunate message even with
respect to all threads so far (i.e., with respect to the view of the simulator S) is negligible
small (see proofs of lemma 2 and 3 in the next subsection).

The detailed description of our simulator depicted in figure 8, figure 9, and figure 10 and
figure 11.

The simulator S:

Run Simulate(T, (x1, · · ·, xpoly), ∅, ∅, ∅). Let h be the output of Simulate(T, (x1, · · ·, xpoly), ∅, ∅, ∅). If the
last message in h is ⊥, output ⊥; otherwise, output h.

Fig. 8. The simulator.

Remarks.

1. We remark that the goal of the run of Solve(t, h,Q, Ct+1, C
(l,m)
f-msg, i) at level t is to solves

one of the classes listed in Q′ = Q⋃
(C(l,m)

f-msg, i, (ai, e
′
i), t), not just the class C

(l,m)
f-msg; Fur-

thermore, once a class having an entry (C(l′,m′)
f-msg’ , j, (aj , e

′
j), tsol) in Q′ (possibly, tsol > t)

is solved, the simulator S returns immediately to the point where this entry was created,
i.e., where the first prover step in jth iteration was reached for the first time by one
session belonging to class C

(l′,m′)
f-msg’ , and all entries with the level index t ≤ tsol are deleted

(see step 2(d)iA of Simulate and step 1(f) of Solve). Previous rewinding strategies only
focus on the current session for which Solve is invoked, and Solve does not return due
to some other session is solved.
Our strategy makes it clear that for each level 0 ≤ t < T −1, the waiting list Q contains
only one entry of the form (·, ·, ·, t). This means in a single thread there are at most

30

Simulate(t, h,Q, Ct,S):

1. Extend by one verifier message: Set v-msg←− V ∗(h), h ←− (h, v-msg).
(a) If v-msg is halt, return h;

(b) If v-msg is an accepting last message z′i of ith Iteration in session s ∈ C
(l,m)
f-msg , and

(C
(l,m)
f-msg , i, (ai, e

′
i), tsol) ∈ Q, set S ←− (S, (C

(l,m)
f-msg , i, (ai, e

′
i, z

′
i))), Ct ←− (Ct, C

(l,m)
f-msg), return

h.
(c) If v-msg is an unfortunate message with respect to the view of V ∗ (i.e., with respect to h), set

the next prover message p-msg =⊥, h ←− (h, p-msg) and return h.
(d) Otherwise, continue.

2. Extend by one prover message (denote the next scheduled prover message by p-msg):
(a) If p-msg is the prover first message in session s belonging to the (k/128)t/16 + 1st new class,

set p-msg =⊥. Otherwise, continue.
(b) If p-msg is a prover P (l,m)’s message in stage Initialization or stage Setup for session s, produce

p-msg by emulating the honest incarnation P (l,m) except that Simulate generates an YES
instance γ and uses the corresponding witness for γ to carry out IDWIAOKS

p.

(c) If p-msg is an ith Iteration prover P (l,m)’s message in session s ∈ C
(l,m)
f-msg , and C

(l,m)
f-msg ∈ Ct, then

produce p-msg by emulating the honest incarnation P (l,m).

(d) If p-msg is an ith iteration prover P (l,m)’s challenge message in session s ∈ C
(l,m)
f-msg , and C

(l,m)
f-msg /∈

Ct, then

i. If s is the first session in C
(l,m)
f-msg that reaches this step, produce p-msg by emulating the

honest incarnation P (l,m). In addition, if t ≥ 1 (for t = 0, this additional step is ignored),
do the following:

A. (Invocation of Solve.) Run Solve(t − 1, h,Q, Ct, C
(l,m)
f-msg , i). Set (C′t, qsol) ←− Solve(t −

1, h,Q, Ct, C
(l,m)
f-msg , i) and update Ct ←− C′t. If qsol = (C

(l′,m′)
f-msg’ , j, (aj , e

′
j), tsol) and tsol ≥ t

(this means qsol = (C
(l′,m′)
f-msg’ , j, (aj , e

′
j), tsol) ∈ Q, i.e., the current invocation of Simulate

succeeds in solving one class on the list Q) return h; If tsol = t − 1 (this means the

current class C
(l,m)
f-msg is solved, note that this class is not on the list Q) or qsol = ∅ (the

current invocation of Solve fails), continue.

ii. If s is not the first session in C
(l,m)
f-msg that reaches this step, set p-msg to be the same message

sent in a previous session (stored in h) belonging to this class.

(e) If p-msg is an ith iteration prover P (l,m)’s non-challenge message (belonging to PZKKInstD

arugment) in session s ∈ C
(l,m)
f-msg , and C

(l,m)
f-msg /∈ Ct, then

i. If for some e′i, (C
(l,m)
f-msg , i, (ai, e

′
i), t

′) ∈ Q (t′ ≥ t), then forward (h, C
(l,m)
f-msg , i, t′, t)

to Simt
KID , the simulator for the underlying argument PZKKInstD, and set p-msg =

Simt
KID(h, C

(l,m)
f-msg , i, t′, t).

ii. Otherwise, produce p-msg by emulating the honest incarnation P (l,m).

(f) If p-msg is a prover P (l,m)’s message in the stage Mainproof for session s ∈ C
(l,m)
f-msg , C

(l,m)
f-msg ∈ Ct,

and (C
(l,m)
f-msg , i, (ai, e

′
i, z

′
i)) ∈ S, retrieve the subtranscript (ai, ei, zi) of the underlying 3-round

WI argument of corresponding IDWIAOKi
v from h, compute a witness w′ from (ai, e

′
i, z

′
i) and

(ai, ei, zi), then
i. If β (sent in the verifier’s first step for the current class) equals f(w′), then produce p-msg

by emulating the honest incarnation P (l,m) except that Simulate uses w′ (rather than the
witness wl for xl ∈ L) as witness to carry out IDWIAOKM

p .
ii. Otherwise, set p-msg =⊥.

(g) If p-msg is a prover P (l,m)’s message in the stage Mainproof for session s ∈ C
(l,m)
f-msg , and C

(l,m)
f-msg /∈

Ct, then set p-msg =⊥.
3. Set h ←− (h, p-msg). If p-msg =⊥, return h; Otherwise, go back to step 1.

Fig. 9. The procedure Simulate.

31

Solve(t, h,Q, Ct+1, C
(l,m)
f-msg , i):

1. for d = 1 to 24K, do:
(a) Set Ct ←− Ct+1 (each attempt begins with the same table Ct+1).
(b) Choose e′i at random, which serves as the challenge message of the ith Iteration in session

s ∈ C
(l,m)
f-msg

(c) Set h ←− (h, e′i), Q ←− (Q, (C
(l,m)
f-msg , i, (ai, e

′
i), t)).

(d) Run Simulate(t, h,Q, Ct,S).
(e) Set C′t+1 ←− Ct (Store the classes in C′t+1 that solved during the current attempt).

(f) Check table S and Q, if for some C
(l′,m′)
f-msg’ and j such that (C

(l′,m′)
f-msg’ , j, (aj , e

′
j , z

′
j)) ∈ S and

(C
(l′,m′)
f-msg’ , j, (aj , e

′
j), tsol) ∈ Q, then let qsol = (C

(l′,m′)
f-msg’ , j, (aj , e

′
j), tsol), and

i. Delete the tuplet (C
(l,m)
f-msg , i, (ai, e

′
i), t) from Q. (Before Solve ends, it delete the tuple created

in this run from Q.)
ii. Return (C′t+1, qsol).

(g) Otherwise, d = d + 1 and go to step (a).

2. Delete the tuplet (C
(l,m)
f-msg , i, (ai, e

′
i), t) from Q, and return (C′t+1, ∅).

Fig. 10. The procedure Solve.

