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Abstract

Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) introduced the notion of resettable zero-
knowledge proofs, where the protocol must be zero-knowledge even if a cheating verifier can reset the
prover and have several interactions in which the prover uses the same random tape. Soon afterwards,
Barak, Goldreich, Goldwasser, and Lindell (FOCS 2001) studied the closely related notion of resettable
soundness, where the soundness condition of the protocol must hold even if the cheating prover can re-
set the verifier to have multiple interactions with the same verifier’s random tape. The main problem left
open by this work was whether it is possible to have a single protocol that is simultaneously resettable zero
knowledge and resettably sound. We resolve this question by constructing such a protocol.

At the heart of our construction is a new non-black-box simulation strategy, which we believe to be of
independent interest. This new strategy allows for simulators which “marry” recursive rewinding techniques
(common in the context of concurrent simulation) with non-black-box simulation. Previous non-black-box
strategies led to exponential blowups in computational complexity in such circumstances, which our new
strategy is able to avoid.
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1 Introduction

A fundamental question in cryptography deals with understanding the role that randomness plays in crypto-
graphic protocols and to what extent it is necessary. Progress on this question was made relatively early with the
result of Goldreich and Oren [GO94] showing that zero knowledge protocols cannot exist in the setting where
the parties do not have access to any randomness resource at all. While this work showed that randomness
cannot be completely eliminated, it simultaneously motivated several natural questions studying the “extent” to
which randomness is necessary. A rich line of work deals with studying the usage of imperfect randomness in
various settings (see [KLRZ08, DOPS04] and the references therein). Another line of work (and the one dealt
with in this paper) studies whether all the random choices can be made “offline” and be fixed once and for all.
In other words, is it possible to design cryptographic protocols where a party can reuse the same random tape
in multiple (or even all) executions.

The question of reusing randomness in cryptographic protocols was first considered in the context of zero
knowledge by Canetti, Goldreich, Goldwasser, and Micali [CGGM00] who proposed the notion of resettable
zero knowledge. In resettable zero knowledge, the zero knowledge property is required to hold even if a
malicious verifier can “reset” the prover to the initial state and start a new interaction where the prover uses the
same random tape. Canetti et al. [CGGM00] proposed constructions of resettable zero knowledge protocols
based on standard cryptographic assumptions. Barak, Goldreich, Goldwasser, and Lindell [BGGL01] showed
how to construct zero knowledge protocols for opposite setting (where soundness is required to hold even if
the verifier uses the same random tape in multiple executions), which following Micali and Reyzin [MR01b]1

they call resettably sound (rS) zero-knowledge.
To summarize, there now exist zero knowledge protocols which allow one of the parties to reuse the same

randomness while the other would be required to use fresh randomness in every execution. This leads to the
following natural question (called the simultaneous resettability problem in [BGGL01]):

“Do there exist zero knowledge protocols which allow both parties to re-use their (respective) random tape
in every execution?”

Since the works of [CGGM00, BGGL01], many questions about the security of resettable protocols have
been addressed (see the subsection on related work). However, the above question of simultaneous resettability
has remained open despite years of work.

Our Results. In this work, we settle this question in the positive by constructing the first simultaneous-
resettable zero-knowledge protocol. The primary road block to answering this question had been a limitation
in our understanding of non-black-box simulation strategies [Bar01], which are essential in this context (see
below) and have been important in achieving a number of advanced cryptographic goals (e.g. [Bar01, Bar02,
Pas04, PR05, BS05]). To get our result, we develop novel non-black-box simulation strategies that allow for
efficient incorporation of recursive rewinding techniques [RK99, KP01, PRS02], which we believe to be of
independent interest and of potentially wider applicability.

1.1 Discussion

Resettable zero knowledge. Resettable zero knowledge, where the prover may be reset, is closely related to
concurrent zero knowledge (cZK) [DNS98], where the prover can be forced to interact in an unbounded number
of concurrent executions of the protocol, with the interleaving at the control of the attacking verifier. Indeed,
resettable zero-knowledge is a strictly stronger requirement than concurrent zero-knowledge; every resettable
zero-knowledge protocol is also a concurrent zero-knowledge protocol, but many concurrent zero-knowledge

1Micali and Reyzin defined resettable soundness (and other soundness notions) in a public-key model, but did not consider the plain
model, which is the focus of the present work.
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protocols are not resettable zero-knowledge. Nevertheless, all known resettable zero-knowledge protocols (in
the plain model) build upon concurrent zero-knowledge protocols [CGGM00] (see also [BGGL01]).

All known concurrent zero-knowledge protocols make use of recursive rewinding techniques for simula-
tion [RK99, KP01, PRS02]. Since their introduction by Goldwasser, Micali, and Rackoff [GMR85], most
zero-knowledge protocols have made use of rewinding – where the simulator “tries” to simulate the execution
of the protocol, but sometimes “gets stuck”, and in order to proceed, it rewinds the execution of the protocol to
an earlier point, and tries again to “solve” the simulation (or tries to extract some information from the verifier
that it needs to solve the simulation). In the setting of concurrent zero-knowledge, an additional problem arises:
when the simulator rewinds the execution and tries again, the cheating verifier may schedule a new concurrent
execution of the protocol – and this new execution of the protocol will itself need to be rewound in order to
be solved. This leads to recursive rewinding strategies (with multiple “levels” of rewinding), and great care
must be taken to prevent this recursion from leading to exponential-time simulations. When concurrent zero-
knowledge protocols are modified to become resettable zero-knowledge, this recursive rewinding is inherited
by the rZK simulators.

Resettable Soundness. Resettably sound zero knowledge, where the verifier may be reset by a cheating
prover (who is trying to prove a false statement), presents a different kind of challenge. Indeed, if a zero-
knowledge protocol is simulated by means of a rewinding strategy, then it seems that a cheating prover who
can reset the verifier can implement the same strategy as the simulator (since rewinding is nothing more than
resetting a party to an earlier state). This intuition is formalized by Barak et al. [BGGL01], who show that
no resettably-sound zero-knowledge arguments exist for languages outside BPP if the simulator is black-box.
Thus, non-black-box simulation, as pioneered by Barak [Bar01], is essential to building resettably sound zero-
knowledge protocols. In non-black-box simulation, the actual code of the cheating verifier is used in order to
simulate the protocol; this is something that is not available to a cheating prover who can only reset the verifier.
Barak et al. [BGGL01] show how to use such non-black-box zero-knowledge protocols to achieve resettably
sound zero-knowledge arguments.

1.2 Techniques

The central idea behind our result concerns a novel non-black-box simulation strategy. We first describe this
simulation strategy in isolation and then discuss how it is useful in our context.

The New Non-black-box Simulation Strategy. To understand the simulation strategy, we first look at the
non-black-box zero knowledge protocol of Barak [Bar01]. The core idea behind Barak’s protocol is to have the
prover commit in advance to a program that claims to predict (using an input of “small length”) a string that
is later randomly chosen by the verifier. The prover then must prove that either its committed program really
can predict the verifier’s string, or that the statement is true. In a real execution, the program is information
theoretically extremely unlikely to be able to predict the verifier’s random string no matter what the input string
is. This is because the input string is not large enough to contain sufficient information about the verifier’s
random string. But in simulation (in the stand-alone setting), where the simulator can choose the verifier’s
random coins in advance and commit to these coins along with the verifier’s code, the simulator can ensure that
the program mimics the verifier’s execution of the protocol and therefore correctly predict the verifier’s string.

However, (for example) in the fully concurrent setting, there might be messages of several other sessions
in between the two “key messages” (that is, the commitment from the prover and the random string from the
verifier). Thus, the program that the simulator commits to must regenerate the transcript of the interaction of
all the concurrent executions up until the point that the adversary in the current execution outputs his randomly
chosen string. The simulation technique described above does not work in such a scenario and most natural
approaches to try to extend it either lead to exponential time simulation or require the input string to the program
to be too long (which in turn causes the soundness to fail).
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Let us now consider what extra power can we provide to such a program without compromising on sound-
ness:

1. We start with the observation that even if we allow the program to run in exponential time, the soundness
of the protocol is still preserved. This is because even an exponential time program can’t predict (output)
a random value chosen after the program is fixed. Of course, this observation does not appear to lead to
a useful simulation strategy because the running time of the simulator would be exponential.

2. Because of that, we instead consider polynomial time programs which however have access to an outside
oracle. During execution, the program can query the oracle and get a response as many times as it wants.
However, the key constraint is that there should only exist one valid response to a query. Definition
of a valid response is fixed as part of the protocol specification. Further, given a response (and the
corresponding query), it should be possible to determine in polynomial time if the response is valid.
An example of such a system is when the program queries the oracle with f(s) and expects s in return
(where f is a one-way permutation).

In other words, the query string fixes the response string in an information theoretic sense. Therefore,
the program will only output one fixed value no matter how the oracle is implemented. This preserves
the soundness of the protocol.

3. We now address the question of how the simulator implements the oracle. The simulator initially commits
to a program which, during execution, might require responses to queries of a given format. The protocol
execution continues and reaches the point when the simulator has to prove that the committed program
can predict the verifier’s challenge string. At this point, the simulator can anticipate the queries which this
program would make (since the program was created by the simulator). Our protocol/simulation strategy
will ensure that the simulator already has the responses to each of these queries by this point (possibly
by additional means such as rewinding). Thus, the simulator’s oracle simply consists of a polynomial
number of query, response pairs.

4. To sum up, the simulator proves that there exists a string such that: (A) the committed program makes
queries the responses to which can be found in the string, (B) all the query-response pairs satisfy the
required format, and, (C) the committed program outputs the verifier’s random string.

Here is another way of looking at the above idea. We allow the simulator to supply its program an input
of any length. However, the program is only allowed to access this input in a controlled manner so as to not
violate the soundness of the protocol.

Looking ahead, during simulation of our simultaneous resettable zero knowledge protocol, the program
committed by the simulator would make queries consisting of a commitment (to some string) while the response
would consist of the opening to the commitment. Assuming that the commitment scheme is one-to-one, there
can only be one valid answer to any query. As mentioned earlier, our simulator would make use of rewinding
techniques as well. The rewinding precisely accomplishes the goal of extracting from the verifier the opening
to a commitment which can then be used in implementing the oracle later.

Using the above in Our Context. We will first discuss the simpler goal of building a resettably-sound
concurrent zero-knowledge argument2. We begin by briefly recalling how all known concurrent zero-
knowledge protocols work in the plain model, for proving “x ∈ L” where L is an NP-complete lan-
guage [RK99, KP01, PRS02], at an informal level. The high level idea is this: First the verifier commits
to a “secret”. Then, the prover and verifier do the following many times sequentially (over many rounds of
interaction): the prover makes a “challenge” to which the verifier responds, with the properties that: (1) a

2Indeed, we follow something similar to this in our actual technical approach, although our first goal is something slightly weaker
than concurrent zero-knowledge. See below for a technical outline of our paper.
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single challenge-response from each round reveals no information about the secret or the randomness used to
commit to the secret, but (2) any two distinct challenge-response pairs from the same round reveal the secret
and the randomness used to commit to the secret3. Then, the prover proves the following using an ordinary
zero-knowledge (or WI) proof: that either the prover knows the verifier’s secret, or that x ∈ L. This works be-
cause in real life, the prover only gets one response for each round, and therefore he cannot learn the verifier’s
secret. However, in a simulation, the simulator can “rewind” the verifier and try to get two challenge-response
pairs for some round, and thereby learn the verifier’s secret (and the randomness the verifier used to commit to
his secret). As discussed earlier, the concurrent setting requires such a simulation to use a recursive rewinding
strategy, in order to successfully “solve” every execution of the protocol as they arise.

As discussed earlier, such concurrent zero-knowledge protocols are certainly not resettably sound, since if a
cheating prover could reset the verifier, it could use the same rewinding strategy to discover the verifier’s secret
and use it to cheat (just like the concurrent zero-knowledge simulator does). A simple idea to fix this problem
is the following: Have the prover commit to all his challenges in advance, and then in the challenge-response
phase, have the prover give a resettably-sound zero-knowledge argument that his challenges are the same as
the ones that he committed to earlier. Now, the cheating prover can’t cheat even if he can reset the verifier.
But there seems to be a problem here: thinking back to the concurrent zero-knowledge simulator, in order to
extract the verifiers’ secrets, it needs to give different challenges from the ones it commits to, so it will need
to simulate the resettably-sound zero-knowledge argument so that it can lie. Such a non-black-box simulation
would make use of the ideas described earlier.

