
A Hardware Analysis of Twisted Edwards

Curves for an Elliptic Curve Cryptosystem

Brian Baldwin1, Richard Moloney2, Andrew Byrne1, Gary McGuire2 and
William P. Marnane1

1 Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography.
Dept. of Electrical & Electronic Engineering, University College Cork, Cork, Ireland
2 Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography.

Dept. of Mathematics, University College Dublin, Dublin, Ireland.
{brianb,andrewb,liam}@eleceng.ucc.ie
{richard.moloney, gary.mcguire}@ucd.ie

Abstract. This paper presents implementation results of a reconfig-
urable elliptic curve processor defined over prime fields GF (p). We use
this processor to compare a new algorithm for point addition and point
doubling operations on the twisted Edwards curves, against a current
standard algorithm in use, namely the Double-and-Add. Secure power
analysis versions of both algorithms are also examined and compared.
The algorithms are implemented on an FPGA, and the speed, area and
power performance of each are then evaluated for various modes of circuit
operation using parallel processing. To the authors’ knowledge, this work
introduces the first documented FPGA implementation for computations
on twisted Edwards curves over fields GF (p).

1 Introduction

Elliptic Curve Cryptography (ECC) was established as a form of public key cryp-
tosystem in 1985 by Miller [1] and Koblitz [2]. Its advantage over other public key
cryptosystems, such as RSA [3], is that it provides an equivalent level of security
using shorter cryptographic key sizes. Increasing the key size increases the overall
security of the cryptosystem [4]. In practice however, hardware resources such as
computer processing power and system memory are limiting factors which can
reduce the speed and increase the area for such an increase. Therefore, a balance
needs to be set between the complexity of the mathematical computation, and
the resources available to implement the computations.

Another element to take into account when designing a public key cryptosys-
tem is the physical security of the system. Implementations can leak sensitive
information during the execution of a computation [5], which may lead to a
release of secret information, no matter how mathematically secure the system
may be. This method of side-channel analysis consists of monitoring some side-
channel information, such as the power consumption [6], and using the data
emitted to deduce, or partially deduce, the secret key [7].

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

2

In this paper we present implementation results of a reconfigurable elliptic
curve processor for a generalisation of the Edwards curve [8], the twisted Ed-
wards curve, recently proposed by Bernstein et al [9]. We examine both the im-
plementation efficiency and implementation security of twisted Edwards curves
and compare them against current standard curves and methods in use today.
We examine firstly, in projective coordinates, the explicit formulas for point ad-
dition and point doubling of the widely used Double-and-Add method [10] and
compare against the standard twisted Edwards formulas 1.We then examine the
strongly unified formula, which is resistant to simple power analysis (SPA) [7], a
form of side-channel analysis, and compare it to its equivalent, the Double-and-
Add-Always method [11].

2 Elliptic Curves

We consider an elliptic curve over the field GF (p) for some prime p, given by
the affine Weierstrass equation

y2 = x3 + Ax + B. (1)

In Jacobian projective coordinates, this curve is given by the equation

Y 2 = X3 + AXZ4 + BZ6 (2)

where the Jacobian projective point (X1 : Y1 : Z1) corresponds to the affine
point (X1/Z

2
1 , Y1/Z

3
1) if Z1 6= 0, and O the point at infinity, if Z1 = 0. We

consider Jacobian projective coordinates as they currently provide the fastest
implementation of ECC for hardware.

The basic operations of ECC are point scalar computations of the form:

Q = [k]P = P + P + · · ·+ P
︸ ︷︷ ︸

k times

(3)

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is the problem of re-
trieving k given P and Q, where P is a point on the curve and k is an integer [12].
The assumed difficulty of this problem is the basis of security for elliptic curve
public key schemes. Point scalar multiplication (PM) can be performed using
algorithms such as the Double-and-Add method, as shown in Algorithm 1. This
method requires m − 1 point doublings (PD) and w − 1 point additions (PA),
where m is the length and w is the Hamming weight of the binary expansion of
k.