T < log n classes of sessions with respect to the argument PZKKInstD being simulated.
This is crucial for our analysis because our argument PZKKInstD in those special-purpose
IDWIAOKi

v satisfies only log n-class-bounded resettable zero knowledge property.
2. The procedure Solve does not update the history, and furthermore, all attempts within

a call of Solve are completely independent. Observe that each attempt within the invo-
cation of Solve at level t starts from exactly the same state: the current attempt uses
only information about classes solved (stored in S) in this attempt or solved before
this invocation of Solve, and ignores the information about classes solved in previous
attempts within the same invocation of Solve. Note that different attempts might solve
different classes (at level lower than t) that are not in the waiting list Q′ (as defined in
the first remark), and hence the table S might differ at the beginning of each attempt.
This property is due to the fact that the Simulate checks only the local table Ct (rather
than the global table S) in step 2 to decide what to do, and the local table Ct is the
same at the beginning of each attempt within a call of Solve at level t. (see step 2 of
Simulate and step 1(a) of Solve.) This helps us simplify our analysis much.

3. As in previous simulation strategies[6,22], the information about classes solved in all
attempts within a call of Solve at level t is accessible to Simulate at level t + 1 (see step
2(d)iA of Simulate and step 1(e) and 1(f)iiof Solve).

4. The correctness of Simt
KID follows from the following facts.

– The underlying procedure Simt
B, which treats the joint code of the residual procedures

Intermedt, Simulate at level t24 and V ∗ as a (non-resetting) malicious verifier, handles
only a single subsession with respect to some ith iteration of a class C

(l,m)
f-msg for which

the current Simulate at level t was invoked.
– All subsessions with respect the ith iteration of a class C

(l,m)
f-msg formes a single class

of subsessions (see footnote 8), and when a subsession belonging to this class first
reaches the end of stage 1 of the underlying simplified Pass-Rosen protocol, Simt

B

already know the corresponding “valid” witness (i.e., the joint code of the residual
24 As mentioned before, the Simulate at level t includes all subroutines at lower level invoked by it directly

or indirectly (except the current Simt
KID).

32

Simt
KID(h, C

(l,m)
f-msg , i, t′, t′′):

Run the procedure consisting of an intermediator Intermedt and a slightly modified Barak’s simulator
Simt

B (defined below)on input (h, C
(l,m)
f-msg , i, t′, t′′).

/*Recall that here t′ indicates that the next prover message will be produced by Simt′
KID invoked at level

t′ and t′′ indicates the level at which Simulate made this query. Note that we always have t′ ≥ t and
t′′ ≤ t.
The queries to Simt

KID comes directly from two procedures: the Simulate at level t and Simt−1
KID (though

Simt−1
KID does not make query itself). The query from the former one has t′′ = t, and the query from the

latter has t′′ < t./*

Intermedt: maintain a table Rt (initially being empty) and act as follows.

1. Upon receiving (h, C
(l,m)
f-msg , i, t′, t′′), retrieve the subtranscript tr of the underlying PZKKInstD argu-

ment in the ith Iteration (i.e., the messages sent in stage 2 of this PZKKInstD argument, together
with the corresponding statement “challenge is correct”) of the current session, and store tr in Rt.

2. If the next scheduled prover message to tr is stored in Rt (as we will see, this implies this query
comes from the current Simulate at level t), forward the same message to the current Simulate at
level t.

3. Else, do the following:
(a) If t′′ ≤ t < t′, forward (h, C

(l,m)
f-msg , i, t′, t′′) to Simt+1

KID , obtain the next prover message to tr,

store this message in Rt and forward it to Simt
B , then act as follows. If t′′ < t, forward it to

Simt−1
KID invoked at the level t− 1; Otherwise (t′′ = t), forward it to Simulate at this level t.

/*Comments: Note that Intermedt stores the answer from Simt+1
KID , and this implies that it

never repeats the same query to Simt+1
KID . It should also be noted that here Intermedt does not

forward (h, C
(l,m)
f-msg , i, t′, t′′) to the Simt′

KID invoked at level t′ (which will produce the next prover

message) directly, instead it forward it to Simt+1
KID invoked at its neighbor level t + 1. This

means that (h, C
(l,m)
f-msg , i, t′, t′′) will go through Simt+1

KID , Simt+2
KID ..., and finally arrives at Simt′

KID

(t < t + 1 < · · · < t′). Once the next prover message is produced by Simt′
KID, it will go through

(and will be stored by) Simt′−1
KID , Simt′−1

KID ,..., and finally arrive at Simt′′
KID and will be further

forwarded to Simulate at level t′′. This guarantees that for all t′ > t, Simt
B can obtain those

prover messages produced by Simt′
KID (and treats these messages as external messages)./*

(b) If t′′ ≤ t = t′, forward tr to the modified Barak’s simulator Simt
B, obtain the next prover

message from Simt
B, store this message in Rt and then act in the same way as in the previous

step: If t′′ < t, forward it to Simt−1
KID invoked at the level t−1; Otherwise, forward it to Simulate

at this level t.

Simt
B: given procedures Intermedt, Simulate(t, h,Q, Ct,S), and V ∗ as input, act as follows.

1. Upon receiving a prover message from Intermedt, just store it.
2. Upon receiving tr, produce the next scheduled prover message as the Barak’s simulator (for log n-

bounded current ZK argument) with the following natural modifications:

– At the first prover step of this subsession (where the Barak’s simulator needs to commit a
code), Simt

B computes a commitment Com(h(Π(y1, ·))) to hash value of Π(y1, ·), where Π is
the joint code of Intermedt, Simulate(t, h,Q, Ct,S) (except the current subroutine Simt

KID, but
including all procedures at lower level invoked by it directly or indirectly), and V ∗, where h
is the hash function sent by V ∗, y1 denotes the sequence of prover messages Simt

B received
(from Simt′

B at higher level t′) so far, i.e., Π(y1, ·) is the joint code of the residual procedures
Intermedt, Simulate(t, h,Q, Ct,S), and V ∗. Simt

B forward Com(h(Π(y1, ·))) to Intermedt.
– After the first prover step, Simt

B proceeds exactly as Barak’s simulator by treating the prover
messages it received between its first step and the second verifier step of this subsession as
external messages.

/*Comments: It should be noted that the procedure Simt
B handles only a single session, though it

is able to simulate log n sessions. Note also that if the total length of all prover messages (being

treated by Simt
B as external messages), which are produced by those Simt′

KID invoked at higher level
t′ > t, is “short”, then this Simt

B works./*

Fig. 11. The procedure Simt
KID.

33

procedures Intermedt, Simulate at level t and V ∗, and some relevant prover messages
sent in other sessions handled by Simt′

KID at higher level t′) to carry out this sub-
session. It is easy to verify that Simt

KID succeeds as long as the total length of the
external messages is “short”. This is the case because there are only T − t < log n
subsessions (that simulated by some Simt′

KID at higher level t′ > t.) for which Simt
KID

treats the prover’s messages therein as external messages.
– The same prover message produced by Simt

B can be used (by Intermedt) to answer
any V ∗’s query in the same step in any subsession belonging to this class. This is
due to that the all subsessions belonging to this class share the same transcript of a
single session of the underlying simplified Pass-Rosen protocol (see section 4 for the
structure of a class of sessions) even in our case that γ is an YES instance (see the
proof of lemma 2 and 3 in next section).
performs well: It takes only t sessions (in concurrent model),

It should be noted that when the simulator commits to a code, this code needs to
be well-defined, thus the simulator Simt′′

KID at lower level is not able to commit to the
simulator Simt

KID at higher level; In our setting, at the bottom level, all Sim0
KID is well

defined; Note that Sim1
KID is well defined as long as all Sim0

KID is well defined; Repeating
this, it is easy to see that when Simt

KID commits to the code of Simulate at level t, all
codes of Simt′

KID at lower level t′ < t therein are well defined.

C.2 Analysis of simulator S

Roughly, our analysis of simulator S proceeds as follows. We first prove that, conditioned
on the event that the output of S is not ⊥, S is valid, and then we bound the probability
that S outputs ⊥. The latter is most challenging task in this analysis, and on a high level,
its analysis somewhat similar to the one in [6]. However, due to the non-black box nature
of the simulator and some subtleties arising therefrom, our techniques are very different.