To reach from one point to the other in a thread of interaction, a rewinding simulator potentially goes
through many other threads (in our case, to extract the opening to a commitment to the verifier’s secret). If
the program committed to by the simulator has to repeat through all the threads to reach (and output) the
verifier’s challenge string, it can be seen that the simulation becomes exponential time. Our new non-black-box
simulation strategy avoids such a blowup as follows. Lets look at what happens between when the simulator
committed to the program (point A) and when it actually needs to prove that its program can predict the
verifier’s string (point B). If there exists a session in which verifier’s secret (and randomness used to commit to
this secret) is required to move from point A to point B, simulator has already extracted this secret by the time
it reaches point B by creating look-ahead threads (else the simulator would have aborted before reaching point
B). Now the committed program, instead of creating these look-ahead threads again to move from point A to
point B, gets these secrets from the simulator by making (unbounded) polynomial number of ”commitment-
breaking” oracle queries. In other words, the information extracted by the simulator in all “other” threads is
already available to the committed program through oracle queries and hence these other threads need not be
generated again by the program. Overall, this helps keep our simulation polynomial time.

To make this approach work, aside from the main idea above, we also make use of several other (new
and old) ideas, including a new recursive rewinding technique inspired by [RK99]. At its core, our new non-
black-box simulation strategy allows for protocols that make essential use of non-black-box simulation but that
can also benefit from information learned using black-box recursive-rewinding simulation methods. Given that
previous non-black-box simulation advances have had an impact on numerous advanced cryptographic research
goals (e.g. [Bar01, Bar02, Pas04, PR05, BS05]), we believe that our new strategy will have other applications
as well.

1.3 Related Work

Subsequent to the works of Canetti et al. [CGGM00] and Barak et al. [BGGL01] described above, a number of
works have investigated the problem of security against resetting attacks for zero-knowledge protocols in the
plain model. Barak, Lindell, and Vadhan [BLV03] constructed the first constant-round public-coin argument
that is bounded resettable zero-knowledge. Deng and Lin [DL07a] showed a zero-knowledge argument system

3The requirement to be able to extract the randomness is actually not standard for concurrent zero-knowledge protocols from the
literature, but it is important for our approach.
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that is bounded resettable zero-knowledge and satisfies a weak form of resettable soundness; we make use of
some ideas from [BLV03, DL07a] in this work.

A larger body of work has investigated the same problems in a relaxed setting, called the “bare public
key” (BPK) model, introduced by [CGGM00], which assumes that parties must register (arbitrarily chosen)
public keys prior to any attack taking place. We stress that our results hold in the plain model, not just in the
BPK model, and the kinds of techniques used in the BPK model typically do not apply to the plain model.
[CGGM00] presented a constant-round resettable zero-knowledge argument in the BPK model, the round
complexity of which was improved by Micali and Reyzin [MR01b]. Micali and Reyzin [MR01b] also first
investigated different notions of soundness in the BPK model, including the notion of resettable soundness. Di
Crescenzo, Persiano, and Visconti [CPV04] described a resettable zero-knowledge protocol with concurrent
soundness, and Deng and Lin [DL07b] improved the computational assumptions needed to obtain this result.
Yung and Zhao [YZ07] also construct resettable zero-knowledge and concurrently sound arguments in the
BPK model, using a general and efficient transformation. Micali and Reyzin [MR01a] also proposed a stronger
variant of the BPK model for constructing bounded-secure protocols, and provided constant-round bounded
resettable zero-knowledge arguments in this model; this result was strengthened by Zhao et al. [ZDLZ03] also
in a bounded setting for resettable zero knowledge.

1.4 Technical Outline

Our technical approach to constructing a simultaneous-resettable argument for NP is as follows. Note that in all
our theorems, we (sometimes implicitly) assume that trapdoor permutations exist and collision-resistant hash
functions exist. We also discuss some building blocks that we use in Appendix A (these can all be instantiated
based on the assumptions above).

1. In Appendix B, we provide formal definitions of arguments that are resettable zero knowledge and reset-
tably sound.

In the same section, by modifying definitions and arguments from [CGGM00, BGGL01], we define
notions of hybrid zero-knowledge and hybrid soundness that are very similar to resettable zero-knowledge
and resettable soundness, but somewhat easier to prove. Very informally, in a hybrid zero-knowledge
protocol, all “important” messages of the verifier are fixed by its first message itself. Thus, to carry
out a meaningful reset attack, the verifier has to change its first message whenever it resets the prover.
The concept of hybrid soundness is defined analogously; the first message of the prover fixes all its
subsequent “important” messages in the protocol.

We then give transformations (in Appendix C) very similar to ones found in [CGGM00, BGGL01] that
show how to modify any hybrid zero-knowledge hybrid sound argument into a resettable zero-knowledge
resettably sound argument. The basic idea behind these transformation is have a party derive its own
randomness using the first message of the other party. Thus, if the other party changes its first message
(in trying to launch a successful reset attack), the randomness of the first party changes completely.

2. In Section 2, we describe our main protocol and its simulator which follows the intuition presented
in the Techniques section above, but also incorporates several other ideas (these ideas are sketched in
Sections 3.1 and 3.2). This protocol achieves hybrid soundness and a slightly relaxed notion of concurrent
zero-knowledge, where in each new session scheduled by the adversary, the adversary must act as an
honest verifier based on a fixed random tape (but the adversary can still schedule messages arbitrarily)4.
These security properties are proven in Sections 3.4 and 4.

4Note that any such relaxed concurrent zero-knowledge protocol can be compiled into a fully concurrent zero-knowledge protocol
using standard techniques (verifier commits to its randomness in the beginning and gives a zero-knowledge argument of correctness
along with every outgoing message).
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3. Finally, in Appendix 6, we present a compiler that transforms any relaxed concurrent zero-knowledge
and hybrid sound argument into a hybrid zero-knowledge and hybrid sound argument. While our trans-
formation is new, several techniques in this section are due to [DL07a, BLV03]. Taken together with the
transformation mentioned above from Appendix C, this yields our main result:

Theorem 1 Assume that trapdoor permutations and collision-resistant hash function families exist. Then there
exists a resettably sound resettable zero-knowledge argument system for all languages in NP.

2 Our Main Construction

We describe our construction of hybrid sound relaxed concurrent zero-knowledge arguments (which can be
used to obtain resettably sound relaxed concurrent zero knowledge arguments using our hs-rs transformation)
in this section. Recall that relaxed concurrent zero knowledge is formally defined in Appendix B. Appendix D
contains a sketch of the high-level ideas of our construction.

Let Com(s) denote a commitment to a string s using a non-interactive perfectly binding commitment
scheme Com with unique opening (as described in Appendix A.1). Whenever we need to be explicit about the
randomness, we denote by Com(s; r) a commitment to a string s computed with randomness r.

The common input to P and V is x supposedly in the language L ∈ NP , and a security parameter n. The
auxiliary input to P is an NP -witness w for x ∈ L. Our protocol proceeds as follows.

1. The prover P generates a set of 2n2 random challenge strings {ch1, . . . , ch2n2} where for all i, chi ∈
{0, 1}n. P computes and sends commitments {Com(ch1), . . . , Com(ch2n2)} to the verifier V .

2. The verifier V sets a trapdoor string trap = Com(1), generates a first verifier message σ of a rZAP
system (see Appendix A.2) and sends trap and σ to P . In addition, V computes the first message of the
three round Blum Hamiltonian cycle protocol repeated in parallel 2n3 times for the statement: “trap is
a commitment to 1”. In more detail, for every repetition, V generates a random permutation of the graph
representing the above statement and sends to P the commitments to the permutation and each entry of
the adjacency matrix of the permuted graph. This step requires V to use a witness relation such that a
valid witness contains a tuple (s, r) such that trap = Com(s; r).

3. For i ∈ [2n2], the protocol proceeds as follows:

• the prover P sends the challenge string chi (∈ {0, 1}n) to V .

• P now proves to V that either: (a) chi is the right challenge string committed in the ith commitment
in step 2, or, (b) x ∈ L. This is done using our non black-box zero-knowledge argument compiled
with the BGGL transformation as described in Figure 1 (having a novel trapdoor property to be
used by the simulator).

• The verifier V now responds to the challenge chi. Let chi[j] denote the jth bit of the challenge
chi. For all j, V sends the appropriate commitment openings (as per the Blum Hamiltonian cycle
protocol) for the (ni+ j)th parallel repetition assuming the challenge bit to be chi[j].

4. The prover P finally gives a rZAP to V proving either x ∈ L or the string trap is a commitment to 1
under the commitment scheme Com.

3 Proof of Relaxed Concurrent Zero Knowledge

3.1 Overview of Sim

We first informally describe the high-level structure of Sim highlighting the key issues (a more complete
description will be given later on).
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Common Input to P and V : x′ supposedly in the language L′ ∈ NP

Auxiliary input to P : An NP -witness w for x′ ∈ L′

Protocol:

The zero knowledge argument proceeds as follows:

1. The verifier V chooses a random collision resistant hash function h from a function familyH
and sends it to P .

2. The prover P computes z = Com(h(0)) and sends it to V .

3. The verifiers V selects a string r $← {0, 1}n4
and sends it to P .

4. The prover P and the verifier V now execute a witness indistinguishable constant round
public coin universal argument [BG02] where P proves to V that either x′ ∈ L′ or the
transcript of this zero knowledge argument τ (= (h, z, r)) is in a language Λ defined below.
We require the communication complexity of this universal argument to be O(n2).

The language Λ is defined as follows. We say that (h, z, r) ∈ Λ if there exists an oracle program Π
s.t. z = Com(h(Π)) and there exist strings y1 ∈ {0, 1}≤n

3
and y2 ∈ {0, 1}≤n

loglogn
with the

following properties. The oracle program Π takes y1 as input and outputs r within nloglogn steps.
Program Π may make calls to the oracle by producing a query of the form trap and expecting (s, r)
with trap = Com(s; r) in return, such that, the tuple (trap, s, r) is guaranteed to be found in the
string y2 (as per a suitable encoding of y2). Thus, oracle calls by Π can be answered using y2. If the
program Π makes a query that cannot be answered using y2, Π aborts and we have that
(h, z, r) /∈ Λ.

The above basic argument system is constant round as well as public coin. Applying the BGGL
transformation [BGGL01], we obtain a new argument system (which is resettably sound if the
above basic argument system is standalone sound).

Figure 1: Our new non black-box zero knowledge argument system

1. Sim generates the challenge strings in the first step randomly as described in the protocol and receives
the reply from V ∗ (which contains the string trap).

2. Sim and V ∗ now execute the challenge response rounds (Step 3). In these rounds, the goal of Sim will
be to rewind V ∗ (in the fully concurrent setting) and extract the “trapdoor witness” which V ∗ is using.
Recall that there are 2n2 “slots”. In each slot, the prover gives a challenge (along with a non black-box
zero-knowledge argument of its correctness) and the verifier opens the appropriate commitments. Sim
will attempt to rewind V ∗ in the concurrent setting and, in some slot, get its response for two different
challenges.

Indeed, rewinding strategies now exist which can achieve the above extraction goal even with ω(logn)
slots (see [PRS02]). However, the main non-triviality in our setting is that the prover is committed to its
challenge in each slot ahead of time (this property will be crucial for achieving resettable soundness).
Thus, in the look ahead threads, to give a challenge different from the one committed to in a slot, Sim
will need to simulate the associated non black-box zero-knowledge argument in the fully concurrent
setting (with no apriori bound on the number of executions). Our approach to solve this problem is as
follows:

• We first design a new rewinding strategy for Sim where every thread has the property that the sim-
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ulator gives a randomly generated challenge (as opposed to the one committed to) to the verifier
in at most a constant number of slots across all sessions. In all other slots, the simulator can con-
tinue to play honestly giving the challenge it committed to earlier. We stress none of the rewinding
strategies in the previous works had this property.

• We then describe our novel non black-box simulation strategy using which the simulator can prove
a false theorem in a constant number (across all sessions) of non black-box zero-knowledge argu-
ments in every thread (in the fully concurrent setting). This allows our simulator to give a random
challenge in a constant number of slots in every thread as required by our rewinding strategy.

Our non black box simulation strategy can potentially be extended to simulate any apriori bounded
number of slots in each thread, however, this is not required by our rewinding strategy. We describe our
rewinding and non black-box simulation strategies in detail in the following subsections.

3. Sim and V ∗ now execute the final rZAP. By this point, Sim has already extracted a witness to the
statement “trap is a commitment to 1” from the verifier. Hence, Sim uses this witness to execute this
rZAP.

