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Abstract. We present a multivariate version of Hidden Field Equations
(HFE) over a �nite �eld of odd characteristic, with an extra �embedding�
modi�er. Combining these known ideas makes our new MPKC (multi-
variate public key cryptosystem) more e�cient and scalable than any
other extant multivariate encryption scheme.
Switching to odd characteristics in HFE-like schemes a�ects how an at-
tacker can make use of �eld equations. Extensive empirical tests (us-
ing magma-2.14, the best commercially available F4 implementation)
suggests that our new construction is indeed secure against algebraic
attacks using Gröbner Basis algorithms. The �embedding� serves both
to narrow down choices of pre-images and to guard against a possible
Kipnis-Shamir type (rank) attack. We may hence reasonably argue that
for practical sizes, prior attacks take exponential time.
We demonstrate that our construction is in fact e�cient by implement-
ing practical-sized examples of our �odd-char HFE� with 3 variables
(�THFE�) over F31. To be precise, our preliminary THFE implemen-
tation is 15×�20× the speed of RSA-1024.
Keywords: HFE, Gröbner basis, multivariate public key cryptosystem

1 Introduction

MPKCs (multivariate public key cryptosystems) [15, 34] is often considered a
signi�cant possibility for Post-Quantum Cryptography, with potential to resist
future attacks with quantum computers. We discuss both theoretical and prac-
tical issues in building an improved multivariate encryption scheme related to
HFE (Hidden Field Equations � executive summary in Sec. 2).

1.1 Questions

HFE and related cryptosystems is a major family of MPKCs proposed by Jacques
Patarin at Eurocrypt'96 [33]. The basic idea is similar to Matsumoto-Imai [30]:
A polynomial of a special form in a large �eld is transformed and hidden as a
system of multivariate quadratic polynomials over a much smaller �eld.

MPKC's security is often said to rely on the di�culty of solving a system of
quadratic multivariate equations over a �nite �eld, which is NP-hard [25] and
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even conjectured to be hard on average, but the public map of an MPKC is by
de�nition not randomly chosen which opens the possibility of e�ective attacks.

The literature contains many studies on cryptanalysis of HFE and related
systems (e.g., [9,10,24,29]). Today cryptanalyzing basic HFE is regarded as sub-
exponential in time complexity [27]. Projected-secure instances of HFE deriva-
tives are usually too large for practical use. Given the glaring lack of well-
regarded multivariate encryption schemes, it seems obvious to ask: �Can we
create an HFE variant that is both e�cient and resistant to known attacks?�

1.2 Our Answers

We suggest going in a di�erent direction, using a multivariate variant of HFE in
a �nite �eld of odd characteristic. Indeed, we can build a very e�cient MPKC
(Secs. 3 and 5) using just a 3-variable random central map Q : (X1, X2, X3) 7→
(Y1, Y2, Y3), where Y` = Q`(X1, X2, X3), for ` = 1, 2, 3. Xi and Yj are elements
of the intermediate �nite �eld L = Fqk , with an odd characteristic.

Q`(X1, X2, X3) =
∑

1≤i≤j≤3

α
(`)
ij XiXj +

3∑

j=1

β
(`)
j Xj + γ(`), for ` = 1, 2, 3,

speci�es three randomly chosen quadratic polynomials over L that determines
Q. We can write Xi and Yj with k components each in K = Fq. The structure of
Q is hidden by a�ne maps in K3k on either side like in any MPKC. Of course,
the same basic design should work with any h > 1 (cf. Eq. 4, Sec. 3)

In Sec. 4 we explain why this particular construction should be more secure,
in particularly that the higher degree of �eld equations sti�e certain attacks, and
show empirical results to be in line with our theoretical predictions.

Our scheme is more e�cient because the speed of decryption does not depend
directly on the same parameters that determines the security under algebraic at-
tacks. The slowest step during decryption is system-solving for the Xi, which here
is essentially a pre-programmed Gröbner basis algorithm. It is fast (cf. Sec. 5.2)
due to the small number of variables. Speed tests are summarized in Tab. 1.
Note: h = 2 and 4 instances included for reference only, we recommend h = 3.

Key 128 bits 192 bits 256 bits
CPU F12

13 × 3 F15
31 × 2 F10

31 × 3 F15
31 × 3 F10

31 × 4 F18
31 × 3

P3encr 1.13 0.90 0.90 2.90 2.28 5.03
decr 3.19 1.65 2.86 5.42 22.10 10.76

K8encr 0.92 0.80 0.80 2.54 1.93 4.38
decr 2.43 1.25 1.85 4.15 13.53 7.51

C2encr 0.79 0.70 0.70 2.28 1.78 3.92
decr 1.93 1.02 1.59 3.28 12.24 6.41

Table 1. Timing Projected Multivariate HFE at various blocksizes on P3, C2, and K8
architectures � measurement numbers are in millions of clock cycles for uniformity
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For comparison, RSA-1024 takes 1M cycles to encrypt and 42M cycles to decrypt
on the NESSIE �nal test report [31] running the programs submitted by RSA
Security tuned for the P3. At the same time, inverting an HFE polynomial with
d = 129 in F2103 � the one used in quartz [8], the shortest known signature
scheme at 280 design security � takes 1400M cycles.