We prove the following lemmas to conclude that our simulator works.

Lemma 1. Conditioned on not being ⊥, the history output by simulator S is (computa-
tional) indistinguishable from the real interaction history.

Proof. Note that at the top level of recursion, Simulate(T, (x1, · · ·, xpoly), ∅, ∅) acts exactly as
the honest provers except that: 1) It generates YES instance γ; 2) It uses witnesses different
from the ones used by honest prover to carried out those IDWIAOKS

p and IDWIAOKM
p ; 3)

It uses truly random coins whenever the honest prover uses pseudorandom coins (by the
Convention we made at the beginning of description of the simulator).

Note also that at level T , Simulate does not do any non-black-box simulation. This
enables us to prove this lemma by simple hybrid arguments. Consider the following hybrid
prover:

HProver acts exactly as honest prover except that, it generates YES instance γ in every
session.

The indistinguishability between the interaction between V ∗ and HProvers and the real
interaction follows from (using standard hybrid argument again) the pseudorandomness of
G. Similarly, we consider the following hybrid simulator:

S′ acts exactly as S except that, it generates (pseudo)randomness in each prover step in
the same way as honest prover.

34

Due to the resettable witness indistinguishability of IDWIAOKS
p and IDWIAOKM

p , the out-
put of S′ conditioned on not being “⊥”25 is indistinguishable from the interaction between
V ∗ and HProvers. Furthermore, it follows from the pseudorandomness of the pseudorandom
function (defined by random tape of the honest prover) that, the output of S′ is indistin-
guishable from the output of S (both conditioned on not being “⊥”). 2

Observe that there are only four events that cause the simulator S to output ⊥:

1(too many new classes): There are more than (k/128)T /16 new classes of sessions ini-
tiated by V ∗ within the invocation of Simulate at the top level T .

2(unfortunate message): Simulate at some level of the recursion receives a unfortunate
message with respect to the view of V ∗.

3(false witness): Simulate at the top level T of the recursion obtains a false witness during
some executions of stage Iteration of some session, i.e., it obtains the witness that it uses
to execute the stage Setup in this session (class), rather than the preimage of the function
value sent in V ∗ first step.

4(getting stuck). Simulate at the top level T of the recursion gets stuck on some session,
i.e., it does not get any witness from executions of stage Iteration of any session in the
same class to which the current session belongs.

Note that the total number of sessions (hence the total number of classes) initiated by V ∗

within a run of Simulate(T, (x1, ···, xpoly), ∅, ∅) is at most K, and K < K2/16 < (k/128)T /16
for K > 16. Thus, we have

Fact. Event 1 will never happen.

The following lemmas say the latter three events occur with only negligible probability,
this ends the analysis of our simulator S.

Lemma 2. Event 2 occurs only with negligible probability.)

Proof. We start with a proof for unfortunate message of type 1.

Claim 2.1. The probability that S receives an unfortunate message of type 1 with respect
to the view of V ∗ is negligible.

Proof. We order V ∗’s steps according to the order of appearance in the whole simulation.
Assume that in the sth step of V ∗, S receives an unfortunate message of type 1 with respect
to the view of V ∗ with probability p.

Consider the following non-uniform hybrid simulator HybridS.

HybridS. Given all witnesses (w1, · · ·, wpoly) for all common inputs (x1, · · ·, xpoly) as an
auxiliary input, HybridS acts exactly as S except that, for every i and every k, whenever
S runs the non-black-box simulator Simt

KID to carry out the subprotocol PZKKInstD of the
special-purpose IDWIAOKi

v in ith iteration of session k, HybridS uses the witness for the
relevant common input to carry out this subprotocol. (Recall that in this subprotcol of
the special-purpose IDWIAOKi

v, the prover proves to verifier an OR statement: he knows
the randomness that used in committing the current challenge in a previous step or
x ∈ L.)

We will prove that, with the same probability p, HybridS receives an unfortunate message
with respect to the view of V ∗ in the sth step of V ∗.

We define the following events:
25 Note that the output of S′ does not contain any simulated subsession.

35

– Ai: the event that S (HybridS) never outputs ⊥ in the first i steps of V ∗. We denote
PrS[Ai] (PrH[Ai], resp.) the probability that Ai happens to S (HybridS, resp.).

– Bb
i , b = 1, 2, 3, 4: B1

i denotes the event that S (HybridS) receives an unfortunate message
of 1 with respect to the view of V ∗ in the ith step of V ∗; B2

i denotes the event that that
S (HybridS) receives an unfortunate message of 2 with respect to the view of V ∗ in the
ith step of V ∗; B3

i denotes the event that that S (HybridS) obtains an false witness in
the ith step of V ∗; B4

i denotes the event that that S (HybridS) gets stuck in the ith step
of V ∗. We define PrS[Bb

i] and PrH[Bb
i] in the same way as above.

Note that
⋃

1≤b≤4,j≤i B
b
j = Ai

We show that, for every b and i, PrS[Bb
i] = PrH[Bb

i] by induction on i. Obviously,
PrS[Bb

1] = PrH[Bb
1]. Assume that for all i ≤ s and all b, PrS[Bb

i] = PrH[Bb
i] holds. Note

that this implies PrS[As] = PrH[As].
We now consider the case i = s + 1. We order the threads according to the order of

appearance, and suppose that the (s + 1)th step message of V ∗ sent in thread m.
Thinking of HybridS as honest prover in those subsessions that are simulated by S, and

S as the simulator for these sessions. So, if As happens to both S and HybridS, by the
Convention (the simulator S and HybridS use truly random and independent coins in the
abovementioned subsessions), we have that the Conditions for PZK (see section 3.2)
hold. Note also that the commitment scheme used for committing the challenge message
in IDWIAOKi

v are perfect hiding, thus we can conclude that the first thread produced by S
and the first thread simulated by HybridS are identical. Furthermore, the (random) tables
S and C maintained by S and those maintained by HybridS at the beginning of thread 2
are identical as long as the first threads are identical. Repeating the same reasoning, we
have that, if As happens to both S and HybridS, then the thread m before the (s + 1)th

step of V ∗ produced HybridS and the one simulated by S are identical. Thus, we have
PrS[Bb

s+1|As] = PrH[Bb
s+1|As] for every b.

Observe that PrS[Bb
s+1|As] = PrH[Bb

s+1|As] = 0. Hence, we have PrS[Bb
s+1] = PrS[Bb

s+1|As]·
PrS[As], and PrH[Bb

s+1] = PrH[Bb
s+1|As] · PrH[As]. As showed above, PrS[Bb

s+1|As] =
PrH[Bb

s+1|As], and by the hypothesis on i = s (PrS[As] = PrH[As]), we conclude that
PrS[Bb

i] = PrH[Bb
i]. This complete the induction, and in particular, PrS[B1

s+1] = PrH[B1
s+1].

We now draw the conclusion that if S (Simulate) receives an unfortunate message of type
1 with respect to the view of V ∗ during the simulation with probability p, then, with the
same probability p, HybridS receives an unfortunate message with respect to the view of V ∗

during its interaction with V ∗.
We now show p is negligible. Consider the following procedures.

HybridS1. Given all witnesses (w1, · · ·, wpoly) for all common inputs (x1, · · ·, xpoly) as an
auxiliary input, HybridS1 acts exactly as HybridS except that, for every IDWIAOKS

p and
IDWIAOKM

p , HybridS1 uses the witness for the relevant common input to carry out this
subprotocol.

HybridS2. Given all witnesses (w1, · · ·, wpoly) for all common inputs (x1, · · ·, xpoly) as an
auxiliary input, HybridS2 acts exactly as HybridS1 except that, HybridS2 generates a NO
instance γ in its first step in every session.