3.2 The Simulator Sim

Before going into the details of Sim, we first fix some terminology. We assume there are a total of m sessions
(each session having 2n2 slots). The beginning of a slot is when the simulator gives the challenge, the end of
the slot being when it receives the response. In between these two messages, apart from the non black-box zero
knowledge argument associated with the challenge, there might be messages of other sessions. In any thread,
we say a slot is being simulated if the simulator is giving a random challenge (as opposed to the one committed
to) in that slot and is simulating the associated non black-box zero knowledge argument. Otherwise, if the
challenge is being given honestly as committed to, we say that the slot is being honestly executed. We say that
a session is being simulated if any slot in it is being simulated, otherwise we say the session is being honestly
executed.

As with the strategy in [RK99] (and [PV08]), our rewinding schedule is “adaptive”. In [RK99], at a very
high level, whenever a slot s completes, the simulator may rewind s by calling itself recursively on s. That is,
the simulator chooses another challenge for s and recursively executes until either it receives the response (and
hence “solves” the session) or it observes that the verifier has started “too many” new sessions or has aborted.
One case of special interest to us is when the simulator gets “stuck” on another unsolved session that started
earlier than s. The simulator restarts rewinding s in such a case. Richardson and Kilian [RK99] observe that
such a case can happen at most m − 1 times. This is because while the simulator is trying to rewind s, once
it gets stuck on a session that started earlier, it will never get stuck on that session again. Such an analysis is
problematic in our scenario where we can simulate only a constant (or a bounded) number of sessions (and
hence in our scenario the challenges chosen for a slot in two different threads are not necessarily independent).

The key idea of our simulation technique is to completely avoid the scenario of simulator getting stuck
on a session which started earlier. Whenever our simulator decides to rewind a slot s, it chooses a random
challenge and recursively invokes itself by giving that random challenge in s (and simulating the associated
non black-box zero knowledge argument). Going forward, challenges for all other slots are given honestly
by default. In addition, as opposed to strategies in [RK99, PV08] where the simulator only rewinds slots of
sessions that started at the current recursive level, our simulator is always “on the lookout” for opportunities
to rewind and solve a session. More precisely, before the simulator reaches the final rZAP for a session (and
hence potentially gets stuck on it), our choice of the number of slots guarantees that there would exist at least
one recursive level which will have at least 2n slots of that session. Whenever the simulator observes 2n slots
in one level, it would rewind those 2n slots and solve that session with high probability. This idea ensures that
the simulator never gets stuck on a session that started earlier than the target slot s.

The formal description of our simulator is given below. We borrow some notation from [PV08].
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• d = dlogn(m · 2n2)e will denote the maximum depth of recursion. Note that d is a constant since the
number of sessions m is polynomial in the security parameter n. Our simulator will have the property
that the total number of slots being simulated in any thread is bounded by d.

• slot(i, j) will denote slot j of session i.

• ` denotes the current depth of the recursion.

SOLVE(x, `, hinitial, s, L)

Let h← hinitial
Repeat forever and update h after each step:

1. If the verifier aborts or the number of slots in h started after hinitial (which we will call new slots) exceed
m·2n2

n` , return h;

2. If the next message is the first prover message of some session, generate and commit random challenges
honestly.

3. If the next message is the first verifier message of some session, continue;

4. If the next message is the final rZAP of some session then, as explained in step 6(c), we have already
solved that session (else the simulator would have aborted by this point). In other words, that trapdoor
witness for that session has been extracted. Use the extracted trapdoor witness (for the statement “trap
is a commitment to 1”) to execute the final rZAP.

5. If the next message is a prover message for the beginning of a slot s′, we have the following two possi-
bilities:

(a) If s′ ∈ L, the slot s′ is being simulated. The simulator uses the challenge specified in L. In
addition, the simulator uses our non black-box simulator subroutine (described in the next sub-
section) to handle all the messages of the non black-box zero-knowledge argument associated with
this message.

(b) If s′ /∈ L, the simulator proceeds honestly to give the challenge. It also executes the associated non
black-box zero-knowledge argument honestly.

6. If the next message is the end message of a slot s′ = slot(i′, j′), proceed as follows:

(a) If s = s′, we have succeeded in solving the target slot and hence the session. Return h;

(b) Otherwise if the session i′ has already been solved or the number of new slots (including s′) of
session i′ in h started after hinitial is less than 2n, the simulator need not rewind this slot. Continue;

(c) Otherwise, we have an unsolved session i′ such that 2n of its slots (from slot(i′, j′ − 2n + 1) to
slot(i′, j′)) have appeared at the current level. The Sim will rewind each of these slots once and
will solve session i′ except with negligible probability. Observe that the depth d of the recursion
is a constant and the total number of slots in a session is 2n2. This means just by the pigeonhole
principle, for every session i′, we would have this case at some level before we reach its final rZAP.
For each slot s” in this list of 2n slots:

i. Set L” = L. Add s” to L”. In addition, select a random challenge for s” and add it to L”.
ii. Let h” be the prefix of h which contains all messages up to but excluding the prover challenge

for s”. Set h∗ ← SOLVE(x, `+ 1, h”, s”, L”).
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iii. If h∗ contains an accepting execution for slot s”, the simulator has succeeded in solving s”
and hence session i′.

If after executing this step once for each such slot s”, we have not yet solved session i′, abort and
output Ext Fail.

Sim(x, z)

Run SOLVE(x, 0,⊥,⊥,⊥) and output the view returned by SOLVE, with the following exception.
When the simulator generates random challenge for a simulated slot and it becomes equal to the real challenge
for that slot or another simulated challenge generated previously in a different thread for the same slot, the
simulator aborts and outputs ⊥.

Looking ahead, the core of the analysis of this rewinding strategy can be found in Lemma 1 where we
prove that the probability with which the simulator outputs Ext Fail is negligible in n.

3.3 The Non Black-Box Simulation Subroutine

Recall that in a thread, whenever the simulator simulates a slot to give a random challenge, it was required to
simulate the associated non black-box zero-knowledge argument. We describe our non black-box simulator
subroutine in this subsection, and prove the completeness of the simulator’s use of this subroutine to execute
the non-black-box argument system.

First we describe the high level intuition behind how the the simulator uses its random tapes. The simulator
has a pair of random tapes (RA, RB). The random tape RA is sufficiently long so that it can be utilized to
compute all messages of all threads except messages of a slot being simulated. RA is formatted so as to allow
“random access”. That is, whenever the simulator needs to compute messages in a given thread, it can directly
calculate what part of RA should be used (thus, RA need not be accessed sequentially). The random tape RB
is used to execute the slots which are being simulated. That is, simulator uses RB to pick the random challenge
for a slot being simulated and to complete the associated non-black-box zero-knowledge argument.

Formal details of the simulator random tape usage are as follow. Consider the “execution tree” of the
simulation where each function call to SOLVE represents one node in the tree while each recursive call made by
it represents one of its child nodes (see Section 5 for details on how this execution tree is defined). The random
tapeRA has a (sufficiently long) portion for each such possible node in the execution tree. As shown in Section
5, this execution tree has depth upto d and degree upto 2mn2 (and hence only has a polynomial number of
nodes). From this it follows that the length of RA is only polynomial (since each execution of SOLVE can only
utilize a polynomial amount of randomness). Note that a node in the tree at depth ` can be uniquely identified
by a tuple (S1, . . . , S`) where Si ∈ [2mn2]. Hence, such a sequence also uniquely identifies the portion of
the random tape RA to be used for the execution of that node. We map each execution of SOLVE during a
simulation to a node in the execution tree in the natural way by mapping the first call SOLVE(x, 0,⊥,⊥,⊥) to
the root node and mapping the i-th recursive call made by an execution of SOLVE to its i-th child node. This
determines the randomness our simulator will use to complete that execution of SOLVE. The simulator uses
the random tape RB exclusively (in all threads) for picking random challenges in the slots being simulated and
for executing non black box zero knowledge arguments which are being simulated. The simulator uses RA for
computing every other outgoing message (e.g., honest non black box zero knowledge arguments, the prover
first message, final rZAP etc.). Such a separation of random tape is essential for our hybrid arguments to go
through.

Denote the thread containing the slot to be simulated by T . The simulator sends a random challenge in this
slot and uses the trapdoor condition of the associated non black-box zero knowledge argument to proceed. As
the first step of the proof, the verifier sends a hash function h as usual. The simulator now constructs a program
Π and sends z = Com(h(Π)).
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The program Π, very roughly, is constructed using part of the current state of the simulator and the adver-
sarial verifier such that it is able to go forward and produce their upcoming interaction transcript in the thread T
(with some input and “help from outside”). Details of the functionality of Π are given later in this subsection.

After receiving the commitment from the simulator, the adversarial verifier may continue interaction in
other concurrent sessions and finally produces a string r. The simulator now executes the universal argument
with the verifier as follows. It first prepares a string y1 containing the following:

1. The slot identifiers (in the form of tuples (i, j) containing the session and the slot numbers) for all the
simulated slots in the thread T .

2. The randomly selected prover challenges for all the above slots.

3. For each slot above, a tuple uniquely identifying the corresponding node of the execution tree (note that
each simulated slot can be mapped to an execution of SOLVE).

4. All prover messages which: (a) belong to a non black box zero knowledge argument being simulated,
and, (b) lie between messages z and r in the thread T . This includes the message z.

5. The number of simulator-verifier steps of interaction in T between messages z and r.

Recall that the number of simulated slots in T is bounded by a constant d(= dlogn(m · 2n2)e). Further-
more, the size of each prover message included in y1 is O(n2). From this, it can be shown that |y1| ≤ n3.

The simulator additionally constructs a string y2 as follows. Consider a session for which the final rZAP
lies between messages z and r. Since the simulator executed the thread T without aborting till at least the
message r, it follows that it must have extracted the trapdoor witness, i.e., a witness to the statement “trap is
a commitment to 1” (by getting a response for two different challenges in a slot across different threads) for
that session. In other words if the trapdoor string for that session is trap, the simulator has obtained (s, r)
with trap = Com(s; r). The string y2 simply contains such commitment strings trap and their opening tuples
(s, r). Now we discuss the functionality of Π in detail.

The program Π is constructed using two components: (a) the current state of the verifier, and, (b) a part of
the current state of the simulator which has RA (i.e., the first part of the simulator random tape). The goal of
program Π is to regenerate the transcript of only thread T from z to r (z, r inclusive). It works as follows.

1. It takes y1 as input and runs the inbuilt simulator and verifier machines from message z onwards.

2. Whenever Π needs to compute a prover message for a slot s (i.e., the challenge or a prover message of
the associated non black-box zero knowledge argument), it checks y1 to see if s is simulated. If so, Π
uses the message specified in y1. Otherwise, Π computes the message honestly using the appropriate
part of RA.

3. If the program Π has to execute the final rZAP of a session for which it does not have the required
trapdoor, Π uses the allowed oracle calls. For such a session, let the description of its trapdoor string be
denoted by trap. The program Π makes an oracle call with the string trap in the query. This string trap
and its opening (s, r) with trap = Com(s; r) is guaranteed to be found in y2 by construction. Π obtains
the required witness for the statement “trap is a commitment to 1” in response and uses that to complete
the final rZAP.

Comment: Note that Π (i.e., the inbuilt simulator it has) may not have the required trapdoor when it has
to execute the final rZAP of a session since Π does not execute any other threads apart from T . (This
is crucial for the running time of our simulator to be polynomial.) See Figure 2. Here the thread shown
in green and red is the thread T and its red portion is the part Π will regenerate. The look ahead threads
(shown in black) are not regenerated by Π .
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Figure 2: Π only re-generates the part of transcript shown in red. The secrets extracted in the look ahead threads
are specified in y2. This helps Π move forward using oracle calls without regenerating the look ahead threads.

4. After the program Π runs for the number of steps specified in the input y1, it has regenerated the transcript
in T between z and r. Π then halts outputting r.

To conclude, the opening to the commitment z and the pair (y1, y2) constitute a witness to the statement
(h, z, r) ∈ Λ. The simulator uses this witness to execute the universal argument and hence complete the non
black-box zero-knowledge argument, as long as y2 contains all the necessary (s, r) pairs, which must be the
case unless the simulator has already failed and output Ext Fail.

3.4 Indistinguishability of the Real and Simulated Views

In this section, we prove:

Theorem 2 Assume that trapdoor permutations and collision-resistant hash function families exist. Then the
protocol in Section 2 is a relaxed concurrent zero-knowledge argument.

PROOF. We will consider a series of hybrid experiments and show that the views of V ∗ in successive hybrids
are indistinguishable from each other. Our initial experiment will be the actual protocol as executed by the
prover and the verifier. Our final experiment will be the simulated protocol as described above.

Experiment H0. This experiment corresponds to when the simulator Sim has the required witness and runs
the protocol honestly with the malicious verifier V ∗ .