1.3 Previous Work

There is much literature on the cryptanalysis of HFE-related MPKCs. Overall,
most authorities seem to consider HFE and associated schemes insecure:

� We may attack directly using a Gröbner basis system-solver. Faugère broke
the HFE challenge 1 set by Patarin [24] by actually solving the system of 80
equations in 80 F2 variables using his new F5 algorithm [22]. Today one can
reproduce this result using Steel's implementation of F4 in magma [6, 21].
Later on it was argued that with the new Gröbner basis methods (like F4

or F5), HFE has sub-exponential time complexity [27].
� We may try to derive an associated MinRank [9] problem (the Kipnis-Shamir

approach) and try to solve that by �relinearlization�. Other ideas were pro-
posed to solve the associated MinRank instance [10,26].

� The abovementioned works imply that if one �xes the parameter D in HFE
(degree of the polynomial; more precisely it's r ≈ lg D) then the secret key
can be found in sub-exponential time as the number n of variables increase.

We hope to show that this is not quite the case when the design is changed. As
mentioned earlier, the ideas behind our construction are not really new:

� Multiple hidden quadratic systems in multiple variables in a larger �eld had
been mentioned by Patarin but never seriously explored (as far as we know).

� AnMPKC with multiple big-�eld variables is proposed in [18], but is closer to
C∗ than to HFE with dissimilar computational and security characteristics.

� Fields of odd characteristic had already been proposed for HFE [17] (and
for C∗ [34]). However, decryption in the newly proposed HFE instances also
requires solving a high degree equation in a large �eld, which is still slow (cf.
speed of quartz in previous section).

� Embedding was mentioned as early as [34], and used to strengthen a digital
signature scheme in [14] (as projection), but here we are doing a practical
sized encryption scheme. Sec. 4.4 explains the rationale.

As we prepared this paper, a new preprint [3] was drawn to our attention, where
the authors study HFE derivatives similar to ours � but over F2k . They con-
cluded that these seem no more secure than ordinary HFE. This result is con-
sistent with, and serves to complement, our security arguments in Sec. 4. The
need for an odd characteristic, not just a larger base �eld, is highlighted.
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1.4 Summary and Future Work
We think we have a great idea � a simple but very e�cient multivariate encryp-
tion scheme with potential from both theoretical and practical points of view,
more on the practical implementations on this and similar schemes is needed.

Further, we think this work adds to the evidence that the use of �eld of odd
characteristics is a new direction that merits more attention from cryptologists.
More theoretical and empirical work should be conducted about Gröbner basis
methods when the �eld equations cannot be e�ciently used in the direct attack.

2 MPKCs and HFE
We will �rst review Multivariate Public-Key Cryptosystems (MPKCs), how clas-
sical Hidden Field Equations (HFE) schemes work and how they are attacked.

MPKCs have as public key (the coe�cients to) a set of polynomials P =
(p1, . . . , pm) in variables w = (w1, . . . , wn) where all variables and coe�cients
are in K = Fq. P(0) is always taken to be zero, i.e., public polynomials do not
have constant terms. Extant MPKCs almost always hide the private map Q via
composition with two a�ne maps S, T . So, P := T ◦ Q ◦ S : Kn → Km, or

P : w = (w1, . . . , wn) S7→ x = MSw + cS
Q7→ y T7→ z = MT y + cT = (z1, . . . , zm)

(1)
Di�erent MPKCs have di�erent �central maps� Q. The secret key consists of the
information in S, T , and Q, i.e., (M−1

S , cS), (M−1
T , cT ) and parameters in Q.

2.1 Hidden Field Equations
Shortly after Patarin defeated the original C∗ scheme [32], he proposed his im-
provement, Hidden Field Equations (HFE) [33]. Like its predecessor C∗, HFE
is a �big-�eld� or �two-�eld� MPKC. Usually in this type of MPKC, the central
map is really a map in a large �nite �eld L = Fqn , isomorphic to a degree-n
extension of K, and expressed as a n-dimensional vector space over K = Fq. To
be quite precise, take Q : L → L (which we can invert), and pick a K-linear
bijection φ : L → Kn and a map Q : L → L that we can invert. Then we have
the following multivariate polynomial map, presumably quadratic for e�ciency:

Q = φ ◦ Q ◦ φ−1. (2)

then, one �hides� this map Q by composing from both sides by two invertible
a�ne linear maps S and T in Kn, as in Eq. 1. Instead of using forQ the monomial
used by C∗, we use the extended Dembowski-Ostrom polynomial map:

Q : x ∈ L 7−→ y =
∑

0≤i≤j<r

aijxqi+qj

+
∑

0≤i<r

bixqi

+ c ∈ L, (3)

This map is in general not one-to-one; some kind of checksum is required
to identify the inverse from one of a number of possible candidates. Inverting
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Q is equivalent to solving a univariate equation of high degree in L. Patarin
recommended that the choice for HFE should be q = 2 and n = 128.