It is easy to see that, the probability p1 that HybridS1 receives an unfortunate message
of type 1 with respect to the view of V ∗ during its simulation is negligibly close to p;
Otherwise, we can construct an V ∗∗ (incorporating V ∗) to break the resettable WI property
of these IDWIAOKS

p and IDWIAOKM
p : Given all witnesses (w1, ···, wpoly) for all common inputs

36

(x1, · · ·, xpoly) as an auxiliary input, V ∗∗ invokes many independent external provers of
the arguments IDWIAOKS

p and IDWIAOKM
p

26, simply forwards any V ∗’s message belonging
to these arguments to a relevant prover and replies to V ∗ with the response from this
prover, while simulating V ∗’s view (note that it is a black-box simulation.) using the strategy
HybridS1 or HybridS in the remaining part of a session. It is easy to see that and if p1 and
p are not negligibly close, then we can setup a standard hybrid argument to break the
resettable WI property of one of these arguments.

Again by hybrid argument, we can conclude that the probability p2 that HybridS2 re-
ceives an unfortunate message of type 1 with respect to the view of V ∗ during its simulation
is negligibly close to p1 due to the pseudorandomness of the pseudorandom generator G.
Note that the messages of type 1 with respect to the view of V ∗ are the output of InstD-
VRF functions used by V ∗ and γ serves as the key instance of this function. Since all γ
are NO instances and therefore all these InstD-VRF functions satisfies the uniqueness, p2 is
negligible. Thus p1 and p are negligible. 2

Remark on special-purpose IDWIAOK and perfect ZK of PZKKInstD. The major step
in proofs of this and next lemma is to construct HybridS, which does not do any non-black-
box simulation. This important feature relies on the special-purpose IDWIAOK and allows
us to handle arbitrary external messages in the analysis of our simulator. It seems that it is
necessary to require perfect ZK from PZKKInstD in our case. If PZKKInstD satisfies only com-
putational ZK, we don’t know how to justify the (even computational) indistinguishability
between HybridS and S. Note that in S, the non-black-box simulator at higher level commits
to the code of those at lower level. It is really hard to deal with this complex situation with
only computational ZK.
Remark on handling external message. We stress that we cannot apply the above
reasoning on HybridS1 and HybridS2 to S. Note that, as showed above, in order to break
the resettable WI of IDWIAOKS

p or IDWIAOKM
p , or to break the pseudorandomness of G,

we need to construct many external provers or make query to an external oracle (that will
reply with pseudorandom bits or truly random bits), while simulating the view of V ∗. In this
setting, the simulator needs to handle many (cannot be bounded by any fixed polynomial)
external messages, however, our simulator S cannot do this because the current non-black-
box technique requires that there is a priori bound on the total length of all external
messages. This observation holds in Claim 2.2 and Lemma 3.

As for unfortunate message of type 2, we prove the following stronger claim to give a close
look at the non-malleable issue.

Claim 2.2. The probability that S an unfortunate message of type 2 with respect to the
view of S is negligible.

Consider the non-uniform hybrid simulator HybridS above. Let p be the probability that
S receives an unfortunate message of type 2 with respect to the view of S.

We let B′2
s denote the event that that S (HybridS) receives an unfortunate message of

2 with respect to the view of S (HybridS) in the sth step of V ∗, and let As as defined in
Claim 2.1. As showed in Claim 2.1, we have PrS[As] = PrH[As] for any i. Using exactly
the same induction on i as in Claim 2.1, we can conclude that p = PrS[B′2

s] = PrH[B′2
s]

for all s, i.e., with the same probability p, the procedure HybridS receives an unfortunate
message of type 2 with respect to the view of Sduring its simulation.

We construct the following procedure to show that p is negligible.
26 We assume these provers are provided with two witness sequences. For the argument IDWIAOKM

p , we have
V ∗∗ feed it with the witness α (such that β = f(α)) once V ∗∗ extracts from V ∗.

37

HybridS3. Given all witnesses (w1, · · ·, wpoly) for all common inputs (x1, · · ·, xpoly) as an
auxiliary input, HybridS3 acts exactly as HybridS except that, in every IDWIAOKS

p and
IDWIAOKM

p , whenever HybridS applies his InstD-VRF function to generate the next mes-
sage, HybridS3 chooses a truly random string (complying with the consistence restric-
tion) and uses the witness for the common input (that serves as the key instance for his
InstD-VRF) to prove the correctness of this random string via a ZAP.

Observe that, due to the pseudorandomness of the InstD-VRF on YES instance x, with
probability negligibly close to p, HybridS3 receives an unfortunate message of type 2 with
respect to the view of S during its simulation. Suppose that this happens in two sessions with
the same commitment ce (to challenge e) in which V ∗ convinced HybridS3 to accept the two
different challenges e and e′ via the underlying PZKKInstD in IDWIAOKS

p (or IDWIAOKM
p).

We now construct an cheating prover P ∗ (incorporating a slightly modified HybridS3

and V ∗) of the underlying simplified Pass-Rosen protocol. P ∗ has HybridS3 return to the
point where e is just sent, and guesses a session27 for which V ∗ will succeed in proving the
correctness of e (note that the probability that this guess is right is non-negligible, say p′),
and forward V ∗’s message in this session to an external verifier V of the simplified Pass-
Rosen protocol; For every V ’s message (that is truly random string), P ∗ uses the witness for
the common input (that serves as the key instance prove the “correctness” of this message
via a ZAP; For every V ∗’s message sent to HybridS3 in this session, P ∗ forwards it to V ;
For any other sessions, HybridS3 remains unchanged.

It is clear that the V ∗’s view in the above experiment is identical to that in an interaction
with HybridS3. Thus, P ∗ will succeed to convince V to accept e with probability negligibly
close to pp′. By argument of knowledge property of the simplified Pass-Rosen protocol, we
can extract an s such that ce = Com(e, s) with probability pp′; Note that when we have
HybridS3 return to the point where e′ is just sent and have P ∗ do the above experiment
again, we can extract another s′ such that ce = Com(e′, s′) with probability pp′′. Thus if
p is non-negligible (note that p′ is non-negligible), we break the binding property of the
commitment scheme Com with non-negligible probability. 2

Remark. Observe that this claim (and the next lemma) essentially states that our pro-
tocol is immune to the non-malleable attack from the malicious resetting verifier V ∗: V ∗

does not learn how to simulate a correctness proof for an “incorrect” challenge from our
simulator. 2

Lemma 3. Event 3 occurs only with negligible probability.

Proof. We have showed in Claim 2.1 that PrS[B3
s] = PrH[B3

s] for all s, that is, if event 3
occurs with non-negligible probability p, then it occurs on HybridS with the same probability
p.

Using the same reasoning in proof of Claim 2.1, we have the probability p1 that event
3 occurs on HybridS1 is negligibly close to p due to the resettability WI property of the
argument IDWIAOKS

p or IDWIAOKM
p , and the probability p2 that event 3 occurs on HybridS2

is negligibly close to p1 due to that the pseudorandomness of G. However, there is no “false”
witness (more precisely, there exists no δ such that γ = G(δ) except with exponentially small
probability) in HybridS2. This leads to a contradiction that p is negligible. 2

Lemma 4. Event 4 occurs only with negligible probability.

We will prove this lemma in next section.
27 Here we simply assume that V ∗ never repeats its query, i.e., it never sends the same subsession-prefix

with respect to the underlying simplified Pass-Rosen protocol.

38

C.3 Proof of Lemma 4

In this section we mainly prove that at any level t ≥ 1 of the recursion, Simulate will get
stuck on a new session (class) only with negligible probability. This leads to the conclusion
of Lemma 4 because there is no old session (class) for the initial state of the run of Simulate
at level T .

We refer to a state of S at some point as the configuration of S (including the current
history) at the current point, excluding the randomness used in its run after this point. An
execution of the simulator consists of a sequence of consecutive states. Given randomness r,
we denote an invocation of Simulate with randomness r by invocation r, and say that a class
of sessions is complete in invocation r if some session in this class reaches the end of the
stage Iteration before the end of this invocation. For more precise statement, we rephrase the
new (old) in terms of state: a class of sessions is said to be new for a state σ if the verifier’s
first message of this class does not appear in the history h specified in σ; Otherwise, it is
called old for state σ. We also say class of sessions is new for an invocation of Simulate if
this class is new for the start state of this invocation.