ExperimentH1. In this experiment, Sim starts creating the look-ahead threads as per our rewinding strategy
but with the following two modifications. For a slot being simulated in any look-ahead thread, Sim chooses a
challenge at random as usual. However, the first modification is that Sim executes the associated non black-
box zero knowledge argument in such a slot using a witness to the statement “x ∈ L” as opposed to simulating
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using the trapdoor condition (h, z, r) ∈ Λ (recall that in the non-black-box zero knowledge arguments, the
prover proves that either the challenge string is the correct one it committed to or x ∈ L). Secondly, Sim does
not use the extracted witnesses in any way in any thread (i.e, Sim continues to use the witness for the statement
x ∈ L to complete the final rZAP in all threads), just as the honest prover would do in an honest execution.
The only difference between the view of V ∗ in H0 and H1 is that Sim might abort the interaction (and hence
the main thread) because of one of the following 2 reasons (for reference, see the description of Sim in the
previous section):

1. A random challenge, ch, picked by Sim for a simulated slot becomes equal to either the real challenge
or another simulated challenge generated previously in a different thread for the same slot. Now since

ch
$← {0, 1}n and, as shown in section 5, there are only a polynomial number of threads, the probability

of this event happening is bounded by poly(n)
2n (which is negligible in n).

2. Sim fails to extract a valid witness in one of the sessions (i.e outputs Ext Fail). We show in Lemma 1
that the probability of this event happening is negligible.

Taken together, the above points imply that the view of V ∗ in experiment H1 is indistinguishable from that
in experiment H0.

Lemma 1 The probability with which the simulator Sim outputs Ext Fail in experiment H1 is negligible.

PROOF. We prove the above claim by contradiction. Assume that this probability is noticeable. Now since
there are a polynomial number of threads, a polynomial number of sessions in each thread and a polynomial
number of slots per session, there would exist a thread5 T , a session i and a slot j (of session i) such that
Sim outputs Ext Fail with a noticeable probability after trying to solve session i by rewinding slots j to
j + 2n− 1 appearing at some level in thread T (see description of Sim in Section 3.2). We call this event Fail
in experimentH1 and all subsequent experiments given below. Now consider the following hybrid experiments:

Experiment G0. This experiment is the same as hybrid experiment H1 with the following exceptions. The
simulator Sim only runs the thread T . In addition, Sim runs the look ahead threads forking off T from the
beginning of the slots j to j + 2n− 1 of session i if they all appear at the same level. Event Fail occurs if the
simulator runs these 2n look ahead threads but fails to extract a witness for session i. In other words, Sim only
generates the interaction transcript for thread T by not executing any threads from the execution tree except T
and (if slots j to j + 2n− 1 occur at the same level) the 2n look ahead threads.

Note that Pr[Fail] may only increase in this experiment. This is because Sim now outputs Ext Fail at least
with the probability with which Sim outputs Ext Fail in session i when started rewinding from slot j in thread
T in the experiment H1 (since the thread T and 2n look ahead threads in this experiment provide a perfect
emulation of the corresponding threads in H1 to the point they appear in the execution tree in H1). Thus,
Pr[Fail] is still noticeable in this experiment.

Experiment G1. This experiment is identical to the previous one except that now Sim starts using a witness
for the statement x ∈ L to complete the non-black-box zero-knowledge argument in each of these 2n slots in
thread T (as opposed to completing it honestly) . The witness indistinguishability of the universal argument
scheme directly implies the indistinguishability of the view of V ∗ in this experiment from that in the previous
one. Hence, following the previous experiment, we have that Pr[Fail] is still noticeable.

5A thread T is defined by a slot number (from 1 to m · 2n2) and an attempt number (from 1 to n) for every recursive level. This
is to uniquely pick the path from the root to a leaf node in the execution tree (see Section 5). Of course, it could be the case that in a
particular execution of the simulator, the thread T doesn’t appear or appears only partially. This is because not every slot at every level
occurs and is rewound n times by the simulator in every execution.
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Experiment G2. This experiment is identical to the previous one except that now Sim gives a random chal-
lenge in each of these 2n slots in thread T (as opposed to giving the ones it committed to). Observe that at this
point, Sim is not using the openings of the commitments to these challenges any time during the simulation
(since the associated non black-box zero-knowledge argument is being executed using a witness to the state-
ment x ∈ L). Hence, the computational hiding property of the scheme Com directly implies that the view of
V ∗ in this experiment is indistinguishable from that in the previous one. Hence, as in the previous experiment,
we have that Pr[Fail] is still noticeable.

If in a given execution, the 2n slots (from j to j + 2n − 1) occur at the same level, let ` denote that level.
Since the total number of new slots starting and ending at level ` is bounded by m·2n2

n` , at least n of these
2n slots have a maximum of m·2n2

n`+1 new slots between their start and finish messages. We call these slots
(`+ 1)-good.

Now consider a slot k from these 2n slots and the look ahead threads for this slot. Clearly the transcript of
slot k in thread T (i.e., the transcript in thread T from the start of k to its end) is identically distributed to the
transcript of k that appears in the look ahead thread for k (forking off thread T ). Now observe that when the
event Fail occurs: (a) all the 2n slots (from j to 2n+ j − 1) occur at the same level, and, (b) at least n of these
2n slots in thread T are (`+1)-good while none of the slots in the look ahead threads are (since otherwise Sim
would have extracted a witness for session i).

Experiment G3. Sim now proceeds as follows. Sim runs the thread T as in experiment G2 till the point
when the first of these 2n slot begins (i.e., the challenge for the first of these slots is due). Sim now creates 2
threads from this point onwards and continues each of them until the point this slot finishes or verifier aborts.
Sim now randomly selects one of these threads to be part of the thread T and treats the remaining as the look
ahead thread trying to “solve” this slot. Sim now continues this (extended) thread T till the point when the
second of the 2n slots begins and proceeds from there similarly as for the first slot (by creating 2 threats as
before and selecting one of them to add to T ). Sim continues this process to generate the entire thread T and
the look ahead threads for the 2n slots. Sim outputs Ext Fail if the 2n slots all occur at the same level ` and
none of the 2n look ahead threads are (` + 1)-good. Thus, exactly as in the previous experiment, when event
Fail occurs: (a) all the 2n slots (from j to 2n + j − 1) occur at the same level, and, (b) at least n of these 2n
slots in thread T are (` + 1)-good while none of the slots in the look ahead threads are. The only effective
difference from the previous experiment is that in this experiment, some of the look ahead threads are being
generated as the thread T is being generated (as opposed to generating the thread T first and then all the look
ahead threads as in the previous experiment). Hence it is easy to see that the probability of event Fail occurring
remains identical to that in experiment G2. Now we try to bound this probability.

To analyze the probability of event Fail in this experiment, we consider an experiment in which part of the
random tape of Sim is supplied by an external party. In detail, as it goes forward, Sim generates 2 threads for
each of these 2n slots and randomly chooses one of them to be part of the thread T as described except for the
following. Whenever exactly one of the generated 2 threads is (` + 1)-good, Sim queries the external party
with these thread transcripts asking it to randomly choose the thread to be part of the thread T . The probability
with which the external party chooses the thread which is (` + 1)-good is exactly 1

2 . Fail occurs only if Sim
makes at least n queries to the external party and each time the external party chooses the only (` + 1)-good
thread. This implies that in this experiment

Pr[Fail] ≤ 1
2n

However this contradicts the fact that Pr[Fail] is noticeable in this experiment. Hence Lemma 1 follows. �

Experiment H2. This experiment is defined exactly as the previous one with the exception that now Sim
uses the trapdoor witness (extracted from V ∗ ) to complete the final rZAP in all threads. Again, by relying on
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the witness indistinguishability property of rZAPs (in the concurrent setting), it can be shown that the view of
V ∗ in this experiment is indistinguishable from that in the previous one.

Experiment H3. This experiment is identical to the previous one except that now in the non black-box zero-
knowledge argument for each of the simulated slots (with a random challenge as opposed to the one committed
to) in every thread, Sim, instead of committing to h(0), commits to h(Π) where Π is a program to predict the
string r and is computed as described in the previous section. Note that none of the programs Π’s contain the
randomness required to generate these commitments (since it comes from the second part of the random tape
of Sim) and at this point, the opening of these commitments is not being used anywhere by the Sim (since
the corresponding universal arguments are being executed using a witness to the statement x ∈ L). Hence, the
computational hiding property of the commitment scheme Com directly implies the indistinguishability of the
view of V ∗ in this experiment from that in the previous one.

Note that at this point, in the non-black-box zero knowledge arguments in a simulated slot, the verifier V ∗

sends a hash function h and the prover sends z = Com(h(Π)) where Π is a program which can compute the
forthcoming verifier challenge string r (with the appropriate input and Oracle calls as described in section 3.3).
Hence we have that the trapdoor condition (h, z, r) ∈ Λ in the associated universal argument is true (even
though the universal argument is being executed using a witness to the statement x ∈ L at this point).

Experiment H4. This experiment is identical to the previous one except that now Sim starts using a witness
for the trapdoor condition (h, z, r) ∈ Λ to complete the universal arguments in each of the simulated slots.

The indistinguishability of this hybrid from the previous one relies on the adversary being relaxed concur-
rent. First we observe that since the randomness required to execute these universal arguments is not committed
to as part of any of the programs Π, they are essentially being executed with “off the record” randomness. Sec-
ondly, since the adversary is relaxed concurrent, it follows that even in the presence of multiple threads, a
universal argument does not have multiple different continuations across different threads with the same prefix.
That is, if it thread with a partially executed universal argument gets “forked off” in multiple different threads,
all of these threads will have the same continuation of this universal argument. Hence, given a V ∗ which can
distinguish between the distribution of the view in experiment H3 from that in experiment H4, it is possible for
Sim to have an external universal argument prover and distinguish the case from when it is using a witness to
x ∈ L from the case when it is using a witness to the statement (h, z, r) ∈ Λ. Hence, the witness indistinguish-
able property of the universal arguments implies the indistinguishability of the view of V ∗ in this experiment
from that in the previous one.

Note that the simulator in the experiment H4 is our actual simulator. Thus, the output of the simulator Sim
is computationally indistinguishable from the distribution of the transcript of a real interaction. Aside from
showing that the simulation in polynomial-time (shown in the next subsection), this completes our proof. �

4 Proof of Hybrid Soundness

In this section, we first prove that our protocol is hybrid sound (i.e hs, see Definition 8). We then apply our hs-rs
transformation to obtain a resettably sound protocol (which is a still relaxed concurrent zero knowledge). As a
first step, we analyze the (standalone) soundness of our new non black box zero knowledge argument system.

Lemma 2 The zero knowledge argument system described in Figure 1 is computationally sound in the stan-
dalone setting.

PROOF. Recall that in the protocol, after receiving h from the verifier, the (possibly malicious)- prover
sends z = Com(h(Π)) where Π could be any arbitrary program. We first analyze the probability of such a
program being able to output the verifier random string r (∈R {0, 1}n

4
) given the input y1 ∈ {0, 1}≤n

3
and

access to the oracle queries which are answered using y2 ∈ {0, 1}≤n
log log n

as described in the specification
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of language Λ. Now when Π is executed, there are a number of possibilities of the output depending upon
what the input y1 is and how the oracle queries are answered. Since Π only makes queries of the form trap
expecting (s, r) in return with trap = Com(s; r), by the unique opening property of the commitment scheme
Com (See Appendix A.1), the answer to the query is information theoretically fixed given the query itself.
Hence the input y1 alone information theoretically determines the output of Π. Since y1 ∈ {0, 1}n

3
, there are

a total of 2n
3

possible outputs of Π. Denote by S the set of these possible outputs. Now the probability of a
string r ∈R {0, 1}n

4
being an element of this set is bounded by 2n

4−n3
which is negligible in n. The above

argument still does not imply that (h, z, r) /∈ Λ since z(= Com(h(Π))) does not information theoretically fix
the program Π.