Each PA and PD is comprised of finite field additions, subtractions, multi-
plications and inversions. By representing each point on the curve in projective
(X,Y, Z) rather than affine (x, y) coordinates, each PA and PD can be performed
without the need for inversions, albeit at the cost of extra multiplications. This

1 Explicit-formulas database. URL: http://hyperelliptic.org/EFD

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

3

will improve efficiency since the cost of inversions is significantly more expensive
than multiplications [13].

The equations governing PA and PD in projective coordinates using the
Double-and-Add method, Algorithm 1, on a Weierstrass curve, are given in
Algorithms 3 and 4 respectively. Each PA requires 16 multiplications and 7
additions/subtractions, with 10 multiplications and 4 additions/subtractions re-
quired for a PD.

Algorithm 1: Double-and-Add

input : p ∈ E(GF (p));

k =
∑nk−1

i=0
ki2

i

output: Q = [k]p ∈ E(GF (p))

Initialise: Q = P ;

for i← nk − 2 to 0 do
Q = 2Q;

if ki = 1 then
Q = Q + P

end

end

Algorithm 2: Double-and-Add-
Always

input : p ∈ E(GF (p));

k =
∑nk−1

i=0
ki2

i

output: Q = [k]p ∈ E(GF (p))

Initialise: Q = P ;

for i← nk − 2 to 0 do
Q[0] = 2Q[0];
Q[1] = Q[0] + P ;

Q[0] = Q[ki];
end

Algorithm 3: Point Addition in
Jacobian Coordinates
input : P (X1, Y1, Z1);

Q(X2, Y2, Z2) ∈ GF (P)
output: P + Q(X3, Y3, Z3) ∈

E(GF (p))

A = X1Z
2
2 , B = X2Z

2
1 ,

C = Y1Z
2
2 , D = Y2Z

3
1 ,

E = B −A,F = D − C,
X3 = −E3 − 2AE2 + F 2,
Y3 = −CE3 + F (AE2 −X3),
Z3 = Z1Z2E

Algorithm 4: Point Doubling in
Jacobian Coordinates
input : P (X1, Y1, Z1) ∈ GF (P)
output: [2]P (X3, Y3, Z3) ∈

E(GF (p))

A = 4X1Y
2
1 ,

B = 3X2
1 + a4Z

4
1

X3 = −2A + B2,
Y3 = −8Y 4

1 + B(A−X3),
Z3 = 2Y1Z1E

2.1 Simple Power Analysis Resistance

Simple Power Analysis (SPA), makes use of side-channel analysis to monitor and
measure the power emitted from a single execution of a cycle of a crypto proces-
sor. Each PA and PD operation produces a different power trace when executed
because of the different number of multiplications and additions involved in each,
and as the execution of a point addition in the Double-and-Add is directly re-
lated to the secret key (ki), it is possible to retrieve the secret key by monitoring
the power consumption of a single execution of a scalar multiplication.

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

4

The first successful power analysis attack against an FPGA was done by Örs
et al. [14] in which they attacked an elliptic curve processor and retrived the
secret key.

The Double-and-Add-Always, Algorithm 2, is a simplistic approach to solv-
ing the problem of the SPA susceptibility. It performs dummy point addition
executions, so that every execution of the key k executes a point double and a
point addition regardless of whether ki = 0 or ki = 1. This leads to an ineffi-
cient design as unnecessary operations are performed, but it does prevent the
recognition of individual bits.

2.2 Edwards Curves

In [9], Bernstein et al. introduced the twisted Edwards curves

ax2 + y2 = 1 + dx2y2 (4)

where a, d ∈ GF (p) are distinct and non-zero. If a = 1, the curve may be
called an Edwards curve. They further showed that a significant number of el-
liptic curves over GF (p) (roughly 1/4 of isomorphism classes of elliptic curves)
are birationally equivalent to a twisted Edwards curve. Two curves are bira-
tionally equivalent if there is an invertible rational mapping between them (such
as (x, y) 7→ (y

x−1
, x

y−1
)), which may be undefined at a finite number of points.