We will henceforth identify L = Fqn and the vector space Kn = (Fq)n, and
hence Q and Q, and omit the mention of φ, except when needed.

To decrypt (i.e., to invert P), one needs to invert Q, which is a polynomial
over in L of degree at most D = 2qr−1. Therefore we need to solve Q(x) = y
e�ciently. This is typically accomplished using Berlekamp's algorithm.

2.2 Direct (Algebraic) Attack via Gröbner Bases

To encrypt the plaintext w = (w1, . . . , wn) using HFE, the user obtains the pub-
lic key P of the receiver, computes the ciphertext z = (z1, . . . , zn) = P(w1, . . . , wn)
and sends it over a usually assumed insecure channel. An attacker who can solve

P(w) = z, or equivalentlyzi = pi(w1, . . . , wn), i = 1 · · ·n,

will gain the plaintext w = (w1, . . . , wn) and hence break the cryptosystem.
The Gröbner basis method [4] is the classical method of solving multivariate

polynomial equations. Suppose we wish to solve the set of equations

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0,

over some �eld K, where m ≥ n. If we can �nd a set of polynomials of the form

(g1(x1, . . . , xn), g2(x2, . . . , xn), g3(x3, . . . , xn), . . . , gn(xn))

such that the set of polynomials gi and the set of polynomials fi generate exactly
the same ideal in the polynomial ring. We can then �rst solve gn(xn) = 0 for xn,
then substitute that into gn−1(xn−1, xn) = 0 to �nd xn−1, and so on for all xi.

When the solutions of this set of equations has dimension 0 � which usually
means �nitely many solutions, including those over extension �elds � the Buch-
berger algorithm will do exactly that. Indeed, the above essentially de�nes a
Gröbner basis. However, the Buchberger algorithm can be very slow. Two recent
improvements by Faugère [21, 22], the F4 and F5 algorithms, allows the same
system to be solved more reliably and usually more quickly.

Faugère and Joux pointed out [24] that in the process of solving the HFE-
associated multivariate quadratic system, the degree of the polynomials gener-
ated by F4 or F5 should not be higher than log D. This makes the algorithm
poly-time for a �xed D, since log D needs to be small due to the considerations
for decryption. The interested reader should refer to Faugère's papers for details.

2.3 Kipnis-Shamir (MinRank-Like) Attacks

The attacker proceeds by moving the problem back to the extension �eld, where
all the underlying structure can be seen. This is a very natural approach if we
intend to exploit the design structure of HFE in the attack. To put it simply:
Compute the di�erential P(w + c)−P(w)−P(c) and take its j-th component
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(which is bilinear in w and c) as cT Hjw. Hk represents the quadratic crossterms
in the k-th polynomial of the public key. The minimum rank of linear combina-
tions of the Hi should be exactly r. This is the MinRank problem [5] and is in
general exponential, but can be easier if r is small.

Kipnis and Shamir later suggested to take an linear combination of the Hi

and take all (r + 1)× (r + 1) submatrices to have determinant zero. This leads
to a huge assortment of equations. To solve this system, they introduce an idea
which they call relinearization, which can be considered a special case of the XL
solver [11]. It has been argued [10] that using a Lazard-Faugère solver on this
system of equations is e�ective and equally e�ective as the direct attack.

Like most attacks that works on the �eld structure, this one is sidestepped
if we take out a degree of freedom, and this we will do as well in our design.

3 Design of Multivariate HFE with a Embedding
Fix a small integer h > 1 and an odd prime q. Let K = Fq and take a degree-k
extension L = Fqk

∼= K[t]/(f(t)) over K, where f ∈ K[t] is irreducible. We may
also identify L as the vector space Kk by the standard map φ:

φ : a0 + a1t + · · ·+ ak−1t
k−1 ∈ L 7→ (a0, a1, . . . , ak−1) ∈ Kk.

We will randomly choose a Lh → Lh quadratic map

Q(X1, ..., Xh) = (Q1(X1, ..., Xh), · · · , Qh(X1, ..., Xh))

where each Q` for ` = 1, . . . , h is a randomly chosen quadratic polynomial:

Q`(X1, . . . , Xh) =
∑

1≤i≤j≤h

α
(`)
ij XiXj +

h∑

j=1

β
(`)
j Xj + γ(`). (4)

When h is small, this map Q can be easily inverted as seen below. The induced
map (φ−1 × · · · × φ−1) will then trivially collate (x1, x2, . . . , xk) into X1 ∈ L,
(xk+1, xk+2, . . . , x2k) into X2, and so on, and hence convert x = (x1, . . . , xhk)
into X = (X1, . . . , Xh). Similarly we can de�ne Y = (Y1, . . . , Yh) = Q(X).