Now let’s consider a random invocation r of Simulate starting with initial state σinit at
level t > 1, and the jth new (for σinit) class28 appearing in this invocation.

Let σi be the state at which the first message of ith iteration of the jth class is just
reached (i.e., some session in this class reaches the challenge message of i − 1th iteration.)
during this invocation r of Simulate at level t. Note also that at state σi Solve at level t− 1
is invoked. Let r = rinit ‖ r1 ‖ · · · ‖ ri ‖ · · ·, where ri (resp., rinit) is the randomness used in
the execution segment from state σi (resp., σinit) to σi+1 (resp., σ1) of this invocation r of
Simulate at level t (excluding the randomness used in invocations of Solve at level t − 1.),
and all these segments of randomness are chosen independently (by Convention). We call
such a segment with randomness ri execution ri.

Our mission is to bound the probability that this invocation r of Simulate at level t gets
stuck on the jth new class for any t ≥ 1. This yields Lemma 4 immediately. First, we
introduce some notations.

– Successful attempt. Let the waiting list for which the above invocation r of Simulate at
level t is initiated be Q. We call an attempt within an invocation of Solve with start
state σi at level t − 1 successful if at the end of this attempt, either one class listed in
Q or the current jth class is solved; Otherwise, we say this attempt fails; We say an
invocation of Solve successful if an attempt therein is successful.

– The random variables hsim
σi,ri

and hatt
σi,r′i

. For an execution ri of Simulate from state σi to

state σi+1
29 at level t, we denote by hsim

σi,ri
the segment of transcript of this execution30;

We denote by hatt
σi,r′i

the transcript of a single attempt using uniformly chosen randomness
r′i within an invocation of Solve starting with state σi at level t− 1.

– The probability λatt
σi

and λsim
σi

. Let Q as above. For a random execution ri of Simulate
from state σi to state σi+1 at level t, we denote by λsim

σi
the probability that Simulate

during this random execution fails to solve any class in the waiting list of Q and the jth

new class does not reach the last verifier message of ith iteration (i.e., no session in this
class reaches the last verifier message of i-th iteration) due to V ∗ halts or Simulate gets

28 As mentioned before, we order the new and complete classes in this invocation according to the order of
appearance.

29 Here by “to state σi+1” we mean that the execution ri does not go past the state σi+1, rather than ending
with state σi+1. (Note that it is possible Simulate returns before reaching σi+1.)

30

39

stuck on an old class for σi, and denote by λatt
σi

the probability that a single attempt
within an invocation of Solve with start state σi at level t − 1 fails due to V ∗ halts or
this attempt gets stuck on an old class for σi.

– The random variables µsim
σi,ri

, µatt
σi,r′i

. We let µsim
σi,ri

denote the number of new and complete

classes recorded in hsim
σi,ri

, and let µatt
σi,r′i

denote the number of new and complete classes
recorded in hatt

σi,r′i
.

Our mission is accomplished as follows. We start with the observation that if we impose
the same restriction on the number of new classes allowed in the (segment) execution ri of
Simulate at level t as in an attempt within an invocation of Solve starting with state σi at
level t−1, then hsim

σi,ri
and hatt

σi,r′i
are indistinguishable (Claim 4.1), |λsim

σi
−λatt

σi
| is negligible

and µsim
σi,ri

is indistinguishable from µatt
σi,r′i

. We then prove that, if for many i, the probability

that λatt
σi

is high or µatt
σi,r′i

is large is high, then the jth new class (for state σinit) reaches the
end of stage Iteration only with negligible probability (Claim 4.2 and Claim 4.3). This
enable us to conclude that this invocation of Simulate gets stuck on jth new class only with
negligible probability (Claim 4.4), and therefore yields Lemma 4.3 immediately (Claim
4.5).

Let mi be the maximal number of new classes for state σi allowed to be initiated in
the (segment) execution ri of Simulate at level t, which is inherited from the bound (which
is (k/128)t/16) on the number of new classes for state σinit allowed to be initiated in the
current invocation of Simulate.

Set li = min{mi, (k/128)t−1/16}. (Recall that (k/128)t−1/16 is the upper bound on the
number of new classes for state σi allowed to be initiated in an attempt within a call of
Solve starting with state σi at level t−1.) We denote by hsim

σi,ri
|li (hatt

σi,r′i
|li) the prefix of hsim

σi,ri

(hatt
σi,r′i

, resp.) truncated at the point where the l + 1th new class for state σi appears. We

define λatt
σi
|li , λsim

σi
|li , µsim

σi,ri
|li , and µatt

σi,r′i
|li in the obvious way.

In what follows, We denote by neg(n) a negligible function.

Claim 4.1. For any state σi, the following hold.

1. hsim
σi,ri

|li and hatt
σi,r′i

|li are indistinguishable.

2. |λsim
σi
|li − λatt

σi
|li | < neg(n).

3. µsim
σi,ri

|li and µatt
σi,r′i

|li are indistinguishable.

Proof. Note that item 2 and 3 follow immediately from item 1. Therefore, it is sufficient to
prove that item 1 holds.

We first stress that, given a state σi, the simulated history before reaching this state is
also given to V ∗ for V ∗ to continue. Hence, we need to take this prior history into account
when proving this claim.

Fix the simulated history prior to the state σi, denoted hσi . We claim that the pair
(hσi , hsim

σi,ri
|li) is indistinguishable form (hσi , hatt

σi,r′i
|li). This implies claim 1.

Observe that the only difference between (hσi , hsim
σi,ri

|li) and (hσi , hatt
σi,r′i

|li) is that, for the

ith iteration of the jth new class in (hσi , hatt
σi,r′i

|li), the challenge of this iteration is random
(therefore is unlikely to be correct) and the proof that this challenge is correct is been
simulated, while in (hσi , hsim

σi,ri
|li), the messages in this iteration are produced by following

the honest prover strategy. (Notice that at any level of recursion, Solve never updates the
execution history.) We also observe that, in the history (hσi , hatt

σi,r′i
|li), there are at most T

40

classes (with respect to the global protocol) that have each only one iteration in which the
subexecutions of the underlying argument PZKKInstD have been simulated. Since all these
subexecutions of argument PZKKInstD belonging to a single class of sessions of the global
protocol form a sigle class of sessions with respect to the PZKKInstD argument31, we conclude
that there are at most T classes of subsessions with respect to the PZKKInstD argument that
have been simulated in (hσi , hatt

σi,r′i
|li).

We now use the following procedure HybirdSolve (that will be called at state σi) to prove
that (hσi , hsim

σi,ri
|li) and (hσi , hatt

σi,r′i
|li) are indistinguishable.

HybridSolve(t− 1, hσi ,Q, Ct, C
(l,m)
f-msg, i): act exactly as Solve(t−1, hσi ,Q, Ct, C

(l,m)
f-msg, i), except

that for the ith iteration of class C
(l,m)
f-msg, HybridSolve computes the challenge message ei

honestly in each attempt.

Let hhatt
σi,r′′i

denote the transcript of a single attempt using randomness r′′i within invoca-

tion of HybridSolve(t− 1, hσ,Q, Ct, C
(l,m)
f-msg, i). We define hhatt

σi,r′′i
|li in the same way as hatt

σi,r′i
|li .

It is easy to see:

1. (hσi , hatt
σi,r′i

|li) and (hσi , hhatt
σi,r′′i

|li) are identical due to the perfect hiding property of the
commitment scheme Comv used to produce ce

i in the prover’s seconde message.
2. If event 2 does not occur, (hσi , hhatt

σi,r′′i
|li) and (hσi , hsim

σi,ri
|li) are indistinguishable due to

log n-class bounded resettable zero knowledge property of PZKKInstD argument. Note
that the total number of classes of subsessions of the underlying argument PZKKInstD is
at most T as long as event 2 does not occur, and T < log n.