The chief advantage of Edwards and twisted Edwards curves over standard
curves is that the addition laws defined on them can be made unified, i.e., a
single addition formula can be used to add points and double points, with no
exception for the identity.

We use the projective twisted Edwards curve

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2 (5)

so as to avoid inversions. The projective point (X1 : Y1 : Z1) corresponds to the
affine point (X1/Z1, Y1/Z1).

2.2.1 Addition law on twisted Edwards curve

Let (X3 : Y3 : Z3) be the sum of the two points (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
on the projective twisted Edwards curve, i.e.,

(X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3).

Then
X3 = Z1Z2(X1Y2 + X2Y1)(Z

2
1Z2

2 − dX1X2Y1Y2)

Y3 = Z1Z2(Y1Y2 − aX1X2)(Z
2
1Z2

2 + dX1X2Y1Y2)

Z3 = (Z2
1Z2

2 − dX1X2Y1Y2)(Z
2
1Z2

2 + dX1X2Y1Y2).

(6)

We note that the projective twisted Edwards curve has two singular points,
(1 : 0 : 0) and (0 : 1 : 0), and the addition law is not defined at these points. An

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

5

elliptic curve cryptosystem based on an implementation of Edwards or twisted
Edwards curve should not allow either of these points as inputs.

Algorithm 5 and 6 give the PA and PD for the non SPA resistant twisted
Edwards algorithms, while Algorithm 7 gives the unified formula.

Algorithm 5: Point Doubling
for twisted Edwards
input : P (X1, Y1, Z1) ∈ GF (p)
output: [2]P (X3, Y3, Z3) ∈

E(GF (p))

B = (X1 + Y1)
2, C = X2

1

C = X1X2, D = Y1Y2, E = aC
F = E+D,H = Z2

1 , J = F−2H
X3 = (B − C −D)J,
Y3 = F (E −D), Z3 = FJ

Algorithm 6: Point Addition for
twisted Edwards
input : P (X1, Y1, Z1);

Q(X2, Y2, Z2) ∈ GF (p)
output: P (X3, Y3, Z3) ∈ E(GF (p))

A = Z1Z2, B = A2;
C = X1X2, D = Y1Y2;
E = dCD,F = B − E,G = B + E;
X3 = AF ((X1+Y1)(X2+Y2)−C−D;
Y3 = AG(D − aC), Z3 = FG

Algorithm 7: Unified twisted Edwards point operation

input : P (X1, Y1, Z1); Q(X2, Y2, Z2) ∈ GF (p)
output: P + Q(X3, Y3, Z3) ∈ E(GF (p))

A = Z1Z2, B = A2, C1 = aX1X2, C2 = X1Y2;
D1 = Y1Y2, D2 = X2Y1, E = dC2D2, F = B − E, G = B + E;
X3 = AF (C2 + D2), Y3 = AG(D1 − C1), Z3 = FG

For the separate PA and PD formulae, each PA requires 12 multiplications and
8 additions, while the PD requires 8 multiplications and 7 additions. The unified
single point operation, processes the same formula for both PA and PD, thereby
giving it the same power trace for either operation, at a cost of 14 multiplications
and 5 additions per point operation.

3 FPGA Based Elliptic Curve Processor

A reconfigurable architecture for performing elliptic curve cryptography was
designed [15] and ported onto an FPGA device. It consists of a controller, con-
taining an instruction set stored in ROM and a finite state machine (FSM), a
user definable number of arithmetic logic units (ALU’s) for addition, subtraction
and multiplication calculations in parallel, and BlockRAM for storage of results,
as illustrated in Figure 1. Software was developed in C++ to generate the in-
struction set and associated VHDL code for the reconfigurable processor. The
elliptic curve processor (ECP) properties can be configured by the user for any
characteristic p, and extension field m, as well as the respective memory sizes.
In this respect it can be modified to perform a number of different algorithms in

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

6

8

UNIT
3

UNIT
L

UNIT
2

UNIT
1

8

8

3 sel Address
Decoder

Address
Decoder

3 load

3 ctrl

p
b

p
b

p
b

addr
8

2
we

RAM

din

sel(3) sel(L)

dindata_in

sel(0)
data_out

.............

sel(2)sel(1)

dout B
dout A

ROM

addr

Controller

Fig. 1. Reconfigurable Elliptic Curve Processor

GF (p), including the various forms of the Double-and-Add algorithms and the
twisted Edwards algorithms.