Convert Y back to y with (φ × · · · × φ) and we have our central map Q.
Choose randomly two nondegenerate a�ne maps S′ and T in Khk, and π to be
an a�ne embedding map from Khk−r to Khk. The public key (map) for our new
multivariate encryption scheme is as follows (see Fig. 1):

P(w) = T ◦ (φ× · · · × φ) ◦ Q ◦ (φ−1 × · · · × φ−1) ◦ S′ ◦ π(w). (5)

Obviously P : Khk−r → Khk is a quadratic map. In correspondence with stan-
dard notation for MPKCs, we have (n, m) = (hk − r, hk) and S = S′ ◦ π.

4 Security Analysis for the New Design
We will �rst argue theoretically why the new scheme could resist known attacks,
and then support our claims with experimental results.
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X ∈ Lh
Q

// Y ∈ Lh

φ×···×φ

²²

w ∈ Khk−r π //

S

++

Public Key P

11Khk
S′ // x ∈ Khk

Q
//

(φ−1×···×φ−1)

OO

y ∈ Khk T // z ∈ Khk

Fig. 1. The Design of the Embeded Multivariate HFE Scheme

4.1 On Gröbner Basis Algorithms and the Operating Degree

When running a Gröbner basis algorithm (F4/F5/XL), the degree D0 that
reached by F4 or F5 when computing the Gröbner basis in the cheap order
� or by XL as it terminates � is known as the operating or critical degree for
that instance. D0 is the most important parameter that decides both the space
and time complexities of a computation.

For today's Gröbner basis methods the time complexity is polynomial � be-
tween quadratic and cubic � in the total number of monomials N ; so is the space
requirements poly(N) � between linear and quadratic. For �xed q, if D0 grows
roughly proportional to n (the number of variables) then N (cf. Appendix B) is
exponential in n, hence both time and space needed will grow exponentially.

Conversely if D0/n → 0, the computation is sub-exponential � in a crypto-
logical setting most of the time this means that a scheme can be defeated.

Of course, D0 is di�cult to compute without actually running the algorithm.
Explicit formulas are obviously even harder to come by. However, as long as D0

grows roughly linearly with n, Gröbner basis attacks will be exponential time.
For �suitably generic� systems a good approximation to D0 is available, given

by generating functions (again cf. Appendix B). If one �xes the degrees for each
equation and randomly choose every coe�cient from K = Fq, the algorithm will
usually terminate at one particular Dreg, the �degree of regularity�. If in solving
a number of systems from a collection a Gröbner basis method, say F4, usually
terminates earlier, we can distinguish between our collection and �generic�.

We intend to show thus that Gröbner basis methods won't defeat our variant
as it did the original HFE, and won't even serve e�ectively as a distinguisher.

4.2 Why a Bigger Field and not F2

A system of n generic quadratics in n variables, counting multiplicities and
algebraic extensions, should have exactly 2n solutions. Consequently, the �nal
reduced Gröbner basis in lex order will have a univariate polynomial of degree
2n. Hence, computing a Gröbner basis should never stop below degree 2n.

How is it then that all the direct attacks on HFE have much lower critical
degrees [24, 27]? When we only want solutions in the �eld K = Fq, we may
add to the original system pi(w1, ..., whk−r) = zi the equations wq

i = wi which
are satis�ed by (and only by) the elements of the �eld K. With an intelligent
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computer algebra systems (CAS), e.g. magma, one lists these ��eld equations�
with the system of equations to be solved and the CAS should then intelligently
tune its method for Fq, especially if q = 2 (e.g., no squares or higher powers).

Approximately [1, 36], the degree of Fq-regularity for a �generic� system of
polynomials is close to that of a similarly structured �generic� system in a char= 0
�eld (Q, say) plus one generic equation of degree-q for each variable. Not quite
equal, since wq

i = wi is not exactly generic. In system-solving, in general a
lower-degree equation is more useful than one of higher degree [2, 35]. So as q
increases, the �eld equations helps less. Phrased di�erently, when a Gröbner
basis algorithm is still operating at degree D < q, an extra degree-q equation
does not matter. When the critical degree D0 is less than q, the solving process
would be almost exactly as if we are operating in Q or R.

For an example, solving 30 F11-variables should never be helped by �eld
equations in F4, since a single multivariate polynomials in 30 variables of degree
11 would have 5× 109 K-elements, and the system can't possibly �t in memory.

No Embedding (r = 0) The system is (pi(w1, . . . , whk)− zi)i=1,...,hk. When
we do not use the �eld equations, a Gröbner basis algorithm would compute all
solutions over the algebraic closure of K. The variety should be of dimension 0
and consist of 2hk points, and it is in fact so observed in all our experiments �
the last polynomial in the Gröbner basis in fact has degree 2hk.