The rest of our soundness proof is along the lines of the one in [Bar01]. Assume x′ /∈ L′ and a malicious
prover P ∗ is still able to successfully complete the protocol such that a honest verifier V outputs accept with
a noticeable probability ε. We can assume P ∗ is deterministic without loss of generality. Call the first verifier
message h to be the prefix for the rest of the protocol. Now it has to be the case that for atleast a fraction ε

2 of
the prefixes, the probability (over rest of the verifier random coins) that P ∗ will succeed is atleast ε

2 . We call
such prefixes good. Now the verifier executes the protocol with P ∗ and invokes the weak knowledge extractor
associated with the universal argument system [BG02]. The probability (over all verifier random coins) of the
prefix being good and the extractor succeeding given that the prefix is good is atleast ε

2 · p(
ε
2) where p is a

polynomial (recall that the probability of success of the extractor is polynomially related to the probability of
success of the prover). Now if the extractor succeed and extracted a program (say Π1), the verifier restarts
the execution, sends the same first message h and receiving the same z = Com(h(Π1)) and continues from
there on with independent random coins and running the knowledge extractor (the verifier in particular chooses
an independent random string r ∈R {0, 1}n

4
). As argued in the previous section, if SΠ1 is the set of all

possible outputs of Π1, the probability that r ∈ SΠ1 is negligible. If the extraction succeeds again, the verifier
has obtained another program Π2. As argued before, except with negligible probability, Π1 could not have
predicted r and hence Π1 6= Π2. However since h(Π1) = h(Π2), we have obtained a collision in the hash
function. The probability of this event COLL can be computed as follows:

Pr[COLL] ≥ Pr[The prefix h is good] · Pr[Extractor succeeds in two independent executions with prefix h]

−Pr[Π1 = Π2]

≥ ε

2
·
(
p
( ε

2
)2)− negl(n)

which is still noticeable. This violates the collision resistance property of the function familyH. Hence the
lemma follows. �

Since our argument system is constant round and public coin in addition, the application of the BGGL
transformation (proposition 3.5 of [BGGL01]) results in a resettably sound argument system. The hybrid
soundness of our construction will crucially depend upon the resettable soundness of our non black box zero
knowledge argument system.

Theorem 3 The construction presented in Section 2 is hybrid sound.

PROOF. We first show that our protocol is a verifier admissible proof system. We divide the messages of the
prover into main and authenticator messages naturally as follows. The first prover message (i.e the commit-
ment to the challenges) is considered to be a main (and the determining) message. All the prover messages
of the (resettable sound) non black box zero knowledge argument system are considered to be authenticator
messages for the associated challenge which is considered to be a main message. The final rZAP is regarded
as authenticator message for the (implicit message) “x ∈ L”. Each incarnation of the verifier V is divided into
(V1, V2). We view the random tape of V1 as a tuple ω(1)

1 , ω
(2)
1 where ω(1)

1 is used for emulating the verifier of
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the non black box zero knowledge argument system whenever required while ω(2)
1 is used for emulating the

verifier of the rZAP system. V1 simply forwards the first main message received from P to V2 who sends back
the reply. Now in each slot, V1 receives the challenge string and acts as the verifier of the non black box zero
knowledge argument system on its own (using random tape ω(1)

1 ) to verify correctness of the challenge string.
If the argument completes successfully, i.e V1 accepts, it forwards the challenge string to V2 who sends back the
response. Finally when P sends the final rZAP, V1 verifies it on its own (using randomness ω(2)

1 ) and forwards
the message “x ∈ L” by convention. V2 outputs accept if it receives such a message from V1.

To summarize, P sends three types of main messages: the determining message (i.e, the commitment to the
challenges), the challenges themselves in various slots, and the final (implicit) message “x ∈ L”. Now consider
an arbitrary resetting PPT prover P ∗. For the same determining message M , it follows from the soundness of
our non black box zero knowledge that except with negligible probability, P ∗ is unable to generate two different
challenge strings in a slot such that V1 accepts both. This is because since the first main message contains a
perfectly binding commitment to the challenge strings, doing so would amount to proving a false theorem (and
in particular, given such a P ∗ one could construct a resetting prover for a resettable sound zero knowledge
argument system which can prove an adaptively chosen false theorem to an honest verifier with noticeable
probability). Finally, we observe that there is only one possibility for the final main message. Hence it follows
that our protocol is a verifiable admissible proof system.

All that remains to be shown now is that our protocol is sound in the hybrid model. This is shown by
focusing on the view of one incarnation of V2. V2 interacts with V1 and handles a single execution with fresh
randomness without getting reset. We focus on one such incarnation of V2 (while playing honestly in others)
and, very roughly, (a) make a look ahead thread to learn all the challenges committed by the verifier, (b) rewind
back to the point it has to generate a trapdoor string and generate a false trapdoor string (i.e a string trap which
is a commitment to 0), and, (c) still complete the Blum hamiltonian cycle protocol since it already knows
the challenges of P ∗. Now if P ∗ still manages to complete the proof successfully, it violates the resettable
soundness of the rZAP system. More details follow.

Suppose x /∈ L and a malicious prover P ∗ still manages to complete the protocol successfully (such that
V outputs accept) in the hybrid model with a noticeable probability ε. Since P ∗ interacts directly only with
V1 which in turn interacts with V2, we view V1(P ∗) as a single machine which interacts with V2 as described
before. We can assume that V1(P ∗) is deterministic without loss of generality. Call the first prover message
M consisting of the commitment to the challenge string to be the prefix for the rest of the protocol. Now it has
be the case that for atleast a fraction ε

2 of prefixes, the probability (over the random coins of V2) that V1(P ∗)
will succeed is atleast ε

2 . We call such prefixes good. Now, V2 executes the protocol with V1(P ∗) honestly.
The probability (over the random coins of V2) of the prefix being good and V1(P ∗) succeeding given that the
prefix is good is atleast ε

2

4 . Now if V1(P ∗) succeeded (which means that V2 learns all that challenge strings
committed to), V2 restarts the execution and receives the same prefix M from V1(P ∗). V2 however generates
a false trapdoor string trap this time (i.e., trap = Com(0)). By the resettable soundness of the non black
box zero knowledge argument as before, all the challenge strings given by V1(P ∗) in this execution would
be identical to the ones in the previous execution. Hence, V2 already has all the challenge strings of V1(P ∗).
It now follows from standard techniques that V2 can still successfully complete the Blum hamiltonian cycle
protocol as executed between V2 and V1(P ∗). Simply by relying on the computationally hiding property of
the commitment scheme, Com, it follows that V1(P ∗) would still succeed in this execution with probability
ε
2 − negl(n) if the prefix M is good. This would violate the resettable soundness of the rZAP system (since
x /∈ L and trap = Com(0)). The probability of this event VIO can be computed as follows:

Pr[VIO] ≥ Pr[The prefix M is good] · Pr[ V1(P ∗) succeeds in both executions with prefix M ]

≥ ε2

4
·
( ε

2
− negl(n)

)
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which is still noticeable. This violates the resettable soundness property of the rZAP system. Hence the
theorem follows. �

5 The Running Time of Our Simulation

In this section, we analyze the running time of our simulator Sim and prove that it is polynomial in the security
parameter n assuming the running time of V ∗ is polynomial. It is easy to see that for Sim, computing the
next message takes polynomial time for all messages other than those belonging to the universal argument
of a simulated non black-box zero-knowledge argument. Let nc1 denote the bound on the time taken by the
simulator to compute the next such prover message (i.e, a prover message not part of a universal argument
of a simulated non black box zero knowledge argument). Now consider messages of a “simulated universal
argument” (i.e, universal argument of a simulated non black box zero knowledge argument). To execute this
universal argument, the simulator uses a witness to the statement (h, z, r) ∈ Λ. Observe that verifying this
statement given the witness (which constitutes of the committed program Π, strings (y1, y2) and the opening of
the commitment z) requires running the program Π to regenerate the protocol transcript between the messages
z and r. Lets consider the time taken to compute all prover messages between z and r. This time is clearly
O(mn2 · nc1) since there can only be O(mn2) such messages between z and r. All the prover messages
belonging to a simulated slot are given as input as part of string y1 (and only need to be “read” rather than
computed). Again, the time taken to “read” such a message is also bounded by nc1 . Hence, overall the time
taken to generate such prover messages between z and r is O(mn2 · nc1). If the running time of the verifier’s
next message function is bounded by nc2 , it follows that Π can regenerate the transcript between z and r in time
O(mn2 ·nc1+c2). In other words, the theorem statement (h, z, r) ∈ Λ can be verified in time O(mn2 ·nc1+c2).
Then by the properties of universal arguments [BG02], it can be shown that the time taken to execute a simulated
universal argument is bounded by p(mn2 · nc1+c2) where p is a polynomial.

Hence, we conclude that Sim takes polynomial time to compute each next outgoing message to V ∗ . In
other words, each query from Sim to V ∗ (where a query is defined to be one round of communication between
Sim and V ∗ : computing the next prover message and the verifier’s reply) takes polynomial time. All that
remains to be shown now is that Sim makes only a polynomial number of queries to V ∗ .

To bound the number of queries Sim makes to V ∗ , we consider the recursive execution tree (of constant
depth) resulting out of Sim rewinding V ∗ . Each call to the function SOLVE(·, ·, ·, ·, ·) will represent one node
in the execution tree. The nodes resulting from all further recursive calls to SOLVE will be treated as children
of this node. Thus, the root node (at depth 0) is the call SOLVE(x, 0, ·, ·, ·) made by Sim(x, z). This call results
in the main thread while recursive calls give rise to the look ahead threads.

Now consider the transcript generated by a function call representing a node at depth ` (excluding the
transcripts generated by any further recursive calls). The number of new slots in this transcript is bounded by
m · 2n2 (in fact m·2n2

n` ). Now, each of these slots may have up to one look ahead thread resulting in a total
of up to 2mn2 children for this node. Hence, the execution tree is a tree of depth up to d and degree up to
2mn2. Hence, the total number of nodes is bounded by (2mn2)d+1. The transcript of each node contains
up to O(2mn2) queries. Hence, the total number of queries Sim makes to V ∗ is O((2mn2)d+2) which is a
polynomial (since d is a constant). This concludes our analysis.

6 Getting Resettably Sound Resettable Zero Knowledge

In this section, our goal is to construct a general compiler to transform any resettably sound relaxed concurrent
zero knowledge argument Σ into one that is resettably sound resettable zero knowledge argument. Combining
this with the protocol in our previous section, gives us our main result.

As an intermediate step, we first present a compiler to transform any given resettably sound relaxed con-
current zero knowledge protocol Σ into one that is hZK and hs (see Definition 6 and Definition 8). Once we
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have a protocol that is both hZK and hs, we can immediately obtain one that is rZK and rs by applying our
hZK-rZK and hs-rs transformations. Given a protocol Σ, our compiler works as follows.

The common input to P and V is x supposedly in the language L ∈ NP , and a security parameter n. The
auxiliary input to P is an NP -witness w for x ∈ L. The compiled protocol proceeds as follows:

1. The prover P generates a random string Rp (of appropriate length to be used to emulate the verifier of a
resettably sound zero knowledge argument system). P further generates the first verifier message σp of
a rZAP system and sends Com(Rp) and σp to the verifier V .

2. The verifier V similarly generates a first verifier message σv of a rZAP system. V further generates a
string trap such that trap = Com(0). V sends σv and trap to P .

3. The prover P and the verifier V now execute a protocol in which V proves to P that the string trap is a
commitment to 0 (in other words, there exists a r s.t. trap = Com(0; r)). This protocol is a resettably
sound zero knowledge argument [BGGL01] in which P uses the random tape Rp to emulate the verifier.
In addition, P sends a rZAP along with every message of this argument proving that either:

(a) The message is “honestly computed” and is consistent with Rp. More precisely, this message is
what an honest verifier using the random tape Rp (as committed in the first step) would have sent
given the transcript of the resettably sound zero knowledge argument so far, or,

(b) x ∈ L

4. Let τ denote the string consisting of the protocol transcript so far except the prover messages of the rZAP
system (i.e., the rZAPs in step 3). The verifier V chooses a function f : {0, 1}≤poly(n) → {0, 1}≤poly(n)

from an ensemble of pseudorandom functions. All further random coins required by V in the protocol
will come from random tape f(τ).

The verifier V now generates a random string Rv (of appropriate length to emulate the verifier in the
protocol Σ). V then sends Com(Rv) and trap to P . (Sending trap is only required for technical reasons
for our hZK-rZK transformation to be applicable.)

5. The prover P and the verifier V now execute the protocol Σ in which P proves to V that x ∈ L. In this
protocol, V uses the random tape Rv to emulate the verifier. In addition, V sends a rZAP along with
every message of this argument proving that either:

(a) The message is “honestly computed” and is consistent with Rv. More precisely, this message is
what an honest verifier using the random tape Rv (as committed in step 4) would have sent given
the transcript of the protocol Σ so far, or,

(b) the string trap is a commitment to 1. That is, there exists a r such that trap = Com(1; r).

The verifier V outputs accept if the verifier of Σ outputs accept.

Theorem 4 Assuming that the protocol Σ is relaxed concurrent zero knowledge, the compiled protocol de-
scribed above is hZK.

PROOF. We start by proving that the compiled protocol is a prover-admissible proof system.