3.1 Arithmetic Units

mode
1

p

mode

R
i−1

load

mode
0

LSB = q
i

xx
00

0
1

mode

mode

1

B

Shift B

A

mode

1

10

0 1

0100 10

00 01

p + 3

0 1

0 1 1 0

b
p + 3
b

p + 3
b

R
i

0100 10

Fig. 2. Field Operation ALU

The ALUs shown in Figure 2 perform the GF (p) operations described in
section 2, namely the modular multiplications, additions and subtractions. Mode
bits are used to select between operations.

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

7

For modular addition, the modular addition operation adds A and B in
the first adder and subtracts the modulus p from the sum. To subtract the
modulus from the intermediate result, the modulus is bitwise inverted and added
to (A + B) with the carry-in set to 1, thus performing a two’s complement
subtraction. The carry-out of the second adder controls which intermediate result
holds the correct result. If (A + B) is in the correct range, the result of the first
adder is the correct result, otherwise, the second adder holds the correct result.

For modular subtraction, B is bitwise inverted and added to A with the
carry-in set to 1. If the carry-out of this adder is low, the modulus must be
added to give an output in the correct range.

Modular multiplication is more complex, but by using the Montgomery mul-
tiplication algorithm [16], we can compute the binary number while avoiding the
need to perform a division by the modulus. Due to the large number of multi-
plications required for calculation by the elliptic curve processor, it is more cost
effective to initially convert all values to the Montgomery domain, and then to
convert them back afterward. The Montgomery modular product is defined as:

R = Mont(A,B, p) = AB2−pb+2(mod p) (7)

where pb is the field size in bits and Mont is a montgomery multiplication. The re-
sult of a Montgomery multiplication is therefore out by a factor of 2−pb+2. To cor-
rect this reduction, the output must be Montgomery multiplied by 22pb+2(mod p),
and a value is converted back by Montgomery multiplying it by 1. For modular

Algorithm 8: Montgomery Multiplication

input : A =
∑pb

i=0
ai2

i; B =
∑pb

i=0
bi2

i; M =
∑pb

i=0
pi2

i

output: R = AB2−pb+2(mod p)

Initialise: R← 0; bpb
+ 1← 0;

for i← 0 to pb + 1 do
qi = Ri−1 + biA(mod p);
Ri = (Ri−1 + QiM + biA)/2;

end

multiplication, following the process described in Algorithm 8, the inputs to the
first adder are biA and the previous result Ri−1. qip is added to the sum of the
first adder if the LSB of the sum (qi) is equal to 1. A shift register is then used
to check each bit of B for biA and the final result is right shift divided by 2.

Modular multiplication is executed in pb +2 clock cycles, where pb is the field
size in bits, while modular additions and subtractions each take 2 clock cycles.

5.2 GFP Controller

The ROM is generated with the use of microcode stored in Xilinx BlockROM.
This is implemented to reduce the development time of the processor and to

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

8

increase the flexibility of the design. A major advantage of this is that the in-
struction set can be updated to perform any number of operations without a need
to recompile the entire processor. The instruction set to control the algorithm is
stored in ROM and the instructions are processed consecutively.

For the architecture to accommodate this, mode bits are used to set the
operation of the ALUs. After initially loading the elliptic curve parameters and
Montgomery constants into RAM, the controller performs operations for the
selected cryptographic algorithm. The initial operands and the results from the
arithmetic units are stored in a RAM block. This RAM can be configured for
single port, or dual port operation, thereby increasing the speed of the ECP,
through the use of parallelisation.