A modern Gröbner basis computation usually starts in a cheap order (like
graded-lex) then converts with FGLM. If the solution set is exponential in size,
so is the complexity of FGLM, which is polynomial in the codimension of the
ideal (which in our case is usually the same as the number of solutions when as
here the ideal is 0-dimensional). Formally it depends on the size of an embedded
quotient ring of the polynomial ring which can be proved to be in bijection with
the solution set [12, 23]. To be really accurate, the complexity of FGLM is at
least 2hk if there is a chain of non-standard monomials in lex-order of length
2hk. Since the univariate polynomial ghk(xhk) has degree 2hk, a chain of non-
standard monomials in xhk, namely xhk <lex x2

hk <lex . . . <lex x2hk−1
hk exists in

the basis of the quotient.
So the attacker is stuck if the size of the solution set cannot be cut down:

� One may compute a Gröbner basis in lex-order directly; but the algorithm
runs into polynomials with degrees near 2hk (hk & 30 in practical range).

� One may compute the basis in a cheap order and then �transfer� via FGLM.
But this is not applicable either, because the complexity of FGLM is sim-
ply too high. There are other transfer algorithms like the Gröbner walk
algorithm, but FGLM is the most e�cient and most well-studied, and any
transfer algorithm will face the exponentially big solution set.

Embedding or Guessing In order to solve such a system, an attacker must
�rst cut down the size of the solution set. One way is to guess at some variables.
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� Guessing shrinks the size of the solution set; this idea is well-known in cryp-
tology (as in FXL [11, 35]). Mathematically, the variety is intersected with
one or more hyperplanes. Some variables become linear functions of others.

� �Embedding� modi�ers has the same e�ect (with no cost to the attacker).
� Guessing or throwing away variables with �embedding� does indeed cause

the solution set (in K or extension �elds) to shrink signi�cantly. However,
it also destroys algebraic structure that might lead to easier solutions, and it
is well-known that polynomial systems with very few (even 1) solutions can
still be hard to solve. Indeed, when one then runs, say, magma:
1. First one must compute (using F4) a Gröbner basis in a graded order;

tests show that this takes still exponential time (Ω(2(α+o(1))hk)) within
practical range of parameters, after up to 3 variables are correctly guessed.
In fact, our data (Table 2) shows that without guessing variables, the D0

(critical degree) of the systems produced by our scheme are exactly the
same as Dreg for random systems (degree of regularity, cf. Appendix B).
When guessing variables, Dreg − D0 is at most 1. D0 is seen to grow
roughly linearly with hk for various r and q.

2. Then one runs FGLM, but experiments (though limited) show that the
solution set in extension �elds, and hence the max degree in magma is
still of exponential size. Heuristically, if the maximum extension degree
in the solution set is µ, then there are 2hk/qµ solutions in extended �elds
where whk = c ∈ K. Of course µ could be large, but our tests do show
that the FGLM timing grows like some Ω(2βhk) for hk up to about 20.

In summary: guessing an optimal number of variables is often correct (esp.
when storage and parallelization are issues) but it does not change the overall
picture when the system is su�ciently indistinguisable from generic. System-
solving is conjectured to be probabilistically di�cult. Our empirical evidence
over a broad range of �eld sizes shows our polynomial systems to be not only
hard to solve, but even hard to distinguish from truly random ones using Gröbner
basis methods. Hence it indicates that our polynomial systems are intrinsically
di�cult to solve and provide strong support for the security of our cryptosystems.

4.3 Why an Odd Prime Field Size

One may then ask: Why is the above an argument also for K not a bigger �eld
of characteristic 2? Yet for a system of n variables and m equations in Fq, where
q = 2e, one can always tranform this set of equations over Fq =F2e into a set
of equations over F2 with n× e variables and m× e equations by treating Fq as
a vector space Fe

2. Then �eld equations of F2 again can be used. The previous
suggestion of XLF [7] (which works although slower than �rst claimed) is in
essence exactly this idea. Hence, we go for an odd characteristic.

We have corroborating evidence in the preprint [3] where the authors study
HFE derivatives similar to ours � but over F2k , and purports to �nd it no better
than ordinary HFE. This is the security argument for a medium-sized prime �eld
for K. There is the implementation aspect, which we will mention in Sec. 5.



10 Chen, Chen, Ding, Werner, and Yang

4.4 Why use an Embedding Map π

Against multivariate HFE with odd characteristics, the so-called Kipnis-Shamir
attack can still be used [16] even though some doubts exist concerning its e�ec-
tiveness [28]. If the K-S attack is not e�ective against our HFE variant, we need
not use embedding at all. But if it works, we must defend against it.

One defense is to toss away all terms in the last variable wn (or more than
one variable if needed) � setting the variable to be zero. The e�ect is to restrict
the input variables w to a subspace of low co-dimension, on which the hidden
�eld structure(s) used by the K-S attack are destroyed (cf. Sec. 2.3).

This had been used with C∗ [14] to construct an SFLASH-analogue resistant
to di�erential attacks of Dubois et al [19,20] by breaking the symmetry of the big
�eld. It was called �projection� but we term it �embedding� here as a projection
should be surjective. The point is that on this subspace, the big-�eld structure
does not exist anymore and attacks using the �eld structures are prevented.