Lemma 3 Assuming that the protocol Σ is relaxed concurrent zero knowledge, the compiled protocol is a
prover-admissible proof system as per Definition 5.

PROOF. We partition the prover P into (P1, P2) as follows. The first main verifier message (i.e., the deter-
mining message) is the one containing Com(Rv) (See step 4 of our protocol). All verifier messages before
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the determining message are considered to be authenticator messages to be handled by P1. In case the re-
settably sound zero knowledge argument is successful in step 3, P1 forwards the first round main message
(Com(Rv), trap) to P2. Next, during the execution of the protocol, all rZAP messages are considered to be
authenticator messages associated with a verifier message of Σ which is considered to be a main message itself.
P1 verifies the rZAP on its own and if successful, forwards the associated verifier message of protocol Σ to
P2. We view the random tape of P1 as a tuple (ω(1)

1 , ω
(2)
1 , ω

(3)
1 , ω

(4)
1 ). ω(1)

1 is used to emulate the prover of the
rZAP system in step 3, ω(2)

1 is identical to Rp and used when emulating the verifier of the resettably sound zero
knowledge argument system in step 3, ω(3)

1 is used to emulate the verifier of the rZAP in step 5 and ω(4)
1 is used

for the remainder of the tasks.
We prove that our protocol is a prover-admissible proof system by contradiction. Suppose that a resetting

adversarial verifier V ∗ can interact with (an incarnation of) the prover P = (P1, P2) and with a noticeable
probability ε produces two different main messages, both accepted by P1, for some round ` in two different
interactions with P with the same determining message (trap, Com(Rv)). We say, as a short hand, that V ∗

violates property of the prover-admissible proof system with probability ε. We consider the following hybrid
experiment:

ExperimentH1. This experiment is identical to the actual proof system as described above with the exception
that P2 uses a witness to the statement x ∈ L to complete all the rZAPs in step 3. By the resettable witness
indistinguishability of the rZAP system, it follows that V ∗ still violates property 3 of the prover-admissible
proof system with probability ε− negl1(n).

Experiment H2. This experiment is identical to the previous one with the exception that P2 starts sending
Com(0) as opposed to Com(Rp) in step 1. This in particular means that, P2 is using “off the record” ran-
domness to emulate the verifier of the resettably sound zero knowledge argument system in step 3. Since the
message sent by P2 to V ∗ in the first step is always fixed (across resets), from the computation hiding property
of the commitment scheme Com it follows that V ∗ still violates property 3 of the prover-admissible proof
system with probability ε− negl2(n).

It can be shown that in experiment H2, the string trap is a commitment to 0 except with negligible proba-
bility. This directly follows from the resettable soundness of the argument system being used in step 3. Now,
the determining message of V ∗ contains Com(Rv) such that V ∗ has to give a rZAP with every following main
message (i.e., a verifier message of Σ) essentially proving its consistency with Rp (since trap is a commitment
to 0). Thus, violating property 3 (of the prover-admissible proof system) in our protocol amounts to violating
the resettable soundness of the rZAP system. This contradicts the fact that ε is noticeable. �

All that remains to be shown now is that our protocol is zero knowledge in the hybrid model. To prove
that, we focus on the view of all incarnations of P2. LetM denote the machine resulting from the combination
of all incarnations of P2 (i.e.,M simply has the code of each incarnation of P2 and handles all their interac-
tions).M interacts with various incarnations of P1 and handles multiple concurrent executions each with fresh
randomness (without getting reset). Since V ∗ interacts directly only with an incarnation of P1 which in turn
interacts with the corresponding incarnation of P2, we view P1(V ∗) as a single machine constructed using the
code of V ∗ and each incarnation of P1. This machine in turn interacts withM as described before.

To show zero knowledge, we construct a simulator which interacts with the machine P1(V ∗). This simula-
tor S is essentially identical to the relaxed concurrent zero knowledge simulator SΣ of protocol Σ. Note that the
first message of P1(V ∗) in a session is (Com(Rv), trap) which can be seen as P1(V ∗) writing on a special tape
before beginning the session. Further, P1(V ∗) just serves as the verifier of the protocol Σ (after sending the first
message). From the resettable soundness of the rZAP system, except with negligible probability, all messages
of P1(V ∗) in Σ are consistent with Rv (where Com(Rv) appears on the special tape). Hence during the entire
simulation, the view of S is statistically indistinguishable from the view when S was interacting with a relaxed
concurrent adversary A. Now recall that for relaxed concurrent adversary A, the advantage of a distinguisher
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in distinguishing between the output of SΣ and the output ofA in a real interaction withM is negligible. Thus
it follows that such a statement holds even when A is instantiated with P1(V ∗). This concludes the proof that
our protocol is hZK. �

Theorem 5 Assuming that the protocol Σ is resettably sound, the compiled protocol is hs (i.e., hybrid sound).

PROOF. We start by showing that our protocol is a verifiable admissible proof system. We divide the verifier V
into V1 and V2 as follows. The first message sent by P ∗ (containing a commitment to Rp) is considered to be
the determining message. V2 sends the reply to this message as in step 2. In step 3, each verifier message of P ∗

contains a verifier message of a resettably sound zero knowledge argument system which is considered to be
a main message. The accompanying rZAP is considered to be an authenticator message handled by V1 which
verifies it and forwards the associated main message to V2 (which then sends the next prover message of the
resettably sound zero knowledge argument system). Finally, step 4 and 5 are handled by V1 alone which sends
a message “x ∈ L” by convention to V2 if P ∗ completes Σ successfully. In other words, all the messages of P ∗

in step 4 and 5 are authenticator messages for the (implicit) main message “x ∈ L”. We view the random tape
of V1 as a tuple (ω(1)

1 , ω
(2)
1 ) where ω(1)

1 is used to emulate the verifier of the rZAP system (in step 3) while ω(2)
1

is identical to the pseudorandom function f used to produce the random tape used by V1 in step 4 and 5. We
define two parts of V1: V part1

1 and V part2
1 . V part1

1 has randomness ω(1)
1 and executes step 1 to 3 of our protocol.

V
part2

1 has the description of f and executes step 4 and 5.
To see that our protocol is a verifiable admissible proof system, the first message of P ∗ contains a commit-

ment to Rp. In step 3, all main messages accompanied by a rZAP proving their consistency with Rp. Finally,
there is only one possible main message in step 4 and 5 (i.e., x ∈ L). Hence from the resettable soundness of
the rZAP system, it follows that our protocol is a verifiable admissible proof system.

All that remains to be shown now is that our protocol is sound in the hybrid model. To prove this, we focus
on one incarnation I of V = (V1, V2). We first define machines M1(P ∗) and M2 as follows. M1(P ∗) is made
of a combination of P ∗, all incarnations of V except I and V part1

1 of incarnation I . Machine M2 is made of a
combination of V part2

1 and V2 of incarnation I . In other words, M1(P ∗) interacts with P ∗ and honestly handles
all the messages of interaction with it internally which either V part1

1 of incarnation I or any verifier V of any of
the incarnation are supposed to handle. For the remaining messages of incarnation I , M1(P ∗) interacts with
M2 (which is capable of executing V part2

1 and V2 of incarnation I).
Suppose x /∈ L and the malicious prover P ∗ still manages to complete the protocol successfully with

incarnation of verifier V = (V part1
1 , V

part2
1 , V2) with a noticeable probability ε in the hybrid model. We will

focus on the view of M2. Now consider the following hybrid experiments:

Experiment H1. This experiment is identical to our protocol (as described in the terminology of M1(P ∗)
and M2 as above) except for the following. The machine M2, to emulate V part2

1 , uses a separate random tape
R as opposed to using the output of f applied on τ . Note that τ is exactly the transcript of interaction between
M1(P ∗) and V2 which is encapsulated inside M2 ( V2 gets the last “x ∈ L” message from V

part2
1 rather than

M1(P ∗)). Observe that this interaction betweenM1(P ∗) and V2 would have concluded by the time V part2
1 starts

any interaction with M1(P ∗).
Now recall that the random tape used by V2 is independent of any random tape used by any incarnation of V2

encapsulated in machine M1(P ∗). From this it can be shown that with high probability, the string τ is different
from any string τ ′ on which f(τ ′) is evaluated by any other incarnation of V2 encapsulated in M1(P ∗). Thus,
just by the pseudorandomness property of the function f , the view of P ∗ (inside M1(P ∗)) in this experiment
remains indistinguishable from the one in the real protocol. This in particular means that V2 (inside M2) still
outputs accept with probability at least ε− negl1(n).

Observe that at this point both V2 and V part2
1 are using random coins independent of any random coins used

by M1(P ∗). V2 cannot be reset by M1(P ∗) while V part2
1 might be. Further, V2 completes step 3 of the protocol

before V part2
1 is invoked by M2 for any interaction.
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Experiment H2. This experiment is identical to the previous one except for the following. V2 sets string
trap = Com(1) in step 2. Furthermore, V2 runs the simulator Srs associated with the resettably sound zero
knowledge argument system to complete step 3. Note that it is sufficient for Srs to only work in the standalone
setting. By the computationally hiding property of commitment scheme Com and the indistinguishability of
the view generated by Srs from when this argument was honestly executed, it follows that the view of M1(P ∗)
in this experiment is indistinguishable from the one in the previous experiment. This in particular means that
V2 still outputs accept with probability at least ε− negl2(n).

Experiment H3. This experiment is identical to the previous one except for the following. V part2
1 , instead

of sending Com(Rv) in its first outgoing message, sends Com(0). Further, V part2
1 uses the trapdoor condition

“string trap is a commitment to 1” to compute the rZAP it is required to send along with every verifier message
of the protocol Σ (a witness for the statement “trap is a commitment to 1” is passed from V2 on to V part2

1 by
machine M2). Note that the commitment in the first outgoing message of V part2

1 (i.e., Com(Rv) in the previous
experiment, Com(0) in this one) is identical across all sessions resulting from the resets. Thus the computa-
tional hiding property of the commitment scheme Com along with the resettable witness indistinguishability
of rZAP system implies that the view of M1(P ∗) in this experiment is indistinguishable from the one in the
previous experiment. This in particular means that V2 still outputs accept with probability at least ε−negl3(n).

Note that in experiment H3, V part2
1 is using “off the record” random tape Rv to emulate the verifier of

protocol Σ. Furthermore, for V2 to output accept, V part2
1 should accept in Σ (and send the message “x ∈ L”

to V2). Hence the fact that ε is noticeable contradicts the resettable soundness of the protocol Σ. Thus, the
theorem follows. �
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A Building Blocks

A.1 Non-interactive Perfectly Binding Commitment Scheme with a Unique Decommitment

In our protocol, we shall use a non-interactive perfectly binding commitment scheme with the properties that
every commitment has a unique decommitment and the verification of the decommitment is deterministic. An
example of such a scheme is the scheme that commits to the bit b byCom(b; (r, x)) = r||π(x)||(x·r)⊕bwhere
π is a one-way permutation on the domain {0, 1}k, x · y denotes the inner-product of x and y over GF (2), and
x, r ← Uk. We denote this commitment scheme by Com.

A.2 Resettably Sound Resettable Zaps

Zaps are two round public coin witness indistinguishable proofs introduced by Dwork and Naor [DN00]. Zaps
further have the special property that the first message (sent by the prover) can be reused for multiple proofs.

As noted in [BGGL01], any ZAP system already has the property of resettable soundness. Furthermore,
resettable witness indistinguishability property can be obtained by applying the transformation in [CGGM00].
We refer to the resulting system as an rZAP system having the property of resettable soundness as well as
resettable witness indistinguishability (see Theorem 1.5 in [BGGL01] for more details).

A.3 Resettable Sound Zero-Knowledge Arguments

Resettable sound zero-knowledge (rsZK) arguments were studied by Barak et al [BGGL01]. As in resettable
zero-knowledge [CGGM00], rsZK arguments deal with the zero-knowledge functionality but consider the set-
ting when the verifier is resettable by the prover. Barak et al [BGGL01] gave a construction of rsZK arguments
relying on the non-black techniques introduced by Barak [Bar01]. They also ruled out rsZK arguments having
a black-box simulator (except for languages in BPP) thus showing that usage of non-black box techniques is
inherent. In our constructions, we rely crucially on the fact that rsZK arguments (as defined by [BGGL01])
have the property that soundness holds even if the verifier can use the same random string in multiple zero-
knowledge argument executions even for different statements.

Barak et al [BGGL01] in fact also presented a general transformation from any constant round public coin
zero knowledge argument system to a resettably sound zero knowledge argument system. We make use of this
transformation in our constructions and refer to it as the BGGL transformation.