Note also that event 2 occurs with only negligible probability. This leads to the con-
clusion that, for any state σi, given the history hσi prior to σi, hatt

σi,r′i
|li and hsim

σi,ri
|li are

indistinguishable. 2

Claim 4.2. The probability that the following two events that occur simultaneously is
exponentially small.

1. λatt
σi

> 7/8 for at least k/2 states σi;
2. the jth new (for state σinit) class reaches the end of its stage Iteration (i.e., no session

belonging to this class reaches the end of stage Iteration) before the end of the random
invocation r of Simulate.

Proof. Let I be the set of these iterations i of the jth new class for which λatt
σi

> 7/8 holds.
We distinguish the following two cases depending on whether mi ≥ (k/128)t−1/16 or not,
and prove this claim by case analysis.

Case 1: mi ≥ (k/128)t−1/16 for all i ∈ I. In this case, we have li = (k/128)t−1/16,
λatt

σi
= λatt

σi
|li , and λsim

σi
≥ λsim

σi
|li . By Claim 4.1, the occurrence of event 1 implies that, for

at least k/2 iterations i of the jth class, λsim
σi

≥ λatt
σi
−neg(n) > 7/8−neg(n), in other words,

for each of these i, the probability that jth class completes its ith iteration in the simulation
thread at level t is less than 1/8 + neg(n).

31 As mentioned earlier, this class of subsessions with respect to the PZKKInstD argument is specified by the
incarnation of prover in the global protocol (which also play the role of prover in the underlying argument
PZKKInstD) and the first message of this PZKKInstD argument sent in the verifier’s first message of the global
protocol.

41

Obviously, The probability that event 1 and 2 occur simultaneously is less than the
probability that the jth class completes all these |I| > k/2 iterations conditional on the
occurrence of event 1 in the simulation thread at level t, and the latter is less than (note
that those ri are chosen independently.)

(
k

k/2

)
[(1− 7/8 + neg(n))]k/2

<

(
k

k/2

)
[(1− 7/8)]k/2

≤[ke/(k/2)]k/2[(1− 7/8 + neg(n))]k/2

<(e/4 + neg(n))k/2.

Case 2: mi < (k/128)t−1/16 for some i ∈ I. Let N (N ⊆ I) be the set of these iterations
i. In this case, we have li = mi < (k/128)t−1/16. Set m′

i = (k/128)t−1/16. For those i ∈ N ,
we relax the restriction on number of new (for σi) classes allowed to be initiated after state
σi in the simulation thread at level t by extending its upper bound mi to m′

i. We call the
simulation thread at level t done by the original simulator the normal simulation thread,
and call the one with the above extension the extended simulation thread.

For those i ∈ N , we consider the following two events:
A: the jth class completes its ith iteration in the normal simulation thread at level t.
B: the jth class completes its ith iteration in the extended simulation thread at level t.
It is easy to verify that Pr[A] ≤ Pr[B], and Pr[B] ≤ 1−λsim

σi
|m′

i
. By Claim 4.1 (Notice

also that m′
i = (k/128)t−1/16), the occurrence of event 1 implies

λsim
σi
|m′

i
> λatt

σi
|m′

i
− neg(n) = λatt

σi
− neg(n) > 7/8− neg(n)

Thus, the probability that A occurs conditional on occurrence of event 1 is less than 1/8 +
neg(n).

For those i ∈ I \ N , as showed in case 1, the upper bound 1/8 + neg(n) on the above
conditional probability holds.

In sum, for every i ∈ I, the probability that the jth class completes its ith iteration
conditional on occurrence of event 1 in the simulation thread at level t is less than 1/8 +
neg(n). Applying the same reasoning of case 1, we conclude that this claim holds for Case
2.

Claim 4.3. The probability that the following two events that occur simultaneously is
exponentially small.

1. Pr[µatt
σi,r′i

< (k/128)t−1/16] < 15/16 holds for at least 3k/8 states σi;

2. the jth new (for state σinit) class reaches the end of its stage Iteration before the end of
the random invocation r of Simulate.

Proof. First note that for any invocation r of Simulate with start state σinit at level t, there
are at most k/128 iterations i of the jth new class such that µsim

σi,ri
> (k/128)t−1/16 for each

of these i, otherwise there are more than (k/128)t−1/16 × k/128 = (k/128)t/16 new (for
state σinit, observe that classes new for σi is also new for σinit) classes during this invocation
r, which contradicts the upper bound on the number of new class allowed to be initiated in
an invocation of Simulate at level t.

42

Let I be the set of these iterations i of the jth new class for which Pr[µatt
σi,r′i

< (k/128)t−1/16] <

15/16 holds. Again, we prove this claim by case analysis.

Case 1: mi ≥ (k/128)t−1/16 for all i ∈ I. In this case, we have li = (k/128)t−1/16, µatt
σi,r′i

=

µatt
σi,r′i

|li , By Claim 4.1, the occurrence of event 1 implies that Pr[µsim
σi,ri

< (k/128)t−1/16] <

15/16 + neg(n) holds for every i ∈ I \N . We define

Xi =
{

0 if µsim
σi,ri

< (k/128)t−1/16
1 otherwise

Let S =
∑

i∈I Xi. Note that those Xi are independent, and Pr[Xi = 1] > 1/16−neg(n)
for those i ∈ I \ N . Thus, conditioning on occurrence of event 1, we have E(S) > 1/16 ×
3k/8− neg(n) = 3k/128− neg(n).

However, as mentioned above, for the jth class to complete its stage Iteration, S must be
less than k/128 due to the upper bound on the number of new class allowed to be initiated
in an invocation of Simulate at level t. Hence, the probability that the jth class reaches
the end of stage Iteration is less than the probability that S is less than k/128. Note that
Pr[S < k/128] < Pr[|S − E(S)| > 3k/128 − k/128 − neg(n)], and by Chernoff inequality,
we have

Pr[|S − E(S)| > 3k/128− k/128− neg(n) > k/128] < Pr[|S − E(S)| > k/128] < e−ck

as desired, where c is a constant.

Case 2: mi < (k/128)t−1/16 for some i ∈ I. Let N (N ⊆ I) be the set of these iterations i.
Note that for i ∈ N , li = mi < (k/128)t−1/16. As in Claim 4.2, we set m′

i = (k/128)t−1/16,
and relax the restriction on number of new classes allowed to be initiated after state σi in
the simulation thread at level t by extending its upper bound mi to m′

i for every i ∈ N .
It is easy to see that the probability that the jth class completes its stage Iteration in the

normal simulation thread at level t is less than the probability that the jth class completes
its stage Iteration in the extended simulation thread at level t. Also note that, in the extended
simulation thread, m′

i ≥ (k/128)t−1/16 for all i ∈ I, and the analysis of case 1 shows the
probability that the jth class completes its stage Iteration in the extended simulation thread
at level t is exponentially small. Thus we arrive at the conclusion of Claim 4.3 in this case.

Claim 4.4. For any t ≥ 1, 1 ≤ j ≤ K, a random invocation of Simulate starting from σinit

at level t gets stuck on the jth new class only with negligible probability.

Proof. We prove this claim by induction on t.

When t = 1. Let σi be defined as above. By Claim 4.2 and Claim 4.3, we have that,
except with exponentially small probability, there are at least k/2 + 5k/8− k = k/8 states
σi (in fact, a single one suffices), such that:

– λatt
σi

< 7/8, and
– Pr[µatt

σi,r′i
> (k/128)1−1/16 = 0] < 1/16. (Note that µatt

σi,r′i
is an integer-valued random

variable.)

Fix a state σi satisfying the above two conditions. Let the waiting list for which Simulate
at level 1 is called be Q. Recall that, at the state σi, the ith iteration of the jth new class
is appended to Q, and this forms a new waiting list, denoted Qi, for which Solve at level 0
is invoked.