4.5 Cryptanalytical Experiments and Results

We implemented the new HFE scheme in magma using k ∈ {4, 5, 6, 7} and h = 3.
We then encrypted random plaintext (w1, ..., whk−r) resulting in the ciphertext
(z1, ..., zhk). Then we tried to break the scheme by computing the Gröbner ba-
sis corresponding to the ideal spanned by the system pi(x1, ..., xhk−r) − zi for
i = 1, ..., hk, using magma-2.14 on a 4-socket dual-core 2.6GHz Opteron (K8)
machine. The process is allowed a maximum of 4GB of memory. Inserting the
�eld equations into the set of equations actually slowed things down, exactly as
argued above. The system reacts as expected (see also [17]) in all such tests.

We ran a further set of tests � when simply feeding the system to magma,
we arti�cially guessed some of the variables forming the plaintext correctly, by
simply substituting whk−j+1 by its concrete value whk−j+1 for j = 1, 2, 3 in
every pi − zi for i = 1, . . . , hk. The system would become overde�ned with hk
equations but only in hk−j variables. With these tests, we dealt with embedding
and guess in one fell swoop because they have the same e�ect on the variety.
Apart from the time needed to compute the Gröbner basis, we have tabulated
down the critical degree that occured during the process.

The timing data is in Fig. 2 of Appendix A. Fig. 2 shows the running time
for h = 3 internal maps. In the �gure, we take hk as the X-coordinate (actu-
ally marked mn) and the running time (in seconds) as the logarithmic scaled
Y-coordinate. Let HFEj denote an instance of the new HFE scheme as described
above with j variables correctly guessed, so it will result in a system in hk equa-
tions but only in hk − j variables. The left graph shows HFE1, the one in the
middle the results to HFE2 and the right one represents the results for HFE3.
Some values are missing in the following tables because the process consumed
more than 4GB of memory in which case the process was eventually cancelled.
The �gure clearly supports our conclusion that the time complexity grows ex-
ponentially with increasing k.
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The critical degree data is summarized in Tab. 2 of Appendix A. The critical
degrees for di�erent systems do not depend on the underlying characteristic (i.e.
q) but only on the number of variables hk. This supports our conjecture that the
multivariate HFE polynomials appear to be random equations for small numbers
of guesses. Here ��� means that the process did not �nish because of the memory
consumption. RNDi means �random system with i variables guessed�.

All in all, interpolating the results show that a security level of 280 should be
reached for h ≥ 9 and h = 3, so starting from n = hk = 27 variables, it should
take the computer more than 280 instructions for computing the Gröbner basis.

5 Implementation Details and Testing
We will assume that the object of public-key encryption is only to transmit a key
for symmetric ciphers. For the sake of argument, we used block sizes which are
tuned to transmit 128-, 192- and 256-bit AES keys. Only h = 2, 3 are tested to be
correct code. Our preliminary implementations (C++, gcc -O3, no architectural
primitives) are tested on what's sitting in lab: the AMD Opteron (K8), and the
Intel Pentium III (P3) and Core 2 (C2) architectures. Some results in Tab. 1.

All in all, we recommend here h = 3 and r = 1 (which we call THFE, T is
for �Trinity�) with q = 31 as given in Tab. 1. Other values of h are similar.

Note: To avoid unnecessarily modulo-q operations and fully exploit the power
of modern CPUs, one should use short int or int data types. Simple irreducible
polynomials, e.g., t15−3 mod 31, also helps. The next logical step would be hand
optimizing with in-lined assembly or vector (SSE) C instrinsics.

5.1 Key Generation
Key generation is by the standard process of interpolation [30]. We randomly
select MS , cS , MT plus the parameters in Q, and set cT := MTQ(cS), which
makes all the constant terms zero. Now we can evaluate P(w) = T ◦ Q ◦ S(w)
for any w. Write the public key like Matsumoto-Imai:

z` =
∑

i

wi


Pi` + Qi`wi +

∑

j<i

Rij`wj


 . (6)

Let bi ∈ Fn
q be the unit vector in the i-th axis, and do

Qi` := (p`(2bi)− 2p`(bi)) /2
Pi` := p`(bi)−Qi` (7)

Rij` := p`(bi + bj)−Qi` −Qj` − Pi` − Pj`

So key generation means invoke n2 times the combination T ◦ Q ◦ S. We can
see that both S and T takes about n2 time. If h = 3, each evaluation of Q
involves 27 multiplications in Fqk , where k ∼ n/3 and which if we do �schoolbook�
multiplication will be about ∝ n2 multiplications in Fq. So we see that worst
case key generations takes O(n4) time measured in multiplications in K = Fq.
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5.2 Decryption

Decryption comprise the inversion of each of the stages in the public map. The
tricky one is of course the invertion of Q, which is not too hard if h is small.
We recommend h = 2, 3, or 4. Most of the discussion will default to h = 3, even
though analogous arguments for h = 2 or 4 can be inferred similarly.