4 Performance Results of ECC Algorithms

Table 1. Spartan3E XC3S500E-4fg320 FPGA Results

Double-and-Add

ALU Fmax(Mhz) Area(slices) Pwr(mW) Energy(mJ)

1 27.921 1703 88.04 2.703
2 28.333 2896 96.53 1.601
3 27.84 3988 109.58 1.415
4 26.438 4654 107.52 1.386

Double-and-Add-Always

ALU Fmax(Mhz) Area(slices) Pwr(mW) Energy(mJ)

1 28.539 1702 87.84 4.292
2 28.183 2897 100.56 2.608
3 27.808 3989 106.99 1.961
4 26.68 4654 105.73 1.798

twisted Edwards

ALU Fmax(Mhz) Area(slices) Pwr(mW) Energy(mJ)

1 28.245 1703 88.08 1.623
2 28.746 2898 98.67 1.042
3 28.01 4269 115.82 0.863
4 25.097 4654 105.93 0.83

twisted Edwards Strongly Unified

ALU Fmax(Mhz) Area(slices) Pwr(mW) Energy(mJ)

1 27.976 1700 88.09 2.4
2 27.852 3171 98.67 1.931
3 27.816 4553 115.82 1.926
4 25.052 4654 105.93 1.317

The ECP can be programmed to run any number of ALUs in parallel to pro-
cess an elliptic curve formula. This design is limited only by the size of the FPGA.
For this paper, the architecture was evaluated on a Spartan3E XC3S500E, and

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

9

used one to four ALUs operating in parallel. Table 1 shows the measured results
for the FPGA.

Table 1 firstly details the post place and route (PPR) clock frequency (Fmax).
There is very little variation in clock frequency between the different algorithms.
The clock frequency in fact depends on the number and type of ALUs used. The
minimum PPR frequency reported for all the configurations and combinations
was recorded when using four multipliers.

The circuit design also remains the same for each of the four formulae, differ-
ing only in the size of the instruction set in ROM. The area, therefore, approx-
imately remains the same for each of the four different formulae, and increases
equivalently with more ALUs.

The average power (Pwr) dissipation of the processor was measured at a fre-
quency of 10 MHz. The current being drawn by the FPGA on its V CCINT and
V CCAUX line was measured. The voltage supplied to each line by the board’s
voltage regulator was also measured. These voltage and current measurements
were then used to calculate the total average power consumed on both lines. The
energy per average multiplication is also given. The energy is calculated using
the average power value and the average time per point multiplication, as shown
in Tables 2 and 3, based on the number of clock cycles and the 10 MHz clock
frequency.

4.1 Computation Time

The scheduling was examined, again with a variable number of ALUs, to examine
the timing of each algorithm. As described in Algorithm 1, a multiplication is
executed in pb + 2 clock cycles, while additions and subtractions each take 2
clock cycles. Using a key size of 192 and performing all multiplications and
additions/subtractions for the Algorithms 3, 4, 5, 6 and 7, defined in Sections 2
and 4, the timing results in Tables 2 and 3 were obtained. As can be seen from
the table, the number of multiplication stages required to process an algorithm
decreases with an increase in parallelisation.

Next we tested each of the formulae with a 192-bit value for the key (k)
and a Hamming weight of k

2
to measure an iteration of the algorithms. The

graph in Figure 3 shows the timing results. The graph shows that the standard
twisted Edwards algorithm performs on average 60% faster than its equivalent
Double-and-Add algorithm for all counts of ALUs. The graph also shows that
the SPA resistant unified twisted Edwards performs comparably to the non SPA
resistant Double-and-Add method and performs faster for one or four ALUs.
However, neither the standard twisted Edwards nor Double-and-Add achieve
any great increase in timing when increasing from 3 ALUs to 4 ALUs, due to
the algorithms limitations of parallelism. From the graph we can see that again
the standard twisted Edwards gives the best value across the range of ALUs,
with 3 ALUs giving the best performance. For the Unified twisted Edwards and
both the Double-and-Add formulae 4 ALUs gives the fastest timing.