B The Model and Definitions

B.1 Relaxed Concurrent Zero Knowledge

Informally speaking, in relaxed concurrent zero knowledge, we only quantify over relaxed concurrent adver-
saries. We first define relaxed concurrent adversaries in the setting of zero knowledge.

Definition 1 (Relaxed Concurrent Adversary:) An adversary A who interacts with the prover P concur-
rently in multiple sessions is a relaxed concurrent adversary if it has the following property. Before A starts a
new session, it writes a string s to a special tape such that:

• There exists a function f (not necessarily polynomial time computable) fixed before the start of any
interactions such that r = f(s), and,

• All messages of the adversary A (playing as the verifier) in this session are consistent with the messages
of an honest verifier using the random tape r.
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Informally speaking, the next message of the adversary A in a session is information theoretically fixed
given the special tape of A for this session and the transcript of interaction between P and A in this session
alone. In particular, very roughly, if the simulator rewindsA and changes a prover message (in another session)
which appears in the interaction transcript after this session started, the transcript of interaction of this session
would remain unchanged.

Definition 2 (Relaxed Concurrent Zero Knowledge:) A protocol Σ is called relaxed concurrent zero knowl-
edge if it remains zero knowledge with respect to a relaxed concurrent adversary A. In other words, for every
relaxed concurrent adversary A, there exists a simulator S such that the distribution of the view of A in inter-
action with the prover P is indistinguishable from the distribution of the output of S (which is given only the
common input).

B.2 Resettably Sound Resettable Zero Knowledge Arguments

In this section, we recall the definition of the properties resettable zero knowledge and resettably sound ar-
guments from the works in [CGGM00, BGGL01]. Our goal would be to construct an interactive proof
system which satisfies both of these properties. The definitions below are taken almost verbatim from
[CGGM00, BGGL01].

Definition 3 (rZK [CGGM00]:) An interactive proof system (P, V ) for a language L is said to be resettable
zero-knowledge if for every probabilistic polynomial-time adversary V ∗ there exists a probabilistic polynomial-
time simulator M∗ so that the distribution ensembles D1 and D2 described below are computationally indis-
tinguishable: Let each distribution be indexed by a sequence of distinct common inputs x̄ = x1, . . . , xpoly(n) ∈
L ∩ {0, 1}n and a corresponding sequence of prover’s auxiliary-inputs ȳ = y1, . . . , ypoly(n).

Distribution D1 is defined by the following random process which depends on P and V ∗.

1. Randomly select and fix t = poly(n) random-tapes ω1, . . . , ωt for P , resulting in deterministic strategies
P (i,j) = Pxi,yi,ωj defined by Pxi,yi,ωj (α) = P (xi, yi, ωj , α), for i, j ∈ {1, . . . , t}. Each P (i,j) is called
an incarnation of P .

2. Machine V ∗ is allowed to run polynomially-many sessions with the P (i,j)’s. Throughout these sessions,
V ∗ is required to complete its current interaction with the current copy of P (i,j) before starting a new
interaction with any P (i′,j′), regardless if (i, j) = (i′, j′) or not. Thus, the activity of V ∗ proceeds in
rounds. In each round it selects one of the P (i,j)’s and conducts a complete interaction with it.

3. Once V ∗ decides it is done interacting with the P (i,j)’s it (i.e, V ∗) produces an output based on its view
of these interactions. This output is denoted by 〈P (ȳ), V ∗〉(x̄) and is the output of the distribution.

Distribution D2:
The output of M∗(x̄).

Definition 4 (rs [BGGL01]:) A resetting attack of a cheating prover P ∗ on a resettable verifier V is defined
by the following two-step random process, indexed by a security parameter n.

1. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for V , resulting in deterministic
strategies V (j)(x) = Vx,rj defined by Vx,rj (α) = V (x, rj , α), where x ∈ {0, 1}n and j ∈ [t]. Each
V (j)(x) is called an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the V (j)(x)’s. The activity
of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus defining V (j)(x), and
conducts a complete session with it.
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Let P and V be some pair of interactive machines, and suppose that V is implementable in probabilistic
polynomial-time. We say that (P, V ) is a resettably-sound proof system for L (resp., resettably-sound argument
system for L) if the following two conditions hold:

• Resettable-completeness: Consider an arbitrary resetting attack (resp., polynomial-size resetting attack),
and suppose that in some session after selecting an incarnation V j(x), the attacker follows the strategy
P . The, if x ∈ L then V (j)(x) accepts with negligible probability.

• Resettable-soundness: For every resetting attack (resp., polynomial size resetting attack), the probability
that in some session the corresponding V (j)(x) has accepted and x /∈ L is negligible.

C The hZK and rs Definitions and Transformations

Canetti et al [CGGM00] proposed a general paradigm for constructing resettable zero knowledge protocols.
This paradigm was further generalized by Barak et al [BGGL01]. They defined a class of proof systems called
admissible proof systems and a new model called the hybrid model which is a strengthening of the concurrent
model. They proposed a general transformation applicable to an admissible proof system and showed that if
the original (admissible) proof system was zero knowledge in the hybrid model, the transformed proof system
would be resettable zero knowledge. A similar result was shown for the case of witness indistinguishability.
These results were obtained by showing that any fully resetting adversary can be emulated by an adversary in
the hybrid model.

In this section, we modify the class of admissible proof systems and the corresponding hybrid model
slightly to fit our requirements. We show that even for our definition, the transformation of [CGGM00,
BGGL01] still works and a proof of this fact is very similar to the corresponding proofs in [BGGL01]. Further-
more, we define an analogous transformation for the case of resettable soundness. That is, we define the class
of admissible proof systems and the hybrid model for this case and then present a transformation to convert an
admissible proof system that is sound in the hybrid model to a resettably sound proof system. This is done in
a manner very similar to the case of resettable zero knowledge by showing that a fully resetting prover can be
emulated by a prover in the hybrid model.

We now discuss our transformations in detail. Our transformations are modifications of the transformations
found in [CGGM00, BGGL01]

Definition 5 (Prover-admissible proof-system) A proof-system (P, V ) is called prover-admissible if the fol-
lowing requirements hold:

1. The prover P consists of two parts P1, P2. Similarly, the prover’s random input ω is partitioned into two
disjoint parts, ω(1), ω(2), where ω(i) is given to Pi

2. A message sent by the verifier may either be labeled as main message or an authenticator message. The
first main message sent by the verifier in the protocol is called the determining message. Each verifier
message is first received by P1. In each round of interaction, the verifier and P1 exchange a number of
messages in which exactly one of the messages is a main message while the rest are authenticator mes-
sages. At the end of an interaction round, P1 decides whether to accept the (only) main message received
based on the transcript of interaction round itself and the transcript of the verifier main messages and
the corresponding replies of P2 so far. If P1 accepts, it forwards the main message to P2 who generates
the reply.

3. Let V ∗ be an arbitrary (deterministic) polynomial-size circuit, where V ∗ may execute a resetting-attack
on P (as described in Distribution 1 of Definition 3). Let V ∗ interact with some incarnation of P =
(P1, P2). Then, except with negligible probability, V ∗ is unable to generate two different main messages,
both accepted by P1, for some round ` in two different interactions with P with the same determining
message.
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The Hybrid Model Loosely speaking, in our hybrid model, as in [CGGM00, BGGL01], the verifier is given
the ability to “partially reset” the prover (while otherwise interacting in the concurrent setting). More precisely,
in the prover admissible proof system, each incarnation of the prover is identified by three indices: P (i,j,k) =
Pxi,yi,ωj,k

where ωj,k = (ω(1)
j , ω

(2)
k ). The string ω(1)

j represents the random input to P1 while ω(2)
k represents

the random input to P2. The verifier can interact with these incarnations in the concurrent setting where it is
allowed to have a single session with each incarnation. However, the verifier is not allowed to interact with two
different incarnations P (i,j,k) and P (i′,j′,k′) such that k = k′. Furthermore, the verifier is given the power to
request P1 (in an incarnation) to restart the interaction from the beginning while leaving P2 in the same state
as it was (we prefer not to use the term “reset P1” since such a restart does not completely erase its memory)6.
After being restarted, P1 operates as usual using the same random tape ω(1) except for the following. P1

aborts if the verifier sends a different determining message in the first round of interaction after P1 restarts.
Furthermore, in a round of interaction with the verifier, P1 does not forward the received main message to P2

(even if it is accepted) in case a main message in that round has been forwarded earlier (before P1 was requested
to restart the interactions) regarding of whether the message is equal to the previous one or not. Instead, P1

simply sends accept or reject to the verifier (without sending any other reply) depending upon whether it
accepted or rejected the main message in that round. P1 then waits for the verifier messages for the next round
as if P2 had sent the same reply it sent earlier in that round before P1 restarted the interaction. Intuitively, such
a setting ensures that P1 and P2 do not go out of sync even though only P1 restarts the interaction (with the
same randomness).

Definition 6 (hZK) A hybrid cheating verifier V ∗ works against prover-admissible proof systems in the hybrid
model as described above. A proof system is hZK if it is prover admissible and satisfies Definition 3 with respect
to hybrid cheating verifiers.

The transformation below is identical to the ones in [CGGM00, BGGL01].

Transformation hZK-rZK Given a prover-admissible proof system (P, V ), where P = (P1, P2), and a
collection f of pseudorandom functions, we define a new proof system (P,V) as follows.

The new verifier V is identical to V .
The new prover P: The new prover P’s randomness is viewed as a pair (ω(1), f), where ω(1) ∈

{0, 1}poly(n) is of length adequate for the random-tape of P1 and f : {0, 1}≤poly(n) → {0, 1}poly(n) is a de-
scription of a function taken from an ensemble of pseudorandom functions. For convenience, we describe the
new prover P as a pair P = (P1,P2). P1 is identical to P1 with random-tape ω(1); P2 emulates the actions of
P2 with a random tape that is determined by applying f to the input, the random coins ω(1) and the determin-
ing message. That is, upon receiving the determining message, denote msg, P2 sets ω(2) = f(x, ω(1),msg)
and runs P2 with random input ω(2). From this step on, P2 emulates the actions of P2 using ω(2) as P2’s
random-tape.

Theorem 6 Suppose that (P, V ) is prover-admissible, and let P be the prover strategy obtained from P by
applying Transformation hZK-rZK. Then:

Assuming that pseudorandom functions exist, for every probabilistic polynomial-time resetting cheating
verifier V∗ (as in Definition 3) there exists a probabilistic polynomial-time hybrid cheating verifier W ∗ (as in
Definition 6) such that 〈P (ȳ),W ∗〉(x̄) is computationally indistinguishable from 〈P(ȳ),V∗〉(x̄).

PROOF. The proof of the above theorem easily follows from the corresponding proof in [BGGL01]. Con-
sider a fully resetting verifier V ∗. We will construct an adversary W ∗ in the hybrid model which would be
able to simulate the view of V ∗. Consider an incarnation of the prover P i,j,k = (P i,j,k1 , P i,j,k2 ). W ∗ simply

6Note that such a power was not available to the verifier in the hybrid world of Barak et al [BGGL01]. Giving the verifier such
power makes the proof in our setting only easier while allowing us to generalize the class of (prover) admissible proof systems.
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relays messages between V ∗ and P i,j,k until the point V ∗ resets P i,j,k. At this point, W ∗ starts interaction
with another incarnation of the prover P i,j,k

′
with k 6= k′ and simply relays messages of the first round of

interaction between V ∗ and P i,j,k
′
. At the completion of the first round (i.e., assuming that the interaction is

not already aborted by this point), W ∗ forwards V ∗ the reply of P i,j,k
′

2 only if the determining message of
V ∗ was different from the one in the interaction with P i,j,k (and if so, continues to relay messages between
V ∗ and P i,j,k

′
). Otherwise, if the determining message was the same, W ∗ aborts the interaction with P i,j,k

′

and forwards to V ∗ the reply received earlier from P i,j,k in the first round. Further, W ∗ requests P i,j,k1 to
restart and then executes the same (first) round of interaction with P i,j,k1 as V ∗ did with P i,j,k

′

1 (this is possible
since the random tapes of P i,j,k1 and P i,j,k

′

1 are identical) to get “in sync”. From the second round onwards,
W ∗ again simply relays messages between V ∗ and P i,j,k with the following exception. In case a reply in the
current round was already given by P i,j,k2 earlier, W ∗ would not receive a reply in that case. However, by the
property of a prover admissible proof system, except with negligible probability, the transcript of interaction
of this session consisting of V ∗ main message and the replies of P i,j,k2 is identical to the earlier one (since the
determining message is identical). Hence, W ∗ forwards the reply received earlier in that case.