Suppose we want to decrypt a ciphertext z = (z1, . . . , zm), where m = hk.
We apply T−1, collate K-variables yi into L-values Cj and get a system to solve:

Q`(X1, . . . , Xh) =
∑

1≤i≤j≤h

α
(`)
ij XiXj +

h∑

j=1

β
(`)
j Xj + γ(`) = C`, ` = 1 · · ·h. (8)

A good idea is to implement a miniature Gröbner basis method, specialized
for the occasion. We do a tailored matrix-F4 here. Working with 3 quadratic
equations in 3 variables, we will in succession run a Gaussian elimination on
matrices of dimensions 3×10, 11×19, 8×16, 5×13, with many coe�cients that
we know to be zero in advance. The other obvious choice is to eliminate variables
via resultants (Appendix C). Either method reduces to a univariate equation in
L, and the next section tells us how to �nd the roots of this polynomial. Back-
substitution will then �nd full solutions to the system of Eq. 8.

5.3 Summary of Univariate Equation-Solving

Using an odd-prime base �eld let us implement Cantor-Zassenhaus � much eas-
ier and faster than Berlekemp, but inapplicable for �elds F2prime (i.e., quartz)
� for �nding all solutions in L = Fqk to a univariate degree-d equation u(X) = 0:

1. Replace u(X) by gcd(u(X), Xqk − X) so that u splits (factors completely)
in L. Most of the work is to compute Xqk

mod u(X), which can be done by
(a) Compute serially and tabulate Xd mod u(X), . . . , X2d−2 mod u(X).
(b) Compute Xq mod u(X) using the square-and-multiply method.
(c) Compute Xqi mod u(X) for i = 2, 3, . . . , d− 1 using the above result.
(d) Compute Xqi

mod u(X) for i = 2, 3, . . . , k with the help of the map
X 7→ Xq in L, this is a precomputable linear map over K = Fq.

If using schoolbook multiplication, this takes cubic time in L-multiplications
in (d, k, lg q); (a�d) uses respectively d2, 3d2(lg q), 2d3, and 2k d2 mults.

2. Take a random polynomial v(X) such that deg v = deg u − 1, compute
gcd

(
v(X)(q

k−1)/2 − 1, u(X)
)
, repeat until u is nontrivially factored.

This takes also (3 lg q + 4k) d2 L-multiplications, for a total of work quintic
in (d, k, lg q) overall, which a�ects our choices of parameters a little.

Given the usual selection of parameters, the most time-consuming parts are 1(d)
and 2, both of which are roughly O(kd2) L-multiplications or O(k3d2) K-mults.
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5.4 Parameter Choices, Setup and Encryption

We choose q = 31 as a suitable compromise between not too small q (degree of
the Gröbner basis method argument, and the need to compute on too many Fq-
components) and not too large q (makes computation di�cult). Note that setting
up can be cumbersome � converting between packed and unpacked forms of keys
(public plus private) can take some 500,000 cycles.

To encrypt, take an AES key of the appropriate length and convert to base
q = 31, then pad if necessary. For example, suppose we are using h = 3 variables
in F319 to transmit a 128-bit key, then since log2 3127 & 133.76, if we convert a
128-bit number to a 27-digit base-31 number, one digit will always be zero. This is
�ne since we are doing embedding at the same time. For purely cosmetic reasons,
we choose always the last variable(s) that that is thrown away (in this case w26).
When there is room for some extra bits of randomness after embedding, we
always �ll with chunks of SHA-1 values of the input.

As shown in Tab. 1, we can see that the conservative instance with h = 3
and L = F3110 to be about 15 times as fast as RSA-1024 on the same computer.
With h = 2 and L = F3115 it is a further 1.5× faster. Using h = 4 and L = F3110

is a lot slower, but still about twice as fast as RSA-1024.
This seems a good time to mention some design choices. One obvious question

is �why not a smaller q, say q = 13� (also tested). The answer is twofold. First,
it now requires more blocks to transmit the same sized key, which on balance
makes it appreciably slower. Secondly, we also don't want the operating degree
D0 to exceed q too quickly because we wish to play safe. Reasons of security is
also why we recommend h = 3. Using h = 2 makes each multiplication in L take
more than twice the time. Since tests with h = 2 only show a 50% speed gain,
and we have neither run our Gröbner basis tests extensively with values of h
other than 3, nor understand all the theoretical complexities, we stay with h = 3
� seemingly a good compromise � and leave h = 2 and 4 for future work.
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A Empirical Data: Timings and Critical Degrees

Fig. 2. Timings to break multivariate HFE systems when q = 7, 11, 17, 31

Fig. 2 is the time data for our experiments. Table 2 is the data of the critical
degree. Here the experiments are for q = 11, 17, 31, which have the same results.
THFEi stands for the data where i is the number of variables of values guessed.
RNS3 stands for a corresponding random system with 3 variables guessed. This
data shows that our system bahaves essentially the same as the random system
up to a high degree and computationally it is not possible to distinguish them.