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

10

Table 2. Double-and-Add Point Double
and Point Addition Timing

Double-and-Add

Point Double Point Addition

ALU Mul Add Clks Mul Add Clks

1 10 13 1948 26 20 5035
2 6 13 1178 13 20 2538
3 5 13 962 9 20 1770
4 5 13 962 8 20 1578

Double-and-Add-Always

Point Double Point Addition

ALU Mul Add Clks Mul Add Clks

1 25 20 4842 25 20 4842
2 13 20 2538 13 20 2538
3 9 20 1770 9 20 1770
4 8 20 1578 8 20 1578

Table 3. twisted Edwards Point Double
and Point Addition Timing

twisted Edwards

Point Double Point Addition

ALU Mul Add Clks Mul Add Clks

1 8 7 1536 12 8 2322
2 4 7 770 8 6 1550
3 3 7 578 5 7 976
4 3 7 578 5 6 974

twisted Edwards Strongly Unified

Point Double Point Addition

ALU Mul Add Clks Mul Add Clks

1 14 5 2700 14 5 2700
2 9 4 1736 9 4 1736
3 7 4 1352 7 4 1352
4 6 4 1160 6 4 1160

1 2 3 4

10

20

30

40

50

Ti
m

e
to

 C
om

pl
et

e
19

2-
bi

t K
ey

 It
er

at
io

n
(m

s)

Number of ALU's

 TwEdwards
 TwEdUnified
 DblAdd
 DblAddAlw

Fig. 3. Time Required to Complete an 192-bit Key Iteration

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

11

4.2 Efficiency

Although the ECP can be configured to run any number of ALUs in parallel,
some operations in a particular formula are dependent on the results of other
operations, which creates a limit to the amount of parallelism that can be ex-
ploited [17]. This leads to redundancy in the design, as there comes a point where
the addition of extra ALUs leads to a decrease in the efficiency, and results in
a small increase in speed at the cost of large increase of area. We define the
efficiency as the number of multiplication operations, and therefore the number
of ALUs, that can be run in parallel at each particular time stage, in relation
to the overall number of ALUs available for parallel processing for a time stage.
Figure 4 shows the schedule for a point operation for a four ALU strongly unified
twisted Edwards, where the first eight memory addresses containing the points
P , Q, a and d. As can be seen from the schedule, of the six multiplication stages

X1 Y1 Z1 X2 Y2 Z2 a d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X3 Y3 Z3

RAM ADDRESS

ALU 1 ALU 2 ALU 3 ALU 4

P Q

Fig. 4. twisted Edwards Strongly Unified 4ALU Point Operation

used for the point doubling and point addition, there is only one stage where all
four ALUs can be used in parallel, while there are two stages where only one
ALU can be in use. When this is compared against the twisted Edwards design
which uses three ALUs, shown in Table 3, it results in approximately the same

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

12

1 2 3 4

55

60

65

70

75

80

85

90

95

100

105

E
ffi

ci
en

cy
 (%

)

Number of ALU's

 DblAdd
 DblAddAlw
 TwEd
 TwEdUnif

Fig. 5. Efficiency of varying numbers of ALUs.

completion time, for a much larger increase in circuit area. The efficiency for
one to four ALUs for each of the four formulae is shown in Figure 5. From the
graph it is clear that all of the formulae result in a drop in efficiency as more
ALUs are added, with the Unified twisted Edwards having the worst case, and
the Double-and-Add-Always making the best use of parallelism.

4.3 Area Time Product

1 2 3 4
35

40

45

50

55

60

65

70

75

80

85

90

95

100

A
T

P
ro

du
ct

 (c
lk

 c
yc

le
s.

sl
ic

es
)

Number of ALU's

 TwEdwards
 TwEdUnified
 DblAdd
 DblAddAlw

Fig. 6. Area-Time Product

The area-time (AT) product was calculated to get a representation of any
speed increase against the increase in size, as shown in Figure 6. This gives a more
accurate representation of the cost that each increase in ALU has in relation to

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

13

the overall system. The minimum AT value, i.e. the most efficient combination
in an area time sense, is again the standard twisted Edwards, giving the best
value across the range of ALUs, with 2 ALUs giving the best performance. For
the Unified twisted Edwards, a single ALU gives the best performance, while
the Double-and-Add formulae give best AT at 2 and 3 ALUs respectively.