Now observe that the main difference between the view of V ∗ between when it is interacting with W ∗ in
such a setting and when it is directly interacting with prover incarnations and resetting them is the following.
W ∗ “switches” the interaction of V ∗ from P i,j,k to another incarnation P i,j,k

′
whenever V ∗ resets P i,j,k and

starts a session with another determining message. The indistinguishability of the views in these two cases then
follows from the pseudorandomness of the function f . �

We now define an analogous class of admissible proof systems, hybrid model and a transformation for the
case of resettable soundness. This case is symmetric to the case of resettable zero knowledge and the proof
again follows from the fact that a fully resetting adversary can be emulated by an adversary in the hybrid model.
For completeness, we give some of the details in the following.

Definition 7 (Verifier-admissible proof-system) A proof-system (P, V ) is called verifier-admissible if the fol-
lowing requirements hold:

1. The verifier V consists of two parts V1, V2. Similarly, the verifier’s random input ω is partitioned into
two disjoint parts, ω(1), ω(2), where ω(i) is given to Vi

2. A message sent by the prover may either be labeled as main message or an authenticator message. The
first main message sent by the prover in the protocol is called the determining message. Each prover
message is first received by V1. In each round of interaction, the prover and V1 exchange a number
of messages in which exactly one of the messages is a main message while the rest are authenticator
messages. At the end of an interaction round, V1 decides whether to accept the (only) main message
received based on the transcript of interaction round itself and the transcript of the prover main messages
and the corresponding replies of V2 so far. If V1 accepts, it forwards the main message to V2 who
generates the reply.

3. Let P ∗ be an arbitrary (deterministic) polynomial-size circuit, where P ∗ may execute a resetting-attack
on V (see Definition 4). Let P ∗ interact with some incarnation of V = (V1, V2). Then, except with
negligible probability, P ∗ is unable to generate two different main messages, both accepted by V1, for
some round ` in two different interactions with V with the same determining message.

The hybrid model for this case is exactly symmetric to the hybrid model for the case of prover admissible
proof system (with the roles of the prover and the verifier exchanged).

Definition 8 (hs) A hybrid cheating prover P ∗ works against verifier-admissible proof systems in the hybrid
model as described above. A proof system is hs if it is verifier admissible and satisfies Definition 4 with respect
to hybrid cheating provers.
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Transformation hs-rs Given a verifier-admissible proof system (P, V ), where V = (V1, V2), and a collection
f of pseudorandom functions, we define a new proof system (P,V) as follows.

The new prover P is identical to P .
The new verifier V: The new verifier V’s randomness is viewed as a pair (ω(1), f), where ω(1) ∈

{0, 1}poly(n) is of length adequate for the random-tape of V1 and f : {0, 1}≤poly(n) → {0, 1}poly(n) is a de-
scription of a function taken from an ensemble of pseudorandom functions. For convenience, we describe the
new verifier V as a pair V = (V1,V2). V1 is identical to V1 with random-tape ω(1); V2 emulates the actions
of V2 with a random tape that is determined by applying f to the input, the random coins ω(1) and the determin-
ing message. That is, upon receiving the determining message, denote msg, V2 sets ω(2) = f(x, ω(1),msg)
and runs V2 with random input ω(2). From this step on, V2 emulates the actions of V2 using ω(2) as V2’s
random-tape.

Theorem 7 Suppose that (P, V ) is verifier-admissible, and let V be the verifier strategy obtained from V by
applying Transformation hs-rs. Then:

Assuming that pseudorandom functions exist, for every probabilistic polynomial-time resetting cheating
prover P∗ (as in Definition 4) there exists a probabilistic polynomial-time hybrid cheating prover W ∗ (as in
Definition 8) such that 〈W ∗, V 〉(x̄) is computationally indistinguishable from 〈P∗,V〉(x̄).

PROOF. The proof of the above theorem easily follows from the proof of Theorem 6 and the techniques
in [CGGM00, BGGL01]. Consider a fully resetting prover P ∗. We will construct an adversary W ∗ in the
hybrid model which would be able to simulate the view of P ∗. Consider an incarnation of the verifier V i,j,k =
(V i,j,k

1 , V i,j,k
2 ). W ∗ simply relays messages between P ∗ and V i,j,k until the point P ∗ resets V i,j,k. At this

point, W ∗ starts interaction with another incarnation of the verifier V i,j,k′ with k 6= k′ and simply relays
messages of the first round of interaction between P ∗ and V i,j,k′ . At the completion of the first round (i.e.,
assuming that the interaction is not already aborted by this point), W ∗ forwards P ∗ the reply of V i,j,k′

2 only if
the determining message of P ∗ was different from the one in the interaction with V i,j,k (and if so, continues
to relay messages between P ∗ and V i,j,k′). Otherwise, if the determining message was the same, W ∗ aborts
the interaction with V i,j,k′ and forwards to P ∗ the reply received earlier from V i,j,k in the first round. Further,
W ∗ requests V i,j,k

1 to restart and then executes the same (first) round of interaction with V i,j,k
1 as P ∗ did with

V i,j,k′

1 (this is possible since the random tapes of V i,j,k
1 and V i,j,k′

1 are identical) to get “in sync”. From the
second round onwards, W ∗ again simply relays messages between P ∗ and V i,j,k with the following exception.
In case a reply in the current round was already given by V i,j,k

2 earlier, W ∗ would not receive a reply in that
case. However, by the property of a verifier admissible proof system, except with negligible probability, the
transcript of interaction of this session consisting of P ∗ main message and the replies of V i,j,k

2 is identical to
the earlier one (since the determining message is identical). Hence, W ∗ forwards the reply received earlier in
that case.

Now observe that the main difference between the view of P ∗ between when it is interacting with W ∗ in
such a setting and when it is directly interacting with verifier incarnations and resetting them is the following.
W ∗ “switches” the interaction of P ∗ from V i,j,k to another incarnation V i,j,k′ whenever P ∗ resets V i,j,k and
starts a session with another determining message. The indistinguishability of the views in these two cases then
follows from the pseudorandomness of the function f . �

We remark that our hZK-rZK transformation (resp., hs-rs transformation) only specifies a new prover (resp.,
verifier) strategy without changing the verifier (resp., prover) strategy. Hence, if the original proof system is
resettably sound (resp., resettable zero knowledge), so is the transformed proof system. Similar statement
holds for the case of hybrid soundness and concurrent soundness (resp., hybrid zero knowledge, concurrent
zero knowledge and relaxed concurrent zero knowledge).
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D High-Level Idea of the Protocol

The central idea behind our result concerns a novel non-black-box simulation strategy. To understand this
idea (and why it is useful), we will discuss the simpler goal of building a resettably-sound concurrent zero-
knowldge argument7. We begin by briefly recalling how all known concurrent zero-knowledge protocols work
in the plain model, for proving “x ∈ L” where L is an NP-complete language [RK99, KP01, PRS02], at
an informal level. The high level idea is this: First the verifier commits to a “secret”. Then, the prover
and verifier do the following many times sequentially (over many rounds of interaction): the prover makes a
“challenge” to which the verifier responds, with the properties that: (1) a single challenge-response from each
round reveals no information about the secret or the randomness used to commit to the secret, but (2) any two
distinct challenge-response pairs from the same round reveal the secret and the randomness used to commit
to the secret8. Then, the prover proves the following using an ordinary zero-knowledge (or WI) proof: that
either the prover knows the verifier’s secret, or that x ∈ L. This works because in real life, the prover only
gets one response for each round, and therefore he cannot learn the verifier’s secret. However, in a simulation,
the simulator can “rewind” the verifier and try to get two challenge-response pairs for some round, and thereby
learn the verifier’s secret (and the randomness the verifier used to commit to his secret). As discussed earlier,
the concurrent setting requires such a simulation to use a recursive rewinding strategy, in order to successfully
“solve” every execution of the protocol as they arise.

As discussed earlier, such concurrent zero-knowledge protocols are certainly not resettably sound, since
if a cheating prover could reset the verifier, it could use the same rewinding strategy to discover the verifier’s
secret and use it to cheat (just like the concurrent zero-knowledge simulator does). A simple idea to fix this
problem is the following: Have the prover commit to all his challenges in advance, and then in the challenge-
response phase, have the prover give a resettably-sound zero-knowledge argument that his challenges are the
same as the ones that he committed to earlier. Now, the cheating prover can’t cheat even if he can reset the
verifier. But there seems to be a circularity here: thinking back to the concurrent zero-knowledge simulator, in
order to extract the verifiers’ secrets, it needs to give different challenges from the ones it commits to, so it will
need to simulate the resettably-sound zero-knowledge argument so that it can lie. But we are in the concurrent
setting, so it seems that we will need a resettably-sound concurrent zero-knowledge argument for this. Indeed,
in general this is the case, and it may appear that we haven’t made any progress.

To resolve this situation, we can try to take a look inside the guts of the resettably-sound zero-knowledge
argument of Barak et al. [BGGL01]. As described earlier, the idea is to use the non-black-box zero-knowledge
protocol of Barak [Bar01]. The core idea behind Barak’s protocol is to have the prover commit in advance to a
program that can predict a string that is later randomly chosen by the verifier. The prover then must prove that
either its committed program really can predict the verifier’s string, or that the statement is true (in our case,
that the prover’s challenge is what he committed to earlier). In a real execution, the program is information
theoretically extremely unlikely to be able to predict the verifier’s random value. But in simulation (in the
stand-alone setting), where the simulator can choose the verifier’s random coins in advance and commit to
these coins and the verifier’s code, the simulator can ensure that the program mimics the verifier’s execution of
the protocol and therefore correctly predicts the verifier’s string.

However, Barak’s protocol is not fully concurrent zero-knowledge, and most natural approaches to try to
extend it to the fully concurrent scenario either cause soundness to fail or lead to exponential-time simulation.
Let us look at one approach, in our context: Recall that the program that the simulator commits to must
regenerate the transcript of the interaction of all the concurrent executions up until the point that the adversary
in the current execution outputs his randomly chosen string (within Barak’s protocol). Let us consider having
the simulator commit to an exponential-time program, one that runs the adversary’s code to regenerate the

7Indeed, we follow something similar to this in our actual technical approach, although our first goal is something slightly weaker
than concurrent zero-knowledge. See below for a technical outline of our paper.

8The requirement to be able to extract the randomness is actually not standard for concurrent zero-knowledge protocols from the
literature, but it is important for our approach.
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transcript, but whenever the adversary commits to a verifier secret in one of the concurrent executions of the
overall protocol, then the program uses exponential time to break the commitment and recover the secret. This
secret can then be used by the program to simulate any other protocol executions that arise before the program is
able to predict the desired verifier string. While this doesn’t make sense for us yet (since it requires exponential
time), it puts us on our path to solving the problem, based on the following crucial points:

• Soundness will still hold with regard to this protocol, because even an exponential-time deterministic
program can’t predict a random value chosen after the program is fixed.

• Our program’s only use of exponential time is to break the verifier’s commitments to his secrets. In other
words, our program is actually a polynomial-time program that needs oracle-access to a commitment-
breaking oracle.

• We’re now trying to eliminate the exponential-time requirement in this non-black-box simulation. Recall
that if our idea will work, then by the property of the overall recursive rewinding strategy, when the
simulator actually needs to prove that its program can predict the verifier’s string, the simulator will
have already extracted the verifiers’ secrets (and randomness used to commit to those secrets) for all the
verifiers that have appeared in any concurrent executions between when we committed to the program
and the time when we need to complete the proof. Therefore, the simulator already knows the secrets
and randomness corresponding to all the commitment-breaking oracle queries that our (now polynomial-
time) program will ever make.

So, instead of implementing the oracle with an exponential-time machine, we can have the simulator
implement the oracle by providing a list of all the verifier secrets and randomness that it has learned so
far. When the program makes an oracle query, the list is inspected to see if the right response to the query
is in the list. If it is not, then the program halts and fails. Assuming that the commitment scheme is one-
to-one, there can only be one correct answer to any query. Therefore, the program will only output one
fixed value (or halt and fail), no matter what list the simulator specifies. Thus, except for the additional
possibility that the program halts and fails, it will behave exactly as the original exponential-time program
did. This preserves the soundness of the protocol.

To make this approach work, aside from the main idea above, we also make use of several other (new and old)
ideas, including a new recursive rewinding technique inspired by [RK99]. At its core, our new non-black-box
simulation strategy allows for protocols that make essential use of non-black-box simulation but that can also
benefit from information learned using black-box recursive-rewinding simulation methods. Given that previous
non-black-box simulation advances have had an impact on numerous advanced cryptographic research goals
(e.g. [Bar01, Bar02, Pas04, PR05, BS05]), we believe that our new strategy will have other applications as well.
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