43

We analyze the probability that a single attempt within a call of Solve at level 0 with
start state σi fails to solve any class listed on Qi. Observe that there are two events that
cause an attempt within a call of Solve fail:

1. Within this attempt, Simulate at level 0 does not solve any class listed on Qi due to V ∗

halts or it gets stuck on an old class for σi;
2. Within this attempt, there are at least (k/128)1−1/16 + 1 = 1 new (for state σi) class

being initiated;

Note that by property 1 of state σi mentioned above, Pr[event 1 ocurs] = λatt
σi

< 7/8; By
property 2 of state σi, Pr[event 2 ocurs] < 1/16. Thus, except with probability 15/16, a
random single attempt within a call of Solve at level 0 with start state σi will be successful,
and this means the expectation of the number of failure attempts within a call of Solve is
24K · 15/16 = 22.5K. By Chernoff Inequality, we have that the probability that more than
23K attempts within this call of Solve fails is less than e−cK for some constant c. In other
words, there are at least K attempts (in fact, a single one suffices) within this call of Solve
will be successful except with exponentially small probability.

We have proved that the invocation of Solve at the state σi will succeed to solve a
class appeared on Qi except with exponentially small probability. This means a random
execution of Simulate at level 1 does not get stuck on jth new class except with negligible
probability32,

Hypothesis: Claim 4.4 holds for t ≤ t′.

When t = t′ + 1. We prove Claim 4.5 holds for t = t′ + 1 in a similar way to that in
case t = 1. First, for at least k/2 + 5k/8 − k = k/8 states σi, the Claim 4.2 and Claim
4.3 guarantee (except with exponentially small probabitlity) the following two properties
of these σi:

– λatt
σi

< 7/8, and
– Pr[µatt

σi,r′i
> (k/128)t′/16] < 1/16.

Fix such a state σi. Let Q and Qi be as above. Observe that there are only three events
that cause an attempt within a call of Solve to fail33:

1. Within this attempt, Simulate at level t′ does not solve any class listed on Qi due to
that V ∗ halts or it gets stuck on an old class for state σi;

2. Within this attempt, there are at least (k/128)t′/16 + 1 new (for state σi) class being
initiated;

3. This attempt gets stuck on a new (for state σi) class.

Again, the property 1 and property 2 of state σi mentioned above guarantee Pr[event 1 ocurs] =
λatt

σi
< 7/8 and Pr[event 2 ocurs] < 1/16; By the Hypothesis, we have that the third event

happens on a specific class only with negligible probability. Since there are at most K class
being initiated in this attempt, we conclude that Pr[event 3 ocurs] ≤ K ·neg(n) = neg(n).
Thus, except with probability 15/16 + neg(n), a random single attempt within a call of
Solve at level t′ with start state σi will be successful. Using the same reasoning of the base
case when t = 1, we get that there are at least K attempts within this call of Solve will be
32 Note that if the jth new class is solved within this call of Solve, Simulate at level 1 does not get stuck

on this class; If a class listed in Q (for which Simulate at level 1 is invoked) is solved within this call of
Solve, then Simulate at level 1 accomplishes its mission and returns (thus does not get stuck on the jth

new class).
33 Note that in the base case t = 1, non-occurrence of event 2 already implies non-occurrence of the event 3.

44

successful except with exponentially small probability, and thus draw the conclusion that
a random execution of Simulate at level t′ + 1 gets stuck on the jth new class only with
negligible probability.

Now we are ready to prove the Lemma 4.

Claim 4.5. S gets stuck only with negligible probability.

Proof. Notice that the total number of sessions (hence the total number of classes) that
opened in a random execution of Simulate(T, (x1, · · ·, xpoly), ∅, ∅) is at most K, and K <
K2/16 < (k/128)T /16. By claim 4.4, we have that a random execution of Simulate at
level T gets stuck on a new class with probability less than K · neg(n) = neg(n), which is
negligible. Since there are no old class for the initial state, we conclude Simulate(T, (x1, · ·
·, xpoly), ∅, ∅) does not get stuck except with negligible probability. 2

D Proof of resettable-soundness of our protocol

Resettable-soundness of our protocol can be proved by showing an algorithm B that uses
the power of a cheating prover P ∗ to invert the one-way function f .

Let Intk denote the set of sessions having the first P ∗’s first message γk. Assume in the
real interaction, P ∗ sends t distinct γs. Given a challenge β (supposed to be an image under
f), B plays the role of the verifier V (j)(x), and guesses P ∗ will cheat on a session belonging
to Intk. Then, for all sessions outside Intk, B acts as an honest verifier; for sessions belonging
to Intk, B sets β to be the corresponding image of f and invokes the extractor E described
in last section and extracts δk (such that γk = G(δk)) from the executions of IDWIAOKS

p ,
uses this δk as witness to complete stage Iteration, then it extracts α (such that β = f(α))
from the executions of IDWIAOKM

p using the same extraction strategy E.

Intuitive reasons why proof of resettable-soundness is much simpler. Before pro-
ceeding further, we (intuitively) explain why our protocol is not symmetric (in the sense
that the underlying IDWIAOKM

p and IDWIAOKS
p is not special) and it admits simple proof of

soundness. Typically, the fact that proof of soundness is simpler than proof of zero knowl-
edge is mainly due to that the proof of soundness just needs to focus on a single session (class
of sessions) and it is somewhat easy for the reduction algorithm to play the role of honest
verifier. In our case, as we have seen, there is false witness issue arising in the proof of re-
settable ZK, and handling this issue requires the resettable WI property of IDWIAOKM

p and
IDWIAOKS

p holds even in the whole simulation process (where V ∗ may see many non-black-
box simulation for the underlying PZKKInstD in the argument special-purpose IDWIAOKi

v).
However, in the proof of resettable-soundness where x /∈ L is assumed, there is no false
witness issue: any witness extracted by B is satisfactory.

We describe the algorithm B in figure 12.
We now turn to show that if P ∗ can convince the honest verifier on x /∈ L with non-

negligible probability p, then B can find a preimage α of β under f with non-negligible
probability. This breaks the one-wayness of f .

Note that the probability that P ∗ convinces the honest verifier in a session belonging to
Intk is p/t, where t is a polynomial. Moreover, in stage 3 of B, a single run of step 2 of E
succeeds in obtaining a accepting transcript of the underlying 3-round WI of IDWIAOKS

p with
probability at least p/t, and therefore will extract δk with probability at least p/t−neg(n).
(Observe that in the stage 3, B plays the role of honest verifier.)

45

The invertor B(β):

1. B selects a random string for P ∗, and plays the role of honest verifier.
2. B uniformly chooses k from {1, ..., t}. Throughout this inverting process, B adopts honest verifier

strategy in every session in Intj , j 6= k; In the execution of Intk, B sets β to be the corresponding
image of f , and play the role of honest verifier until stage Setup is first reached by a session in
Intk.

3. When one session in Intk first reaches stage Setup, B applies the extractor E to the executions
of IDWIAOKS

p with the following natural modifications:

– In a single run of E’s step 4, if a non-target session in Intk reaches its stage Iteration, B
aborts the current attempt (in this case, B cannot proceed further without knowledge of
δk.) and chooses independent randomness to make another one.

– In a single run of E’s step 4, when the underlying non-black-box simulator SimE
KID =

(IntermedE, SimE
B) is instructed to commit to hash value of a code, the corresponding sub-

routine SimE
B commits to the joint code of the residual procedures IntermedE and B(except

the current subroutine SimE
KID) and P ∗.

4. If the above stage fails to extract a witness, B outputs ⊥; If the corresponding δk (such that
γk = G(δk)) was obtained, B uses it as witness to carry out all the special-purpose IDWIAOKi

v

in Intk until the stage Mainproof is first reached by a session in Intk.
5. When one session in Intk first reaches stage Mainproof, B applies the extractor E to the executions

of IDWIAOKM
p with the following natural modifications:

– In a single run of E’s step 4, when the underlying non-black-box simulator SimE
KID =

(IntermedE, SimE
B) is instructed to commit to hash value of a code, the corresponding sub-

routine SimE
B commits to the joint code of the residual procedures IntermedE and B(except

the current subroutine SimE
KID) and P ∗.