5 Conclusions

In this paper, we presented implementation results of an ECP with a reconfig-
urable architecture and used it to compare the standard and strongly unified
formulae that define the twisted Edwards curve, against the Double-and-Add
and Double-and-Add-Always formulae. We showed that the twisted Edwards
performs on average 60% faster and uses less area than the Double-and-Add,
and that the performance of the SPA resistant strongly unified version of the
twisted Edwards, far exceeded its Double-and-Add-Always equivalent. We also
showed that by using one or four ALUs operating in parallel, the strongly unified
twisted Edwards execution time exceeds the Double-and-Add for an equivalent
number of ALUs. Future work could be an examination of the cost of convert-
ing a Double-and-Add to a strongly unified twisted Edwards curve to gain SPA
resistance at comparable speeds.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. 06/MI/006.

References

1. Victor S Miller. Use of elliptic curves in cryptography. In Lecture notes in computer
sciences; 218 on Advances in cryptology—CRYPTO 85, pages 417–426, New York,
NY, USA, 1986. Springer-Verlag New York, Inc.

2. Neal Koblitz. Elliptic curve cryptosystems. In Mathematics of Computation, vol-
ume 48, pages 203–209, 1987.

3. R. Rivest, A. Shamir, and L. M. Adleman. Method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

4. Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. In PKC
’00: Proceedings of the Third International Workshop on Practice and Theory in
Public Key Cryptography, pages 446–465, London, UK, 2000. Springer-Verlag.

5. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In CRYPTO ’96: Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, pages 104–113, London, UK,
1996. Springer-Verlag.

6. Paul Kocher, Joshua Ja E, and Benjamin Jun. Differential power analysis. pages
388–397. Springer-Verlag, 1999.

7. Eric Brier and Marc Joye. Weierstraßelliptic curves and side-channel attacks. In
PKC ’02: Proceedings of the 5th International Workshop on Practice and Theory
in Public Key Cryptosystems, pages 335–345, London, UK, 2002. Springer-Verlag.

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

14

8. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44(3):393 –422, 2007.

9. Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards curves. In Progress in Cryptology AFRICACRYPT 2008, pages
389–405, 2008.

10. Donald Ervin Knuth. The Art of Computer Programming, volume 2, Seminu-
merical Algorithms of Addison-Wesley series in computer science and information
processing. Addison-Wiley, third edition, 2001.

11. Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In CHES ’99: Proceedings of the First International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 292–302, London,
UK, 1999. Springer-Verlag.

12. I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic Curve
Cryptography (London Mathematical Society Lecture Note Series). Cambridge Uni-
versity Press, New York, NY, USA, 2005.

13. Gerardo Orlando and Christof Paar. A scalable gf(p) elliptic curve processor ar-
chitecture for programmable hardware. In Lecture Notes In Computer Science,
volume 2162, pages 348 –363, 2001.

14. Siddika Berna rs, Elisabeth Oswald, and Bart Preneel. Power-analysis attacks on
an fpga first experimental results. In Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2003), volume 2279 of Lecture Notes in
Computer Science, pages 35–50. Springer-Verlag, 2003.

15. A. Byrne, E. Popovici, and W.P. Marnane. Versatile processor for gf(pm) arith-
metic for use in cryptographic applications. In Computers & Digital Techniques,
IET, volume 2, pages 253–264, July 2008.

16. P. Montgomery. Modular multiplication without trial division. In Mathematics of
Computation, volume 44, pages 519–521, 1985.

17. Robert A. Walker and Samit Chaudhuri. Introduction to the scheduling problem.
volume 12, pages 60–69, Los Alamitos, CA, USA, 1995. IEEE Computer Society
Press.

A version of this paper appears in ARC 2009, the 5th International Workshop on Applied Reconfigurable Computing