Scheme\ hk = 9 12 15 18
THFE1 9 12 14 �
THFE2 8 12 13 �
THFE3 8 11 13 16
RND3 9 12 14 17

Table 2. Critical Degrees in F4 for Solving Projected Multivariate systems

B Some Known Formulas Regarding Gröbner basis
We assume to be solving a system with n vars in Fq, m equations; the notation
[u]s means the coe�cient of the unit or monomial u in the series expansion of s.
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Proposition 1 ( [1, 36]). At degree D, the max. number of possible terms in
an equation is N (D) = N = [tD]

(1− tq)n

(1− t)n+1
which reduces to

(
n+D

D

)
for large

q. The number of equations in the elimination stage is mN (D−2) for XL, N ′ ≈
[tD]

(1− tq)n

(1− t)n
for F4 and F5. If D

n = w + o(1), then N is exponential in n, or

lg N ∼ n [(1 + w) lg(1 + w)− w lg w] + o(n), for large q;
∼ n [−(1− w) lg(1− w)− w lg w] + o(n), over F2;
∼ n

[
lg min(z−w(1− zq)/(1− z))

]
+ o(n), in general.

These Gröbner basis methods, sometimes called Lazard-Faugère methods,
work for equations of any assorted degree [2, 36]. The principal result is:

Proposition 2 ( [2] and [36, Theorem 7]). Suppose deg pi := di, and
(*) the syzygy module can be generated just from pipj = pjpi and pq

i = pi, then
the number of residual degrees of freedom is given by N − I = [tD] G(t), where

G(t) =
(1− tq)n

(1− t)n+1

m∏

j=1

(
1− tdj

1− tq dj

)
, for XL; (9)

=
(1− tq)n

(1− t)n

m∏

j=1

(
1− tdj

1− tq dj

)
, for F4 and F5; (10)

Here I means the dimension of the relations generated by our polynomial system
up to degree D, taken as a vector space. There is always a certain degree D above
which Eq. 9 and hence the underlined condition (*) above cannot continue hold if
the system has a solution, because the right hand side of Eq. 9 goes nonpositive.
This is Dreg := min{D : [tD] G(t) ≤ 0}, called the degree of regularity. We
sometimes write Dreg as DXL (resp. DF4) for XL (resp. F4/F5). If (*) holds for
as long as possible (which means for all D < Dreg), then D0 = Dreg and we say
that the system is K-semi-regular or q-semi-regular (cf. [1, 36]).

Diem proves [13] for char 0 �elds K (and it has been conjectured for all K)
that (i) a generic system (no algebraic relationship betweem the coe�cients) is
K-semi-regular and (ii) if (pi)i=1···m are not K-semi-regular, I can only decrease
from the Eq. 9 prediction. Most experts seem to believe the conjecture [13] that
a random system behaves like a generic system with probability close to 1.

While Dreg is still hard to compute, asymptotic analysis is possible. A prin-
cipal result [2] is that for any given q, as long as m/n is a roughly constant, we
know that Dreg/n = w + o(1) holds for some constant w.

C Solving via Resultants
Let Resi(f, g) be the resultant of f and g w.r.t. the variable Xi; ie, the resultant
obtained by treating f and g in L[X1, . . . , Xh] as elements of L[X1, . . . , X̂i, . . . , Xh][Xi],
where the hat-notation means to skip index i.
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To �nd the common roots of Q` − C` = 0, where ` = 1, . . . , h, �rst compute
R

(1)
i = Res1(Qi − Ci, Qi+1 − Ci+1) for i = 1, . . . , h − 1. As degX1

Qi ≤ 2,
each resultants is a determinant of a 4×4 matrix at most, with entries at most
quadratic in X2, . . . , Xt. Thus each R

(1)
i ∈ L[X2, . . . , Xh] is total degree 4. These

have the property that if (A2, . . . , Ah) is a zero of R
(1)
i then ∃A1 ∈ L such that

(A1, A2, . . . , Ah) is a common root of Qi − Ci and Qi+1 − Ci+1.

Now compute R
(2)
i = Res2(R

(1)
i , R

(1)
i+1) for i = 1, . . . , h − 2. These will be

8×8 determinants and total degree 16 in X3, . . . , Xt. When h = 3, we now have
a single univariate polynomial of degree at most 16 which is satis�ed by the
X3-coordinate of any solution to our original system. For h > 3, we can continue
and solve at most by j = h − 1. The size of the matrix whose determinant is
R

(j)
i is 22j , and the overall number of determinants is h(h−1)

2 .
We solve in at most j = h−1 steps. The size of the matrix whose determinant

is a result at step j is 22j , and the overall number of determinants is h(h−1)
2 .

We know from results on Gröbner basis (e.g., [2]) methods that the eventual
degree of the univariate equation should be at most 2h. Given that, the above
method seems too complicated and for sure will spend a lot of time computing
coe�cients that eventually cancel. Hence our choice of a tailored Gröbner basis
method in Sec. 5.2.