Note that here the residual procedure B already knew δk (such that γk = G(δk)) which
may be used as witness to carry out some special-purpose IDWIAOKi

v in Intk (keep in mind
that P ∗ is a resetting adversary).

6. If the above stage fails to extract a witness, B outputs ⊥; If the corresponding α (such that
β = f(α)) was obtained, B outputs α.

Fig. 12. The invertor B.

46

Let p1 be the probability that, in stage 5 of B, a single run of step 2 of E succeeds
in obtaining a accepting transcript of the underlying 3-round WI of IDWIAOKM

p (i.e., the
probability that E enters its step 3). Note that the only difference between a single run of
E’s step 2 and real interaction is that, in the former, B may use δk as witness to carry out
some special-purpose IDWIAOKi

v in Intk, and note also that E does not do any non-black-box
simulation in this step. It follows from the resettable WI property of those special-purpose
IDWIAOKi

v when x /∈ L that p1 is at least p/t − neg(n) (This can be proved in the same
way as in Claim 2.1). Thus, we conclude that, conditioned on B entering its stage 5, E will
extract α with probability at least p/t− neg(n).

Thus, if if P ∗ can convince the honest verifier on x /∈ L with non-negligible probability
p, then B finds a preimage α of β under f with probability at least (p/t − neg)2, which is
non-negligible.

Remark. It should be noted that in the analysis of stage 5 of B, it suffices to analyze a
single run of E’s step 2, and we do not care whether the resettable WI property of those
special-purpose IDWIAOKi

v when x /∈ L remains in the whole stage 5 (mainly due to that
there is no false witness issue).

E The running time of our simulator

Recall that a run of the non-black-box simulation strategy Simt
KID(r)34 commits to the

following joint procedures Π to produce some relevant prover messages to prove that this
joint code can predict the second verifier’s message w.r.t Barak’s protocol in the session it
is currently handling. Π consists of:

1. the procedure Simulate at level t (except the current subroutine Simt
KID(r)) by which

Simt
KID(r) is invoked. This procedure consists of two parts:

(a) The HONEST part of the procedure Simulate at level t by which Simt
KID(r) is invoked,

i.e., this Simulate except the subroutine Simt
KID(r) and all subroutines Solve at level

t− 1;
(b) The procedures Solve at level t − 1 invoked by this Simulate at level t. Note that

These procedure Solve may include many Simt′
KID(r′) at lower level t′ < t.

2. The verifier V ∗;
3. The procedure Intermedt, which just repeats some prover messages that our non-black-

box simulators have produced earlier.

A key observation that leads the simulator S to run in polynomial time is that, Π
does not include any other Simt

KID(r′) with independent randomness r′ at the same level t,
though it may include many Simt′

KID(r′) at lower level t′ < t, and for the same reason, all
these Simt′

KID(r′) at the same level t′ < t are independent : each of them uses independent
randomness and does not commit to any code that includes any other Simt′

KID(r′) at the
same level t′.

Assume that the number of the different sessions appearing in level t′ that need Simt
KID(r)

to handle internally is s. For these s sessions, there are s independent Simt′
KID(r′)s that would

be invoked by s independent Simulate at level t′ (which are already included in Π), each of
them handles only one single simulated session (appearing in level t′) independently.

As we will see later, this is crucial in proving that our simulator runs in polynomial
time.
34 Hereafter we denote Simt

KID(r) an invocation of Simt
KID with randomness r.

47

We now show that the simulator S runs in polynomial time.
Let running time of the honest part of Simulate at any level is bounded by a polynomial

p1, and the running time of V ∗ is a polynomial p2. Note that the Simulate at level t makes
at most k(k/128)t/16 invocations of Solve at level t−1 (since there are at most (k/128)t/16
new (classes of35) sessions during this invocation of Simulate, each of them consists of k
slot), and each Solve at level t− 1 consists of 24K36 independent invocations of Simulate at
level t− 1 recursively. Denote the running time of Simulate at level t with Time(Simulatet),
and the running time of Simt

KID with Time(Simt
KID), and the running time of Solve at level

t with Time(Solvet)
Thus, we have, for t < T ,

Time(Simulatet) ≤ p1 + p2 + k(k/128)t/16Time(Solvet−1) + Time(Simt
KID)

≤ p1 + p2 + k(k/128)t/16 · 24K · Time(Simulatet−1) + Time(Simt
KID) (1)

Let’s bound Time(Simt
KID). We first show that the code Π committed by Simt

KID(r) can
output the same V ∗’s second message of the simplified Pass-Rosen protocol (in the relevant
session) in polynomial time (It is easy to verify the correctness of Π). Let Time(Πt) denote
the running time of Π. Recall that the joint code Π committed by Simt

KID(r) consists of
four parts, and that the procedure Intermedt just repeats some relevant prover messages
that have been produced by our non-black-box simulator earlier, and thus we can simply
assume that its running time is bounded by the running time p2 of V ∗. (i.e., assume each
reply to V ∗’s query takes one step.) Hence, We have, for t < T

Time(Πt) ≤ p1 + p2 + k(k/128)t/16Time(Solvet−1) + p2

≤ p1 + 2p2 + (k(k/128)t/16) · 24K · Time(Simulatet−1)
≤ p1 + 2p2 + (k(k/128)t/16) · 24K · [p1 + p2

+ (k(k/128)t−1/16) · 24K · Time(Simulatet−2) + Time(Simt−1
KID)] (by(1))

≤ ...

≤ poly + (24Kk/16)t(k/128)t−1+t−2+...+1Time(Simulate0)
+ (24Kk/16)(k/128)tTime(Simt−1

KID) + (24Kk/16)2(k/128)t+t−1Time(Simt−2
KID)...

+ (24Kk/16)t−1(k/128)t+t−1+...+2Time(Sim1
KID) (2)

Where poly is a polynomial.
Note that the above inequalities follows from the fact that all those Solve at level t− 1

invoked by Π are independent, which leads to that those Simt−1
KIDs invoked at the same level

t − 1 are independent. This holds for all levels. Thus, in the inequality (2), the item w.r.t.
Time(Simt′

KID) for all t′ < t appears in the form Poly · Time(Simt′
KID) for some polynomial

Poly. (Notice that t < T = 2 log K
k/128.)

Claim. For all t < T , Time(Πt) is polynomial.

35 With the observation on the structure of a class of sessions, we can simply think of a class of sessions
with resect to the underlying simplified Pass-Rosen protocol as a single session

36 Recall that K is the total number of (classes of) sessions that V ∗ may initiate

48

proof. We prove this claim by induction on the level i. Observe that for any t, if Time(Πt)
is a polynomial p, then Time(Simt

KID) is p′(p) for some polynomial p′ (This is guaranteed
by the universal argument of Barak and Goldreich), which is also polynomial.

When i = 1. Note that Π1 only consists of Simulate at level 0 and V ∗ and Intermedt,
note that Simulate at level 0 performs in honest way and does not make further calls to
Solve, thus Time(Π1) can be bounded by p1 + 2p2. By the above observation, we also have
Time(Sim1

KID) runs in polynomial time.
Hypothesis. Assume that for any i < t, Time(Π i) is polynomial, and so is Time(Simi

KID).
Induction. When i=t, by inequality (2) and the hypothesis that Time(Simi

KID) is poly-
nomial for all i < t, and note that Time(Simulate0) is polynomial and t < T = 2logK

k/128,
we have that Time(Πt) is polynomial. ¤

Again, we have Time(Simt
KID) is also polynomial for any t. Let the longest running time of

Time(Simt
KID) for all t be Poly.

Thus by inequality (1), we have that for t < T

Time(Simulatet) ≤ p1 + p2 + k(k/128)t/16 · 24KTime(Simulatet−1) + Poly (3)
Time(Simulateo) ≤ p1 (4)

and note also that

Time(SimulateT) ≤ p1 + p2 + K · k · Time(SolveT−1)

≤ p1 + p2 + K · k · 24K · Time(SimulateT−1) (5)

using the fact T = 2logK
k/128, it is easy to verify that the running time of our simulator

S, i.e., Time(SimulateT), is polynomial.

